

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288383284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Interaction Protocols for Cross-organisational WorkflowsI

Flávio Soares Corrêa da Silvaa, Mirtha Lina Fernández Veneroa, Diego Mira Davida,
Mohammad Saleemb, Paul W. H. Chungb

aUniversity of São Paulo, Brazil 05508090
bLoughborough University, UK LE11 3TU

Abstract

Workflow technologies are widely used in industry and commerce to assist in the
specification, execution and completion of well defined processes within organisations.
As industrial and commercial relations have evolved, based on advances on informa-
tion and communications technologies, cross-organisational workflow integration has
become an important issue. Since organisations can have very different workflows, the
creation of compatible workflows so that organisations can collaborate and/or carry out
mutual transactions automatically in an integrated fashion can be a very complex and
time consuming process. As a consequence, the development of technologies to sup-
port the creation and execution of compatible workflows is a most relevant issue. In the
present article we introduce the JamSession coordination platform as a tool to imple-
ment cross-organisational workflow integration. JamSession is declarative and based
on algebraic specification methods, and therefore workflow integration implemented
using this platform can profit from formal behavioural analysis, based on which de-
sired features and properties can be verified and/or obtained.

1. Introduction

Workflow process definitions form an important part of organisational knowledge
bases, as they specify how activities are sequenced and who is responsible for carrying
out each activity within an organisation. Workflow technologies are widely used in
industry and commerce to assist in the specification, execution and completion of well
defined processes within organisations (WfMC (1995)). With the advances in com-
munication technologies, electronic business is on the increase and there is a need for
efficient and effective workflow tools to support all sorts of business transactions. How-
ever, since organisations can have very different workflows, the creation of compatible
workflows so that organisations can collaborate and/or carry out mutual transactions
automatically in an integrated fashion can be a very complex and time consuming pro-
cess. As a consequence, the development of technologies to support the creation and

IThis work has been partially funded by FAPESP and Microsoft Research through the JamSession
project. The authors thank Dr. Shaheen Fatima for comments and suggestions on early versions of the
present article.

Preprint submitted to Elsevier June 10, 2012

execution of compatible workflows is a most relevant issue. A company can have many
business partners, and the interactions between the company and its partners can be ei-
ther ad hoc or on a permanent basis. Therefore, it is critical that a flexible approach
is used for workflow integration, lest the required overhead to set up the collaboration
can overcome the benefit from the corresponding mutual transactions.

The main thrust of this article is on the execution of workflow interactions across
organisational boundaries – heretofore referred to as cross-organisational workflows.
Such interactions should be flexible and reliable, as well as distributed and loosely
coupled. Loose coupling ensures that organisations require little or no knowledge
about each others’ internal activities, and thus a greater freedom for changing their
internal processes without affecting the overall collaboration. A distributed approach
for the management of interactions ensures that organisational resources remain inde-
pendent and, therefore, organisations have greater control over their processes. Dis-
tributed coordination mechanisms for cross-organisation workflows (e.g. Chen (2008))
have shown to be more effective than centralised ones, since the latter usually en-
tail tighter coupling (van der Aalst (1999); Schulz and Orlowska (2004); Biegus and
Branki (2004)).

Recently, a platform has been proposed for the integration and coordination of het-
erogeneous computational resources (da Silva (2011)). It has been named JamSes-
sion, after the standard practice of jazz musicians inaugurated around 1940-1950 in
New York (USA), who got together in certain specific pubs to form new and innova-
tive band formations after their hired performances. The JamSession platform aims at
being for software components what those pubs were for the jazz musicians, namely a
meeting point where previously existing components can get together to form new and
innovative service systems. The main features of JamSession are its (1) formal and
declarative foundations, (2) simplicity and (3) usability. JamSession is based on the
construction and execution of Knowledge-based Interaction Protocols (KBIPs), which
can be designed using a straightforward and user-friendly graphical language which is
also part of the platform. The platform is compact and lightweight so it can be imple-
mented using low computational resources.

In this article, we show how JamSession can be used to implement the integration
of workflows, thus being an ideal tool for the specification and execution of cross-
organisational workflows. The goal is to show a set of KBIPs which can be used to me-
diate the interaction between organisational workflows, based on which we illustrate
the applicability of JamSession for cross-organisational workflow integration. The
mediation must ensure that the workflows remain decoupled and independent – except,
of course, for the synchronous dependency characterised by control flow patterns. Fur-
thermore, we require that a separation of concerns and responsibilities is built in the
protocols, so that each organisation builds the interaction protocols capable of directly
exchanging information with its internal workflow – this way ensuring required trust
and security levels.

Hence, the contributions of this article correspond to the introduction of JamSes-
sion as a tool for cross-organisational workflow integration, with the features of being
formally verifiable, easy to use and sufficiently flexible as to provide an environment
for the specification and execution of integration patterns which ensure proper separa-
tion of concerns and responsibilities across collaborating organisations.

2

For the sake of completeness, the next section provides an overview of research that
has been carried out to address the problem of compatible workflow generation and
execution, in the context of cross-organisational workflow integration. An informal
but complete description of the JamSession platform is provided in Section 3, with
illustrative examples of how it works. The central section in this article is section 4,
in which we show how cross-organisational workflows can be coordinated through the
use of KBIPs. To this end, we consider two of the three main patterns for workflow
collaboration described by Chen (Chen (2008)), namely the hierarchical pattern and
the peer-to-peer pattern. In Section 5 we sketch out how JamSession protocols for
cross-organisational workflows can be formally verified, using coloured Petri nets. We
conclude the article with some remarks and plans for future work.

2. Workflow Integration

As observed in the previous section, cross-organisational workflow integration is a
most relevant – as well as a rather challenging – issue for industry and commerce. In
the present section we characterise this field, briefly surveying its origins and recent
approaches. We also introduce the advancements in this field which can be explored
using the JamSession coordination platform.

Workflow management has two main stages, namely build time and runtime (WfMC
(1995)):

1. Build time refers to the time period during which workflows are defined and
modelled. Build time specifications are modelled using workflow definition
tools, which support the specification of workflows using a specification lan-
guage directly or via a graphical frontend. Workflows built using definition
tools and specification languages are executable by workflow management sys-
tems (WfMS). WSFL, WfMC’s XPDL and BPMI’s BPML are some of the
most widely used workflow definition tools and corresponding specification lan-
guages. Build time specifications are, essentially, a set of routing commands
which can be executed by a WfMS.

2. Runtime is the operational stage during which process instances are actually
created and managed. The runtime control functions of the WfMS handle the
workflow processes in the operational environment and follow the sequential,
branching and parallel process coordination patterns specified in the workflow
model. The workflow enactment services of the WfMS also ensure the allocation
of work items to users and invocation of applications whenever necessary. IBM
WebSphere MQ Workflow, FileNET P8 BPM Suite, Staffware Process Suite,
TIBCO InConcert and Enhydra Shark are among the most widely used WfMS.

Workflow modelling, revision and update are highly time consuming. In order to
improve the efficiency in these activities, the focus of workflow modelling has gradu-
ally shifted to process driven services, in order to exploit service oriented architectures
and web service architectures (Chen and Yang (2005); Saleem et al. (2010); Sirin et al.
(2003, 2004); Wang et al. (2006)).

3

Service oriented architectures and web service architectures make it possible to au-
tomatically generate workflows. Service oriented architectures can be seen as a prob-
lem solving paradigm that leverages service based computing standards for delivering
business functions and processes as loosely coupled shared services (Krafzig et al.
(2004)). The web services composition problem can be envisaged as an AI planning
problem (Sirin et al. (2004)). If each activity in a workflow is represented as an atomic
web service, workflow generation problems can be treated as web services composition
problems, in which:

1. a planner reasons about a pool of available services,
2. a composition of services that can bring about the desirable state is added into

the workflow, and
3. the execution of the workflow achieves the desired goal (Chen and Yang (2005)).

Sirin et al. (Sirin et al. (2003)) presented a semi-automatic system for web services
composition, which suggests to the user new web services to be included in the work-
flow. The suggestions are based on constraints specified by the user on attributes of the
web services. In more recent work, Sirin et al. (Sirin et al. (2004)) extended the semi-
automatic system to a fully automatic system. Their system accepts as input high level
goals from a user and creates a plan to reach the goals based on the domain description.
The system executes the plan using web services extracted from the web. They also
presented a sound and complete algorithm to translate OWLS process definitions into
SHOP2 domain descriptions. Their proposed system builds plans for one organisation
only and does not take multiple organisations into account. They also do not provide
support for parallel plans.

Transplan1 is another system which creates plans from OWLS process definitions to
solve high level goals provided by users. Transplan uses SHOP2 for planning. Trans-
plan uses the translation algorithm presented by Sirin et al. (Sirin et al. (2004)) to
translate OWLS process definitions to SHOP2. It is assumed in Transplan that the pre-
conditions of every operator become false when the operator is added into the plan,
which is not always the case in real world domains. Transplan also does not support
collaboration between multiple organisations and it is not able to create all possible
plans in situations in which parallel plans are possible.

Since organisations have to work in collaboration with each other, the idea of cross
organisational workflows arises as a most relevant issue. Most of the existing work on
cross organisational workflow collaboration mainly deals with build time collaboration
among existing workflows. Earlier research focuses on finding common sequences of
activities in existing workflows (van der Aalst (1999); Byde et al. (2002); Krukkert
(2003)). Existing research also reports coordination which is built through manually
discussing the business processes and reaching a business agreement (Schulz and Or-
lowska (2004)). More recent research has targeted reconciling existing incompatible
workflows (Chen and Chung (2007)). The reconciliation, if successful, builds compat-
ible workflows out of the previously incompatible ones. Two or more workflows are
said to be compatible if they have an agreed sequence of activities. If workflows are not

1See http://sourceforge.net/projects/transplan/.

4

compatible, then the respective organisations cannot proceed in mutual business (Yang
and Papazoglou (2000)).

RosettaNet is a consortium of major electronic companies, which has built the Part-
ner Interface Processes (PIPs) standard. This standard defines a broad set of supply
chain processes and data elements2. PIPs also defines common interface tasks for
supply chain collaboration. Interface tasks refers to activities in which information
is exchanged between interacting workflows (Chen (2008)). Workflow collaboration
built using PIPs promotes decoupling of workflows, which is a most desirable design
feature.

van der Aalst (van der Aalst (1999)) proposed the utilisation of Message Sequence
Charts to capture the communication structure in cross organisational workflows. Ac-
cording to van der Aalst, organisations should agree on a common public workflow and
organisations can have their independent private workflow within their organisations.

Byde et al. (Byde et al. (2002)) proposed a negotiation framework which claims to
conduct automatic negotiation over B2B processes. A joint process is created from the
interacting processes and the joint process is compared to individual processes to detect
any differences and the cost required to remove those differences. This is actually an
extension of the approach proposed by van der Aalst (van der Aalst (1999)). The issue
with the approaches proposed by van der Aalst and Byde et al. is that both these
approaches only target differences caused by different activity content. Any difference
regarding activity sequence is considered irreconcilable.

Krukkert (Krukkert (2003)) proposed a solution, in the context of the openXchange
project, which takes two activity diagrams as input and compares them to find out all
common execution sequences. If any common sequence is found, then a common
activity diagram is constructed for collaboration based on the discovered common se-
quences. This approach assumes all activities to be atomic and represent activity dia-
grams as state transition systems (Pratt (1991)). The issue with this solution is that it is
not able to handle situations in which no common sequence is found.

The works reported by van der Aalst, Byde et al. and Krukkert have a common
problem. There must be a common activity sequence in the workflows or activity di-
agrams of the participating organisations. In a situation such that there is no common
sequence, collaboration cannot proceed. This makes the participating workflows or
activity diagrams highly coupled with each other. Novel mechanisms for the reconcil-
iation of conflicts are required in order to build decoupled (or, at least, not so strongly
coupled) collaboration among workflows.

Schulz and Orlowska (Schulz and Orlowska (2004)) proposed a three tiered cross
organisational workflow model, comprised of coalition workflows, workflow views and
private workflows. Coalition workflows are constructed on the basis of agreements
among the business partners and are made up of abstract services. Individual part-
ners can choose tasks from the coalition workflows which they decide to implement
privately. Based on a coalition workflow, relationships between the chosen tasks are
obtained. Splits and joins are added to workflow views, which are published to be
viewed by the business partners. Workflow views and private workflows are then con-

2See RosettaNet Business Dictionary, RNBD v2.1, 2002.

5

nected through state dependencies. This model requires interacting partners to meet
and decide on business agreements before the workflow collaboration can be imple-
mented. This can be a highly time consuming process, especially when the network of
business partners grows.

Chen and Chung (Chen and Chung (2006)) presented a framework for collaboration
among existing workflows of multiple organisations in order to make them compatible.
The approach is based on reconciling existing workflows to bring about compatibility
and supporting runtime execution of the compatible cross organisational workflows.
A collaboration software agent initializes an interface process offer to a candidate
provider, who then evaluates the offer and creates a counteroffer. The requester either
accepts or rejects the offer. The process of offer generation, counter-offer generation,
acceptance and rejection goes on recursively until negotiation is terminated or recon-
ciliation is achieved. If compatibility is attained, partners move on to fulfilment stage
by enacting their workflows. This framework automates the collaboration process and
saves time and resources for organisations. This framework helps in decoupling the in-
teracting organisations from each other by automatically building collaboration among
their initially incompatible workflows. However, the organisations are still involved in
accepting or rejecting offers and counter-offers every time process reconciliation is car-
ried out. Moreover, organisations must model their workflows prior to collaboration,
which is a time consuming task.

Wang et al. (Wang et al. (2006)) proposed a system for inter-organisational work-
flow coordination and dynamic composition of workflows. They have introduced dy-
namic flexibility to the workflow runtime execution stage. Initially, dynamic flexibility
was only targeted at the design stage. They used intelligent agents for the dynamic
composition of workflows and negotiation of web services over the Internet. Intelli-
gent agents are autonomous problem solving entities which take the state of their en-
vironment as input and act on the environment to fulfil certain roles (Jennings (2001)).
Wang et al. used intelligent agents to discover, execute and monitor web services. They
targeted inter organisational coordination from the perspective of a single organisation
which deals in a heterogeneous environment with ad hoc external processes. They did
not take the creation of compatible workflows for multiple organisations into account.

Jiang et al. (Jiang et al. (2010)) used process-views for cross organisational work-
flow management. Process-views are abstract processes used to encapsulate sensitive
private details of the workflows and expose the details necessary for collaboration.
Jiang et al. proposed an approach based on the integration of process-views and timed
colored petri-nets for workflow management. They consider both the control and data
aspects of the cross organisational workflow management. They simplify the complex
workflows with colored petri-net refinement, model the petri-net workflow models to
process-view workflow models and then execute the workflow instances. Their ap-
proach keeps the autonomy and the privacy of the internal workflows to the organisa-
tions while realising the interoperability through the interfaces of the workflow views.

In their earlier work, Jiang et al. (Jiang et al. (2008, 2009)) applied the integrated
approach of process-views and petri-nets for collaborative product management. Simi-
larly, Chebbi et al. (Chebbi et al. (2006)) used workflow views for inter-organizational
workflow cooperation. In the same way, the Cross-Work project adopted a view based
approach for dynamic business network process management in instant virtual enter-

6

prises (Eshuis and Grefen (2008); Grefen et al. (2009)).
Recently, some work has been done on composing web services into workflows for

multiple collaborating organisations. Chen et al. (Chen et al. (2011)) suggested a Pi-
Calculus based approach to compose web services into cross organisational business
processes. A cross organisational business process is modelled as a set of concurrent
local processes, which has a global start and a global end activity. The activities in the
local processes can receive external start messages. A cross organisational controller
controls the flow of control and data in the cross organisational process. The basic
problem with this approach is that it is a static modelling approach and the web services
composition is not automatic.

Saleem et al. (Saleem et al. (2010)) developed a framework that uses intelligent
agents to create compatible workflows for multiple collaborating organisations. Their
developed framework uses SHOP2 for planning. An instance of intelligent agent is
created for every organisation, which works on behalf of the respective organisation.
Any step that makes the workflow incompatible with the workflows of the collaborating
organisations is discarded by the agents, and a new step is tried. The problem with this
framework is that it is not known whether this is a feasible and practical approach, since
the coordination among agents before adding every step will lead to very intensive
communication among the agents.

Saleem et al. ((Saleem et al. (2011); Saleem (2012)) presented a framework that is
able to generate compatible workflows for multiple collaborating organisations, from
their process definitions and high level organisational goals. The framework also sup-
ports collaborative runtime enactment of the generated workflows. The framework
relieves organisations from modelling and reconciling workflows each time they inter-
act with new organisations. From the given goals, the framework generates multiple
sets of accurate, valid and compatible workflows for the collaborating organisations
and gives the users the choice to select the best suitable compatible set of workflows
for their business scenario. The framework uses AI planning and web services archi-
tecture for the generation of compatible workflows. The framework uses an extended
version of SHOP2 planner for planning.

Since workflows need to be enacted, only build time coordination is not enough.
There needs to be runtime coordination among interacting organisations, so that the
transfer of files and information can happen smoothly and the sequential, parallel or
branching navigation of cross organisational activities can be followed. One way to
achieve this is to treat business partners as workflow participants and expand the stan-
dalone centralised enactment service across the organisational boundaries, as discussed
by Chen (Chen (2008)). In this situation, business partners need to share private data,
common process definition and a centralised workflow engine. This approach cou-
ples the business partners very closely. It is also a very expensive and rigid approach.
Sub-flow invocation mechanisms are another alternative in which a chained process is
started and all the nested sub-flows in the hierarchical workflow are completed. This
approach is technically sound but limited.

Chen and Hsu (Chen and Hsu (2001)) proposed a collaborative process manager
which is based on a workflow case transfer approach. In this manager, it is assumed
that all interacting partners must have the same definition of workflow, and each or-
ganisation is responsible for executing its own activities through its local workflow en-

7

gine. The organisations recognise their activities on the basis of role matching. Once
the organisations finish their activities, they inform the interacting organisations. The
communication between partners happens through messages. The problem with this
approach is that it assumes homogenous workflow engines among all interacting or-
ganisations. This approach also needs the mainstream specification languages to be
extended in order to include a collaborative process definition language.

Chen and Chung (Chen and Chung (2006)) proposed a bottom-up approach for
cross-organisational workflow enactment. Their approach is WfMS independent and
workflow enactment is done via progressive linking, which is enabled by run-time
agents. Each interaction point is modelled as an interface activity and agents make
sure that outgoing data and incoming data are delivered to the corresponding activities
accordingly. A form filling approach is used to ensure this. The corresponding agents
fill in information such as activity ID, interaction identifier and general data, and attach
any relevant documents to the form after the activity is executed. The form represents
the progress of interoperation and can be used for historical record. Chen and Chung
assumed that the cross organisational workflows to be enacted were already compatible
and the issue of compatibility is solved in build time.

As discussed, existing research has targeted the area of workflow integration exten-
sively. There are a few issues that still remain neglected.

1. While the researchers have focussed on workflow integration to bring about busi-
ness collaboration, formal verification and analysis of the integration process has
not been targeted. Formal verification and analysis ensures the correctness and
validity of the workflow integration, which is beneficial in the case of huge co-
ordinating workflows where the correctness and validity cannot be guessed intu-
itively. Formal foundations ensure the selection of the most efficient integration
pattern. JamSession targets formal verification and analysis, due to its formal
and declarative foundations it is highly efficient and lightweight.

2. The existing systems are mostly tightly coupled (van der Aalst (1999); Schulz
and Orlowska (2004); Biegus and Branki (2004)). JamSession decouples the
workflows by only allowing the respective organisation-owned knowledge pro-
tocol to have access to the internal details of its workflow. The integration will
not be affected even if the internal workflow is changed, as long as the connectors
remain unchanged.

3. Most of the runtime integration systems require the coordinating workflows to
use homogenous workflow management systems. JamSession integrates hetero-
geneous workflows.

4. One of the very powerful features of workflow integration is control over the
integration process. For example an organisation might be collaborating with
multiple business partners at the same time. This means that multiple instances
of the workflow of the organisation will be in collaboration with the instances
of the workflows of the partner organisations concurrently. Such control over
workflow integration has largely been ignored in literature. JamSession enables
such powerful control over integration.

5. Most of the existing integration systems support workflow integration either at
build time or runtime (Saleem (2012)). The separation of build time and runtime

8

stages costs time and resources to the interacting organisations (Saleem (2012)).
JamSession is one of the very few systems that are able to support workflow in-
tegration at both build time and runtime stages. JamSession combines efficiency,
de-coupling and usability into one system.

The JamSession platform adds to the initiatives above – especially the one pro-
posed by Chen and Chung – by providing a concrete, expressive and user friendly plat-
form to build executable specifications of runtime cross-organisational workflows. Our
interest and approach are to provide systems engineers with a concrete tool to enable
the high-quality design and implementation of workflow integration patterns, which re-
quire minimal computational resources and are formally verifiable with respect to their
requirements.

In the next section we describe in detail the JamSession platform.

3. The JamSession Platform

JamSession is a platform for the integration and coordination of computational re-
sources. It was conceived initially for highly interactive systems – such as multiplayer
videogames – and later extended to manage generic computational resources. The main
features of JamSession are:

• High computational performance, to provide the means for the coordination and
integration of software components in realtime systems.

• Usability, to ensure that novice users are capable of integrating and coordinating
heterogeneous resources with minimised effort.

• Formal and declarative foundations, to provide the means for formal design,
analysis and verification of coordination protocols.

• Decoupled integration of heterogeneous computational resources, to ensure their
independence and support a separation of concerns and responsibilities when
designing and implementing workflow integration.

Each of these features has been accounted for by previous initiatives. The Jam-
Session platform advances upon previous work on workflow coordination and inte-
gration, by presenting all features in a single platform, which is also computationally
lightweight.

The development of JamSession as a general purpose coordination platform has
been inspired by specific existing research initiatives, which have accounted for specific
subsets of these features, as detailed in the following paragraphs.

A conceptual architecture that bears several similarities with our initiative is that
of Electronic Institutions (Esteva et al. (2001)). Electronic Institutions are constituted
by agents, roles, normative rules that characterise the institutions and scenes in which
regulated dialogues occur involving agents. For an agent to participate in a dialogue, it
must assume a specific role that is compatible with that dialogue, and in order to assume
a specific role the agent must ensure that it has the necessary capabilities required for
that role. Once all roles required for a dialogue are fulfilled by agents, the dialogue can

9

start and, if all norms are followed, the dialogue can run to its end, thus performing a
structured and controlled sequence of linguistic actions.

In JamSession, the concept of role is replaced by the notion of location, as de-
scribed in the paragraphs below. Agents have to move to specific locations in order to
participate in collaborative actions, as some of their capabilities become available only
in those locations.

An additional relation between Electronic Institutions and JamSession is that both
have tackled explicitly usability issues. Electronic Institutions have been used as the
foundation to build user friendly systems, based on user interfaces that resort to inter-
active animations as means to bring to users the experience of interacting with services
as if interacting with human clerks in a simulated virtual environment (Bogdanovich et
al. (2007)).

Norm-mediated interactions have been explored in a variety of initiatives (see e.g.
(da Silva and Vasconcelos (2006); Vasconcelos et al. (2009))), in which interaction
protocols are grounded by normative rules that specify permissions, obligations and
prohibitions to which agents must conform. In JamSession, this concept is simulated
as interaction protocols attached to specified locations.

The Lightweight Coordination Calculus (LCC) (Robertson (2004)) is a language to
build executable algebraic specifications for interactions among agents in multiagent
systems. It is based on formalisms such as the Ambient Calculus and the π-Calculus,
and it has been proved to have similar expressive power to Electronic Institutions. It
has been used extensively in a variety of applications, such as bioinformatics and emer-
gency response.

The main difference between the LCC and JamSession is that the former does not
account explicitly and directly for the notion of mobility and situatedness. LCC has
lately been extended to account for situatedness explicitly, thus resulting in a language
coined Ambient LCC, which however seems not to have been much used in practice.
This could be because it has become a little unfriendly and difficult to implement.

The Multilayered Multiagent Situated Systems architecture (MMASS) (Vizzari
(2004)) considers mobility as the central notion for situatedness and interactions in
multiagent systems. In MMASS we find the notion of locations, which are struc-
tured by pathways forming a graph of sites through which agents can move to look
for specific resources to accomplish their goals. We have borrowed these concepts for
JamSession.

A fundamental notion in JamSession is the concept of location. Intuitively, we
have agents in an environment, whose capabilities are blocked or released for use,
depending on the locations where they are situated. When a user needs a specific
service, they must make sure that the agent that has the capability of furnishing that
service in a specific location has actually moved to the appropriate location. Locations
are, therefore, abstractions of groups of services, whose accessibility is controlled by
how users transport named agents to/from specified locations.

Formally, we have a directed graph to specify locations and their connections. The
nodes of the graph are the locations, and the arrows characterize the admissible transi-
tions that agents can perform to move across locations. JamSession is a coordinator of
resources, which are represented as capabilities of situated agents. An agent stays in a
location until it receives an order to move to a different location.

10

We employ, in the presentation of JamSession, the PROLOG convention for terms
and variables. Hence, terms starting with capital letters are free variables. An order for
an agent to move is a triple as follows:

move(Agent, Location1, Location2)

In the order above, the agent Agent is assumed to be in Location1 and is being re-
quested to move to Location2. An order to move can be evaluated, in which case an
attempt to execute it shall be performed and a corresponding truth value shall be as-
signed to it, depending on the success of the execution. If the agent Agent is indeed
in Location1 and there is a direct link from Location1 to Location2, then Agent is
moved from Location1 to Location2, and the order is evaluated to >. Otherwise,
Agent stays wherever it is and the order is evaluated to ⊥.

The capabilities of situated agents are represented as first-order predicates in Jam-
Session. Each predicate is associated to a pair [Agent, Location]. Predicates also
have Input and Output parameters, which are formed respectively as first-order terms
and free variables. A predicate is as follows:

[Ag,Loc]predicate((I1, ..., Im), (O1, ..., On))

In this predicate, Ag is an agent, Loc is a location, Ii are input terms and Oj are output
variables.

Predicates are defined during the design of a system, specifying what resources can
be triggered by what agents and in which locations. During the execution of a system,
predicates are used to actually activate resources.

A predicate can be triggered, i.e. there can be an attempt to evaluate it, at any
time. Most typically, predicates are used as attempts to activate system resources. The
predicate input terms are syntactically and semantically verified, and then it is checked
whether the agent Ag is located in Loc and if Ag has the permission to activate the
predicate in Loc. If all verifications are successful, then the corresponding resource
is activated, possibly instantiating the output variables, and the predicate is evaluated
either to> or to⊥, depending on its programmed behaviour. If the terms are not sound,
or if Ag is not located in Loc, or if Ag does not have the permission to trigger the
predicate in Loc, then the predicate is blocked and the corresponding resource cannot
be activated. In this case, the predicate is evaluated to ⊥ and the output variables are
returned uninstantiated3.

Predicates and movements are combined in JamSession using knowledge-based
interaction protocols (KBIPs). A KBIP is a structure of entities that specifies their
order of evaluation. Entities can be of three types:

1. Orders for agents to move.
2. Predicates.
3. Recursively, other KBIPs.

3In the full-fledged specification of JamSession, special predicates are included to enable asynchronous
communication between agents. Since this feature is not used in the present work, we are not going to detail
the asynchronous communication predicates in the present article.

11

KBIPs are linked to locations. A request to trigger a KBIP can result in the follow-
ing alternative situations:

• The requested KBIP is not actually defined for the specified location. In this
case, the obtained truth value is ⊥.

• The requested KBIP is defined for the specified location. In this case, the spec-
ification of the KBIP is retrieved and evaluated, based on the algebraic rules
that govern the behaviour of the connectives that are used in the specification of
the KBIP. The result of the evaluation determines the truth value that shall be
assigned to the KBIP, which can be > or ⊥.

A KBIP is denoted as follows:

[Loc]kbip((I1, ..., Im), (O1, ..., On))

Here, Loc stands for the location to which the KBIP is connected, Ii are first order
input terms and Oj are output variables as before. The expected utilization of terms
and variables in the specification of KBIPs is for parameter passing across predicates
and KBIPs.

A KBIP takes the form of a formula in disjunctive normal form, in which atoms are
the entities in the list above (namely, orders for agents to move, predicates and KBIPs).
More formally, the specification of a KBIP takes the following form:

• [Loc]kbip((I1, ..., Im), (O1, ..., On)) ::=
∨k

1 Fi.

• Fi ::=
∧ri

1 ej .

• ej ::=Move|Predicate|Kbip.

• Move ::= move(Agent, Location1, Location2)

• Predicate ::= [Ag,Loc]predicate((I1, ..., In), (O1, ..., On))

• Kbip ::= [Loc]kbip((I1, ..., Im), (O1, ..., On))

Both disjunction and conjunction are assumed to be non-commutative, therefore
the order in which entities are presented in KBIPs can change their evaluation.

In order to simplify the specification of KBIPs, a graphical language has been de-
vised. Conjunction is drawn as a line connecting two entities, and disjunction is drawn
as a black circle. The three basic entities that comprise a KBIP (move, predicate and
kbip) are characterised as shown in Figure 1.

For example, the following simple knowledge-based interaction protocol:

[loc1]kbip1((inp), (X)) ::=
[a, loc1]pred1((inp), (X))∨
(move(a, loc1, loc2) ∧ [a, loc2]pred2((inp), (X))

can be represented diagrammatically as shown in Figure 2.

12

Figure 1: Graphical representations for the three basic entities of a knowledge-based interaction protocol.

Figure 2: Graphical representation of a simple knowledge-based interaction protocol.

This specification must be complemented by information about what resources be-
long to what locations and agents, about the links that connect locations and about the
initial setting of agents. For example, we could have:

• [a, loc1]pred1((inp), (loc1)) ::= (specification of the behaviour associated to
pred1).

• [a, loc2]pred2((inp), (loc1)) ::= (specification of the behaviour associated to
pred2).

• Structure of locations and initial location of agent a as shown in Figure 3.

KBIPs are used to specify, implement and execute interactions among users of in-
formation systems based on the integration and coordination of resources. Interaction
protocols are also employed to specify, implement and execute interactions between

Figure 3: Initial setting for a simple knowledge-based interaction protocol.

13

users and the information systems themselves. Agents, locations and all entities that
comprise the KBIPs are the conceptual resources used to characterise the desired inter-
actions both at design time and run time. KBIPs behave as mediators between compu-
tational resources, and ensure that heterogeneous resources are decoupled.

Interaction protocols can be triggered concurrently. This means that more than one
protocol – and more than one instance of a protocol – may be running at any time. It
shall be left to the system designer to ensure that the resulting concurrent groups of
protocols generate behaviours that are in accordance with the requirements specified
for each application. The declarative characterisation of knowledge-based interaction
protocols in JamSession, nevertheless, provides the means for formal analysis and
verification of protocols.

We have developed a cloud-based implementation of JamSession. In this imple-
mentation, a cloud-based server stores and manages the information about the graph of
locations, agents, as well as clients and their corresponding KBIPs. Whenever a client
subscribes to the server, it exports to the server a collection of interfaces for its locally
stored protocols. Whenever a client needs to trigger a protocol, it sends a request to
the server, which then verifies the validity of the request. If the request is valid, the
server makes use of the corresponding protocol interface and sends a request to the ap-
propriate client – i.e. the one which hosts the required protocol – in order to effectively
trigger it. Clients also host the implementation of predicates, whose evaluations are
requested by the server in the course of executing protocols. Side effects of the evalu-
ations of predicates – such as file updates and interaction with external computational
resources (e.g. sensors and actuators) are also implemented locally in clients.

An overview of JamSession’s implementation is depicted in Figure 4. The commu-
nication between clients and the server is performed by means of web services, which
have been implemented using Windows Communication Foundation and NetTcpBind-
ing. An implementation of the TupleSpaces concept (the SQLSpaces4) is used for man-
aging the information stored at the server. The whole platform’s implementation is
based on the F# functional programming language and the server can be hosted on the
Microsoft Azure cloud platform. Predicates can be specified either as F# or C# classes.
They are compiled independently to executable libraries (DLLs).

4. Interaction Protocols for Workflow Integration

In order to show JamSession at work, and illustrate how it can be used to coordi-
nate and integrate cross-organisational workflows, we consider two specific workflow
integration patterns, and show how they can be implemented using knowledge-based
interaction protocols as mediators. We also show how properties in JamSession pro-
tocols can be formally verified, through the first (and simplest) workflow integration
pattern that we consider. Further details about formal analysis of interaction protocols
are presented in the next sections.

We consider the hierarchical and the peer-to-peer cross-organisational workflow
integration patterns (Chen (2008)). The mediation between workflows following the

4See http://sqlspaces.collide.info/

14

http://sqlspaces.collide.info/

Figure 4: JamSession architecture.

hierarchical pattern is relatively simple to implement and to check with respect to de-
sirable properties. The mediation between workflows whose interaction occurs in a
peer-to-peer basis is slightly more sophisticated, as integration must occur between
specific instances of each workflow, instead of between the workflows as abstract enti-
ties.

4.1. The hierarchical pattern

In the hierarchical pattern, an activity belonging to a workflow A triggers a full
instance of a workflowB, and waits for the completion ofB to release the continuation
of A (Figure 5).

Although the pattern is simple, it has many applications. Consider a company that
assists its clients in visa application. It would have a process that includes tasks for
helping its clients completing the form, gathering the relevant supporting documents,
etc. After the preparation is complete, the company would submit the application to the
appropriate authority which will then process the application. While the application
is being processed, the company’s workflow instance for that particular application
will be suspended until the authority’s workflow instance for processing that particular
application is completed and then control is passed back to the company.

Our goal is to build a set of knowledge-based interaction protocols to mediate the
interaction between workflow A and workflow B. The mediation must ensure that the
workflows remain decoupled and independent – except, of course, for the synchronous
dependency characterised by this pattern. Furthermore, we require that a separation of
concerns and responsibilities is built in the protocols, so that each organisation builds
the interaction protocols capable of directly exchanging information with its internal
workflow – this way ensuring the required trust and security levels are achieved.

15

Figure 5: Hierarchical cross-organisational workflow integration pattern.

Figure 6: Locations and initial setting for the hierarchical integration pattern.

This pattern can be implemented using three knowledge-based interaction proto-
cols, as follows. As an additional feature, and so that we can demonstrate some
additional control that can be built over the mediation between the workflows using
JamSession, we limit the number of concurrent instances of workflow B that can be
triggered. In our concrete example, we limit this number to three, i.e. no more than
three instances of B can be triggered simultaneously.

We employ two locations and five agents, initially configured as displayed in Figure
6, in which white dots represent agents that remain fixed in each location, and black
dots represent agents that move across locations. There is a correspondence between
these locations and the lanes in the workflow (and, therefore, between the locations and
the organisations to be coordinated). Since we want to limit the concurrent instances
of B to at most three, we have three mobile agents initially in location A. Each time
an instance of workflow B is started, one of these agents is moved to location B, and
when workflow B is completed the agent is sent back to location A.

The three knowledge-based interaction protocols are presented, respectively, in Fig-
ures 7, 8 and 9. The first interaction protocol is owned by the organisation who owns
workflowA. It is triggered by the shaded activity in workflowA, and for this reason we
name it PA

1 . The activity in workflow A passes a set of values to PA
1 , which employs

an internal predicate to verify its consistency. If the input values are consistent then the

16

Figure 7: The knowledge-based interaction protocol PA
1 .

Figure 8: The knowledge-based interaction protocol PB .

protocol attempts to move one of the mobile agents from location 1 to location 2 – this
way book-keeping the number of instances of workflow B that are active. If both pre-
vious entities are evaluated as > then the protocol PA

1 triggers the second interaction
protocol that is used to implement the integration pattern.

The second interaction protocol is owned by the organisation who owns workflow
B. For this reason, we name it PB . It is triggered by PA

1 , and it receives from PA
1 the

same input values received by that protocol. Since PB is decoupled and independent
from PA

1 , it performs its own consistency check on the set of input values. If the
values are consistent, then it triggers a predicate which, in turn, triggers the whole
workflow B. Finally, upon successful completion of the workflow – and therefore
successful evaluation of the corresponding predicate – it triggers the third and last
interaction protocol that is used to implement the integration pattern. We assume that
the execution of workflow B generates a set of output values, which are captured by
the predicate which triggers it. These values are passed as input parameters to the third
knowledge-based interaction protocol.

The third interaction protocol is owned by the organisation who owns workflow A.
For this reason, we name it PA

2 . It is triggered by PB , and it receives from PB the
output of workflow B. It performs its consistency check on the received values and, if
the values are consistent, it moves one mobile agent back from location B to location

17

Figure 9: The knowledge-based interaction protocol PA
2 .

A – this way releasing an instance of workflow B for further use. If the movement of
the agent from location B to location A is successful then it sends forward the output of
workflowB to the shaded activity in workflowA, this way completing the coordination
of both workflows.

JamSession interaction protocols are declarative, which simplifies the formal anal-
ysis of their behaviour. For example, we can verify that the set of protocols presented
above always terminates successfully, i.e. with truth-value >.

The verification goes as follows: the evaluation of predicates and orders for agents
to move depends on the location of the mobile agents. Since we have the possibility of
concurrent execution of knowledge-based interaction protocols, we must consider, for
each protocol, all possible configurations of agents in locations. In our example, we
must consider the following configurations:

1. All three mobile agents in location A.
2. Two mobile agents in location A and one agent in location B.
3. One mobile agent in location A and two agents in location B.
4. All three mobile agents in location B.

We examine now the possible outcomes of protocol PA
2 :

1. All three mobile agents in location A:

The values O received by predicate Check are verified.
If verification fails, Then

The predicate Error Msg is triggered.
This predicate always succeeds with >.

Else
The order for an agent to move from B to A is triggered.
Since there are no mobile agents in B, this order fails.

The predicate Error Msg is triggered.
This predicate always succeeds with >.

Hence, the protocol always succeeds with >.

18

2. Two mobile agents in location A and one agent in location B:

The values O received by predicate Check are verified.
If verification fails, Then

The predicate Error Msg is triggered.
This predicate always succeeds with >.

Else
The order for an agent to move from B to A is triggered.
This order succeeds, thus changing the configuration to

All three mobile agents in location A.
The predicate TriggerWF A is triggered,

attempting to return the values from workflow B
to workflow A.

If the predicate succeeds, then the protocol succeeds with >.
Else the predicate Error Msg is triggered,

succeeding with >.
Hence, the protocol always succeeds with >.

3. One mobile agent in location A and two agents in location B:

The values O received by predicate Check are verified.
If verification fails, Then

The predicate Error Msg is triggered.
This predicate always succeeds with >.

Else
The order for an agent to move from B to A is triggered.
This order succeeds, thus changing the configuration to

Two mobile agents in location A and one agent in location B.
The predicate TriggerWF A is triggered,

attempting to return the values from workflow B
to workflow A.

If the predicate succeeds, then the protocol succeeds with >.
Else the predicate Error Msg is triggered,

succeeding with >.
Hence, the protocol always succeeds with >.

4. All three agents in location B:

The values O received by predicate Check are verified.
If verification fails, Then

The predicate Error Msg is triggered.
This predicate always succeeds with >.

Else
The order for an agent to move from B to A is triggered.
This order succeeds, thus changing the configuration to

19

Figure 10: Peer-to-peer cross-organisational workflow integration pattern.

One mobile agent in location A and two agents in location B.
The predicate TriggerWF A is triggered,

attempting to return the values from workflow B
to workflow A.

If the predicate succeeds, then the protocol succeeds with >.
Else the predicate Error Msg is triggered,

succeeding with >.
Hence, the protocol always succeeds with >.

This way, all possible outcomes of the knowledge-based interaction protocol PA
2

are verified. Similar analyses can be developed for the other two protocols, thus com-
pleting the formal verification that they always complete with truth-value >.

Other properties could be verified. For example, we could be interested in checking
whether a certain configuration can be reached, or whether an error message can be
generated given specific input values. Verifications of this nature can be developed on
JamSession protocols, based on configuration analysis as shown above.

4.2. The peer-to-peer pattern

The peer-to-peer cross-organisational workflow integration pattern implements in-
teractions between instances of two workflows. In the peer-to-peer pattern, during the
execution of a specific instance of a workflow A, an activity belonging to this work-
flow communicates with an activity belonging to an existing and running instance of a
workflowB, this way completing the required input for that activity to be executed and
for that instance of workflow B to continue its execution. Both instances of workflows
A and B continue their execution concurrently, until an activity in the instance of A re-
quests as input some results from an activity in the instance of B which has previously
received a message from A. This way, the running instance of B must further commu-
nicate with the instance of A which has provided information to it, thus characterising
cooperation between particular instances of two workflows (Figure 10).

20

Figure 11: The knowledge-based interaction protocol QA
1 .

An example of this pattern is the interactions between vendors and customers which
is commonly found in manufacturing. The workflow instance of the customer and the
workflow instance of the vendor will have a number of interaction tasks. An example of
such a task is that the customer sends an acceptance note to the vendor after receiving
a quotation. However, the customer does not necessary have to wait for the vendor to
deliver the goods before moving to the next task as it could, for example, progress to
making a deposit while the vendor is manufacturing the specific goods for the customer.
Therefore, the two workflow instances will have tasks that are executed in parallel
rather than control flow had to be passed strictly from one workflow to another.

In order to implement this integration pattern, we need to provide an instance iden-
tifier for workflow A along with its message to workflow B, so that the instance of B
that receives this message can respond to the original instance ofA when replying to it.
As in the previous example, and just to exhibit additional control over the integration
of workflows that can be built using JamSession, we limit the number of instances of
A and B which can cooperate simultaneously to three.

This pattern can be implemented using four knowledge-based interaction proto-
cols, as follows. The locations, agents and initial setting are exactly as in the previous
example (Figure 6).

Similar to the previous example, the first interaction protocol is owned by the or-
ganisation who owns workflow A. It is triggered by the shaded activity in workflow A,
and for this reason we name it QA

1 . The activity in workflow A passes a set of values
to QA

1 , which employs an internal predicate to verify its consistency. It is important
to highlight that, among these values, workflow A sends through its own ID, which is
used in the future to find the appropriate instance of A with which workflow B must
communicate.

As before, if the input values are consistent then the protocol attempts to move one
of the mobile agents from location A to location B – this way book-keeping the number
of instances of workflow B that are active. If both previous entities are evaluated as >
then the protocol QA

1 triggers the second interaction protocol that is used to implement
the integration pattern. This protocol also receives the ID ofA. It is presented in Figure
11.

The second interaction protocol is owned by the organisation who owns workflow

21

Figure 12: The knowledge-based interaction protocol QB
1 .

Figure 13: The knowledge-based interaction protocol QB
2 .

B. For this reason, we name it QB
1 . It is triggered by QA

1 , and then checks the con-
sistency of the received input values. If the consistency verification succeeds then it
triggers a predicate which sends the input values to the appropriate activity in work-
flowB. It should be highlighted that the ID ofA is also sent to workflowB. We assume
that this value is properly stored within workflowB, to be used when a communication
from B to A is enacted. This protocol is presented in Figure 12.

The third interaction protocol starts to walk the flow the way back from B to A.
It is owned by the organisation who owns workflow B, and is triggered by the second
shaded activity in workflow B. We name it QB

2 . This is the first protocol that uses
the ID of A, which is received as an input. As the previous protocols, it verifies the
consistency of the input values. If the verification succeeds then it attempts to move
back one agent from location B to location A – this way releasing an instance of B for
future use. If the movement of the agent from location 2 to location 1 succeeds, then
it triggers the fourth and final protocol that implements this integration pattern. The
protocol QB

2 is presented in Figure 13.
The final protocol that implements the peer-to-peer cross-organisational workflow

pattern is owned by the organisation who owns workflow A, and is triggered by QB
2 .

We name it QA
2 . It receives from QB

2 input values which include the ID of the orig-

22

Figure 14: The knowledge-based interaction protocol QA
2 .

inal instance of workflow A which was initially used to trigger QA
1 . It verifies the

consistency of the received input values and, if the verification succeeds, it triggers a
predicate which communicates with workflowA and sends the appropriate input values
to it. This final predicate is a little more sophisticated to implement than the previous
ones, as it must contain an internal mechanism to search for the appropriate instance
of A. The search is performed using the ID of A. Once the appropriate instance of
A is found, the interaction protocol sends the appropriate input values to the second
shaded activity in A, and releases that protocol so that it can continue its execution.
The protocol QA

2 is presented in Figure 14.

4.3. Example of JamSession Integration with Bonita Open Solution

As referred to in the previous section, a prototypical implementation in F# has
been developed, based on which several small knowledge-based interaction protocols
have been implemented, exhibiting good computational performance. In particular,
the above protocols were tested in connection with Bonita workflow definitions5. The
graphical front end of the platform was used to design the KBIPs (see Figure 15).

The integration with Bonita was implemented based on Java class connectors at-
tached to activities in the workflow definition. For example, for the hierarchical pattern
of Figure 5 two connectors were used: one for the activity in the workflow A which
invokes the workflow B and the other for the last activity in the worflow B (see Fig-
ure 16). These connectors use a JamSession auxiliary program to trigger protocols
or predicates. For example, in Figure 17, the connector of the Step2 in workflow
A is used to trigger the KBIP PA

1 . In the reverse direction, i.e. to trigger a Bonita
workflow instance from a JamSession protocol, the implementations of the TriggerWF
and CallWorkflow predicates use Bonita Rest API interfaces such as runtimeAPI and
queryRuntimeAPI.

In the examples presented in this article we have illustrated the use of JamSession
for the implementation of interaction protocols to coordinate two interacting work-

5Bonita is a comprehensive suite of open source software for workflow and business process management
specification and execution. It can be found at http://www.bonitasoft.com/.

23

Figure 15: The kbip PA
1 in JamSession Protocol Editor.

Figure 16: Example of Bonita workflow definitions with connectors.

24

Figure 17: Bonita’s connector for triggering the kbip PA
1 .

flows. Evidently, these ideas can be easily adapted to coordinate several workflows.
For the general case, each organisation involved in a collaboration should have at least
one special location in the graph, inhabited by a fixed special agent, who should be
used to trigger general predicates such as Check, ErrorMsg, etc. The special locations
of the participating organisations should be connected according to the flow of their
messages, e.g. there should be an arc from location l1 to l2 if the organisation rep-
resented by l1 sends at least one message to the organisation represented by l2, and
so forth for all participating organisations. In addition, several mobile agents should
be used to represent the messages sent or received by the participating organisations,
in such a way that moving such agents would indicate the triggering of a workflow
instance (for the hierarchical pattern) or a message to be sent to an activity (for the
peer-to-peer pattern). The number of agents would correspond to the maximal number
of concurrent workflow instances that the organisation would coordinate. Hence, the
agents should be returned to their original locations once the receivers completed the
collaboration, i.e. after the sub-workflow or the activity had been successfully finished.
Therefore, the locations should be connected by bidirectional arcs. Each organisation
should use several auxiliary locations and agents for coordinating different workflows.
In JamSession implementation, the agents can be distinguished by means of tags which
can be thought intuitively as type identifiers.

The solution provided by JamSession to the problem of cross-organisational work-
flow collaboration is highly flexible and decoupled. Changes to the workflow structure
do not affect the interactions as long as the connectors are preserved. On the other hand,
only small changes are required to the connectors if the collaboration is updated. Jam-
Session can coordinate workflows from different WfMS as long as the tools provide

25

means for the external management of workflow instances.

5. Verifying JamSession protocols for workflow collaboration

As shown in the previous section, JamSession allows decoupled interactions be-
tween workflows. The concept of locations inhabited by agents, and the movements of
agents between locations are fundamental for this purpose. However, a careful man-
agement of agents is required since the orders to move agents may lead to errors which
may be difficult to trace. Therefore, it is important to provide means to verify that the
execution of the interactions meets the desired properties.

In this section we describe how JamSession protocols can be verified. As a tool to
model the behaviour of a set of protocols and to investigate their dynamic properties,
we use coloured Petri nets (Jensen (1992)). Petri nets can be effectively used to specify,
simulate and formally analyse concurrent systems. Petri nets – and more specifically
coloured Petri nets and their variations, such as hierarchical coloured Petri nets and
timed coloured Petri nets – have also been used to specify, simulate and formally anal-
yse specifically cross-organisational workflows (Jiang et al. (2010); Liu et al. (2011)).
They have a compact graphical representation with several, well-defined primitives.
As ordinary Petri nets (PNs), coloured Petri nets (CPNs) are directed bipartite graphs
in which nodes are called places and transitions. As JamSession KBIPs, CPNs also
have tokens which inhabit individual places and a set of net inscriptions (such as arc
expressions and place initialisations). In addition, types (colour sets) are used in CPNs
to describe the set of data values (colours) that a token can store. This way, each place
has a type determining the kind of data (tokens) which the place may store. A place
may contain several tokens with the same data value. The state of a CPN, i.e. the
tokens which inhabit the places defined in the CPN, is called a marking. As for PNs,
transitions represent actions or events. An incoming (respectively, outgoing) arc of a
transition indicates that it may remove (respectively, add) tokens from the correspond-
ing place. The exact number of tokens and their data values are determined by the arc
expressions. The occurrence of a transition is conditioned to a binding of the variables
in the expressions.

CPNs can be defined as hierarchical combinations of several non-hierarchical CPNs,
using a hierarchy graph, which is defined as a multiset of CPNs, substitution transitions
and fusion places. A substitution transition (also called supernode) allows to relate a
transition and its edges to another CPN. Fusion places are sets of places which belong
to different CPNs but are considered to be identical, i.e. places which are shared by
two or more nets.

Each JamSession protocol can be modeled as a separate CPN. We use two colour
sets BOOL = {>,⊥} and LOC = {L1, L2, . . . , Ln} (the set of locations shared by
a collection of KBIPs). In addition, we use a function s : LOC × LOC → BOOL
to represent adjacency relations in the graph of locations. The hierarchical CPN has
a single special place of type LOC to represent the state of the graph of locations,
plus as many tokens as the number of agents which inhabit the graph of locations.
The data value of each token coincides with the location of the corresponding agent in
JamSession. We refer to this place as SGL.

26

Figure 18: CPNs for [a, L]Pred (left) and move(a, L1, L2) (right).

The CPN associated to each JamSession entity has a unique input node (In) and a
unique output node (Out) of typeBOOL. Figure 18 shows the CPNs corresponding to
a predicate call and to a move order. We employ the standard notation for CPNs, such
that ellipses denote places and boxes denote transitions. In this paper, we use a black
box to represent a transition whose outgoing arc expression is the same as the incoming
arc. Note that during the execution of a workfow collaboration, all protocols share the
same graph of locations. Therefore, in the CPNs of Figure 18, transitions associated to
predicate calls and move orders may not be triggered as soon as a > token arrives at
the input place. Due to the semantic of PNs, these transitions wait until the SGL place
contains a token t with a particular LOC colour. Thus, they are not even guaranteed to
occur. If they indeed do not occur, t is removed from the SGL and a token of BOOL
colour is added to the output place. The value of the output token depends, respectively,
on the predicate definition and the existence of the corresponding arc in the graph of
locations. When a predicate call occurs, the content of the SGL place remains the same,
and the removed token is returned to SGL. In the case of a move order, a new token
of L2 colour is added. For brevity, we have used the ? and : operators for the arc
expression instead of the more usual if-then-else construction.

This behaviour corresponds to the use of tokens as synchronisation elements. If
the obtained semantics does not match with the intended behaviour of the KBIPs,
then an alternative translation to CPNs is possible, in which the SGL place contains
SLOC = LOC × int as colour set. It contains as many tokens as locations in the
graph of locations, and the data value of each token characterises the location and ID
of the corresponding agents in the KBIPs. The new CPNs are shown in Figure 19.
However, when using this straightforward interpretation, the behaviour of a protocol
collaboration may be unstable, since it may vary depending on the quantity and be-
haviour of users. Therefore, it is not appropriate for modeling the dynamic properties
of concurrent protocols.

The remaining constructions allowed in JamSession can be modeled by means
of substitution transitions. These transitions are used to relate a transition to more
complex CPNs and are usually drawn using thick lines. The input/output place of a
substitution transition must be related to the input/output place of the associated CPN.
Figure 20 shows the CPNs corresponding to conjunctions and disjunctions. Substi-
tution transitions A and B represent the corresponding CPNs in the expression. The

27

Figure 19: Alternative CPNs for predicate call (up) and move(a, L1, L2) (down).

output token of the CPN forA enables an auxiliary transition which controls the activa-
tion of the CPN forB. The empty constant indicates that the token should be removed,
i.e. no token should be added to the inbound place of the arc.

The CPN associated to a protocol call have a substitution transition between the
input and output places (see Figure 21 on the left). The supernode will represent the
CPN corresponding to the protocol definition. The input/output place of the substitu-
tion transition belongs to the fusion set of the input/output place of the associated CPN.
Therefore, when a token is added/removed at the input/output place of the transition,
it is also added/removed to/from the input/output place of the CPN. Figure 21 (right)
shows the use of a fusion set in a compact CPN for a conjunction.

Figure 20: CPNs for a A ∧B (up) and A ∨B (down) formulas.

28

Figure 21: CPN for a protocol call (left) and alternative CPN for A ∧B (right).

When a set of JamSession protocols defines a hierarchy (as in workflow collab-
oration), a non-hierarchical CPN can be obtained by replacing each supernode by an
instance of the corresponding CPN. The construction can be done top-down, bottom-up
or mixing both strategies. Figure 22 depicts the hierarchical CPN associated to the set
of protocols defined in Section 4 for the hierarchical pattern (Figures 7, 8 and 9). The
places with the same label belong to the same fusion set. Without loss of generality
we have assumed that fixed agents belong to special locations. The interaction result-
ing from the peer-to-peer pattern can be modeled by a linear sequence of asynchronous
messages between the participants. For the sets of protocols presented in Section 4, this
corresponds to the formula [A]QA1∧ [A]QB2. Figure 23 depicts the hierarchical CPN
associated to [A]QA1. The hierarchical CPN associated to [A]QB2 is analogous. The
output place of an instance of former will be fused with the input place of an instance
of the latter to obtain the hierarchical CPN corresponding to [A]QA1 ∧ [A]QB2.

It is not difficult to see that the behaviour of a JamSession formula corresponds to
the behaviour of the related CPN for an initial marking having a token with > colour
at the source place6 of the net and the SGL place with the initial state of the graph
of locations. This way, all analysis tools for CPNs can be used for hierarchical proto-
cols (even without building the translation to a non-hierarchical CPN). Properties like
reachability and boundedness can be used to analyse the behaviour of KBIPs. For in-
stance, the verification at the end of Section 4.1 can easily be obtained using a PN tool.
This is done by computing the reachability tree which is finite and checking that all
leaves have a single > token at the sink place of the net. The rest of the places in the
net should be empty, except for the SGL which has the final configuration of the graph
of locations. This condition guarantees the termination of the interaction without con-
flicts or deadlocks. In addition, if the final configuration of the graph coincides with
the initial one or meets some specific requirements of the workflow collaboration, then
the behaviour of the interaction is correct. By analysing the reachability tree we can
also compute the best possible upper and lower bounds for the places in the net, and
hence the minimum and the maximum number of agents required for the interaction.

6. Discussion and Future Work

In the present article we have discussed the issue of designing and executing cross-
organisational workflow integration, and we have focused primarily on the execution
of workflow integration. To this end, we have introduced the JamSession coordina-

6A source node has no ingoing arc while a sink node has no outgoing arc. In Figure 22 the source place
is In while the sink place is Out.

29

Figure 22: Hierarchical CPN for a hierarchical workflow pattern.

30

Figure 23: Hierarchical CPN for a peer-to-peer workflow pattern.

31

tion platform, and illustrated how it can be employed effectively to implement cross-
organisational workflow integration.

JamSession is a very lightweight and user-friendly platform which provides a
suitable framework for specifying and executing cross-organisational workflow in-
teractions. Using this platform, workflows and activities are modeled by means of
knowledge-based interaction protocols and predicates, in such a way that these defini-
tions are local to each workflow management system and just the interaction protocols
are made public.

The internal processes of a workflow remain hidden for the partners involved in a
workflow collaboration. Thus, each partner may change its private workflow process
as long as the protocol is not affected. The concept of locations, agents and movements
between locations are fundamental for synchronizing groups of protocols. The coordi-
nation is performed in a simple, flexible and decoupled way. Hence, JamSession is an
effective platform to implement interactions between existing workflows. As JamSes-
sion can interact with different workflow specification and execution engines, it can be
a powerful and flexible tool for cross-organisational workflow implementation.

The declarative semantics of KBIPs in JamSession provides the means for for-
mal analysis and verification of protocols. In particular, the translation of protocols
to coloured Petri nets can be used to simulate the behaviour of an interaction and to
analyse the possible conflicts, faults and exception states. Based on these analyses,
optimised KBIPs can be built, in which agents can be treated more effectively and the
final outcomes correspond to the intended behaviour of the collaboration. In general
the Petri nets approach seems a promising line for studying the dynamic properties of
sets of JamSession protocols. This is the subject of ongoing research and shall be
described in future publications.

References

L. Biegus and C. Branki. India: a framework for workflow interoperability support by
means of multi-agent systems. Engineering Applications of Artificial Intelligence,
17(7), 2004.

A. Bogdanovich, M. Esteva, S. Simoff, C. Sierra, and H. Berger. A methodology for 3d
electronic institutions. In 6th International Joint Conference on Autonomous Agents
and Multiagent Systems, USA, 2007.

A. Byde, G. Piccinelli, and W. Lamersdorf. Automating negotiation over b2b pro-
cesses. In Proceedings of the 13th International Workshop on Database and Expert
Systems Applications, 2002.

I. Chebbi, S. Dustdar, and S. Tata. The view-based approach to dynamic interorgani-
zational workflow cooperation. Data and Knowledge Engineering, 56(2), 2006.

Xi Chen and P. W. H. Chung. Cross-organisational workflow enactment via progressive
linking by run-time agents. In Advances in Applied Artificial Intelligence, Germany,
2006.

32

Xi Chen and P. W. H. Chung. A framework for cross-organizational workflow collab-
oration. In Proceedings of 13th Cross-strait Academic Conference on Information
Management Development and Relevant Strategy, 2007.

Q. Chen and M. Hsu. Inter-enterprise collaborative business process management.
In Proceedings of 17th International Conference on Data Engineering (ICDE-01),
Germany, 2001.

Xi Chen and L. Yang. Applying ai planning to semantic web services for workflow gen-
eration. In Proceedings of the First International Conference on Semantics, Knowl-
edge and Grid, USA, 2005. IEEE Computer Society.

F. Chen, C. Ren, J. Dong, Q. Wang, J. Li, and B. Shao. Modeling cross-organizational
services composition with pi-calculus. In Proceedings of the IEEE International
Conference on Service Operations, Logistics, and Informatics (SOLI), 2011.

Xi Chen. IT Supported Business Process Negotiation, Reconciliation and Execution of
Cross-organisational e-Business Collaboration. PhD thesis – Loughborough Uni-
versity, UK, 2008.

F. S. Correa da Silva and W. Vasconcelos. Rule schemata for game artificial intelli-
gence. In Proceedings of the Joint Ibero-American / Brazilian Symposium of Artifi-
cial Intelligence (IBERAMIA/SBIA), Brazil, 2006. Springer LNAI.

F. S. Correa da Silva. Knowledge-based interaction protocols for intelligent interactive
environments. Knowledge and Information Systems – accepted, 2011.

R. Eshuis and P. Grefen. Constructing customized process views. Data and Knowledge
Engineering, 64(2), 2008.

M. Esteva, J. A. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos. On the formal
specification of electronic institutions. In Agent Mediated Electronic Commerce –
The European AgentLink Perspective, UK, 2001. Springer LNCS.

P. Grefen, N. Mehandjiev, G. Kouvas, G. Weichhart, and R. Eshuis. Dynamic business
network process management in instant virtual enterprises. Computers in Industry,
60(2), 2009.

N. R. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4), 2001.

K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use.
Springer-Verlag, Berlin, 1992.

P. Jiang, X. Shao, H. Qiu, and P. Li. Interoperability of cross-organizational work-
flows based on process-view for collaborative product development. Concurrent
Engineering: Research and Application, 16(1), 2008.

P. Jiang, L. Gao, P. Li, and H. Qiu. Collaborative execution mechanisms for the tcpn
enhanced process-view approach based inter-enterprises workflow. In Proceedings
of the 13th International Conference on CSCW in Design (CSCWD 2009), 2009.

33

P. Jiang, X. Shao, L. Gao, H. Qiu, and P. Li. A process-view approach for cross-
organizational workflows management. Advanced Engineering Informatics, 24(2),
2010.

D. Krafzig, K. Banke, and D. Salma. Enterprise SOA: Service Oriented Architecture
Best Practices. Prentice Hall PTR, USA, 2004.

D. Krukkert. Matchmaking of ebxml business processes. In Technical Report IST-
28584-OX-D2.3-v.2.0 – openXchange Project, 2003.

Y. Liu, Y. Shen, and T. Hao. Research on reliability modeling of cross-organizational
workflows based on hierarchical colored petri nets. Advanced Materials Research,
186, 2011.

V. R. Pratt. Modelling concurrency with geometry. In Proceedings of the 18th Annual
ACM Symposium on Principles of Programming Languages, 1991.

D. Robertson. A lightweight coordination calculus for agent systems. In Proceedings
of Declarative Agent Languages and Technologies, USA, 2004. Springer LNCS.

M. Saleem, P. W. H. Chung, S. Fatima, and W. Dai. Intelligent business transaction
agents for cross-organizational workflow definition and execution. In Proceedings
of Intelligent Information Processing V (IFIP Advances in Information and Commu-
nication Technology, UK, 2010.

M. Saleem, P. W. H. Chung, S. Fatima, and W. Dai. Cross organisational compatible
plans generation framework. In Proceedings of AI-2011 Thirty-first SGAI Interna-
tional Conference on Artificial Intelligence, 2011.

M. Saleem. Cross Organisational Compatible Workflows Generation and Execution.
PhD thesis – Loughborough University, UK, 2012.

K. A. Schulz and M. E. Orlowska. Facilitating cross-organizational workflows with a
workflow view approach. Data and Knowledge Engineering, 51(1), 2004.

E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web services using
semantic descriptions. In Proceedings of Web Services: Modelling, Architecture and
Infrastructure Workshop (in conjunction with ICEIS), 2003.

E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. Htn planning for web service
composition using shop2. Journal of Web Semantics, 1(4), 2004.

W. M. P. van der Aalst. Interorganizational workflows: an approach based on message
sequence charts and petri nets. Systems Analysis – Modelling – Simulation, 34(3),
1999.

W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman. Normative conflict-resolution
in multi-agent systems. Autonomous Agents and Multiagent Systems, 19(2), 2009.

34

G. Vizzari. Dynamic interaction spaces and situated multi-agent systems: from a multi-
layered model to a distributed architecture. PhD thesis – University of Milano-
Bicocca, Italy, 2004.

S. Y. Wang, W. M. Shen, and Q. Hao. An agent-based web service workflow model for
inter-enterprise collaboration. Expert Systems With Applications, 2006.

WfMC. The Workflow Reference Model – Technical Report WFMC-TC-1003. Work-
flow Management Coalition, 1995.

J. Yang and M. Papazoglou. Interoperation support for electronic business. Communi-
cations of the ACM, 43(6), 2000.

35

	Introduction
	Workflow Integration
	The JamSession Platform
	Interaction Protocols for Workflow Integration
	The hierarchical pattern
	The peer-to-peer pattern
	Example of JamSession Integration with Bonita Open Solution

	Verifying JamSession protocols for workflow collaboration
	Discussion and Future Work

