135,170 research outputs found

    From quantum electrodynamics to posets of planar binary trees

    Full text link
    This paper is a brief mathematical excursion which starts from quantum electrodynamics and leads to the Moebius function of the Tamari lattice of planar binary trees, within the framework of groups of tree-expanded series. First we recall Brouder's expansion of the photon and the electron Green's functions on planar binary trees, before and after the renormalization. Then we recall the structure of Connes and Kreimer's Hopf algebra of renormalization in the context of planar binary trees, and of their dual group of tree-expanded series. Finally we show that the Moebius function of the Tamari posets of planar binary trees gives rise to a particular series in this group.Comment: 13 page

    Formal series and numerical integrators: some history and some new techniques

    Get PDF
    This paper provides a brief history of B-series and the associated Butcher group and presents the new theory of word series and extended word series. B-series (Hairer and Wanner 1976) are formal series of functions parameterized by rooted trees. They greatly simplify the study of Runge-Kutta schemes and other numerical integrators. We examine the problems that led to the introduction of B-series and survey a number of more recent developments, including applications outside numerical mathematics. Word series (series of functions parameterized by words from an alphabet) provide in some cases a very convenient alternative to B-series. Associated with word series is a group G of coefficients with a composition rule simpler than the corresponding rule in the Butcher group. From a more mathematical point of view, integrators, like Runge-Kutta schemes, that are affine equivariant are represented by elements of the Butcher group, integrators that are equivariant with respect to arbitrary changes of variables are represented by elements of the word group G.Comment: arXiv admin note: text overlap with arXiv:1502.0552

    Data-Oriented Language Processing. An Overview

    Full text link
    During the last few years, a new approach to language processing has started to emerge, which has become known under various labels such as "data-oriented parsing", "corpus-based interpretation", and "tree-bank grammar" (cf. van den Berg et al. 1994; Bod 1992-96; Bod et al. 1996a/b; Bonnema 1996; Charniak 1996a/b; Goodman 1996; Kaplan 1996; Rajman 1995a/b; Scha 1990-92; Sekine & Grishman 1995; Sima'an et al. 1994; Sima'an 1995-96; Tugwell 1995). This approach, which we will call "data-oriented processing" or "DOP", embodies the assumption that human language perception and production works with representations of concrete past language experiences, rather than with abstract linguistic rules. The models that instantiate this approach therefore maintain large corpora of linguistic representations of previously occurring utterances. When processing a new input utterance, analyses of this utterance are constructed by combining fragments from the corpus; the occurrence-frequencies of the fragments are used to estimate which analysis is the most probable one. In this paper we give an in-depth discussion of a data-oriented processing model which employs a corpus of labelled phrase-structure trees. Then we review some other models that instantiate the DOP approach. Many of these models also employ labelled phrase-structure trees, but use different criteria for extracting fragments from the corpus or employ different disambiguation strategies (Bod 1996b; Charniak 1996a/b; Goodman 1996; Rajman 1995a/b; Sekine & Grishman 1995; Sima'an 1995-96); other models use richer formalisms for their corpus annotations (van den Berg et al. 1994; Bod et al., 1996a/b; Bonnema 1996; Kaplan 1996; Tugwell 1995).Comment: 34 pages, Postscrip

    Introduction to the ISO specification language LOTOS

    Get PDF
    LOTOS is a specification language that has been specifically developed for the formal description of the OSI (Open Systems Interconnection) architecture, although it is applicable to distributed, concurrent systems in general. In LOTOS a system is seen as a set of processes which interact and exchange data with each other and with their environment. LOTOS is expected to become an ISO international standard by 1988

    Dyson-Schwinger equations in the theory of computation

    Get PDF
    Following Manin's approach to renormalization in the theory of computation, we investigate Dyson-Schwinger equations on Hopf algebras, operads and properads of flow charts, as a way of encoding self-similarity structures in the theory of algorithms computing primitive and partial recursive functions and in the halting problem.Comment: 26 pages, LaTeX, final version, in "Feynman Amplitudes, Periods and Motives", Contemporary Mathematics, AMS 201

    Wilsonian renormalization, differential equations and Hopf algebras

    Full text link
    In this paper, we present an algebraic formalism inspired by Butcher's B-series in numerical analysis and the Connes-Kreimer approach to perturbative renormalization. We first define power series of non linear operators and propose several applications, among which the perturbative solution of a fixed point equation using the non linear geometric series. Then, following Polchinski, we show how perturbative renormalization works for a non linear perturbation of a linear differential equation that governs the flow of effective actions. Then, we define a general Hopf algebra of Feynman diagrams adapted to iterations of background field effective action computations. As a simple combinatorial illustration, we show how these techniques can be used to recover the universality of the Tutte polynomial and its relation to the qq-state Potts model. As a more sophisticated example, we use ordered diagrams with decorations and external structures to solve the Polchinski's exact renormalization group equation. Finally, we work out an analogous construction for the Schwinger-Dyson equations, which yields a bijection between planar ϕ3\phi^{3} diagrams and a certain class of decorated rooted trees.Comment: 42 pages, 26 figures in PDF format, extended version of a talk given at the conference "Combinatorics and physics" held at Max Planck Institut fuer Mathematik in Bonn in march 2007, some misprints correcte
    corecore