This paper is a brief mathematical excursion which starts from quantum
electrodynamics and leads to the Moebius function of the Tamari lattice of
planar binary trees, within the framework of groups of tree-expanded series.
First we recall Brouder's expansion of the photon and the electron Green's
functions on planar binary trees, before and after the renormalization. Then we
recall the structure of Connes and Kreimer's Hopf algebra of renormalization in
the context of planar binary trees, and of their dual group of tree-expanded
series. Finally we show that the Moebius function of the Tamari posets of
planar binary trees gives rise to a particular series in this group.Comment: 13 page