24,705 research outputs found

    Supporting Focus and Context Awareness in 3D Modelling Tasks Using Multi-Layered Displays

    Get PDF
    Most 3D modelling software have been developed for conventional 2D displays, and as such, lack support for true depth perception. This contributes to making polygonal 3D modelling tasks challenging, particularly when models are complex and consist of a large number of overlapping components (e.g. vertices, edges) and objects (i.e. parts). Research has shown that users of 3D modelling software often encounter a range of difficulties, which collectively can be defined as focus and context awareness problems. These include maintaining position and orientation awarenesses, as well as recognizing distance between individual components and objects in 3D spaces. In this paper, we present five visualization and interaction techniques we have developed for multi-layered displays, to better support focus and context awareness in 3D modelling tasks. The results of a user study we conducted shows that three of these five techniques improve users' 3D modelling task performance

    Visualising Bluetooth interactions: combining the Arc Diagram and DocuBurst techniques

    Get PDF
    Within the Bluetooth mobile space, overwhelmingly large sets of interaction and encounter data can very quickly be accumulated. This presents a challenge to gaining an understanding and overview of the dataset as a whole. In order to overcome this problem, we have designed a visualisation which provides an informative overview of the dataset. The visualisation combines existing Arc Diagram and DocuBurst techniques into a radial space-filling layout capable of conveying a rich understanding of Bluetooth interaction data, and clearly represents social networks and relationships established among encountered devices. The end result enables a user to visually interpret the relative importance of individual devices encountered, the relationships established between them and the usage of Bluetooth 'friendly names' (or device labels) within the data

    Highlighting in information visualization: A survey

    Full text link
    Highlighting was the basic viewing control mechanism in computer graphics and visualization to guide users' attention in reading diagrams, images, graphs and digital texts. As the rapid growth of theory and practice in information visualization, highlighting has extended its role that acts as not only a viewing control, but also an interaction control and a graphic recommendation mechanism in knowledge visualization and visual analytics. In this work, we attempt to give a formal summarization and classification of the existing highlighting methods and techniques that can be applied in Information Visualization, Visual Analytics and Knowledge Visualization. We propose a new three-layer model of highlighting. We discuss the responsibilities of each layer in the different stage of the visual information processing. © 2010 IEEE

    Interactive tag maps and tag clouds for the multiscale exploration of large spatio-temporal datasets

    Get PDF
    'Tag clouds' and 'tag maps' are introduced to represent geographically referenced text. In combination, these aspatial and spatial views are used to explore a large structured spatio-temporal data set by providing overviews and filtering by text and geography. Prototypes are implemented using freely available technologies including Google Earth and Yahoo! 's Tag Map applet. The interactive tag map and tag cloud techniques and the rapid prototyping method used are informally evaluated through successes and limitations encountered. Preliminary evaluation suggests that the techniques may be useful for generating insights when visualizing large data sets containing geo-referenced text strings. The rapid prototyping approach enabled the technique to be developed and evaluated, leading to geovisualization through which a number of ideas were generated. Limitations of this approach are reflected upon. Tag placement, generalisation and prominence at different scales are issues which have come to light in this study that warrant further work

    A visual exploration workflow as enabler for the exploitation of Linked Open Data

    Get PDF
    Abstract. Semantically annotating and interlinking Open Data results in Linked Open Data which concisely and unambiguously describes a knowledge domain. However, the uptake of the Linked Data depends on its usefulness to non-Semantic Web experts. Failing to support data consumers to understand the added-value of Linked Data and possible exploitation opportunities could inhibit its diffusion. In this paper, we propose an interactive visual workflow for discovering and ex-ploring Linked Open Data. We implemented the workflow considering academic library metadata and carried out a qualitative evaluation. We assessed the work-flow’s potential impact on data consumers which bridges the offer: published Linked Open Data; and the demand as requests for: (i) higher quality data; and (ii) more applications that re-use data. More than 70 % of the 34 test users agreed that the workflow fulfills its goal: it facilitates non-Semantic Web experts to un-derstand the potential of Linked Open Data.

    Contouring with uncertainty

    Get PDF
    As stated by Johnson [Joh04], the visualization of uncertainty remains one of the major challenges for the visualization community. To achieve this, we need to understand and develop methods that allow us not only to consider uncertainty as an extra variable within the visualization process, but to treat it as an integral part. In this paper, we take contouring, one of the most widely used visualization techniques for two dimensional data, and focus on extending the concept of contouring to uncertainty. We develop special techniques for the visualization of uncertain contours. We illustrate the work through application to a case study in oceanography

    Visualizing 2D Flows with Animated Arrow Plots

    Full text link
    Flow fields are often represented by a set of static arrows to illustrate scientific vulgarization, documentary film, meteorology, etc. This simple schematic representation lets an observer intuitively interpret the main properties of a flow: its orientation and velocity magnitude. We propose to generate dynamic versions of such representations for 2D unsteady flow fields. Our algorithm smoothly animates arrows along the flow while controlling their density in the domain over time. Several strategies have been combined to lower the unavoidable popping artifacts arising when arrows appear and disappear and to achieve visually pleasing animations. Disturbing arrow rotations in low velocity regions are also handled by continuously morphing arrow glyphs to semi-transparent discs. To substantiate our method, we provide results for synthetic and real velocity field datasets
    • 

    corecore