7,550 research outputs found

    A Flexible Enterprise Needs an Adaptable eBusiness Architecture in Order to Satisfy Naturally Evolving Requirements

    Get PDF
    Standards for exchange of purchasing information, such as ANSI X-12 for EDI, have been used by large industries (e.g. retail and auto) for almost 30 years. Newer web-based tools and new standards hold the promise of reduced cost and wider applicability. For many small to medium sized enterprises, the cost and rigidity of existing tools out weight the prospective gains, which must be amortised over comparatively few transactions. In this paper, we describe the development of an N-tiered, object-oriented, architecture for interacting with suppliers based on emerging web tools. We explore the ways in which the project was required to adapt to existing purchasing systems and the ways that the project evolved during its development. We identify patterns in the inevitable evolution of requirements during the implementation, and we describe the ways that the architecture facilitated the satisfaction of these changing requirements. By analysing the major “transition points” during the development, we attempt to document the fundamental nature of evolving requirements and the need to explicitly reflect them in adaptable e-business architectures

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version

    Agent oriented AmI engineering

    Get PDF

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    A component-based collaboration infrastructure

    Get PDF
    Groupware applications allow geographically distributed users to collaborate on shared tasks. However, it is widely recognized that groupware applications are expensive to build due to coordination services and group dynamics, neither of which is present in single-user applications. Previous collaboration transparency systems reuse existing single-user applications as a whole for collaborative work, often at the price of inflexible coordination. Previous collaboration awareness systems, on the other hand, provide reusable coordination services and multi-user widgets, but often with two weaknesses: (1) the multi-user widgets provided are special-purpose and limited in number, while no guidelines are provided for developing multi-user interface components in general; and (2) they often fail to reach the desired level of flexibility in coordination by tightly binding shared data and coordination services. In this dissertation, we propose a component-based approach to developing group- ware applications that addresses the above two problems. To address the first prob- lem, we propose a shared component model for modeling data and graphic user inter- face(GUI) components of groupware applications. As a result, the myriad of existing single-user components can be re-purposed as shared GUI or data components. An adaptation tool is developed to assist the adaptation process. To address the second problem, we propose a coordination service framework which systematically model the interaction between user, data, and coordination protocols. Due to the clean separation of data and control and the capability to dynamically "glue" them together, the framework provides reusable services such as data distribution, persistence, and adaptable consistency control. The association between data and coordination services can be dynamically changed at runtime. An Evolvable and eXtensible Environment for Collaboration (EXEC) is built to evaluate the proposed approach. In our experiments, we demonstrate two benefits of our approach: (1) a group of common groupware features adapted from existing single- user components are plugged in to extend the functionalities of the environment itself; and (2)coordination services can be dynamically attached to and detached from these shared components at different granules to support evolving collaboration needs

    CPPS-3D: a methodology to support cyber physical production systems design, development and deployment

    Get PDF
    Master’s dissertation in Production EngineeringCyber-Physical Production Systems are widely recognized as the key to unlock the full potential benefits of the Industry 4.0 paradigm. Cyber-Physical Production Systems Design, Development and Deployment methodology is a systematic approach in assessing necessities, identifying gaps and then designing, developing and deploying solutions to fill such gaps. It aims to support and drive enterprise’s evolution to the new working environment promoted by the availability of Industry 4.0 paradigms and technologies while challenged by the need to increment a continuous improvement culture. The proposed methodology considers the different dimensions within enterprises related with their levels of organization, competencies and technology. It is a two-phased sequentially-stepped process to enable discussion, reflection/reasoning, decision-making and action-taking towards evolution. The first phase assesses an enterprise across its Organizational, Technological and Human dimensions. The second phase establishes sequential tasks to successfully deploy solutions. Is was applied to a production section at a Portuguese enterprise with the development of a new visual management system to enable shop floor management. This development is presented as an example of Industry 4.0 technology and it promotes a faster decision-making, better production management, improved data availability as well as fosters more dynamic workplaces with enhanced reactivity to problems

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service
    • …
    corecore