584 research outputs found

    Error analysis of algorithms for camera rotation calculation in GPS/IMU/camera fusion for UAV sense and avoid systems

    Get PDF
    In this paper four camera pose estimation algorithms are investigated in simulations. The aim of the investigation is to show the strengths and weaknesses of these algorithms in the aircraft attitude estimation task. The work is part of a research project where a low cost UAV is developed which can be integrated into the national airspace. Two main issues are addressed with these measurements, one is the sense-and-avoid capability of the aircraft and the other is sensor redundancy. Both parts can benefit from a good attitude estimate. Thus, it is important to use the appropriate algorithm for the camera rotation estimation. Results show that many times even the simplest algorithm can perform at an acceptable level of precision for the sensor fusion. © 2014 IEEE

    Adaptive Airborne Separation to Enable UAM Autonomy in Mixed Airspace

    Get PDF
    The excitement and promise generated by Urban Air Mobility (UAM) concepts have inspired both new entrants and large aerospace companies throughout the world to invest hundreds of millions in research and development of air vehicles, both piloted and unpiloted, to fulfill these dreams. The management and separation of all these new aircraft have received much less attention, however, and even though NASAs lead is advancing some promising concepts for Unmanned Aircraft Systems (UAS) Traffic Management (UTM), most operations today are limited to line of sight with the vehicle, airspace reservation and geofencing of individual flights. Various schemes have been proposed to control this new traffic, some modeled after conventional air traffic control and some proposing fully automatic management, either from a ground-based entity or carried out on board among the vehicles themselves. Previous work has examined vehicle-based traffic management in the very low altitude airspace within a metroplex called UTM airspace in which piloted traffic is rare. A management scheme was proposed in that work that takes advantage of the homogeneous nature of the traffic operating in UTM airspace. This paper expands that concept to include a traffic management plan usable at all altitudes desired for electric Vertical Takeoff and Landing urban and short-distance, inter-city transportation. The interactions with piloted aircraft operating under both visual and instrument flight rules are analyzed, and the role of Air Traffic Control services in the postulated mixed traffic environment is covered. Separation values that adapt to each type of traffic encounter are proposed, and the relationship between required airborne surveillance range and closure speed is given. Finally, realistic scenarios are presented illustrating how this concept can reliably handle the density and traffic mix that fully implemented and successful UAM operations would entail

    Autonomous Collision avoidance for Unmanned aerial systems

    Get PDF
    Unmanned Aerial System (UAS) applications are growing day by day and this will lead Unmanned Aerial Vehicle (UAV) in the close future to share the same airspace of manned aircraft.This implies the need for UAS to define precise safety standards compatible with operations standards for manned aviation. Among these standards the need for a Sense And Avoid (S&A) system to support and, when necessary, sub¬stitute the pilot in the detection and avoidance of hazardous situations (e.g. midair collision, controlled flight into terrain, flight path obstacles, and clouds). This thesis presents the work come out in the development of a S&A system taking into account collision risks scenarios with multiple moving and fixed threats. The conflict prediction is based on a straight projection of the threats state in the future. The approximations introduced by this approach have the advantage of high update frequency (1 Hz) of the estimated conflict geometry. This solution allows the algorithm to capture the trajectory changes of the threat or ownship. The resolution manoeuvre evaluation is based on a optimisation approach considering step command applied to the heading and altitude autopilots. The optimisation problem takes into account the UAV performances and aims to keep a predefined minimum separation distance between UAV and threats during the resolution manouvre. The Human-Machine Interface (HMI) of this algorithm is then embedded in a partial Ground Control Station (GCS) mock-up with some original concepts for the indication of the flight condition parameters and the indication of the resolution manoeuvre constraints. Simulations of the S&A algorithm in different critical scenarios are moreover in-cluded to show the algorithm capabilities. Finally, methodology and results of the tests and interviews with pilots regarding the proposed GCS partial layout are covered

    Reliable Navigation for SUAS in Complex Indoor Environments

    Get PDF
    Indoor environments are a particular challenge for Unmanned Aerial Vehicles (UAVs). Effective navigation through these GPS-denied environments require alternative localization systems, as well as methods of sensing and avoiding obstacles while remaining on-task. Additionally, the relatively small clearances and human presence characteristic of indoor spaces necessitates a higher level of precision and adaptability than is common in traditional UAV flight planning and execution. This research blends the optimization of individual technologies, such as state estimation and environmental sensing, with system integration and high-level operational planning. The combination of AprilTag visual markers, multi-camera Visual Odometry, and IMU data can be used to create a robust state estimator that describes position, velocity, and rotation of a multicopter within an indoor environment. However these data sources have unique, nonlinear characteristics that should be understood to effectively plan for their usage in an automated environment. The research described herein begins by analyzing the unique characteristics of these data streams in order to create a highly-accurate, fault-tolerant state estimator. Upon this foundation, the system built, tested, and described herein uses Visual Markers as navigation anchors, visual odometry for motion estimation and control, and then uses depth sensors to maintain an up-to-date map of the UAV\u27s immediate surroundings. It develops and continually refines navigable routes through a novel combination of pre-defined and sensory environmental data. Emphasis is put on the real-world development and testing of the system, through discussion of computational resource management and risk reduction

    Control and communication systems for automated vehicles cooperation and coordination

    Get PDF
    Mención Internacional en el título de doctorThe technological advances in the Intelligent Transportation Systems (ITS) are exponentially improving over the last century. The objective is to provide intelligent and innovative services for the different modes of transportation, towards a better, safer, coordinated and smarter transport networks. The Intelligent Transportation Systems (ITS) focus is divided into two main categories; the first is to improve existing components of the transport networks, while the second is to develop intelligent vehicles which facilitate the transportation process. Different research efforts have been exerted to tackle various aspects in the fields of the automated vehicles. Accordingly, this thesis is addressing the problem of multiple automated vehicles cooperation and coordination. At first, 3DCoAutoSim driving simulator was developed in Unity game engine and connected to Robot Operating System (ROS) framework and Simulation of Urban Mobility (SUMO). 3DCoAutoSim is an abbreviation for "3D Simulator for Cooperative Advanced Driver Assistance Systems (ADAS) and Automated Vehicles Simulator". 3DCoAutoSim was tested under different circumstances and conditions, afterward, it was validated through carrying-out several controlled experiments and compare the results against their counter reality experiments. The obtained results showed the efficiency of the simulator to handle different situations, emulating real world vehicles. Next is the development of the iCab platforms, which is an abbreviation for "Intelligent Campus Automobile". The platforms are two electric golf-carts that were modified mechanically, electronically and electrically towards the goal of automated driving. Each iCab was equipped with several on-board embedded computers, perception sensors and auxiliary devices, in order to execute the necessary actions for self-driving. Moreover, the platforms are capable of several Vehicle-to-Everything (V2X) communication schemes, applying three layers of control, utilizing cooperation architecture for platooning, executing localization systems, mapping systems, perception systems, and finally several planning systems. Hundreds of experiments were carried-out for the validation of each system in the iCab platform. Results proved the functionality of the platform to self-drive from one point to another with minimal human intervention.Los avances tecnológicos en Sistemas Inteligentes de Transporte (ITS) han crecido de forma exponencial durante el último siglo. El objetivo de estos avances es el de proveer de sistemas innovadores e inteligentes para ser aplicados a los diferentes medios de transporte, con el fin de conseguir un transporte mas eficiente, seguro, coordinado e inteligente. El foco de los ITS se divide principalmente en dos categorías; la primera es la mejora de los componentes ya existentes en las redes de transporte, mientras que la segunda es la de desarrollar vehículos inteligentes que hagan más fácil y eficiente el transporte. Diferentes esfuerzos de investigación se han llevado a cabo con el fin de solucionar los numerosos aspectos asociados con la conducción autónoma. Esta tesis propone una solución para la cooperación y coordinación de múltiples vehículos. Para ello, en primer lugar se desarrolló un simulador (3DCoAutoSim) de conducción basado en el motor de juegos Unity, conectado al framework Robot Operating System (ROS) y al simulador Simulation of Urban Mobility (SUMO). 3DCoAutoSim ha sido probado en diferentes condiciones y circunstancias, para posteriormente validarlo con resultados a través de varios experimentos reales controlados. Los resultados obtenidos mostraron la eficiencia del simulador para manejar diferentes situaciones, emulando los vehículos en el mundo real. En segundo lugar, se desarrolló la plataforma de investigación Intelligent Campus Automobile (iCab), que consiste en dos carritos eléctricos de golf, que fueron modificados eléctrica, mecánica y electrónicamente para darle capacidades autónomas. Cada iCab se equipó con diferentes computadoras embebidas, sensores de percepción y unidades auxiliares, con la finalidad de transformarlos en vehículos autónomos. Además, se les han dado capacidad de comunicación multimodal (V2X), se les han aplicado tres capas de control, incorporando una arquitectura de cooperación para operación en modo tren, diferentes esquemas de localización, mapeado, percepción y planificación de rutas. Innumerables experimentos han sido realizados para validar cada uno de los diferentes sistemas incorporados. Los resultados prueban la funcionalidad de esta plataforma para realizar conducción autónoma y cooperativa con mínima intervención humana.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Francisco Javier Otamendi Fernández de la Puebla.- Secretario: Hanno Hildmann.- Vocal: Pietro Cerr

    Visual Detection of Small Unmanned Aircraft: Modeling the Limits of Human Pilots

    Get PDF
    The purpose of this study was to determine the key physical variables for visual detection of small, Unmanned Aircraft Systems (UAS), and to learn how these variables influence the ability of human pilots, in manned-aircraft operating between 60-knots to 160-knots in the airport terminal area, to see these small, unmanned aircraft in time to avoid a collision. The study also produced a set of probability curves for various operating scenarios, depicting the likelihood of visually detecting a small, unmanned aircraft in time to avoid colliding with it. The study used the known limits of human visual acuity, based on the mechanics of the human eye and previous research on human visual detection of distant objects, to define the human performance constraints for the visual search task. The results of the analysis suggest the probability of detection, in all cases modeled during the study, is far less than 50 percent. The probability of detection was well under 10 percent for small UAS aircraft similar to the products used by many recreational and hobby operators. The results of this study indicate the concept of see-and-avoid is not a reliable technique for collision prevention by manned-aircraft pilots when it comes to operating near small, unmanned aircraft. Since small, unmanned aircraft continue to appear in airspace where they do not belong, regulators and the industry need to accelerate the development and deployment of alternative methods for collision prevention between sUAS aircraft operations and manned-aircraft. The analysis effort for this study included the development of a new simulation model, building on existing models related to human visual detection of distant objects. This study extended existing research and used currently accepted standards to create a new model specifically tailored to small, unmanned aircraft detection. Since several input variables are not controllable, this study used a Monte Carlo simulation to provide a means for addressing the effects of uncertainty in the uncontrollable inputs that the previous models did not handle. The uncontrollable inputs include the airspeed and direction of flight for the unmanned aircraft, as well as the changing contrast between the unmanned aircraft target and its background as both the target aircraft and the observer encounter different background and lighting conditions. The reusable model created for this study will enable future research related to the visual detection of small, unmanned aircraft. It provides a new tool for studying the difficult task of visually detecting airborne, small, unmanned aircraft targets in time to maneuver clear of a possible collision with them. The study also tested alternative input values to the simulation model to explore how changes to small, unmanned aircraft features might improve the visual detectability of the unmanned aircraft by human pilots in manned aircraft. While these changes resulted in higher probabilities of detection, the overall detection probability remained very low thereby confirming the urgent need to build reliable collision avoidance capability into small UAS aircraft

    Aircraft trajectory tracking with large sideslip angles for sense and avoid intruder state estimation

    Full text link
    corecore