125,162 research outputs found

    Laboratory Calibration of a Field Imaging Spectrometer System

    Get PDF
    A new Field Imaging Spectrometer System (FISS) based on a cooling area CCD was developed. This paper describes the imaging principle, structural design, and main parameters of the FISS sensor. The FISS was spectrally calibrated with a double grating monochromator to determine the center wavelength and FWHM of each band. Calibration results showed that the spectral range of the FISS system is 437–902 nm, the number of channels is 344 and the spectral resolution of each channel is better than 5 nm. An integrating sphere was used to achieve absolute radiometric calibration of the FISS with less than 5% calibration error for each band. There are 215 channels with signal to noise ratios (SNRs) greater than 500 (62.5% of the bands). The results demonstrated that the FISS has achieved high performance that assures the feasibility of its practical use in various fields

    Design study for Thermal Infrared Multispectral Scanner (TIMS)

    Get PDF
    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources

    Automated extraction of absorption features from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data

    Get PDF
    Automated techniques were developed for the extraction and characterization of absorption features from reflectance spectra. The absorption feature extraction algorithms were successfully tested on laboratory, field, and aircraft imaging spectrometer data. A suite of laboratory spectra of the most common minerals was analyzed and absorption band characteristics tabulated. A prototype expert system was designed, implemented, and successfully tested to allow identification of minerals based on the extracted absorption band characteristics. AVIRIS spectra for a site in the northern Grapevine Mountains, Nevada, have been characterized and the minerals sericite (fine grained muscovite) and dolomite were identified. The minerals kaolinite, alunite, and buddingtonite were identified and mapped for a site at Cuprite, Nevada, using the feature extraction algorithms on the new Geophysical and Environmental Research 64 channel imaging spectrometer (GERIS) data. The feature extraction routines (written in FORTRAN and C) were interfaced to the expert system (written in PROLOG) to allow both efficient processing of numerical data and logical spectrum analysis

    First results of a cryogenic optical photon counting imaging spectrometer using a DROID array

    Get PDF
    Context. In this paper we present the first system test in which we demonstrate the concept of using an array of Distributed Read Out Imaging Devices (DROIDs) for optical photon detection. Aims. After the successful S-Cam 3 detector the next step in the development of a cryogenic optical photon counting imaging spectrometer under the S-Cam project is to increase the field of view using DROIDs. With this modification the field of view of the camera has been increased by a factor of 5 in area, while keeping the number of readout channels the same. Methods. The test has been performed using the flexible S-Cam 3 system and exchanging the 10x12 Superconducting Tunnel Junction array for a 3x20 DROID array. The extra data reduction needed with DROIDs is performed offline. Results. We show that, although the responsivity (number of tunnelled quasiparticles per unit of absorbed photon energy, e- /eV) of the current array is too low for direct astronomical applications, the imaging quality is already good enough for pattern detection, and will improve further with increasing responsivity. Conclusions. The obtained knowledge can be used to optimise the system for the use of DROIDs.Comment: 7 pages, 9 figures, accepted for publicaiton in A&

    Towards spectral-domain optical coherence tomography on a silicon chip

    Get PDF
    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these instruments bulky and costly. A significant decrease in the size and cost of an OCT system is possible through the use of integrated optics, allowing for compact and low-cost OCT systems, especially suited for applications in which instrument size may play an important role. In this work, we present a miniaturized spectral-domain OCT (SD-OCT) system. We design an arrayed waveguide grating (AWG) spectrometer in silicon oxynitride for the 1300-nm spectral range. The spectral range of the SD-OCT system near 1300 nm is specifically selected for skin imaging. We aim at 18-μm depth resolution (determined by the full width at half maximum values of the transmission spectrum of the AWG) and a 1-mm depth range (determined by the wavelength spacing per output waveguide). The free spectral range of 78 nm and wavelength resolution of 0.4 nm of the AWG are determined to meet these requirements. We use ahe fiber-based SD-OCT system with AWG spectrometer. The Michelson interferometer is illuminated using a superluminescent diode which has a Gaussian-like spectrum with a bandwidth of 40 nm and a central wavelength of 1300 nm. Via a circulator the light is coupled into a 90/10 beamsplitter. Polarization controllers are placed into both, sample and reference arm. The backreflected light is redirected through the optical circulator to the AWG spectrometer. The collimated beam is imaged with a camera lens onto a 46 kHz CCD linescan camera. The acquired spectra are processed by first subtracting the reference arm spectrum, then compensating the dispersion, and finally resampling to k-space. We achieve a depth range of 1mm. The measured signal-to-noise ratio (SNR) is 75 dB. The axial resolution (FWHM) is determined from a Gaussian fit to the point spread function in amplitude at various depths. A slight decrease in depth resolution is observed at higher depth ranges, which we attribute to misalignment and lens aberrations. As a demonstration of OCT imaging using the AWG spectrometer, an image of a layered phantom is recorded. The phantom consists of three layers of scattering medium (µs = 4 mm-1, refractive index n = 1.41) interleaved with non-scattering tape. We can observe all three scattering layers up to the maximum imaging depth of 1 mm

    FPGA based digital signal processing for EPR spectroscopy with an application to MRI

    Get PDF
    Electron Paramagnetic Resonance (EPR), a magnetic resonance technique similar to nuclear magnetic resonance, detects paramagnetic species such as free radicals. Like Magnetic Resonance Imaging (MRI), EPR can be implemented as an imaging technique for small animals and potentially human applications both in pulsed and continuous wave mode. Typical frequencies used for in vivo applications are about 300 MHz with a corresponding static magnetic field of about 100 G (10mT). As demonstrated with high field MRI imaging systems, a frequency of 300 MHz is applicable for clinical use since the penetration depth of this frequency is high enough to image humans. CW EPR techniques are commonly used since they permit detection of paramagnetic species with large width. Building an EPR spectrometer, as shown in Figure 1, is a challenge. The major goal is to have a high sensitivity receiver, which requires special attention to noise, crosstalk from the transmitter, clock jitter, phase noise, power supply filtering, and high speed measurements and processing. In this research, a new measurement method and its processing in FPGA to improve the sensitivity of the system is investigated

    Infrared imaging spectroscopic system based on a PGP spectrograph and a monochrome infrared camera

    Get PDF
    Hyperspectral imaging spectroscopy has been widely used in remote sensing. However, its potential for applications in industrial and biological fields is enormous. Observation line spectrographs, based on the reflectance of the material under study in each field, can be obtained by means of an imaging spectrometer. In this way, imaging spectroscopy allows the simultaneous determination of the optical spectrum components and the spatial location of an object in a surface. A simple, small and low-cost spectrometer, such as those ones based on passive Prism-Grating-Prism (PGP) devices, is required for the abovementioned application fields. In this paper a non-intrusive and non-contact near infrared acquisition system based on a PGP spectrometer is presented. An extension to the whole near infrared range of the spectrum of a previously designed system in the Vis-NIR range has been performed. The reason under this investigation is to improve material characterization. To our knowledge, no imaging spectroscopic system based on a PGP device working in this range has been previously reported. The components of the system, its assembling, alignment and calibration procedures will be described in detail. This system can be generalized for a wide variety of applications employing a specific and adequate data processing

    MODIS: Moderate Resolution Imaging Spectrometer

    Get PDF
    This brochure describes the Moderate Resolution Imaging Spectrometer (MODIS) instrument on NASA's Terra satellite. The first NASA Earth Observing System (EOS) satellite, Terra, was launched on December 18, 1999, carrying five remote sensors. The most comprehensive EOS sensor is MODIS which offers a unique combination of features: it detects a wide spectral range of electromagnetic energy; it takes measurements at three spatial resolutions (levels of detail); it takes measurements all day, every day; and it has a wide field of view. This continual, comprehensive coverage allows MODIS to complete an electromagnetic picture of the globe every two days. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional, Informal education

    A geostationary imaging spectrometer TOMS instrument

    Get PDF
    One design for a geostationary Total Ozone Mapping Spectrometer (TOMS) with many desirable features is an imaging spectrometer. A preliminary study makes use of a 0.25 m Czerny-Turner spectrometer with which the Earth is imaged on a charge-coupled device (CCD) in dispersed light. The wavelength is determined by a movable grating which can be set arbitrarily by ground control. The signal integration time depends on wavelength but this system allows arbitrary timing by command. Special circumstances such as a requirement to track a low-lying sulfur dioxide cloud or a need to discriminate high level ozone from total ozone at midlatitudes could be obtained by adding a particular wavelength to the normally pre-programmed time sequence. The incident solar irradiance is measured by deploying a diffuser plate in the field of view. Individual detector elements correspond to scene elements in which the several wavelengths are serially sampled and the Earth radiance is compared to the incident sunlight. Thus the problem of uncorrelated drift of multiple detectors is removed
    • …
    corecore