2,185 research outputs found

    A methodology for the design of application-specific cyber-physical social sensing co-simulators

    Get PDF
    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users’ needs and requirements and various additional factors such as the development team’s experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal

    Distributing Cyber-Physical Systems Simulation: The Satellite Constellation Case

    Get PDF
    The goal of this position paper is to contribute for the improving of Cyber-Physical System (CPS) simulations by introducing distribution. CPS use computations andcommunication tightly interacting with physical processes. So a CPS simulation needs to tackle with three kinds of simulations: the computational simulation, the physical simulation, and the communication simulation. In this paper, we will focus on the communication simulation, and its interaction with the two others simulations. We will draw a landscape of the existing concepts and technologies for distributing communication simulation, and then propose an architecture for interacting with the whole CPS simulation. We will apply this architecture to a simulation of a satellite constellation, where satellites can be simulated with different levels of precision, from the simple generic mathematical model to the heavy-featured CPS simulation

    Concurrency Platforms for Real-Time and Cyber-Physical Systems

    Get PDF
    Parallel processing is an important way to satisfy the increasingly demanding computational needs of modern real-time and cyber-physical systems, but existing parallel computing technologies primarily emphasize high-throughput and average-case performance metrics, which are largely unsuitable for direct application to real-time, safety-critical contexts. This work contrasts two concurrency platforms designed to achieve predictable worst case parallel performance for soft real-time workloads with millisecond periods and higher. One of these is then the basis for the CyberMech platform, which enables parallel real-time computing for a novel yet representative application called Real-Time Hybrid Simulation (RTHS). RTHS combines demanding parallel real-time computation with real-time simulation and control in an earthquake engineering laboratory environment, and results concerning RTHS characterize a reasonably comprehensive survey of parallel real-time computing in the static context, where the size, shape, timing constraints, and computational requirements of workloads are fixed prior to system runtime. Collectively, these contributions constitute the first published implementations and evaluations of general-purpose concurrency platforms for real-time and cyber-physical systems, explore two fundamentally different design spaces for such systems, and successfully demonstrate the utility and tradeoffs of parallel computing for statically determined real-time and cyber-physical systems

    Addressing the Security Gap in IoT: Towards an IoT Cyber Range.

    Get PDF
    The paradigm of Internet of Things has now reached a maturity level where the pertinent research goal is the successful application of IoT technologies in systems of high technological readiness level. However, while basic aspects of IoT connectivity and networking have been well studied and adequately addressed, this has not been the case for cyber security aspects of IoT. This is nicely demonstrated by the number of IoT testbeds focusing on networking aspects and the lack of IoT testbeds focusing on security aspects. Towards addressing the existing and growing skills-shortage in IoT cyber security, we present an IoT Cyber Range (IoT-CR); an IoT testbed designed for research and training in IoT security. The IoT-CR allows the user to specify and work on customisable IoT networks, both virtual and physical, and supports the concurrent execution of multiple scenarios in a scalable way following a modular architecture. We first provide an overview of existing, state of the art IoT testbeds and cyber security related initiatives. We then present the design and architecture of the IoT Cyber Range, also detailing the corresponding RESTful APIs that help de-associate the IoT-CR tiers and obfuscate underlying complexities. The design is focused around the end-user and is based on the four design principles for Cyber Range development discussed in the introduction. Finally, we demonstrate the use of the facility via a red/blue team scenario involving a variant of man-in-the-middle attack using IoT devices. Future work includes the use of the IoT-CR by cohorts of trainees in order to evaluate the effectiveness of specific scenarios in acquiring IoT-related cyber-security knowledge and skills, as well as the IoT-CR integration with a pan-European cyber-security competence network
    corecore