114 research outputs found

    Battery-sourced switched-inductor multiple-output CMOS power-supply systems

    Get PDF
    Wireless microsystems add intelligence to larger systems by sensing, processing and transmitting information which can ultimately save energy and resources. Each function has their own power profile and supply level to maximize performance and save energy since they are powered by a small battery. Also, due to its small size, the battery has limited energy and therefore the power-supply system cannot consume much power. Switched-inductor converters are efficient across wide operating conditions but one fundamental challenge is integration because miniaturized dc-dc converters cannot afford to accommodate more than one off-chip power inductor. The objective of this research is to explore, develop, analyze, prototype, test, and evaluate how one switched inductor can derive power from a small battery to supply, regulate, and respond to several independent outputs reliably and accurately. Managing and stabilizing the feedback loops that supply several outputs at different voltages under diverse and dynamic loading conditions with one CMOS chip and one inductor is also challenging. Plus, since a single inductor cannot supply all outputs at once, steady-state ripples and load dumps produce cross-regulation effects that are difficult to manage and suppress. Additionally, as the battery depletes the power-supply system must be able to regulate both buck and boost voltages. The presented system can efficiently generate buck and boost voltages with the fastest response time while having a low silicon area consumption per output in a low-cost technology which can reduce the overall size and cost of the system.Ph.D

    Quad- bus motor drive system for electrified vehicles based on a dual- output- single- inductor structure

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163903/1/elp2bf00838.pd

    Mixed-source charger-supply CMOS IC

    Get PDF
    The proposed research objective is to develop, test, and evaluate a mixer and charger-supply CMOS IC that derives and mixes energy and power from mixed sources to accurately supply a miniaturized system. Since the energy-dense source stores more energy than the power-dense source while the latter supplies more power than the former, the proposed research aims to develop an IC that automatically selects how much and from which source to draw power to maximize lifetime per unit volume. Today, the state of the art lacks the intelligence and capability to select the most appropriate source from which to extract power to supply the time-varying needs of a small system. As such, the underlying objective and benefit of this research is to reduce the size of a complete electronic system so that wireless sensors and biomedical implants, for example, as a whole, perform well, operate for extended periods, and integrate into tiny spaces.Ph.D

    Power Electronics in Renewable Energy Systems

    Get PDF

    Efficient power management circuits for energy harvesting applications

    Get PDF
    Low power IoT devices are growing in numbers and by 2020 there will be more than 25 Billion of those in areas such as wearables, smart homes, remote surveillance, transportation and industrial systems, including many others. Many IoT electronics either will operate from stand-alone energy supply (e.g., battery) or be self-powered by harvesting from ambient energy sources or have both options. Harvesting sustainable energy from ambient environment plays significant role in extending the operation lifetime of these devices and hence, lower the maintenance cost of the system, which in turn help make them integral to simpler systems. Both for battery-powered and harvesting capable systems, efficient power delivery unit remains an essential component for maximizing energy efficiency. The goal of this research is to investigate the challenges of energy delivery for low power electronics considering both energy harvesting as well as battery-powered conditions and to address those challenges. Different challenges of energy harvesting from low voltage energy sources based on the limitations of the sources, the type of the regulator used and the pattern of the load demands have been investigated. Different aspects of the each challenges are further investigated to seek optimized solutions for both load specific and generalized applications. A voltage boost mechanism is chosen as the primary mechanism to investigate and to addressing those challenges, befitting the need for low power applications which often rely on battery voltage or on low voltage energy harvesting sources. Additionally, a multiple output buck regulator is also discussed. The challenges analyzed include very low voltage start up issues for an inductive boost regulator, cascading of boost regulator stages, and reduction of the number of external component through reusing those. Design techniques for very high conversion ratio, bias current reduction with autonomous bias gating, battery-less cold start, component and power stage multiplexing for reconfigurable and multi-domain regulators are presented. Measurement results from several silicon prototypes are also presented.Ph.D

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    A review of numerical modelling and optimisation of the floating support structure for offshore wind turbines

    Get PDF
    AbstractCompared to onshore wind power, floating offshore wind power is a promising renewable energy source due to higher wind speeds and larger suitable available areas. However, costs are still too high compared to onshore wind power. In general, the economic viability of offshore wind technology decreases with greater water depth and distance from shore. Floating wind platforms are more competitive compared to fixed offshore structures above a certain water depth, but there is still great variety and no clear design convergence. Therefore, optimisation of the floating support structure in the preliminary phase of the design process is still of great importance, often up to personal experience and sensibility. It is fundamental that a suitable optimisation approach is chosen to obtain meaningful results at early development stages. This review provides a comparative overview of the methods, numerical tools and optimisation approaches that can be used with respect to the conceptual design of the support structure for Floating offshore wind turbines (FOWT) attempting to detail the limitations preventing the convergence to an optimal floating support structure. This work is intended to be as a reference for any researcher and developer that would like to optimise the support platform for FOWT

    Harnessing resilience: biased voltage overscaling for probabilistic signal processing

    Get PDF
    A central component of modern computing is the idea that computation requires determinism. Contrary to this belief, the primary contribution of this work shows that useful computation can be accomplished in an error-prone fashion. Focusing on low-power computing and the increasing push toward energy conservation, the work seeks to sacrifice accuracy in exchange for energy savings. Probabilistic computing forms the basis for this error-prone computation by diverging from the requirement of determinism and allowing for randomness within computing. Implemented as probabilistic CMOS (PCMOS), the approach realizes enormous energy sav- ings in applications that require probability at an algorithmic level. Extending probabilistic computing to applications that are inherently deterministic, the biased voltage overscaling (BIVOS) technique presented here constrains the randomness introduced through PCMOS. Doing so, BIVOS is able to limit the magnitude of any resulting deviations and realizes energy savings with minimal impact to application quality. Implemented for a ripple-carry adder, array multiplier, and finite-impulse-response (FIR) filter; a BIVOS solution substantially reduces energy consumption and does so with im- proved error rates compared to an energy equivalent reduced-precision solution. When applied to H.264 video decoding, a BIVOS solution is able to achieve a 33.9% reduction in energy consumption while maintaining a peak-signal-to-noise ratio of 35.0dB (compared to 14.3dB for a comparable reduced-precision solution). While the work presented here focuses on a specific technology, the technique realized through BIVOS has far broader implications. It is the departure from the conventional mindset that useful computation requires determinism that represents the primary innovation of this work. With applicability to emerging and yet to be discovered technologies, BIVOS has the potential to contribute to computing in a variety of fashions.PhDCommittee Chair: Anderson, David; Committee Member: Conte, Thomas; Committee Member: Ferri, Bonnie; Committee Member: Hasler, Paul; Committee Member: Mooney, Vincen

    A Dual-Supply Buck Converter with Improved Light-Load Efficiency

    Get PDF
    Power consumption and device size have been placed at the primary concerns for battery-operated portable applications. Switching converters gain popularity in powering portable devices due to their high efficiency, compact sizes and high current delivery capability. However portable devices usually operate at light loads most of the time and are only required to deliver high current in very short periods, while conventional buck converter suffers from low efficiency at light load due to the switching losses that do not scale with load current. In this research, a novel technique for buck converter is proposed to reduce the switching loss by reducing the effective voltage supply at light load. This buck converter, implemented in TSMC 0.18 micrometers CMOS technology, operates with a input voltage of 3.3V and generates an output voltage of 0.9V, delivers a load current from 1mA to 400mA, and achieves 54 percent ~ 91 percent power efficiency. It is designed to work with a constant switching frequency of 3MHz. Without sacrificing output frequency spectrum or output ripple, an efficiency improvement of up to 20 percent is obtained at light load
    corecore