342 research outputs found

    Unifying terrain awareness for the visually impaired through real-time semantic segmentation.

    Get PDF
    Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework

    3D Visual Perception for Self-Driving Cars using a Multi-Camera System: Calibration, Mapping, Localization, and Obstacle Detection

    Full text link
    Cameras are a crucial exteroceptive sensor for self-driving cars as they are low-cost and small, provide appearance information about the environment, and work in various weather conditions. They can be used for multiple purposes such as visual navigation and obstacle detection. We can use a surround multi-camera system to cover the full 360-degree field-of-view around the car. In this way, we avoid blind spots which can otherwise lead to accidents. To minimize the number of cameras needed for surround perception, we utilize fisheye cameras. Consequently, standard vision pipelines for 3D mapping, visual localization, obstacle detection, etc. need to be adapted to take full advantage of the availability of multiple cameras rather than treat each camera individually. In addition, processing of fisheye images has to be supported. In this paper, we describe the camera calibration and subsequent processing pipeline for multi-fisheye-camera systems developed as part of the V-Charge project. This project seeks to enable automated valet parking for self-driving cars. Our pipeline is able to precisely calibrate multi-camera systems, build sparse 3D maps for visual navigation, visually localize the car with respect to these maps, generate accurate dense maps, as well as detect obstacles based on real-time depth map extraction

    Detección y modelado de escaleras con sensor RGB-D para asistencia personal

    Get PDF
    La habilidad de avanzar y moverse de manera efectiva por el entorno resulta natural para la mayoría de la gente, pero no resulta fácil de realizar bajo algunas circunstancias, como es el caso de las personas con problemas visuales o cuando nos movemos en entornos especialmente complejos o desconocidos. Lo que pretendemos conseguir a largo plazo es crear un sistema portable de asistencia aumentada para ayudar a quienes se enfrentan a esas circunstancias. Para ello nos podemos ayudar de cámaras, que se integran en el asistente. En este trabajo nos hemos centrado en el módulo de detección, dejando para otros trabajos el resto de módulos, como podría ser la interfaz entre la detección y el usuario. Un sistema de guiado de personas debe mantener al sujeto que lo utiliza apartado de peligros, pero también debería ser capaz de reconocer ciertas características del entorno para interactuar con ellas. En este trabajo resolvemos la detección de uno de los recursos más comunes que una persona puede tener que utilizar a lo largo de su vida diaria: las escaleras. Encontrar escaleras es doblemente beneficioso, puesto que no sólo permite evitar posibles caídas sino que ayuda a indicar al usuario la posibilidad de alcanzar otro piso en el edificio. Para conseguir esto hemos hecho uso de un sensor RGB-D, que irá situado en el pecho del sujeto, y que permite captar de manera simultánea y sincronizada información de color y profundidad de la escena. El algoritmo usa de manera ventajosa la captación de profundidad para encontrar el suelo y así orientar la escena de la manera que aparece ante el usuario. Posteriormente hay un proceso de segmentación y clasificación de la escena de la que obtenemos aquellos segmentos que se corresponden con "suelo", "paredes", "planos horizontales" y una clase residual, de la que todos los miembros son considerados "obstáculos". A continuación, el algoritmo de detección de escaleras determina si los planos horizontales son escalones que forman una escalera y los ordena jerárquicamente. En el caso de que se haya encontrado una escalera, el algoritmo de modelado nos proporciona toda la información de utilidad para el usuario: cómo esta posicionada con respecto a él, cuántos escalones se ven y cuáles son sus medidas aproximadas. En definitiva, lo que se presenta en este trabajo es un nuevo algoritmo de ayuda a la navegación humana en entornos de interior cuya mayor contribución es un algoritmo de detección y modelado de escaleras que determina toda la información de mayor relevancia para el sujeto. Se han realizado experimentos con grabaciones de vídeo en distintos entornos, consiguiendo buenos resultados tanto en precisión como en tiempo de respuesta. Además se ha realizado una comparación de nuestros resultados con los extraídos de otras publicaciones, demostrando que no sólo se consigue una eciencia que iguala al estado de la materia sino que también se aportan una serie de mejoras. Especialmente, nuestro algoritmo es el primero capaz de obtener las dimensiones de las escaleras incluso con obstáculos obstruyendo parcialmente la vista, como puede ser gente subiendo o bajando. Como resultado de este trabajo se ha elaborado una publicación aceptada en el Second Workshop on Assitive Computer Vision and Robotics del ECCV, cuya presentación tiene lugar el 12 de Septiembre de 2014 en Zúrich, Suiza

    Stairs detection with odometry-aided traversal from a wearable RGB-D camera

    Get PDF
    Stairs are one of the most common structures present in human-made scenarios, but also one of the most dangerous for those with vision problems. In this work we propose a complete method to detect, locate and parametrise stairs with a wearable RGB-D camera. Our algorithm uses the depth data to determine if the horizontal planes in the scene are valid steps of a staircase judging their dimensions and relative positions. As a result we obtain a scaled model of the staircase with the spatial location and orientation with respect to the subject. The visual odometry is also estimated to continuously recover the current position and orientation of the user while moving. This enhances the system giving the ability to come back to previously detected features and providing location awareness of the user during the climb. Simultaneously, the detection of the staircase during the traversal is used to correct the drift of the visual odometry. A comparison of results of the stair detection with other state-of-the-art algorithms was performed using public dataset. Additional experiments have also been carried out, recording our own natural scenes with a chest-mounted RGB-D camera in indoor scenarios. The algorithm is robust enough to work in real-time and even under partial occlusions of the stair

    Overview of Environment Perception for Intelligent Vehicles

    Get PDF
    This paper presents a comprehensive literature review on environment perception for intelligent vehicles. The state-of-the-art algorithms and modeling methods for intelligent vehicles are given, with a summary of their pros and cons. A special attention is paid to methods for lane and road detection, traffic sign recognition, vehicle tracking, behavior analysis, and scene understanding. In addition, we provide information about datasets, common performance analysis, and perspectives on future research directions in this area

    Traffic scene awareness for intelligent vehicles using ConvNets and stereo vision

    Get PDF
    In this paper, we propose an efficient approach to perform recognition and 3D localization of dynamic objects on images from a stereo camera, with the goal of gaining insight into traffic scenes in urban and road environments. We rely on a deep learning framework able to simultaneously identify a broad range of entities, such as vehicles, pedestrians or cyclists, with a frame rate compatible with the strict requirements of onboard automotive applications. Stereo information is later introduced to enrich the knowledge about the objects with geometrical information. The results demonstrate the capabilities of the perception system for a wide variety of situations, thus providing valuable information for a higher-level understanding of the traffic situation

    Real-time visual perception : detection and localisation of static and moving objects from a moving stereo rig

    Get PDF
    International audienceWe present a novel method for scene reconstruction and moving object detection and tracking, using extensive point tracking (typically more than 4000 points per frame) over time. Current neighbourhood is reconstructed in the form of a 3D point cloud, which allows for extra features (ground detection, path planning, obstacle detection). Reconstruction framework takes moving objects into account, and tracking over time allows for trajectory and speed estimation

    Online Inference and Detection of Curbs in Partially Occluded Scenes with Sparse LIDAR

    Full text link
    Road boundaries, or curbs, provide autonomous vehicles with essential information when interpreting road scenes and generating behaviour plans. Although curbs convey important information, they are difficult to detect in complex urban environments (in particular in comparison to other elements of the road such as traffic signs and road markings). These difficulties arise from occlusions by other traffic participants as well as changing lighting and/or weather conditions. Moreover, road boundaries have various shapes, colours and structures while motion planning algorithms require accurate and precise metric information in real-time to generate their plans. In this paper, we present a real-time LIDAR-based approach for accurate curb detection around the vehicle (360 degree). Our approach deals with both occlusions from traffic and changing environmental conditions. To this end, we project 3D LIDAR pointcloud data into 2D bird's-eye view images (akin to Inverse Perspective Mapping). These images are then processed by trained deep networks to infer both visible and occluded road boundaries. Finally, a post-processing step filters detected curb segments and tracks them over time. Experimental results demonstrate the effectiveness of the proposed approach on real-world driving data. Hence, we believe that our LIDAR-based approach provides an efficient and effective way to detect visible and occluded curbs around the vehicles in challenging driving scenarios.Comment: Accepted at the 22nd IEEE Intelligent Transportation Systems Conference (ITSC19), October, 2019, Auckland, New Zealan
    corecore