3,252 research outputs found

    Data path analysis for dynamic circuit specialisation

    Get PDF
    Dynamic Circuit Specialisation (DCS) is a method that exploits the reconfigurability of modern FPGAs to allow the specialisation of FPGA circuits at run-time. Currently, it is only explored as part of Register-transfer level design. However, at the Register-transfer level (RTL), a large part of the design is already locked in. Therefore, maximally exploiting the opportunities of DCS could require a costly redesign. It would be interesting to already have insight in the opportunities for DCS from the higher abstraction level. Moreover, the general design trend in FPGA design is to work on higher abstraction levels and let tool(s) translate this higher level description to RTL. This paper presents the first profiler that, based on the high-level description of an application, estimates the benefits of an implementation using DCS. This allows a designer to determine much earlier in the design cycle whether or not DCS would be interesting. The high-level profiling methodology was implemented and tested on a set of PID designs

    An Automated Design-flow for FPGA-based Sequential Simulation

    Get PDF
    In this paper we describe the automated design flow that will transform and map a given homogeneous or heterogeneous hardware design into an FPGA that performs a cycle accurate simulation. The flow replaces the required manually performed transformation and can be embedded in existing standard synthesis flows. Compared to the earlier manually translated designs, this automated flow resulted in a reduced number of FPGA hardware resources and higher simulation frequencies. The implementation of the complete design flow is work in progress.\u

    Optimizing Scrubbing by Netlist Analysis for FPGA Configuration Bit Classification and Floorplanning

    Full text link
    Existing scrubbing techniques for SEU mitigation on FPGAs do not guarantee an error-free operation after SEU recovering if the affected configuration bits do belong to feedback loops of the implemented circuits. In this paper, we a) provide a netlist-based circuit analysis technique to distinguish so-called critical configuration bits from essential bits in order to identify configuration bits which will need also state-restoring actions after a recovered SEU and which not. Furthermore, b) an alternative classification approach using fault injection is developed in order to compare both classification techniques. Moreover, c) we will propose a floorplanning approach for reducing the effective number of scrubbed frames and d), experimental results will give evidence that our optimization methodology not only allows to detect errors earlier but also to minimize the Mean-Time-To-Repair (MTTR) of a circuit considerably. In particular, we show that by using our approach, the MTTR for datapath-intensive circuits can be reduced by up to 48.5% in comparison to standard approaches

    The use of field-programmable gate arrays for the hardware acceleration of design automation tasks

    Get PDF
    This paper investigates the possibility of using Field-Programmable Gate Arrays (Fr’GAS) as reconfigurable co-processors for workstations to produce moderate speedups for most tasks in the design process, resulting in a worthwhile overall design process speedup at low cost and allowing algorithm upgrades with no hardware modification. The use of FPGAS as hardware accelerators is reviewed and then achievable speedups are predicted for logic simulation and VLSI design rule checking tasks for various FPGA co-processor arrangements

    Architecture-aware FPGA placement using metric embedding

    Get PDF

    New FPGA design tools and architectures

    Get PDF
    • 

    corecore