
VLSI DESIGN
1996, Vol. 4, No. 2, pp. 135-139
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1996 OPA (Overseas Publishers Association) Amsterdam B.V.
Published in The Netherlands under license by

Gordon and Breach Science Publishers SA
Printed in Malaysia

The Use of Field-Programmable Gate Arrays for the
Hardware Acceleration of Design Automation Tasks

NEIL J. HOWARD, ANDREW M. TYRRELL and NIGEL M. ALLINSON*

Department of Electronics, University of York, York YO1 5DD, UK.

This paper investigates the possibility of using Field-Programmable Gate Arrays (Fr’GAS) as
reconfigurable co-processors for workstations to produce moderate speedups for most tasks
in the design process, resulting in a worthwhile overall design process speedup at low cost
and allowing algorithm upgrades with no hardware modification. The use of FPGAS as hard-
ware accelerators is reviewed and then achievable speedups are predicted for logic simula-
tion and VLSI design rule checking tasks for various FPGA co-processor arrangements.

1 INTRODUCTION

Many special hardware acceleration engines have
been proposed or built ], with significant speedups
over software. However, the VLSI design process is
characterized by many computer-intensive stages that
are quite different in nature. The use of an accelerator
for one stage does not dramatically improve the pro-
ductivity of the overall design process and those ac-

celerators in use serve to allow substantially more

logic and fault simulation rather than by cutting de-
sign times. The continual development of algorithms
also counts against hardwired accelerators. Virtually
all design automation tasks are still performed solely
on general purpose computers, particularly worksta-
tions.
The development of static RAM based Field-

Programmable Gate Arrays means that reconfigurable
co-processors can now be realized that could accom-
modate the diversity and dynamic nature of design

automation tasks. The speedup achieved for any one
task will be less than that for a complex dedicated
hardware accelerator but, applied to speed up tasks
throughout the design process, it may provide a sub-
stantial benefit for a very low hardware cost. Also,
algorithms could be upgraded without hardware mod-
ification. This paper investigates this possibility.
The technique is not without its drawbacks. Sec-

tion 2 reviews the use of FPGAs as hardware acceler-
ators, arguing that these drawbacks do not apply to

the acceleration of design automation tasks. Section 3
then demonstrates what speedups are achievable us-

ing two applications as examples.

2 FPGAS AS HARDWARE ACCELERATORS

FPGAS [2] are a recent development of programmable
logic, with much higher logic and register capacities
than programmable logic arrays (PLAs). FPGAS gen-

*Corresponding author. Current address: Department of Electrical Engineering and Electronics, UMIST, Manchester, M60 1QD, UK.

135



136 N.J. HOWARD et al.

erally contain a two-dimensional array of cells which
implement a small amount of logic with configurable
routing between them, surrounded by input/output
cells. Dramatically reduced lead times and set-up
costs make FPGAS an attractive alternative to conven-
tional low-density gate arrays. However, as a general
rule of thumb, FPGAS can only achieve about 10% of
the functionality and 30% of the speed of custom
VLSI circuits of the same silicon area and fabrication
technology, because of their configurability.
The design synthesis tools for FPGAS are consider-

ably more complex than for PLAs and are similar to

those for conventional gate arrays, involving map-
ping a netlist into cells, placement, routing and sim-
ulation.
An important development over previous genera-

tions of programmable logic is that, though most FP-
GAs use static RAM to define the device configuration
rather than the familiar PROM-type fuses, and hence
are re-configurable. Configurations are downloaded
into the FPGAS on power-up from an external ROM or

microprocessor in a few milliseconds. Here lies the
potential of using FPGAs as configurable co-

processors. A custom-designed configuration can be
downloaded into the FPGA to assist in the processing
of some specific application. The general implemen-
tation is as ’programmable active memories’ [4]m
the inner loops of the host’s software are transferred
to a hardware implementation and downloaded into

the FPGA. The master processor writes operands to

the memory-mapped FPGA and the results are read
back. For each application, the FPGA provides the
host with a limited number of customized ’meta-
instructions’.

Applications to benefit most from this acceleration

technique are repetitive, decomposable to small ele-
ments (in order to fit inside a single FPGA or a small
number of FPGAs; ’tight’ software loops are re-
quired), non-mathematical (complex arithmetic oper-
ations and functions are better done on dedicated,
floating-point, co-processors) and computationally ir-
regular. Regarding this last criterion, the range of ap-
plications to be run on the FPGA must be diverse,
otherwise more dedicated hardware is preferable; the

flexibility that FPGA computation offers must be
needed.

Applications such as specialized numerical appli-
cations (e.g. encryption), DSP and image processing,
cellular automata and other systolic arrays and neural
networks have been demonstrated on a number of
FPGA machines [3-7], each with many FPGAs con-
nected to banks of memory, with speedups of 2 to 3
orders of magnitude over software quoted. However,
the programming of even trivial tasks on these ma-
chines is complex and the development of support
tools is an important ongoing research subject. Even-
tually, the aim is to have a high-level description
which can be compiled to produce an object code for
the host and configuration files for the FPGA. This

concept has been demonstrated by Athanas’s [8] ’C’
compiler which automatically identifies code to put
into an FPGA and separates this to produce compiled
code for the host and a netlist. The subsequent stages
of placement and routing are extensive and ensuring
that the FPGA configurations comply with the target
implementation’s timing is difficult to automate with-
out sacrificing flexibility.

Without fully automated compilers, this technique
of using FPGAs for hardware acceleration cannot be
applied generally and is confined to a niche role. It is

unlikely that two or more different applications which
are suitable for this technique are actually required by
one user on the same platform. The applications on

their own are too regular so that full-custom devices
are more appropriate as, for example, with the many
DSP chips.

However, design automation demands a set of

different tasks to be performed by the same user, all
amenable to FPGA acceleration. The FPGAS copro-
cessor could be used to implement many different
customized co-processors on the single hardware de-
vice. The widespread use of third-party design tools
means that the presence of FPGAS accelerators can be
transparent to the user. The partitioning of accelerated
tasks between hardware and software, the design of
both and the layout of the hardware design on the
FPGA are all the responsibility of the tool vendors
and would have to be done (and optimized) manually.



DESIGN AUTOMATION TASK 137

3 FPGA ACCELERATION OF VLSI DESIGN
TOOLS

It is assumed that the co-processor is in close prox-
imity to the main processor, sharing the data/address

busses and hence memory of the processor, rather
than fitting the co-processor on a standard extension/

interface port of a workstation. This might be
achieved by retro-fitting (having the processor and
co-processor on a small board or multi-chip module
that plugs into the workstation’s processor socket) or
it might be worthwhile providing space on a worksta-
tion’s processor board for such a co-processor. The
hardware costs for this technique will be very low
compared to other accelerators and the upgradability
advantages of software will be retained.
The processor and co-processor can interact with

one another in a variety of manners; in increasing
order of complexity:-

Passive Indirect: The FPGAs are memory mapped
into the master processor’s address space. Data is
transferred between the master’s registers and those
within the FPGAs. Data transfers between memory
and the FPGAS must go via the master processor;

Passive Direct: As above except that memory to
FPGAs data transfers can be done within a single
memory cycle;

DMA: The FPGAs is used with a co-processor com-
patible master which can relinquish bus control for
the FPGAS to make direct memory accesses;

Autonomous: The FPGAS implements a customiz-
able processor which can take over from the master

to execute whole sections of processing-intensive
code. Instructions for this processor are stored in
main memory but the customized instructions will be
complex and typically run for many memory cycles.

considered for the various co-processor arrangements
with calculated execution times compared to that for
software with no co-processor.

3.1 Design Rule Checking

The case considered here employs the ’scan-line’

technique [9] in which the polygons are pre-sorted
into ’bins’ depending on their x-coordinate range and,
within each bin, polygons are pre-sorted into ascend-
ing order of their lower y-coordinate. Polygons may
be angled at 45

In order to reduce the number of comparisons of
polygons to check minimum distances etc., the algo-
rithm scans through bins vertically upwards with a

bar (scan-line) of height Ymin" At each position of the
scan-line, the algorithm maintains a list of those poly-
gons which overlap with the scan-line, deleting and
appending polygons as the scan-line shifts. Only
those polygons within the scan-line are compared
with one another for checking a minimum distance of

Ymin"
Primitive operations required include testing

whether two polygons overlap, abutt, are electrically
connected, or are separated by a required minimum
distance. The operation considered here for timing
comparison is the stepping through a scan-line list to

detect polygons that overlap with a reference poly-
gon. For the hardware accelerated case, polygon
records are packed into two 32-bit words. A reference
polygon is loaded into the FPGA first and then, for
each polygon in the scan-line list, the record is loaded
and a flag indicating the ’overlap’ test result can be
read. For more complex co-processor arrangements,
the stepping through the list and stopping at an over-

lapping polygon or the end of the list is handled by
the FPGA rather than the master.

Of the many design automation tasks, design rule
checking and simulation are considered here as their

algorithms are generally simpler and less specialized
than those of the other tasks. Both applications are

3.2 Logic Timing Simulation

The example considered here is an event-driven

compiled-code logic simulator [10] which is ex-



138 N.J. HOWARD et al.

tended to include timing [11]. To summarise, this
technique:-

1. only calculates the outputs of blocks which have
inputs changing (events) at the current simulation
time, rather than updating every subcircuit in the
design. If the outputs change, new events will be
generated which will propagate the change to all
fan-out blocks. These will be updated at a subse-
quent simulation time;

2. maintains many lists of output events--one for
each time step. Output events are appended to
event lists depending on the block and net propa-
gation delays;

3. avoids the significant time overhead of retrieving
data from complex data structures by compiling
code before running the simulation. The data is
contained within the compiled code that is exe-
cuted during simulation.

The examples assume a rich set of primitive func-
tions, with multiple logic levels and driving strengths
and different rising and falling transition times. Exe-
cution times considered are for updating a 2-input
gate and a full adder, generating a new event if re-

quired and inserting it into the correct event list. A
block diagram for a DMA co-processor is shown in
Figure 1. Other co-processor arrangements are mod-
ifications of this.

STATES REGISTER

EGISTER T IT STATE REGISTER

EVETLE

FAY
REGISTER

FANOUT NOOE
No REGISTER

TOP-OF.STACK OLD POINTER

REGISTER REGISTER

FLAG

CROCER
CONT

FIGURE Simulation Co-processor Configuration Block Dia-
gram

3.3 Speedup Results

Speedup results are obtained by comparing hand-
crafted assembly code of hardware-assisted and nor-
mal software for the core operations described above.
The figures will indicate an upper limit of the
speedup achievable for the application as a whole.
Subsidiary tasks (such as the compilation stage for
simulation, or scan-line shifting for DRC) may also be
accelerated to get the application speedup close to the
speedup figures presented here.

Speedups have been calculated from the average
number of memory accesses (instruction fetch words
and data transfers) for a MC68020 processor and are

given in Table I. The low speedups are surprisingly
poor and can largely be attributed to the way that in
software:-

1. many processing operations incur no overhead and
wholely overlap with memory accesses;

2. look-up tables can be used very effectively (for
simulation);

3. not all operands need to be accessed to determine
that two polygons do not overlap (for DRC)
whereas all operands are required for a hardware
comparison.

Athanas [8] claims a raw speedup for a logic simula-
tion engine instruction ’LogicEv’ on an FPGA com-

puter of 18, but a very different result of only 1.3 is

achieved here where real simulation problems have
been considered and compared with optimized soft-
ware. Such high speedups have not even been
achieved with the most efficient processor-FPGA ar-

rangements.
The number of FPGA cells required to implement a

suite of design automation tasks has not been consid-
ered. However, as an example of the quite low func-
tionality of FPGAs, the core of the ’overlap’ test for

TABLE Speedup Factors for Various Implementations

Operation Passive Passive DMA Autonomous
Indirect Direct

DRC Overlap search 1.5 1.6 7.7 7.7
2-input gate simulation 1.3 1.4 3.4 4.2
Full adder simulation 1.7 1.7 4.9 6.0



DESIGN AUTOMATION TASK 139

DRC, consisting of 15 adders and 10 comparators
consumes 51% of one of the largest current FPGAS-
,the XC3090 [2]. A number of FPGAs would be re-

quired to form a reconfigurable array of sufficient
size. Timing simulations on this ’overlap’ function
indicate worst-case propagation delays of between 25
and 100uns, depending on the speed grade of the
FPGA, figures that are commensurate with the access
times of memory. With careful design, wait states can
be avoided.
The speedup results demonstrate that the simplest

FPGA co-processor arrangements are ineffective and
that only moderate speedups are achievable with
more complex architectures. Design automation tasks
may involve relatively simple operations amenable to
FPGA implementation but the sheer volume of data
movements prevents any substantial speedup on a

single data stream system. Further improvements
would require separate memories for the FPGA co-

processor with the associated drawback of inflexibil-
ity.

4 CONCLUSIONS

This paper has discussed the suitability of using FP-
GAs for accelerating design automation tasks in order
achieve moderate speedups throughout the design
process in a cost-effective and flexible manner. This
is achieved by reconfiguring FPGAS to be used as co-

processors that have been optimized for the current

task in hand.
Various architectures have been considered, all of

which implement co-processors that share the master

processor’s memory in order to retain most of the
flexibility of software and incur only a low cost.

Speedup results show the importance of the relation-

ship between the FPGA and the master processor. The
simplest arrangements are ineffective and only mod-
est speedups (of about 5) have been achieved with the
more complex processor/FPGA interfaces.

Whilst it is expected that this technique can pro-
vide a level of performance for a much smaller
amount of hardware than by using conventional par-
allel techniques, the desriability and feasibility of im-
plementing this technique in modem workstations re-
mains to be demonstrated.

Acknowledgements

This work has been funded by the UK Science and
Engineering Research Council and Defence Research
Agency, grant ref. GR/F92152.

References
[1] T. Blank, ’A Survey of Hardware Accelerators Used in

Computer-Aided Design’, IEEE Design & Test, pp. 21-39,
Aug. 1984.

[2] ’The Programmable Gate Array Data Book’, Xilinx Inc.,
San Jose Ca., 1991.

[3] T.A. Kean, ’Configurable Logic: A Dynamically Program-
mable Cellular Architecture and its VLS Implementation’,
PhD Thesis, Computer Science Dept., Edinburgh Univ.,
Dec. 1989.

[4] P. Bertin et al, ’Introduction to Programmable Active Mem-
ories’, from Systolic Array Processors, eds. J. McCanny et
al, pp. 301-309, Prentice-Hall, 1989.

[5] M. Gokhale et al, ’Building and Using a Highly Parallel
Programmable Logic Array’, IEEE Computer, pp. 81-89, Jan.
1991.

[6] C.E. Cox and W. E. Blanz, ’GANGLION--A Fast FPGA Imple-
mentation of a Connectionist Classifier’, IEEE Journal of
Solid-State Circuits, Vol. 27, no. 3, pp. 288-299, March
1992.

[7] N. J. Howard et al, ’Zelig: A Novel Parallel Computing
Machine using Reconfigurable Logic’, 2nd Euromicro
Workshop on Parallel and Distributed Processing, Malaga,
Jan. 1994.

[8] E M. Athanas and H. E Silverman, ’Processor Reconfigu-
ration through Instruction-Set Metamorphosis’, IEEE Com-
puter, Vol. 26, no. 3, pp. 11-18, March 1993.

[9] E T. Chapman and K. Clark, ’The Scan Line Approach to
Design Rules Checking: Computational Experiences’, ACM/

IEEE 21st Design Automation Conference, pp. 235-241,
1984.

[10] D.M. Lewis, ’A Hierarchical Compiled Code Event-Driven
Logic Simulator’, IEEE Transactions on Computer-Aided De-
sign, Vol. 10, no. 6, pp. 726-737, June 1991.

[l l] E Agrawal and W. J. Dally, ’A Hardware Logic Simulation
System’, IEEE Transactions on Computer-Aided Design, Vol.
9, no. l, pp. 19-29, Jan. 1990.


