
978-1-4799-5944-0/14/$31.00 c©2014 IEEE

Data path analysis for Dynamic Circuit
Specialisation

Tom Davidson
Hardware and Embedded Systems team,

Computer Science Lab

Ghent University

Sint-Pietersnieuwstraat, 41

Ghent, Belgium 9000

Email: tom.davidson@ugent.be

Dirk Stroobandt
Hardware and Embedded Systems team,

Computer Science Lab

Ghent University

Sint-Pietersnieuwstraat, 41

Ghent, Belgium 9000

Email: dirk.stroobandt@ugent.be

Abstract—Dynamic Circuit Specialisation (DCS) is a method
that exploits the reconfigurability of modern FPGAs to allow the
specialisation of FPGA circuits at run-time. Currently, it is only
explored as part of Register-transfer level design. However, at the
Register-transfer level (RTL), a large part of the design is already
locked in. Therefore, maximally exploiting the opportunities of
DCS could require a costly redesign. It would be interesting to
already have insight in the opportunities for DCS from the higher
abstraction level. Moreover, the general design trend in FPGA
design is to work on higher abstraction levels and let tool(s)
translate this higher level description to RTL. This paper presents
the first profiler that, based on the high-level description of an
application, estimates the benefits of an implementation using
DCS. This allows a designer to determine much earlier in the
design cycle whether or not DCS would be interesting. The high-
level profiling methodology was implemented and tested on a set
of PID designs.

I. INTRODUCTION

Most recent FPGA families have run-time reconfiguration
(RTR) capabilities. These capabilities are generally used to
switch out large logic functions that are mutually exclusive
in time [2]. However, RTR can also be used to implement
Dynamic Circuit Specialisation (DCS). DCS allows an FPGA
design to be dynamically specialized for a subset of its
current input signals. These signals are called parameters. The
specialized circuits are smaller, and in some cases faster, than
the original circuit.

Determining whether or not an application will benefit
from a DCS implementation is difficult for the designer. This
requires a trade-off between the benefits and the overhead
of DCS. Predicting the benefits of DCS, saved area and/or
increased speed, requires very detailed knowledge of the
specific way the application is implemented in RTL. Moreover,
DCS also introduces an overhead. A new specialized circuit
is generated each time any parameter value(s) change. This
new circuit is loaded into the FPGA through partial run-
time reconfiguration. Both processes, the specialisation and the
reconfiguration, introduce a time and resource overhead. The
resource overhead is fixed, but the time overhead is incurred
each time the parameter changes. Thus, the total time overhead
DCS adds to the execution time depends on the dynamic signal
behaviour of the chosen parameter. Without any tools, getting a
good overview of the benefits and the overhead of DCS almost

requires implementing the full DCS design.

In earlier work of Davidson et al. [3], a tool was presented
that automatically determines the most interesting parameter
candidates in an RTL design and estimates the consequences
of implementing a DCS design with each parameter candidate.
However, it would be more interesting to identify opportu-
nities for DCS earlier in the design process, as this allows
designing the RTL implementation with DCS already in mind.
Additionally, the current design trend for FPGAs is clearly
moving to a higher abstraction level. One example is the
recent incorporation of high level synthesis tools into the
Xilinx FPGA flow [1]. We present a profiler that answers both
questions, it aims to identify opportunities for DCS from a
higher abstraction level.

First, in Section II, we will give an overview of DCS and a
tool flow that implements DCS, the TLUT tool flow. This sec-
tion also gives a more in depth overview of the DCS overhead.
Section III presents the high-level profiler. First the profiling
methodology is outlined and then the practical implementation
is discussed. Experimental results are presented in Section IV
and Section V concludes this paper.

II. DYNAMIC CIRCUIT SPECIALISATION

There are multiple ways to implement a design using
DCS. The vendor tools are generally not very useful for
implementing DCS, as the specialized circuit needs to either be
generated at run-time or be pre-generated and retrieved from
memory at run-time. For a small number of possible parameter
values this is feasible using the vendor tools. However, as
parameter bits increase, pre-generating and storing all possible
specialized circuits becomes impossible. An 8-bit parameter
already requires storing and pre-generating 28 bitstreams.
Using the vendor tools to generate the bitstreams at run-time
is also impractical as, depending on circuit-size, this can take
hours for one specialized circuit. This is shown in the work of
Abadei [4].

A. TLUT: a DCS tool flow

Both of these problems were solved by research of the
HES group in the Ghent university, in the work of of Bruneel
et al. [5], who introduces the concept of parameterized con-
figurations. A parameterized configuration (PC) is an FPGA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/84043297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

configuration that consists of both static bits and bit-values
expressed as multi-valued Boolean functions of the parameters.
These Boolean functions are called tuning functions. Generat-
ing a new specialized configuration from a PC only requires
evaluating the tuning functions, using the new parameter
values. This evaluation is much faster (μs) than the regular
FPGA tool flow and a PC requires much less storage than
separate already specialized bitstreams.

The HES group has developed an FPGA flow, the TLUT
tool flow, that takes a parameterized RTL description at the
input and outputs a parameterized configuration. In this tool
flow, only the truth tables of specific LUTs contain tuning
functions. These LUTs are called Tuning LUTs or TLUTs.
At-run time, the truth tables of TLUTs will change according
to the parameter values. Since only LUT truth tables are
changing, the costly place and route algorithms do not have
to be run during the specialisation. Moreover, only LUT truth
tables have to be written to the FPGA configuration memory
which saves FPGA reconfiguration time. The TLUT tool flow
can be integrated with the Xilinx FPGA flow and supports
Virtex II Pro, Virtex 5 and 7-Family FPGAs. It is open source
and available on github [6].

The benefits of the TLUT tool flow are significant. For
example, a 16-tap adaptable FIR filter with the 8-bit coeffi-
cients chosen as the parameters is 56.6% smaller and 28%
faster than the generic FIR filter solution. Adapting the FPGA
to a new coefficient value only requires 166 μs, while the
vendor tools would require 35 s to generate a new specialized
circuits and switch to the new circuit. The TLUT tool flow also
achieves good results for key-based encryption algorithms. A
DCS implementation of TripleDES is 28.7% smaller. Similarly,
a DCS implementation of RC6 is 72.7% smaller [7].

B. DCS overhead

Whether or not a DCS implementation is actually beneficial
depends on the trade-off between the benefits and the overhead
DCS introduces. A DCS implementation can reduce the size
and/or increase the speed of the design, but will also introduce
an area and a time overhead.

The area overhead is the FPGA-area required to evaluate
the tuning functions of the PC and the area needed for internal
access to the FPGA configuration memory. Thus, in order to
have a net area reduction, the area savings achieved by the
DCS implementation should at least offset this area overhead.
The evaluation of the tuning functions can be done by any
processor. The work of Abouelella [8] presents an overview of
the different possibilities. On Virtex-5 FPGAs there are three
possibilities: using the PowerPC, a MicroBlaze or a custom
processor (Table I).

TABLE I. THE RESOURCE OVERHEAD OF DIFFERENT EVALUATION

PLATFORMS ON THE VIRTEX 5 FPGA

Clk/
Eval. platform LUTs BRAM Clk (Mhz) Boolean Op.

PowerPC - - 400 1.04
μBlaze 1532 0 100 1.39
Custom proc. 355 1 295 1

The time overhead (Equation 1) is determined by both
the time required for one single specialisation (T single

spec)
and the number of times a parameter changes value

(#InputChanges). Each parameter change requires a spe-
cialisation phase, during which the design has to be stalled.
Therefore, when designing a DCS implementation, it is im-
portant to only select parameters that change infrequently.

Toverh. = T single
spec ·#InputChanges (1)

The time needed for one specialisation (T single
spec) can be

split up in two parts, the evaluation time (Teval.) and the
reconfiguration time (Treconf.). The first is the time needed to
evaluate the tuning functions, the second the time for actually
reconfiguring the FPGA.

The evaluation time (Teval.) is the number of Boolean
operations in the tuning functions multiplied by the time to
evaluate one Boolean operation on the evaluation platform (See
the last column of Table I).

The reconfiguration time (Treconf.) depends on the chosen
method for reconfiguration and the targeted FPGA. In this
paper, a Virtex 5 FPGA is assumed to be the target, but the
results can easily be extended to other FPGA architectures. A
second assumption is that the Xilinx provided HWICAP port is
used to get access to the configuration memory of the FPGA.
There are other ways to access this memory, but they fall
outside of the scope of this paper. When using the HWICAP
for reconfiguration, the FPGA can only be reconfigured frame-
by-frame. The LUTs are organised in slice-columns of 20
slices, each slice contains 4 LUTs. All 80 LUT truth tables
in a column are spread out over the same 4 frames in such a
way that all 4 of them need to be sent, even if only one LUT is
reconfigured. The time overhead for reconfiguration is then the
number of slice columns with at least one TLUT multiplied
by the time needed to send 5 frames over the HWICAP1.

C. DCS-RTL Profiler

To identify opportunities for DCS, the designer is required
to have insight in both the application and Dynamic Circuit
specialisation. These are trade-offs a designer is not con-
fronted with in a typical design cycle, as the frequency of
signal changes is generally of only secondary importance and
estimating the gains from DCS is difficult without actually
implementing the DCS design. In RTL design the DCS-RTL
profiler, presented in Davidson et al. [3], helps the designer
answer this question.

This profiler uses the functional density to compare de-
signs. The functional density (FD) [9], Equation 2, takes both
the area (A) and the total execution time (T) into account,
allowing the profiler to consider the trade-off between DCS
benefits and overhead.

FD =
N

A · T (2)

As it is infeasible to estimate the FD for all signals in the
design, this profiler first determines which signals in the
RTL-design are good parameter candidates, based on their
dynamic behavior. Next, it estimates the functional density
(FD) gain of each parameter candidate. To do this, it needs
the RTL description of the design and its dynamic behavior.
The dynamic behavior data is derived from test bench data.
More details can be found in [3].

1The fifth frame is a padding frame

III. HIGH-LEVEL PROFILER

The DCS-RTL profiler offers a solution when an RTL
description is already available. However, it would also be
useful to detect the opportunities for DCS earlier in the
design process, from the high-level description of the design.
Converting a high-level description to an RTL implementation
involves many design decisions that can restrict the opportu-
nities for DCS. The choices made when designing the RTL
implementation significantly impact the potential gains from
DCS. For example, a sequential AES implementation that
includes a lot of hardware reuse would see almost no benefit
from making the key a parameter. A parallel implementation
of the same algorithm saves up to 26,7% area by making the
key a parameter [10]. In addition, the current digital design
trend is moving towards high-level languages, with the help of
automated HL-to-RTL tools [11], [12], [13], [14]. Predicting
the gains and overhead of DCS from higher-level design
descriptions has three major benefits. First, the designer knows
earlier in the design process whether a DCS implementation
is interesting or not. Secondly, if DCS would be beneficial,
this can be taken into account when converting the high-level
description to the RTL. Thirdly, the higher abstraction level
and the analytical nature of the HL profiler results in very
low run-times for the profiler (order of seconds). It avoids
the time consuming RTL-to-bitstream steps of the FPGA flow.
This allows the profiling itself to happen quickly compared
to the RTL-DCS profiler, which can require up to hours for
some designs [3]. The HL Profiler presented here takes a high-
level description of the application and provides a functional
density gain estimate for each parameter candidate. C/C++
was the language of choice in this work as it is supported by
a large number of HL-to-RTL tools. However, the principles
presented here can be extend to other high-level languages,
such as System Verilog, SystemC or Bluespec.

There are a number of ways to translate C/C++-code to
RTL code. In most cases, the application is split up in a
control path and a data path. Our focus will be on the data
path, as the control path contains few opportunities for DCS
in most applications. Some signals in the control flow could be
good parameters, e.g. if they control the mode of a multi-mode
circuit, however, finding these signals requires an analysis on
a different scope and is not part of this paper. Multi-mode
implementations using the TLUT tool flow are discussed in
more detail in [15]. In [10], DCS implementations of different
application types are explored. From this work, it is clear
that highly parallel RTL implementations benefit more from
DCS and that DCS is more interesting for computationally
intensive operations, which are generally located in the data
path of applications. In addition, our experience with the DCS-
RTL Dynamic Profiler informs us that the more parallel an
implementation, the larger the proportional area reduction.

A data path generated by the C-to-RTL tools consist of a
chain of basic operations [11], [12]. They can be expressed as
a hierarchical Data-Flow Graph (DFG), containing three types
of nodes: I/O-nodes, data access nodes and arithmetic nodes.
It is these arithmetic nodes that are most interesting for DCS.
How exactly they are affected by the introduction of DCS is
discussed in detail in the next section.

To be clear, the aim of the HL profiler is to give the
designer insight into the opportunities for DCS. This is an

addition to the normal HLS exploration. The HLS tools give
results for several possible implementations, e.g. sequential or
parallel, using or not using DSPs, The HL profiler can then
be used to estimate what the benefits and overhead would be
of applying DCS to each of those implementations.

A. Profiling methodology

The goal of our profiling methodology is to find out if
the application could benefit from DCS. As discussed in II-C,
this requires us to consider the trade-off between the DCS
gains and overhead. This can be done by using the functional
density as metric, as in the RTL-DCS profiler. However, on the
higher abstraction level, we have less information on the actual
hardware the design is implemented on. Therefore, the metric
that will be used is the functional density gain (FD%

gain). It is
the relative functional density improvement, caused by using
DCS. FD%

gain is shown in Equation 3. ADCS is the size of
the DCS implementation and Toverh. the total time overhead,
as in Equation 1. Both ADCS and Toverh. are determined by
the chosen parameter(s) and have to be estimated with the data
available at the higher abstraction level.

FD%
gain =

FDDCS − FDorig.

FDorig.

=
Aorig.

ADCS
· Torig.

TDCS
− 1

=
Aorig.

ADCS
· Torig.

Torig. + Toverh.
− 1 (3)

In Equation 3, it is assumed that the DCS implementation
will have the same clock as the original implementation. In
reality, the area reduction in DCS sometimes leads to improved
timing. However, this depends on the actual placement and
routing choices, information that is not available to us at this
abstraction level. So this means we will possibly underestimate
the benefits of DCS slightly, which is not a problem at this
stage.

Our profiling methodology works in two stages. First,
the dynamic data of signals is collected, to determine which
signals would be good parameter candidates. A good parameter
candidate is one that introduces a low overhead (Toverh.). As
described in II-B, Toverh. depends on both the time needed
to reconfigure the application once (T single

spec) and the number
of times the parameter changes. In the second step, each
parameter candidate is considered in turn. For each parameter
candidate, the data path is analysed to estimate its impact on
each arithmetic node in the DFG. This leads to an ADCS and
T single
spec for the complete data path, which are combined with

the dynamic data from step one to calculate the functional
density gain (FD%

gain). Both stages are described below in
pseudo-code.

Analyse the DFG:
Step 1: Dynamic data each input node (Instrumentation)
Step 2:
for Each input node do

Determine effect on arithmetic nodes (Propagation)
Analyse each arithmetic node (Teval., Treconf., ADCS)

Estimate FD%
gain

end for

B. Practical Profiler implementation

The HL Profiler estimates the functional density gain
(FD%

gain) of adopting DCS, based on the C/C++ description of
the design. It requires three pieces of information: the dynamic
behavior, the estimated LUT-area (ADCS) and the estimated
overhead (Toverh.). How each of these is gathered is discussed
in detail below.

1) Dynamic data: First, the dynamic data has to be gath-
ered. To do this, a hierarchical Data-Flow Graph (DFG) of
the C-description of the application is generated. This DFG
contains three types of nodes: I/O-nodes, data access nodes and
arithmetic nodes. To collect the dynamic data on all parameter
candidates, all I/O nodes of the DFG are instrumented in
the original C-code, and the application is executed with
realistic input data. This information will help estimate Toverh.,
together with T single

spec , which is estimated in the next section.
We know that parameter candidates with fewer value changes
are more interesting. Therefore, the average time between pa-
rameter changes is used to rank the candidates. The parameter
candidate that changes least frequently is considered first. To
collect this data, only the number of times an input changes
needs to be registered. The exact moments of the value changes
are not important.

A possibility for future research in this step is to extend it
to also consider multiple input nodes as parameters at the same
time. This introduces two problems: First, the total number of
parameter candidates will need to be restricted in some way,
otherwise it can grow too large. Secondly, considering multiple
input nodes at the same time requires us to also collect the
exact timing of the value changes. Without this information,
the dynamic behavior of the combined input nodes can not be
determined.

2) Data path analysis (ADCS & Toverh.): The DFG is
also used to determine which arithmetic nodes are affected
by the introduction of DCS. The DFG is analysed for every
parameter candidate and this is done in different steps. The
first step, the parameter propagation, starts by marking the
current candidate, or I/O-node, as a parameter. Then, this is
propagated through the complete DFG. The output of each
arithmetic node that has only parameter inputs is also marked
as a parameter, until no new parameter markings can be made.

In the second step, we determine the size and DCS over-
head of each arithmetic and output node in the DFG. The size
of a node can be reduced if it can be implemented through
DCS. However, then it will add to the complexity of the tuning
functions (See Section II-A), thus increasing the time overhead.
Each node is analysed based on its inputs. There are three
possibilities: nodes either have (i) no parameter inputs, (ii)
only parameter inputs or (iii) some parameter inputs.

Nodes that fall under case (i) are unchanged and nodes
with only parameter inputs (ii) are completely removed from
the design. The removed nodes will not be implemented in
hardware, so they will not add TLUTs to the design, but their
functionality is captured in the tuning functions. To know how
many boolean operations a node adds to the tuning functions
once it is removed, it needs to be analysed. This was done
below for the addition and the multiplication node.

The total number of boolean operations added by a node

TABLE II. BOOLEAN OPERATIONS.

Avg Boolean Ops
Node /Original LUT (Bavg) STDEV

Adder 145 5.9
Multiplier 50 - 64 0 - 5.6

is Bnode. The most reliable metric for this is the number of
LUTs the original implementation required. To get Bnode, the
number of original LUTs is multiplied by Bavg (Equation
4). Bavg is the average number of Boolean operations for
each original LUT in the node and was determined for both
the addition and the multiplication node (Table II). For the
addition node, the number of original LUTs is the number of
output bits, or the largest input size plus one. Only one Bavg

is needed to be accurate for all adder sizes. The multiplier
is more complicated. In a multiplication node, the number
of original LUTs is the product of the input bit sizes. To
have an accurate enough estimate, a different Bavg value has
to be used depending on the smallest sized input. Table II
shows both the most and least accurate Bavg value. The total
number of Boolean operations a removed node adds to the
tuning functions (Bnode) can be calculated from this data,
using Equation 4.

Bnode = Bavg ·#original LUTs (4)

If an output node has a parameter input, then it is im-
plemented by N TLUTs, with N the bit width of the output.
The TLUTs are used to store the parameter value. The logic
function of the removed nodes before the output node are now
executed through the evaluation of the Boolean functions. The
cost of this was already accounted for when these nodes were
removed, the only cost associated with the output node is the
addition of the TLUTs.

If only some inputs of the arithmetic node are parameters
(case iii), then the analysis depends on the arithmetic function
of the node. For example, adders will not benefit from having
one parameter input. Indeed, an absolute lower bound for the
size of any node is the number of output bits it drives. The
number of output bits of an adder is the largest of both input bit
sizes plus one. Current FPGA architecture(s) and CAD tools
always succeed in implementing adders in this lower bound,
therefore DCS can not further improve the area of the adder
itself. However, DCS does replace the LUTs of the adder with
TLUTs and will remove the parameter input from the design.
This will reduce the routing requires to implement the adder.
However, since this effect is very hard to account for at the
higher abstraction level we will not consider it. Similar to the
output node with parameter inputs, the tuning functions of the
TLUTs in the adder node will contain the arithmetic functions
of the removed nodes, if there were any.

An arithmetic node that does show benefits when only one
input is a parameter is the multiplication node. In that case,
the FPGA area required for this node reduces significantly.
However, a more detailed discussion is necessary to determine
exactly how large this decrease is, and to allow an estimate of
the overhead this introduces.

Multiplication Node: In general, the TLUT tool flow is able
to convert any VHDL-description to a DCS implementation.
Of course, this does not mean all applications will show
gains. Some applications lend themselves better to DCS. Even

implementations of the same application show very different
gains with DCS [10]. For a DCS multiplier, a hierarchical
design has the best results. E.g. a DCS-implemented 24-bit x
24-bit multiplier has a 54.3% area reduction with a hierarchical
design. Without it, the area reduction is only 18.9%. This holds
both for both smaller and larger multipliers.

In a hierarchical multiplier implementation, the multiplier
is split up in smaller sub-multipliers. Each of the smaller sub-
multiplier results is shifted and added to produce the final
multiplication result. Our research has shown that there is an
optimal sub-multiplier size, depending on the number of inputs
the LUTs of the target FPGA have. To focus the discussion,
assume that the top level has a P-bit parameter input and a
N-bit normal input and that we are targeting a 6-input LUT
FPGA. Almost all modern FPGAs use 6-input LUTs. Under
those conditions, the optimal sub-multiplier size is a 6-bit
by P-bit multiplier. The 6-bit sub-multipliers can always be
implemented in only 6 + P TLUTs, regardless of parameter
size. This is exactly the number of output bits of the 6-bit by P-
bit multiplication, the absolute lower bound for implementing a
node. In a 6-input LUT FPGA, this is the largest size for which
this is possible. A similar hierarchical multiplier can also be
built from 5-bit by P-bit, or smaller, sub-multipliers. However,
they require more (T)LUTs for the complete multiplication and
a larger adder structure. In our datapath analysis, we assume
a hierarchical multiplier with 6-bit x P-bit sub-multipliers. If
the size of the regular input is not divisible by 6, an extra
multiplier of the appropriate size (5, 4, 3, 2 or 1 bit) is added,
for processing the remainder. An example of the complete
hierarchical 24-bit by 24-bit multiplier is shown in Figure 1.

Mult
6by24

Mult
6by24

Mult
6by24

Mult
6by24

Adder Adder

Adder

24 24

24 24 24 246 6 6 LSB6 MSB

48

<< 6<< 12<< 18

Fig. 1. Hierarchical 24-bit x 24-bit multiplier, dotted line for the parameter
input

Aside from the better LUT-area gains, the hierarchical
structure of the multipliers is very useful. It allows estimates
on all aspects of the top-level based on the sub-multiplier
data. The first property we need is the area of the hierar-
chical multiplier. The bit-shifts can be implemented by the
interconnections and take no FPGA area. This leaves the sub-
multipliers and the adder-tree. The number of 6-input sub-
multipliers is M = �N/6�, with N still the regular input bit-
size. Each of the 6-bit sub-multipliers requires 6+P TLUTs.
The MSB multiplier is actually an R sized sub-multiplier, with
R = N − ((M − 1) · 6). Its size is R + P . The total size of

all sub-multipliers in the design is shown in Equation 5.

Sizesub−mults = M · (6 + P)− (6−R) (5)

The results of the multiplication are shifted by multiples of
6 and then added to get the final result. The addition is done
through an adder tree. The first level adds the shifted results of
the sub-multipliers two by two, every following level does the
same with the results of the previous adder level, until only one
value is left. This is also shown in Figure 1. The size of these
adders is also a factor in the total multiplier size. For sake of
clarity, the description below assumes N is divisible by 6 and
the number of sub-multipliers is even. The first level of adders
adds two 6 + P -bit operands together, but the MSB operand
of each addition is shifted over 6 bit positions. This means
the 6 LSBs of each addition are not actually added, making
the size of each level one adder 6 + P + 1 LUTs. However,
each level one adder does output 12+P +1 bits to the second
stage adders, the 6 LSBs are just copied. In the second stage,
the MSB operand is shifted 12 bit positions. The adder size
is 12 + P + 2. This pattern holds for the later stages. This is
an idealised description, in reality, both an uneven number of
multipliers and the smaller multiplier for the remainder have
to be taken into account. An uneven number of sub-multipliers
usually leads to intermediate results skipping a stage, resulting
in smaller adders. The exact number of adders of each size is
a function of M , the number of sub-multipliers (F (n,M)).
The remainder sub-multiplier is corrected by subtracting (6−
R) for each adder that handles the output of the MSB sub-
multiplier (CF = C(M) · (6 − R)). The number of stages is
S = �LOG(M, 2)�. The total size of the adder is then given
by Equation 6.

Sizeadders =

S∑
n=1

F (n,M) · (6 + 2n−1(P + 1))− CF (6)

Combining Equation 5 and Equation 6 yields the complete size
of the hierarchical multiplier.

Not only the area of the multiplier is important, but also
the time overhead specializing introduces. This will determine
the impact of the multiplier on the T single

spec of the DCS
implementation. The single specialisation overhead is split up
in two parts: the evaluation overhead and the reconfiguration
overhead. For both estimates, the hierarchical structure of the
multipliers is exploited. Both depend in some way on the
number of TLUTs, the only LUTs that are reconfigured.

Bmult = ((M − 1) ·B6 +BR) · P (7)

The evaluation overhead, Equation 7, is the time needed
to calculate the new bit values of the FPGA circuit. It is
evaluating the tuning functions that constitutes this overhead.
Analysis of the 6-bit sub-multiplier shows that each additional
parameter bit increases the number of Boolean operations
by 1903. For the MSB sub-multiplier, the added Boolean
functions depends on its size (R), see Table III. The actual
evaluation overhead is also dependent on the platform that will
evaluate them. The next section will combine this data with
the data on the removed nodes to calculate the T eval of the
complete data path.

The reconfiguration time overhead is a direct function of
the number of TLUTs. For each sub-multiplier the number of

TABLE III. BOOLEAN OPERATIONS FOR 1-TO-6 BIT SUB-MULTIPLIER

Sub-mult size Boolean Ops. STDEV

B1 64 0.47%
B2 123 4.95%
B3 230 1.64%
B4 467 0.43%
B5 937 1.38%
B6 1903 2.67%

TLUTs is directly proportional to the dimensions of the inputs,
it is the sum of parameter (P) and regular input bits (6). The
sub-multipliers are the only part of the hierarchical multiplier
that contain TLUTs, the other parts are all implemented in
normal LUTs. The reconfiguration overhead is dependent on
the total number of TLUTs in the datapath and will be
discussed in detail in the next section. Since all of the sub-
multiplier LUTs are TLUTs and no other parts of the multiplier
contain TLUTs, the number of TLUTs is exactly the size of
the sub-multipliers (Equation 8).

TLUTsmult = M · (6 + P)− (6−R) (8)

This analysis gives us the size (Sizesubmults + Sizeadders),
the size of the Boolean functions (Bmult) and the number of
TLUTs (TLUTSmult) a multiplier with only one parameter
input introduces in the DCS implementation. This information
gives us all the information necessary to include these multipli-
ers in the functional density gain estimate. An addition node
does not require such an extensive analysis, as it does not
benefit from having only one parameter input. If the datapath
also contains nodes with a different arithmetic function, they
would require a similar analysis.

3) FD%
gain estimate: To estimate the functional density

impact of a parameter candidate, both the area savings and
the time overhead it introduces have to be estimated. These
estimates depend on both the dynamic data gathered through
instrumentation and on the datapath analysis.

The total overhead introduced by DCS (Equation 1) is
defined by the number of times the parameter candidate
changes and the overhead of a single specialisation. The first
is collected through the dynamic data, by instrumenting the
I/O nodes in the datapath.

Toverh = T single
spec ·#InputChanges

The estimate of T single
spec is the sum of Teval and Treconf . Teval

is determined by the removed nodes and the multiplier nodes
with some, but not only, parameter inputs. The removed nodes
are replaced by tuning functions, just as some of the logic in
the multiplier nodes. The total number of Boolean operations
in the tuning functions is the sum of Bnode for all removed
nodes and Bmult for each multiplier with only one parameter
input. The time required for each Boolean operation (Tbool)
depends on the targeted evaluation platform. As table I shows,
the embedded PowerPC on some Virtex5 FPGAs, requires 1.04
clock cycles.

Teval = (
∑

Bnode +
∑

Bmult) · Tbool (9)

Treconf is dependent on the total number of TLUTs in the
datapath. TLUTs are only added to the design by nodes where
the parameter propagation terminates, i.e. either an output node
or an arithmetic node with at least one regular input. In the first
case, the output node will require P TLUTs to be implemented,

with P the number of parameter bits. In the second case,
assuming a general arithmetic node, the node size will not
change. However, in the worst case, all LUTs of the arithmetic
node are now TLUTs. An exception is made for multiplication
nodes who benefit significantly from having a parameter input.
In that case, the number of TLUTs, as described in Equation
8 is used.

Once the total number of TLUTs is known the reconfigura-
tion time can be estimated. To get the reconfiguration overhead,
we need to estimate the number of FPGA frames that are
reconfigured. To get the number of frames, the structure of
the FPGA configuration memory has to be taken into account
too. A Virtex-5 FPGA can only be reconfigured tile by tile.
Each LUT-tile contains 20 slices and each slice 4 LUTs. To
reconfigure one LUT in one slice, the data for all 20 slices
needs to be sent2. So, to estimate the total reconfiguration
overhead, we need to determine how many tiles will contain
at least one TLUT. Several assumptions are made: (i) The
complete design will be placed in a rectangular slice-area,

covering C tiles with C = �√LUTs) · 1.7� · �
√
LUTs
80·1.7 �. (ii)

The TLUTs are spread out uniformly over this area and are
placed in groups of 5. Under those assumptions, the number of
tiles containing a TLUT (E[#T iles]) is given by Equation 10.
The correction factor of 1.7 for C and the decision to cluster
the TLUT groups of 5 were shown to yield the most accurate
estimates in experiments.

E[#T iles] = C · P (tlut ∈ T ile)

= C · (1− P (tlut /∈ T ile))

= C ·
(
1−

tlut−1∏
n=0

(
(C · 80− n)− 80

C · 80− n

))
(10)

The reconfiguration time is then the multiplication of the
number of columns containing at least one TLUT (E[#T iles])
and the time reconfigure one tile (Ttile). On a Virtex 5 FPGA,
Ttile is 40.9 μs.

Treconf = Ttile · E[#T ile] (11)

Combining Equations 9 and 11 yields the estimate for the
single specialisation time (T single

spec), Equation 12 and thus, also
the total overhead (Toverh..

T single
spec = Teval + Treconf

= Ttile · E[#T ile] +
(∑

Bnode +
∑

Bmult
)
· Tbool

(12)

The total area savings can be estimated in a similar way,
based on the results of the data path analysis. Nodes with
no parameter inputs are unchanged. Each node with only
parameter inputs is assumed to require no LUT area. This
leaves the nodes with at least one parameter input. These were
already discussed in the previous paragraph. Except for the
output and the multiplier node, they are assumed to require
the same area. The combination of all these estimates is the
final ADCS estimate.

2Four frames and a padding frame.

Now both T total
spec and ADCS are known, it is possible to

calculate the functional density gain (Equation 13). However,
this does requires us to know both the size of the original
datapath (Aorig.) and its execution time (Torig.). Aorig. can
be estimated using the tools of [16]. It also estimates the
size of application by analysing the datapath and providing
a LUT size estimate for each arithmetic node. It can not
take dynamic reconfiguration into account. For example, this
tool estimates the size of a multiplier to be the product of
its operand sizes. This means the original size of a 24-by-
24 bit multiplier is 576 LUTs, a result that matches our own
experiments. A DCS implementation of the same multiplier
requires only 313 LUTs. Torig. can be difficult to determine.
The execution time of the original C-code could be used, but
then the designer should first verify that the timing of the
hardware implementation is similar to the timing of the C-
code. Because hardware implements functions, its timing can
differ significantly from the high-level description. Another
option is to take a set amount of execution time and then
use the first stage of the HL profiler to measure the average
parameter behaviour over that time. However, this does require
a representative set of input values for that time-period. The set
amount of execution time should be long enough to capture a
’typical’ behaviour and at least several magnitudes larger than
40.9 μs, the minimal Toverhead. Another option is to capture
the execution time from an RTL implementation of the original
data path, using a C-to-RTL tool such as Vivado HLS [1].

FD%
gain =

Aorig.

ADCS
· Torig.

Torig. + Toverh.
− 1

The FD%
gain is calculated for each parameter candidate and

based on these predictions, the designer can decide if, for a
specific parameter candidate, a DCS implementation would be
worth to explore further.

IV. EXPERIMENTS

In order to verify the methodology presented in the previ-
ous section, it was implemented and tested for a set of PID de-
signs. This design was chosen because we were able to quickly
build an optimized DCS implementation that scales with the
dimension of the inputs. The optimized DCS implementation
is necessary as a comparison for the HL profiler results. In
the future, more extensive testing is necessary, especially on
larger designs. A PID controller is a control loop feedback
mechanism that incorporates the current error (Proportional),
the past errors (Integral) and a prediction of the future error
(Derivative). This digital PID implementation is discussed
in [17]. The calculations it executes are the following:

Error = input− current possition

O1 = Error +O1

O2 = Error +
O2

2
Outp = F1 ·O1 + F2 ·O2 + C · Error (13)

This data path contains 5 adders and 3 multipliers. If Y is
the dimension of the input, then there are three adder with Y -
sized inputs, two with 2*Y sized inputs and three multipliers
with Y -sized inputs. The opportunity for DCS in this case are
the coefficients (F1, F2, C). They are not constant but change

TABLE IV. HL PROFILER RESULT FOR DIFFERENT PID
IMPLEMENTATIONS. THE ERRORS ARE LISTED BETWEEN BRACKETS.

HL Prof
PID Aorig ADCS Boolean Ops TLUTs Frames

6-bit 150 78 (-27%) 34254 (12%) 36 29 (38%)
12-bit 516 288 (-10%) 137016 (1.8%) 108 65 (-10%)
18-bit 1098 606 (4.6%) 308286 (-0.4%) 216 105 (-31%)
24-bit 1896 1107 (16%) 548064 (-1.4%) 360 149 (27%)
30-bit 2910 1659 (22%) 856350 (-2.1%) 540 193 (-5.8%)

TABLE V. DCS IMPLEMENTATION RESULT FOR DIFFERENT PID
IMPLEMENTATIONS.

DCS implementation
PID Aorig ADCS Boolean Ops TLUTs Frames

6-bit 150 108 30474 36 21
12-bit 516 321 134544 108 73
18-bit 1098 579 309546 216 153
24-bit 1896 951 556332 360 117
30-bit 2910 1358 875010 540 205

very infrequently, making them good parameter candidates. All
three of them are considered parameters at the same time.

In our experiment, the target FPGA was a Virtex 5 FPGA
with an embedded PowerPC (XC5VFX70T-1FF1136). The
PowerPC is used to evaluate the Boolean functions and only
LUTs are used to implement the design. The input dimension
of the PID design was varied from 6 to 30 bits. Table IV
shows the HL profiling estimates for the size of the DCS
implementation, the number of Boolean operations, TLUTs
and frames. The % error is shown next to these values,
these errors are compared to the data on the actual DCS
implementation, shown in Table V.

The most accurate estimate of the HL profiler is clearly
the number of TLUTs in the design, it always matches the
actual number of TLUTs exactly. Sadly, this does not lead to a
very accurate frame estimate. This is as expected, this estimate
depends on the place and route steps of the FPGA tool flow,
something we have almost no information off on this higher
abstraction level. Moreover, the placement and routing steps
themselves are not always predictable. For example, while the
24-bit design is larger and contains more TLUTs than the 18-
bit design, its DCS implementation requires less frames. The
number of Boolean operations is predicted quite accurately.
The worst case is for the smallest design, with an error of
11.7%. The results for the larger designs are significantly
better, fluctuating slightly around a 2% error. The size estimate
of the DCS design is not very accurate. The worst case is
the 6-bit design, where ADCS is underestimated by 30%. The
other cases are more accurate and the larger design sizes tend
to be overestimated. An overestimate of ADCS , and thus an
underestimate of the benefits from DCS, is more acceptable
for an HLS profiler. Clearly, some effect is not captured well
enough by our current analysis and should be researched
further.

While the estimates in the HL profiler, except for the
number of TLUTs, clearly should be improved further, it does
allows the designer to have some insight in the opportunities
for DCS. At this abstraction level, our methodology is the only
one that can provide any information on these opportunities.

V. CONCLUSION

In this paper we have presented a high-level profiler that
predicts the benefits and drawbacks of applying DCS to a

design, based on its C/C++-description. These predictions are
based on analytical functions and heuristics, allowing them
to be calculated very quickly. In addition, because this tool
works on a higher abstraction level, it allows a fast design
space exploration that includes Dynamic Circuit Specialisation
implementations. Based on the experiment discussed in the
previous section, it is clear that the estimates in the HL profiler
should be improved further to increase the general usefulness
of the profiler. Currently, only the estimates for the number
of TLUTs and the number of Boolean operations are accurate
enough. When improving the estimates, the end goal should
be a lower bound prediction for the benefits of DCS. If that
is the case, then the designer is sure to make a decision based
on the worst-case scenario. Right now, the results do allow
the designer insight in the opportunities for DCS. At this
abstraction level, our methodology is the only one that can
provide any information on these opportunities.

REFERENCES

[1] T. Feist, “Vivado design suite,” 2012.

[2] D. Lim and M. Peattie, Two flows for partial reconfiguration: Module
based or small bit manipulations. Xilinx Application Note 290 (v1.0),
2002.

[3] T. Davidson, K. Bruneel, and D. Stroobandt, “Identifying opportunities
for dynamic circuit specialization,” in Workshop on Self-Awareness in
Reconfigurable Computing Systems, Proceedings, London, UK, 2012,
pp. 18–21.

[4] C. Ababei, “Speeding up FPGA placement via partitioning and multi-
threading,” International Journal of Reconfigurable Computing, 2009.

[5] K. Bruneel, W. Heirman, and D. Stroobandt, “Dynamic data folding
with parameterizable fpga configurations,” ACM TRANSACTIONS ON
DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, vol. 16, no. 4,
p. 29, 2011.

[6] HES Group, Ghent Univeristy. (2012) TMAP toolflow.

[7] T. Davidson, F. Abouelella, K. Bruneel, and D. Stroobandt, “Dynamic
circuit specialisation for key-based encryption algorithms and DNA
alignment,” International Journal of Reconfigurable Computing, 2011.

[8] F. Mostafa Mohamed Ahmed Abouelella, T. Davidson, W. Meeus,
K. Bruneel, and D. Stroobandt, “How to efficiently implement dynamic
circuit specialization systems,” ACM TRANSACTIONS ON DESIGN
AUTOMATION OF ELECTRONIC SYSTEMS, p. 38, 2013.

[9] A. M. Dehon, Reconfigurable architectures for general-purpose com-
puting. Massachusetts Institute of Technology, 1996.

[10] T. Davidson, F. Abouelella, K. Bruneel, and D. Stroobandt, “Dynamic
circuit specialisation for key-based encryption algorithms and DNA
alignment,” International Journal of Reconfigurable Computing, 2012.

[11] S. Gupta, R. K. Gupta, N. D. Dutt, and A. Nicolau, SPARK: a
parallelizing approach to the high-level synthesis of digital circuits.
Springer, 2004.

[12] D. Chen, J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang, “xpilot:
A platform-based behavioral synthesis system,” SRC TechCon, vol. 5,
2005.

[13] N. Kavvadias and K. Masselos, “The hercules high-level synthesis
environment,” in Field Programmable Logic and Applications (FPL),
2013 23rd International Conference on. IEEE, 2013, pp. 1–1.

[14] R. Nikhil, “Bluespec system verilog: efficient, correct rtl from high level
specifications,” in Formal Methods and Models for Co-Design, 2004.
MEMOCODE’04. Proceedings. Second ACM and IEEE International
Conference on. IEEE, 2004, pp. 69–70.

[15] B. Al Farisi, K. Bruneel, J. M. P. Cardoso, and D. Stroobandt, “An
automatic tool flow for the combined implementation of multi-mode
circuits,” in Proceedings - Design, Automation, and Test in Europe
Conference and Exhibition, Grenoble, France, 2013, pp. 821–826.

[16] X. Niu, T. C. Chau, Q. Jin, W. Luk, and Q. Liu, “Automating resource
optimisation in reconfigurable design (abstract only),” in Proceedings
of the ACM/SIGDA international symposium on Field programmable
gate arrays, ser. FPGA ’13, 2013, pp. 275–275.

[17] R. Blomme, D. Brokken, and J. Van Campenhout, “Eindverslag robotica
robotsturing iwonl conventie nr. 4930 derde biennale 1/9-30/11/87,”
Gent, Tech. Rep., 1987.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

