1,804 research outputs found

    Black hole algorithm along edge detector and circular hough transform based iris projection with biometric identification systems

    Get PDF
    The circular parameters between the pupil and the iris are found using current iris identification techniques but the accuracy creates an issue for the detection process during image processing. The procedure of extracting the iris region from an eye image using circular parameters can be improved via approximately too many approaches in literature but remain some portions under slightly unconstrained circumstances. In this study, we presented a Black Hole Algorithm (BHA) along the Canny edge detector and circular Hough transform-based optimization technique for circular parameter identification of iris segmentation. The iris boundary is discovered using the suggested segmentation approach and a computational model of the pixel value. The BHA looks for the central radius of the iris and pupil. The system uses MATLAB to test the CASIA-V3 database. The segmented images exhibit 98.71% accuracy. For all future access control applications, the segmentation-based BHA is effective at identifying the iris. The integration of the BHA with the Hough transforms and Canny edge detector is the main method by which the iris segmentation is accomplished. This novel technique improves the accuracy and effectiveness of iris segmentation, with potential uses in image analysis and biometric identification

    Deep Neural Network and Data Augmentation Methodology for off-axis iris segmentation in wearable headsets

    Full text link
    A data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network. Although of low complexity the resulting network achieves a high level of accuracy in iris region segmentation for challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high levels of performance for regular, frontal, segmentation of iris regions, comparing favorably with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity, this network is well suited for deployment in embedded applications such as augmented and mixed reality headsets

    FPGA IMPLEMENTATION OF RED ALGORITHM FOR HIGH SPEED PUPIL ISOLATION

    Get PDF
    Iris recognition is an automated method of biometric identification that uses mathematical pattern-recognition techniques on video images of the irises of an individual’s eyes, whose complex random patterns are unique and can be seen from some distance. Modern iris recognition algorithms can be computationally intensive, yet are designed for traditional sequential processing elements, such as a personal computer. However, a parallel processing alternative using Field Programmable Gate Array offers an opportunity to speed up iris recognition. Within the means of this project, iris template generation with directional filtering, which is a computationally expensive, yet parallel portion of a modern iris recognition algorithm, is parallelized on an FPGA system. An algorithm that is both accurate and fast in a hardware design that is small and transportable are crucial to the implementation of this tool. As part of an ongoing effort to meet these criteria, this method improves a iris recognition algorithm, namely pupil isolation. A significant speed-up of pupil isolation by implementing this portion of the algorithm on a Field Programmable Gate Array

    Robust pre-processing techniques for non-ideal iris images

    Get PDF
    The human iris has been demonstrated to be a very accurate, non-invasive and easy-to-use biometric for personal identification. Most of the current state-of-the-art iris recognition systems require the iris acquisition to be ideal. A lot of constraints are hence put on the user and the acquisition process.;Our aim in this research is to relax these conditions and to develop a pre-processing algorithm, which can be used in conjunction with any matching algorithm to handle the so-called non-ideal iris images. In this thesis we present a few robust techniques to process the non-ideal iris images so as to give a segmented iris image to the matching algorithm. The motivation behind this work is to reduce the false reject rates of the current recognition systems and to reduce the intra-class variability. A new technique for estimating and compensating the angle in non-frontal iris images is presented. We have also developed a novel segmentation algorithm, which uses an ellipse-fitting approach for localizing the pupil. A fast and simple limbus boundary segmentation algorithm is also presented

    Robust iris recognition under unconstrained settings

    Get PDF
    Tese de mestrado integrado. Bioengenharia. Faculdade de Engenharia. Universidade do Porto. 201

    An approach towards iris localization for non cooperative images: A study

    Get PDF
    Iris localization is the most important part of iris recognition which involves the detection of iris boundaries in an image. A very important need of this effective security system is to overcome the rigid constraints necessitated by the practical implementation of such a system. There are a few existing techniques for iris segmentation in which iris detection using Circular Hough Transform is the most reliable and popular and it has been implemented in this project. But there is a shortcoming in this technique. It does not perform well and does not gives high accuracy with images containing noise or occlusions caused by eyelids. Such kind of images constitute non cooperative data for iris recognition. To provide acceptable measures of accuracy, it is critical for an iris recognition system to overcome various noise effects introduced in images captured under different environment such as occlusions due to eyelids. This report discusses an approach towards less constraint iris recognition using occluded images. The Circular Hough Transform is implemented for few images and a novel approach towards iris localization and eyelids detection is studied.
    corecore