
International Journal of Electronics Signals and Systems International Journal of Electronics Signals and Systems 

Volume 2 Issue 3 Article 12 

January 2013 

FPGA IMPLEMENTATION OF RED ALGORITHM FOR HIGH SPEED FPGA IMPLEMENTATION OF RED ALGORITHM FOR HIGH SPEED 

PUPIL ISOLATION PUPIL ISOLATION 

PRASHANTH M. ULLAGADDI 
Dept of ECE, Dayananda Sagar College Of Engineering, Bangalore-78, pullagaddi@gmail.com 

K. N. PUSHPALATHA 
Dept of ECE, Dayananda Sagar College Of Engineering, Bangalore-78, knpdrs@gmail.com 

ARAVIND KUMAR GAUTAM 
SD college Of Engineering, Muzaffar Nagar, U.P-54, drakgautam@gmail.com 

Follow this and additional works at: https://www.interscience.in/ijess 

 Part of the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
ULLAGADDI, PRASHANTH M.; PUSHPALATHA, K. N.; and GAUTAM, ARAVIND KUMAR (2013) "FPGA 
IMPLEMENTATION OF RED ALGORITHM FOR HIGH SPEED PUPIL ISOLATION," International Journal of 
Electronics Signals and Systems: Vol. 2 : Iss. 3 , Article 12. 
DOI: 10.47893/IJESS.2013.1104 
Available at: https://www.interscience.in/ijess/vol2/iss3/12 

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research 
Network. It has been accepted for inclusion in International Journal of Electronics Signals and Systems by an 
authorized editor of Interscience Research Network. For more information, please contact 
sritampatnaik@gmail.com. 

https://www.interscience.in/ijess
https://www.interscience.in/ijess/vol2
https://www.interscience.in/ijess/vol2/iss3
https://www.interscience.in/ijess/vol2/iss3/12
https://www.interscience.in/ijess?utm_source=www.interscience.in%2Fijess%2Fvol2%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=www.interscience.in%2Fijess%2Fvol2%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijess/vol2/iss3/12?utm_source=www.interscience.in%2Fijess%2Fvol2%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com


 

 

FPGA IMPLEMENTATION OF RED ALGORITHM  
FOR HIGH SPEED PUPIL ISOLATION 

 
1PRASHANTH M ULLAGADDI, 2K N PUSHPALATHA & 3ARAVIND KUMAR GAUTAM 

1&2 Dept of ECE, Dayananda  Sagar College Of Engineering, Bangalore-78  
3SD college Of Engineering, Muzaffar Nagar, U.P-54 

E-mail : pullagaddi@gmail.com, knpdrs@gmail.com & drakgautam@gmail.com  
 
 

Abstract - Iris recognition is an automated method of biometric identification that uses mathematical pattern-recognition 
techniques on video images of the irises of an individual’s eyes, whose complex random patterns are unique and can be seen 
from some distance. Modern iris recognition algorithms can be computationally intensive, yet are designed for traditional 
sequential processing elements, such as a personal computer. However, a parallel processing alternative using Field 
Programmable Gate Array offers an opportunity to speed up iris recognition. Within the means of this project, iris template 
generation with directional filtering, which is a computationally expensive, yet parallel portion of a modern iris recognition 
algorithm, is parallelized on an FPGA system. An algorithm that is both accurate and fast in a hardware design that is small 
and transportable are crucial to the implementation of this tool. As part of an ongoing effort to meet these criteria, this 
method improves a iris recognition algorithm, namely pupil isolation. A significant speed-up of pupil isolation by 
implementing this portion of the algorithm on a Field Programmable Gate Array. 

 
I. INTRODUCTION 
  
 Daugman created a very strong algorithm for iris 
detection based on Gabor wavelets .An alternate 
design, Ridge Energy Direction is based on spatial 
domain directional filters. This application has great 
military interest, and a small system on a chip design 
using a Field Programmable Gate Array (FPGA) 
would be ideal for carrying into the field or storing in 
a backpack [2]. FPGA devices also provide an 
attractive solution to computationally intensive 
applications because of their high density, high 
performance and complete configurability to support 
specific applications. An FPGA chip offers a 
combination of the flexibility of general purpose 
computers and hardware-based real-time processing 
of Application Specific Integrated Circuits (ASICs). 
An architecture design for FPGA technology can 
fully exploit the data and I/O parallelism in most 
image processing applications.                                    

 An FPGA chip offers a combination of the 
flexibility of general purpose computers and 
hardware-based real-time processing of ASICs. An 
architecture design for FPGA technology can fully 
exploit the data and I/O parallelism in most image 
processing applications. Our ultimate goal is to build 
each section of the RED algorithm using the most 
efficient method and combine them to create a single 
fast and accurate system for iris recognition. 

 The iris is a thin circular diaphragm, which lies 
between the cornea and the lens of the human eye. A 
front-on view of the iris is shown in Figure 1. The iris 
is perforated close to its center by a circular aperture 
known as the pupil. Formation of the iris begins 
during the third month of embryonic life. The unique 

pattern on the surface of the iris is formed during the 
first year of life, and pigmentation of the stroma takes  

place for the first few years. Formation of the unique 
patterns of the iris is random and not related to any 
genetic factors. Segmentation isolates the actual iris 
region in a digital eye image. The success of 
Segmentation depends on the imaging quality of eye 
images. 

 
Figure 1. Front on view of iris 

 Segmentation normalizes the inconsistency 
caused by pupil dilation, varying imaging distance, 
rotation of the camera, head tilt, and rotation of the 
eye within the eye socket. 

       The most discriminating information present in 
an iris pattern is extracted by feature encoding. Only 
the significant features of the iris must be encoded so 
that comparisons between templates can be made. 
Matching the template that is generated in the feature 
encoding process will also need a corresponding 
matching metric, which gives a measure of similarity 
between two iris templates. 

          After determining the inner and outer 
boundaries and centre of the pupil, the iris is again 
transformed into polar Coordinates with the centre of 
the pupil as the point of reference, into a 120 row by 
180 column image. In this process, the radial extent 
of the iris is normalized in order to account for pupil 

 
           International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-3

192



FPGA Implementation of Red Algorithm For High Speed Pupil Isolation     

 

 

dilation. Each row in the unwrapped iris image 
represents an annular region surrounding the pupil, 
and the columns represent radial form information. 

 
 

Figure 2: Processing flow diagram 

II.  RED ALGORITHM STEPS 

     Iris recognition requires four main steps:  

i. Image capture;  

ii. Pre-processing, which includes segmentation 
(isolating the iris from the image of the eye 
area), and usually a polar coordinate 
transform of the annular iris region into a 
rectangular image;  

iii. Feature extraction, which generates an iris 
template; and  

iv. Comparison of iris templates and a 
recognition (matching) decision. A number 
of methods of pre-processing and 
comparison are present. 

A.  Canny Edge Detection 

 
 

Figure 3. Block diagram of the canny edge detection algorithm 
 

 The Canny edge detector is predominantly used 
in many real-world applications due to its ability to 
extract significant edges with good detection and 
good localization performance. Unfortunately, the 
Canny edge detection algorithm contains extensive 

pre-processing and post-processing steps and is more 
computationally complex than other edge detection 
algorithms, such as Roberts, Prewitt and Sobel 
algorithms. Furthermore, it performs hysteresis 
thresholding which requires computing high and low 
thresholds based on the entire image statistics.[6] 
This places heavy requirements on memory and 
results in large latency hindering real-time 
implementation of the Canny edge detection 
algorithm. 

 

Figure 4. Photograph of the eye captured by a digital camera 
(a)and after Canny edge detection (b). 

  There are several steps required to achieve this 
end state. From the infrared image of the eye of a 
compliant participant (Fig. 4a), the iris must be 
extracted as accurately as possible. Several factors 
can cause interference such as the presence of the 
eyelid and eyelashes, reflections, and different angles 
of the eyeball. The application must be able to isolate 
and extract the pupil from within the iris. One of the 
means to do this in the RED algorithm is described as 
follows. The first step is to apply Canny edge 
detection (Fig. 4b). [1]Then the outline of the pupil is 
located using a search for circles of various radii. 
This paper speeds up the process of finding the inner 
iris border, using an FPGA to parallelize the search. 
This paper has been described a computational 
approach to edge detection. [4]The success of the 
approach depends on the definition of a 
comprehensive set of goals for the computation of 
edge points. These goals must be precise enough to 
delimit the desired behaviour of the detector while 
making minimal assumptions about the form of the 
solution. 

      The main steps included are the one dimensional 
formulation. In the above steps three performance 
criteria are followed, Good detection, Good 
localization, Only one response, [8] Finding optimal 
detection by numerical optimization, A detector for 
step edge, [4]. An efficient approximation, two or 
more dimensions, need of multiple width, need of 
directional operators 

      Here the defined detection and localization 
criteria for a class of edges, and present mathematical 
forms for these criteria as functional on the operator 
impulse response. We have also found that the first 
two criteria are not "tight" enough, and that it is 
necessary to add a third criterion to circumvent the 
possibility of multiple responses to a single edge. 
Using numerical optimization, we derive optimal 

 
International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-3

193



FPGA Implementation of Red Algorithm For High Speed Pupil Isolation     

 

 

operators for ridge and roof edges. We will then 
specialize the criteria for step edges and give a 
parametric closed form for the solution.  

     In the process we will discover that there is an 
uncertainty principle relating detection and 
localization of noisy step edges, and that there is a 
direct tradeoff between the two. One consequence of 
this relationship is that there is a single unique 
"shape" of impulse response for an optimal edge 
detector, and that the tradeoff between detection and 
localization [9] can be varied by changing the spatial 
width of the detector. Several examples of the 
detector performance on real images will be given. 

           There was a direct tradeoff in detection 
performance versus localization, and this was 
determined by the spatial width. A detector was 
proposed which used adaptive thresholding with 
hysteresis to eliminate streaking of edge contours. 
The thresholds were set according to the amount of 
noise in the image, as determined by a noise 
estimation scheme. [9]This detector made use of 
several operator widths to cope with varying image 
signal-to-noise ratios, and operator outputs were 
combined using a method called feature synthesis, 
where the responses of the smaller operators were 
used to predict the large operator response. 

       The performance of the canny algorithm depends 
heavily on the adjustable parameters, σ, which is the 
standard deviation for the Gaussian filter, and the 
threshold values, ‘T1’ and ‘T2’. σ also controls the 
size of the Gaussian filter. The bigger the value for σ, 
the larger the size of the Gaussian filter becomes. 
This implies more blurring, necessary for noisy 
images, as well as detecting larger edges. [4][6]As 
expected, however, the larger the scale of the 
Gaussian, the less accurate is the localization of the 
edge. Smaller values of σ imply a smaller Gaussian 
filter which limits the amount of blurring, 
maintaining finer edges in the image. Canny’s edge 
detection algorithm is computationally more 
expensive compared to Sobel, Prewitt and Robert’s 
operator. However, the Canny’s edge detection 
algorithm performs better than all these operators 
under almost all scenarios. 

B.  Red Algorithm 

 The “energy” of the unwrapped iris image after 
contrast-limited adaptive histogram equalization is 
considered. Here, “energy” loosely refers to the 
prominence (pixel values) of the ridges that appear in 
the histogram equalized image, higher value reflects 
higher energy. This “energy” image is passed into 
each of two different 11 x 11 directional filters (a 
vertical filter and a horizontal filter). These filters are 
used to indicate the presence of strong ridges, and the 
orientation of these ridges.[3] 

 At every pixel location in the filtered image, the 
filter which provides the largest value of output is 

recorded and encoded with one bit to represent the 
identity of this directional filter. The iris image is thus 
transformed into a one bit template that is the same 
size as the image in polar coordinates (120 rows by 
180 columns). In some portions of the image input to 
the filters, the energy may be too low to reliably 
determine if a ridge is present. For this reason, each 
template is accompanied by a binary mask, with a 1 
indicating presence of a ridge and a 0 indicating no 
ridge being detected.[3] For future implementations 
of the RED algorithm, detection of eyelids, eyelashes 
and specularities will be incorporated into the 
segmentation, so that the mask will also be used to 
identify these non-iris areas as well as iris regions 
without prominent ridges. The template generation 
process is outlined in Fig. 6. 

C. Cordic Modul 

 
Destination image 

Figure 5: The points created by the CORDIC modules in one 
clock cycle 

 
            Creating a Circle with a Given Center-point 
and Radius. Given an (x, y) coordinate from the 
search area and an even radius between 10 and 126 
pixels, a list of address points for a circle with center-
point (x, y) and radius r is created. The circle plot 
area is a 256 by 256 pixel space taken from the edge 
detected image. The address points are computed by 
implementing a version of the CORDIC algorithm.[1] 
The CORDIC module is copied 91 times in parallel to 
create the first 91 points on a circle from t=0 to t=90 
in one clock cycle. 

X0=Xcenter+rcos(t)                                      (1a) 

Y0=Ycenter+rcos(t)                                      (1b) 

         In the memory controller these points will be 
used to form the full circle. After the 91 points are 
created they go into an array and are compared to 
remove any repeat points created due to rounding. 
Once this is complete, the points are ready to move 
into the memory controller. The memory controller 
takes three points at a time and rotates them into the 
second, third and fourth addresses for simultaneous 
reads. Each pixel location (x1, y1) in the first 
quadrant is used to generate the corresponding three 
coordinates (x2, y2), (x3, y3), (x4, y4) in the second, 
third and fourth quadrants. 

 
          International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-3

194



FPGA Implementation of Red Algorithm For High Speed Pupil Isolation     

 

 

        Every time the memory controller fetches three 
data points from the CORDIC module, it accesses 12 
memory locations in one clock cycle. To support this 
processing rate, six copies of the edge image are 
stored and dedicated to each CORDIC module. The 
12 bits are read and sent to the third part of the 
architecture, the accumulator. 

D. Template Matching 

 
 

Figure 6: Template Matching 
        
 For matching, this template can now be compared to 
a stored template using fractional Hamming distance 
(HD) as the measure of closeness (template A 
template B) mask A mask B 

 

 The   operator is the binary exclusive-or 
operation to detect disagreement between the bits that 
represent the directions in the two templates, is the 
binary AND function, ||.|| is a summation, and masks 
A and B are the associated binary masks for each 
template. [5] The denominator ensures that only the 
bits that matter are included in the calculation, after 
non-ridge areas are discounted. Rotation mismatch 
between irises (due to head-tilt) is handled with left 
right shifts of the template to determine the minimum 
HD. [3]For example, with 120 x 180 templates, each 
column represents of angular resolution and a shift of 
12 (6 columns) is performed in each direction 
(left/right). The resulting fractional Hamming 
distances (similarity scores) representing genuine 
matches (i.e., comparisons of the same eye) and 
imposter matches (comparisons of different eyes) 
generated the results presented in the next section. 

 

 

III. FPGA IMPLEMENTATION 

A. Parallelizing iris recognition 
 

 

Figure 7: Simple processor pipeline with four ALUs 
 

 The iris recognition algorithms are currently 
implemented on general purpose sequential 
processing systems, such as generic central 
processing units (CPUs). In this work, we present a 
more direct and parallel processing alternative using 
field-programmable gate arrays (FPGAs), offering an 
opportunity  to increase speed and potentially alter 
the form factor of the resulting system. Within the 
means of this project, the most time-consuming 
operations of a modern iris recognition algorithm are 
deconstructed and directly parallelized. In particular, 
portions of iris segmentation, template creation, and 
template matching are parallelized on an FPGA-based 
system, with a demonstrated speedup of 9.6, 324, and 
19 times, respectively, when compared to a state-of-
the-art CPU-based version.  

       Figure 8 illustrates a simple processor pipeline. 
Instructions are first fetched, decoded, and finally 
executed by more than one ALU. Therefore, multiple 
instructions can be executed in parallel. However, 
modern processors are limited in the number of ALUs 
they possess, and most of today’s CPUs do not have 
more than four logic units or ALUs. State-of-the-art 
processors contain more than one ALU. Therefore, 
multiple instructions can be executed in parallel. The 
focus of this research is on parallelizing key portions 
of the iris recognition algorithm using an FPGA. This 
work demonstrates this by making the following 
contributions, Introduction and calculation of the 
theoretical best performance of CPU-based machines 
executing key components of an iris recognition 
algorithm. 

 
          International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-3

195



FPGA Implementation of Red Algorithm For High Speed Pupil Isolation     

 

 

 Measurements of CPU performance of key 
components of an iris recognition algorithm on a 
state-of-the-art computer. Deconstruction and novel 
parallelization of three key iris recognition 
components, Iris segmentation using local kurtosis, 
Iris template creation via filtering, and Template 
matching via hamming distance Evaluation of the 
benefits of parallelization in terms of performance 
and size. 

 After twelve points are read from memory they 
are sent directly into the accumulator. In one clock 
cycle, the 12 fell on the created circle. As the memory 
controller reads the next three points from the list of 
91, rotates them and sends the addresses into 
memory, the accumulator adds the previous cycle’s 
data. Once all points have been read and added 
together a flag indicates the circle has been read and a 
percentage of the circle is calculated. [1] A best 
percentage is stored in the module, each new 
percentage being compared to the current best. Each 
of the 36 parallel paths keeps its own best percentage. 
Once all center points and radii have been tested, the 
best of each module goes through a tree of 
comparators and the overall best match becomes the 
output of the system. The center-point, radius and 
percent match are output. This ends the process for 
the given image. The overall layout is shown in Fig. 8 
for the parallel path. 

B. Architecture 

       We utilize Field-Programmable Gate Arrays 
(FPGAs) to parallelize directional filtering. FPGAs 
are complex programmable logic devices that are 
essentially a “blank slate” integrated circuit from the 
manufacturer and can be programmed with nearly 
any parallel logic function. They are fully 
customizable and the designer can prototype, 
simulate and implement a parallel logic function 
without the costly process of having a new integrated 
circuit manufactured from scratch. In Figure 8 an 
FPGA [3] has been programmed with many ALUs. 
FPGAs are commonly programmed via VHDL 
(VHSIC Hardware Description Language). VHDL 
statements are inherently parallel, not sequential. 
VHDL allows the programmer to dictate the type of 
hardware that is synthesized on an FPGA. For 
example, if you would like to have 2,048 XOR logic 
gates that execute in parallel, then you program this 
directly in the VHDL code  

 Our results were performed on a modest-sized 
Spartan-3 FPGA, and we expect future generations of 
FPGAs to increase in performance greater than future 
generation CPU chips. We also believe other 
components of iris recognition can be ported to a 
parallel system. Iris recognition is becoming more 
and more popular, and an accurate, timely system is 
our goal. 

 
 

Figure: 8 layout of the parallel implementation of algorithm 

IV. RESULTS AND ANALYSIS 

A. A. Hardware Details 

 The CPU experiment is executed on an Intel 
Xeon X5355 workstation class machine. The 
processor is equipped with eight cores, 2.66-GHz 
clock, and an 8-MB L2 cache. While there are eight 
cores available, only one core is used to perform this 
test, therefore allowing all cache and memory 
resources for the code under test. The HD code was 
compiled under Windows XP using the Visual Studio 
software suite. The code has been fully optimized to 
enhance performance. Additionally, millions of 
matches were executed to ensure that the templates 
are fully cached in the on-chip L2 cache. The RED 
algorithm optimized C++ code time is faster than 
some of the times reported in the literature for other 
commercial iris recognition implementations. For 
example, the template matching time earlier was 
10m, whereas our template matching time is 383 ns. 
We attribute this difference to: 1) our use of a faster, 
more modern CPU operating at 2.66 GHz vice 300 
MHz; 2) the RED algorithm is fully optimized; 

 
Figure 9: FPGA Hardware Usage Results 

  An extrapolation of the execution times of on a 
modern computing environment at 2.66 GHz would 
leave it still slower, but closer to the RED execution 
times. Our goal here is not to provide a direct 
comparison of the execution times of these two iris 
recognition algorithms. chip is necessary to execute 

 
          International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-3

196



FPGA Implementation of Red Algorithm For High Speed Pupil Isolation     

 

 

our algorithm. We are able to determine the size 
required of our program on the FPGA, and the 
resulting execution time. 

B. Comparisons 

 Speedup: All VHDL code is fully synthesizable 
and is downloaded onto our FPGA for direct 
hardware execution. As discussed above, our code is 
fully contained within a “process” statement. The 
process statement is only initiated when a signal in its 
sensitivity list changes values. The sensitivity list of 
our process contains the clock signal and, therefore, 
the code is executed once per clock cycle. In this 
code, the clock signal is drawn from our FPGA board 
which contains a 50-MHz clock. Therefore, every 20 
ns, our calculation is computed. Note that for 
template generation, this process takes many clock 
cycles, and therefore, the total time for template 
generation with our FPGA is 98.6 us. Fig. 9 illustrates 
the execution times and acceleration achieved for our 
implemented FPGA.For example, the optimized C++ 
version takes 96.8 ns per match while the FPGA takes 
20 ns per match for the kurtosis function.  

      The parallel algorithm on our FPGA is 
approximately 2.3, 4.7, and 7.5 times calculations, 
respectively. If Intel were to design a much faster 
microprocessor with a perfect compiler, it still would 
be orders of magnitude slower than an off-the-shelf 
inexpensive low-end FPGA. 

V. CONCLUSION 

 The hardware implementation of RED is still in 
progress. This segment of the implementation of the 
RED algorithm can be improved to maximize clock 
frequency by adjusting the pipeline. The next 
implementation will include the Canny edge detection 
algorithm on the FPGA as well. [2]We also expect to 
find a speed-up on this part. There are other portions 
of RED that could be improved using a hardware 
design. Some of these include other parts of the 
segmentation process as well as the tedious bit-
matching algorithm for finding a match   within a 
large database. 

 This method carries with it several assumptions. 
First, it is assumed that the iris images are orthogonal, 
such that the eye is looking directly at the camera. In 
conjunction with this, it is assumed that the pupil and 
the limbic boundary of the iris is circular, which is 
not always accurate. The eyes are assumed to be wide 
open in that the presence of eyelids or eyelashes 
within the determined boundaries of the iris is not 
considered when extracting the ridge features, which 
serves to detriment the system performance. Overall, 
the algorithm has several areas that can be addressed 
to improve performance; these are discussed in the 
next section. Considerable gains in performance are 
expected with these modifications Iris template 
generation with directional filtering can be 

computationally intensive, yet the algorithms are 
currently designed for traditional sequential 
processing elements, such as a personal computer. 
We have presented a parallel processing alternative 
using field programmable gate arrays to speed up 
template generation. [5]  

          Iris recognition as a biometric technology has 
great advantage such as variability, stability and 
security. Thus it will have a variety of application. 
Here an image is analyzed by calculation of 
histogram and then it is converted to binary image for 
that purpose a reasonable threshold value is chosen. 
And then edge detection is done using a canny edge 
detector. The Canny’s edge detection algorithm 
performs better than all other operators under almost 
all scenarios. 
 
REFERENCE : 
 
[1] Using an FPGA to Accelerate Pupil Isolation in Iris 

Recognition Jennifer L. Shafer, Hau  Ngo, and Robert W. 
Ives United States Naval Academy Department of Electrical 
and Computer Engineering Annapolis, MD 21402 USA 
 

[2] J. Daugman, “Probing the uniqueness and randomness of 
IrisCodes: Results from 200     billion iris pair comparisons.” 
Proceedings of the  IEEE, vol. 94, no. 11, pp 1927-1935 

 
[3] Robert W. Ives, Randy Broussard, Lauren Kennell, Ryan 

Rakvic and Delores Etter, “Iris Recognition Using the Ridge 
Energy Direction (RED) Algorithm,” Proceedings of the 
42nd Annual Asilomar Conference on Signals, Systems and 
Computers, Pacific Grove, CA,Nov. 2008. 

 
[4] John Canny, “A Computational Approach to Edge 

Detection,” IEEE Transactions of Pattern Analysis and 
Machine Intelligence, vol. PAMI-8, no. 6, 

 
[5] Ryan N. Rakvic, Bradley J. Ulis, Randy P. Broussard, and 

Robert W. Ives, “Iris Template       Generation with Parallel 
Logic,” Proceedings of the 42nd Annual Asilomar 
Conference  on Signals, Systems and Computers, Pacific 
Grove, CA, Nov. 2008. 

 
[6] A Distributed Canny Edge Detector And Its Implementation 

On Fpga Qian Xu, Chaitali Chakrabarti and Lina J. Karam 
School of Electrical, Computer and Energy Engineering, 
Arizona State University, Tempe, AZ qianxu@asu.edu, 
chaitali@asu.edu, karam @asu.edu 

 
[7] W. He and K. Yuan, “An improved Canny edge detector and 

its realization on FPGA,” WCICA, pp. 6561 –6564, Jun. 
2008. 

 
[8]  Monro, D. M., Rakshit, S., and Zhang, D, University of 

Bath, U.K. Iris Image Database, http://www.bath.ac.uk/ elec 
eng/pages/sipg/ irisweb 

 
[9] A fast method for iris localization R. Meenakshi Sundaram 

Dept. of Information Technology Jadavpur University.2011 
 

[10]  Altera, “TriMatrix Embedded Memory Blocks in Stratix IV 
Devices,” Alter Corporation  Stratix IV Device Handbook, 
vol 1, March 2010. 

 

 

 
           International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-3

197


	FPGA IMPLEMENTATION OF RED ALGORITHM FOR HIGH SPEED PUPIL ISOLATION
	Recommended Citation

	FPGA IMPLEMENTATION OF RED ALGORITHM FOR HIGH SPEED PUPIL ISOLATION

