FPGA IMPLEMENTATION OF RED ALGORITHM FOR HIGH SPEED PUPIL ISOLATION

Abstract

Iris recognition is an automated method of biometric identification that uses mathematical pattern-recognition techniques on video images of the irises of an individual’s eyes, whose complex random patterns are unique and can be seen from some distance. Modern iris recognition algorithms can be computationally intensive, yet are designed for traditional sequential processing elements, such as a personal computer. However, a parallel processing alternative using Field Programmable Gate Array offers an opportunity to speed up iris recognition. Within the means of this project, iris template generation with directional filtering, which is a computationally expensive, yet parallel portion of a modern iris recognition algorithm, is parallelized on an FPGA system. An algorithm that is both accurate and fast in a hardware design that is small and transportable are crucial to the implementation of this tool. As part of an ongoing effort to meet these criteria, this method improves a iris recognition algorithm, namely pupil isolation. A significant speed-up of pupil isolation by implementing this portion of the algorithm on a Field Programmable Gate Array

    Similar works