79,775 research outputs found

    A framework for fine-grain synthesis optimization of operational amplifiers

    Get PDF
    This thesis presents a cell-level framework for Operational Amplifiers Synthesis (OASYN) coupling both circuit design and layout. For circuit design, the tool applies a corner-driven optimization, accounting for on-chip performance variations. By exploring the process, voltage, and temperature variations space, the tool extracts design worst case solution. The tool undergoes sensitivity analysis along with Pareto-optimality to achieve required specifications. For layout phase, OASYN generates a DRC proved automated layout based on a sized circuit-level description. Morata et al. (1996) introduced an elegant representation of block placement called sequence pair for general floorplans (SP). Like TCG and BSG, but unlike O-tree, B*tree, and CBL, SP is P-admissible. Unlike SP, TCG supports incremental update during operation and keeps the information of the boundary modules as well as their relative positions in the representation. Block placement algorithms that are based on SP use heuristic optimization algorithms, e.g., simulated annealing where generation of large number of sequence pairs are required. Therefore a fast algorithm is needed to generate sequence pairs after each solution perturbation. The thesis presents a new simple and efficient O(n) runtime algorithm for fast realization of incremental update for cost evaluation. The algorithm integrates sequence pair and transitive closure graph advantages into TCG-S* a superior topology update scheme which facilitates the search for optimum desired floorplan. Experiments show that TCG-S* is better than existing works in terms of area utilization and convergence speed. Routing-aware placement is implemented in OASYN, handling symmetry constraints, e.g., interdigitization, common centroid, along with congestion elimination and the enhancement of placement routability

    Tight coupling of timing driven placement and retiming

    Get PDF
    Retiming is a widely investigated technique for performance optimization. In general, it performs extensive modifications on a circuit netlist, leaving it unclear, whether the achieved performance improvement will still be valid after placement has been performed. This paper presents an approach for integrating retiming into a timing-driven placement environment. The experimental results show the benefit of the proposed approach on circuit performance in comparison with design flows using retiming only as a pre- or postplacement optimization method

    TROUTE : a reconfigurability-aware FPGA router

    Get PDF

    Online VNF Scaling in Datacenters

    Get PDF
    Network Function Virtualization (NFV) is a promising technology that promises to significantly reduce the operational costs of network services by deploying virtualized network functions (VNFs) to commodity servers in place of dedicated hardware middleboxes. The VNFs are typically running on virtual machine instances in a cloud infrastructure, where the virtualization technology enables dynamic provisioning of VNF instances, to process the fluctuating traffic that needs to go through the network functions in a network service. In this paper, we target dynamic provisioning of enterprise network services - expressed as one or multiple service chains - in cloud datacenters, and design efficient online algorithms without requiring any information on future traffic rates. The key is to decide the number of instances of each VNF type to provision at each time, taking into consideration the server resource capacities and traffic rates between adjacent VNFs in a service chain. In the case of a single service chain, we discover an elegant structure of the problem and design an efficient randomized algorithm achieving a e/(e-1) competitive ratio. For multiple concurrent service chains, an online heuristic algorithm is proposed, which is O(1)-competitive. We demonstrate the effectiveness of our algorithms using solid theoretical analysis and trace-driven simulations.Comment: 9 pages, 4 figure

    ActiveRemediation: The Search for Lead Pipes in Flint, Michigan

    Full text link
    We detail our ongoing work in Flint, Michigan to detect pipes made of lead and other hazardous metals. After elevated levels of lead were detected in residents' drinking water, followed by an increase in blood lead levels in area children, the state and federal governments directed over $125 million to replace water service lines, the pipes connecting each home to the water system. In the absence of accurate records, and with the high cost of determining buried pipe materials, we put forth a number of predictive and procedural tools to aid in the search and removal of lead infrastructure. Alongside these statistical and machine learning approaches, we describe our interactions with government officials in recommending homes for both inspection and replacement, with a focus on the statistical model that adapts to incoming information. Finally, in light of discussions about increased spending on infrastructure development by the federal government, we explore how our approach generalizes beyond Flint to other municipalities nationwide.Comment: 10 pages, 10 figures, To appear in KDD 2018, For associated promotional video, see https://www.youtube.com/watch?v=YbIn_axYu9
    • 

    corecore