
Title Online VNF scaling in datacenters

Author(s) Wang, X; Wu, C; Le, F; Liu, A; Li, Z; Lau, FCM

Citation
The 9th IEEE International Conference on Cloud Computing
(IEEE CLOUD 2016), San Francisco, CA., 27 June-2 July 2016. In
Conference Proceedings, 2016, p. 1-8

Issued Date 2016

URL http://hdl.handle.net/10722/230545

Rights

IEEE International Conference on Cloud Computing (CLOUD)
Proceedings. Copyright © IEEE Computer Society.; ©2016 IEEE.
Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.; This
work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/80963166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Online VNF Scaling in Datacenters
Xiaoke Wang∗, Chuan Wu∗, Franck Le†, Alex Liu‡, Zongpeng Li§ and Francis Lau∗

∗The University of Hong Kong, Email: {xkwang, cwu, fcmlau}@cs.hku.hk
†IBM T. J. Watson, Email: fle@us.ibm.com

‡Michigan State University, Email: alexliu@cse.msu.edu
§University of Calgary, Email: zongpeng@ucalgary.ca

Abstract—Network Function Virtualization (NFV) is a promis-
ing technology that promises to significantly reduce the opera-
tional costs of network services by deploying virtualized network
functions (VNFs) to commodity servers in place of dedicated
hardware middleboxes. The VNFs are typically running on
virtual machine instances in a cloud infrastructure, where the
virtualization technology enables dynamic provisioning of VNF
instances, to process the fluctuating traffic that needs to go
through the network functions in a network service. In this paper,
we target dynamic provisioning of enterprise network services -
expressed as one or multiple service chains - in cloud datacenters,
and design efficient online algorithms without requiring any
information on future traffic rates. The key is to decide the
number of instances of each VNF type to provision at each
time, taking into consideration the server resource capacities and
traffic rates between adjacent VNFs in a service chain. In the case
of a single service chain, we discover an elegant structure of the
problem and design an efficient randomized algorithm achieving
a e/(e-1) competitive ratio. For multiple concurrent service
chains, an online heuristic algorithm is proposed, which is O(1)-
competitive. We demonstrate the effectiveness of our algorithms
using solid theoretical analysis and trace-driven simulations.

I. INTRODUCTION

The newly emerged paradigm of Network Function Virtu-
alization (NFV) aims to consolidate network functions onto
industry-standard high-volume servers, switches and storage
using standard IT virtualization technology, in order to en-
able rapid network service composition/innovation, energy
reduction and cost minimization for network operators [1]. A
network function deployed in the NFV environment is termed
virtualized network function (VNF) [2].

Virtualization of enterprise network functions has been
among the initially proposed important use cases of NFV.
Many enterprises require a significant number of network
functions (comparable to the number of access routers), which
typically constitute one or multiple network function service
chains, to support their services [3]. For example, a common
service chain for access service may contain an intrusion
detection device, a firewall, and a load balancer that distributes
incoming traffic to a pool of servers.

The project was supported in part by grants from Hong Kong RGC under the
contracts HKU 718513, 17204715, and C7036-15G (CRF). Franck’s research
was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry
of Defense and was accomplished under Agreement Number W911NF- 06-
3-0001. The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defense or the U.K.

A common NFV proposal is to implement an enterprise’s
network service chains using VNF instances running on virtual
machines (VMs) in a cloud computing platform, i.e., the
enterprise’s datacenter or a public cloud, where the VNFs are
made available to the enterprise in the fashion of Software as
a Service [4]. No matter whether the datacenter is owned by
the enterprise or operated by a 3rd-party cloud provider, cost
minimization is among the top priorities. The main provision-
ing cost of VNF instances is due to power consumption to
operate servers and cooling facilities, which is largely decided
by the numbers and the types of VMs running different VNFs.
On the other hand, launching new VNF instances on servers
involves transferral of VM images, booting and attaching them
to devices. This leads to a deployment cost, which is typically
considered on the order of the cost to run a server for a number
of seconds or minutes [5]. Such a deployment cost should
be minimized as well, by avoiding frequent deployment and
removal of VNF instances.

This paper addresses the following key problem in dynamic
VNF provisioning in a cloud datacenter:

Given one or multiple service chains that constitute an
enterprise’s network service(s), how can we design online
solutions that dynamically scale VNF instances and pack them
onto servers, to adequately serve fluctuating input traffic, and
to achieve close-to-offline-minimum provisioning cost over the
long run of the system?

The key technical challenge in designing an efficient online
algorithm to fulfil the above goal lies in the unknown nature
of future traffic rates arriving at each service chain, which
can vary significantly over time. We have to strategically
make the deployment decisions on the go, avoiding undesirable
situations of launching a VNF instance immediately following
destroying the previous one.

Our contributions in efficient online VNF provisioning
algorithm design are summarized as follows:

First, in the case of a single service chain, we present a
randomized online algorithm which returns a solution of total
cost at most e/(e− 1) times the offline optimal solution. The
algorithm proceeds in two stages. The first stage is called “pre-
planning” which prevents VNF migration across servers over
time. The second stage is an adaptation of the classic ski-rental
algorithm which leads to an optimal competitive ratio.

Next, in the case of multiple concurrent service chains, we
show the algorithm used in the single service chain cannot

be directly applied to this scenario. Instead, we present a
heuristic algorithm which relies on a minimal weight matching
algorithm to minimize the deployment cost and achieves a
competitive ratio of O(1).

Furthermore, our algorithms are simple and easy to im-
plement in practice in an online manner. We demonstrate the
effectiveness of our algorithms using both solid theoretical
analysis as well as extensive trace-driven evaluation.

II. RELATED WORK

A. Enabling Technologies for NFV

There have been recent work on building efficient software
middleboxes approaching performance of hardware middle-
boxes, e.g., ClickOS [6] and CoMb [3]. ClickOS is able to
saturate a 10Gb pipe on a commodity server and CoMb can
reduce the network provisioning cost by 60%.

Some other work focus on management of VNF instances.
SIMPLE [7] implements an SDN-based policy enforce-
ment layer for efficient middlebox-specific traffic steering.
APLOMB [8] facilitates outsourcing of enterprise middleboxes
to the cloud. Clayman et al. [9] design an orchestrator-based
architecture for automatic placement of virtual nodes and
allocation of network services. These systems greatly facilitate
the deployment of VNF instances.

To support VNF scaling, Split/Merge [10] enables effi-
cient, load-balanced elasticity for scaling virtual middleboxes.
OpenNF [11] supports loss-free and order-preserving flow
state migration by leveraging events triggered by VNFs,
buffering the relevant packets, and enabling a two-phase
forwarding state update. We assume exploiting such a system
for implementing scaling instructed by our online algorithms.

B. Optimal Placement of VNFs

There already have some work about the placement of VMs
before the emergence of NFV. For example, Meng et al. [12]
investigate how to optimize the placement of VMs on host
machines considering the traffic patterns among VMs. Also,
frameworks like OpenStack [13] have schedulers which could
consolidate VMs for physical memory and power consumption
savings. Such work does not take network service chaining
into consideration, which has to be taken into account when
we place VNFs. To optimize orchestration and placement of
VNFs, Stratos [14] orchestrates the VNFs to optimize resource
usage in three steps. VNF-P [15] presents an optimization
model for VNF resource allocation and designs a fast heuristic
algorithm. Bari et al. [16] study a similar problem, formulate
the problem into an integer linear program (ILP) and solve
it by a standard solver. Cohen et al. [17] investigate a NFV
placement problem to optimize the distance cost between
clients and the virtual functions that they need. Except [17],
the other studies propose heuristic algorithms to solve the
respective VNF placement problems, without providing any
theoretical performance guarantee. In addition, all of these
work focus on offline/one-time VNF placement and resource
allocation, instead of dynamic VNF provisioning, which calls
for efficient online algorithm design.

III. PROBLEM MODEL

A. System Model

We consider an enterprise deploying S service chains in a
cloud datacenter. Each service chain s is an ordered sequence
of VNFs. The set of links interconnecting VNFs in s is denoted
by Ls, where (i, j) ∈ Ls if VNF i is the predecessor of VNF
j in service chain s. For ease of problem formulation, special
VNF types named VNF 0 and 0′ are added to the head and
the tail of a service chain to indicate source and destination of
the traffic flow, respectively, and the corresponding links (0, i)
and (j, 0′) are added to Ls as well, assuming i and j are the
first and the last VNF in s. The system works in a time slotted
fashion, spanning time slots 1, 2, . . . , T . The input traffic rate
to each service chain s varies from time to time, denoted by
αs(t) (e.g., in Mbps) at time t.

There are in total I different types of VNFs in the system.
Multiple VM instances can be provisioned in the cloud dat-
acenter to run the same type of VNF, which we refer to as
instances of the VNF. These VMs have specific configurations
and require fixed resources. An instance of VNF i consumes
cir of resource r ∈ R, where R is the number of resource types
including CPU, memory, storage and network bandwidth.
Based on its resource composition, an instance of VNF i can
maximally process traffic at the rate of bi (in Mbps) at each
time, without incurring prolonged packet queueing delays that
violate a preset performance threshold.

There are U servers in the cloud datacenter. Without loss of
generality, we assume that the servers are homogeneous, each
having a capacity Cr of resource r ∈ R.

B. Problem Formulation

Our dynamic VNF provisioning problem is to find the
optimal numbers and server placement of VNF instances for
the service chains in each time slot, in order to minimize
the provisioning cost over the entire system span T . We
define the following decision variables: (i) VNF placement
variable xui(t), which denotes the number of instances of
VNF i running on server u in t, ∀u ∈ U, i ∈ I, t ∈ T ;
(ii) routing variable ysuivj(t), which represents the amount of
traffic (in Mbps) in service chain s, forwarded from instances
of VNF i on server u to instances of VNF j on server v,
∀u, v ∈ U, i, j ∈ I, s ∈ S, t ∈ T .

The VNF provisioning cost contains two parts:
I. VNF operational cost. Let φi denote the cost of running

an instance of VNF i per time slot, mainly attributed to
the power consumption of the hosting server. The overall
operational cost is

O =
∑
t∈[T]

∑
u∈[U]

∑
i∈[I]

φixui(t) (1)

II. VNF deployment cost. Deploying a new instance of
VNF i requires transferring a VM image containing the
network function, booting it and attaching it to devices on the
server. We associate a deployment cost ϕi with the process.
The overall VNF deployment cost can be expressed as

D =
∑
t∈[T]

∑
u∈[U]

∑
i∈[I]

ϕi[xui(t)− xui(t− 1)]+ (2)

where[xui(t)− xui(t− 1)]+ = max {xui(t)− xui(t− 1), 0}

indicates the number of newly added instances of VNF i on
server u in t.

Our objective is to minimize the total cost O + D. The
constraints that the decision variables should respect include
the following.

First, all incoming traffic to each service chain at each time
should be served. This can be guaranteed by the following
constraints.

(i) Taking in all the incoming traffic to instances of the
first VNF in a service chain (possibly deployed in different
servers):∑

v∈[U]

∑
j:(0,j)∈Ls

ys00vj(t) ≥ αs(t),∀s ∈ [S], t ∈ [T] (3)

where ys00vj(t) denotes the incoming traffic rate (from the
dummy VNF 0 on an imaginary server 0) directed to instances
of VNF j on server v, which is summed up in the left-hand
side of (3) only if VNF j is the first VNF in the chain, i.e.,
(0, j) ∈ Ls.

(ii) Flow conservation at instances of each VNF i in service
chain s on each server u:∑

v∈[U]

∑
(i,j)∈Ls

ysuivj(t) = λsi
∑
v∈[U]

∑
(j,i)∈Ls

ysvjui(t),

∀s ∈ [S], u ∈ [U], i ∈ [I], t ∈ [T]

(4)

where the left-hand-side is the overall outgoing traffic from
instances of VNF i on server u to instances of next-hop VNF
j of service chain s on different servers, and the summation
in the right-hand side computes the overall incoming traffic
to instances of VNF i on u from instances of the previous-
hop VNF deployed on different servers. It is worth noting that
the flow rate of traffic may change after being processed by a
network function [14]. Hence we define a gain/drop factor λsi
for each VNF i in each service chain s.

(iii) Provisioning a sufficient number of instances of each
VNF on each server, whose overall processing capacity can
serve all the received flows (possibly) from different previous-
hop VNFs in different service chains:∑
s∈[S]

∑
v∈[U]

∑
(j,i)∈Ls

ysvjui(t) ≤ xui(t)bi,∀i ∈ [I], u ∈ [U], t ∈ [T]

(5)
In addition, resource capacities on each server should not be

over-committed by the deployed VNF instances at any time,
as expressed by the following constraints:∑

i∈[I]

xui(t)cir ≤ Cr,∀u ∈ [U], r ∈ [R], t ∈ [T] (6)

In summary, the offline VNF provisioning problem is for-
mulated as follows:
min

∑
t∈[T]

∑
u∈[U]

∑
i∈[I]

(φixui(t)+ϕi[xui(t)−xui(t− 1)]+) (7)

s.t. constraints (3)(4)(5)(6)
xui(t) ∈ {0, 1, ...},∀u ∈ [U], i ∈ [I], t ∈ [T] (8)

[X] integer set {1,2,...,X}
U # of servers in the system
T # of time slots
I # of VNF types
S # of service chains
R # of resource types in a server
Ls the set of links between VNFs in service chain s

xui(t) # of VNF i on server u in time slot t
ysuivj(t) traffic from VNF i on server u to VNF j on server v in t
αs(t) the input traffic to service chain s at time t
λsi gain/drop factor of VNF i in service chain s
cir VNF i’s consumption of resource r
Cr capacity of resource r on a server
bi processing capacity of an instance VNF i
φi per-time-slot operational cost of an instance of VNF i
ϕi deployment cost of an instance of VNF i

TABLE I
NOTATION

ysuivj(t) ≥ 0,∀s ∈ [S], u, v ∈ [U], i, j ∈ [I], t ∈ [T] (9)

We list important notation in this paper in Table I, for ease
of reference.

From the model, we can see that as the input traffic rate
to the service chains varies, the minimal number of VNF
instances required also changes. This necessitates new routing
solutions and new placement solutions. Also, due to the
existence of deployment cost, optimizing operational cost in
each time slot will lead to a suboptimal solution.

C. Simplifying the Offline Optimization Problem

The offline optimization problem in (7) gives the optimal
VNF deployment and traffic routing decisions at each time,
using complete information of traffic rates during the entire
system span. Towards designing an efficient online algorithm,
we study the structure of the offline problem carefully, and
identify that the problem formulation can actually be simpli-
fied by removing routing decisions ysuivj(t)’s, leaving only
VNF placement decisions xui(t)’s. The key observation is
that given specific input traffic rates to the service chains at
t, αs(t),∀s ∈ [S], the minimal number of instances of each
VNF required in the entire system at the time can be obtained
based on constraints (3), (4) and (5), as stated in the following
theorem.

Theorem 1. The minimal number of instances of VNF i
required to serve input traffic rates αs(t),∀s ∈ [S], in time slot

t is ni(t) = d
∑

s∈[S] λ̄
s
iα

s(t)

bi
e, where λ̄si =

Ns(j+1)=i∏
j=1

λsNs(j) is

the cumulative gain/drop factor in service chain s before the
flow enters VNF i in the chain and Ns(j) denotes the type of
j-th VNF in the service chain s.

The detailed proof is given in our technical report [18].
Then we can convert the offline problem (7) into the

following one:

min
∑
t∈[T]

∑
u∈[U]

∑
i∈[I]

(φixui(t) + ϕi[xui(t)− xui(t− 1)]+)

(10)
s.t.

∑
u∈[U]

xui(t) ≥ ni(t),∀i ∈ [I], t ∈ [T] (11)∑
i∈[I]

xui(t)cir ≤ Cr,∀u ∈ [U], r ∈ [R], t ∈ [T] (12)

xui(t) ∈ {0, 1, ...},∀u ∈ [U], i ∈ [I], t ∈ [T] (13)

In fact, we are able to prove the following theorem:

Theorem 2. The offline VNF provisioning problem in (10) is
equivalent to the offline problem in (7).

The detailed proof is given in our technical report [18].
In what follows, we design online algorithms to make VNF

placement and traffic routing decisions on the go, based only
on current information and past history. We divide our design
into two cases, for deployment of a single service chain and
concurrent deployment of multiple service chains.

IV. ONLINE ALGORITHM FOR A SINGLE SERVICE CHAIN

In this section, we focus on a single service chain containing
VNFs 1 → 2 → · · · → L. We remove s (that indicates a
service chain) from all relevant notation, for simplicity.

A. Insights from the Offline Problem

The offline VNF provisioning problem in a system with
only one service chain takes the same form as problem (10),
except that the minimal number of instances of each VNF i

in constraint (11) is computed as ni(t) = d λ̄iα(t)
bi
e.

We observe that the objective function is equivalent to∑
t∈[T]

∑
i∈[I]

(
∑
u∈[U]

φixui(t) +
∑
u∈[U]

ϕi[xui(t)− xui(t− 1)]+). In

the second term, we have
∑
u∈[U]

[xui(t) − xui(t− 1)]+ ≥

[
∑
u∈[U]

xui(t) −
∑
u∈[U]

xui(t− 1)]+. The equality holds if and

only if the signs of xui(t)−xui(t− 1),∀u ∈ [U], are the same:
from t−1 to t, the numbers of instances of VNF i deployed on
all the servers either all increase (xui(t) ≥ xui(t− 1),∀u ∈
[U]) or all decrease (xui(t) ≤ xui(t− 1),∀u ∈ [U]); there
does not exist a pair of servers u1 and u2, such that xu1i(t) >
xu1i(t− 1) and xu2i(t) < xu2i(t− 1). The later can be
considered as a VNF instance migration case, i.e., at least
one instance of VNF i is moved from one server to another.

The following is an example where VNF instance migration
has to be done due to limited capacity. Suppose there are 2
servers, each of which has 1 unit resource. The service chain
is VNF 1 → 2. An instance of VNF 1 requires 0.5 unit of
resource and an instance of VNF 2 requires 0.2 unit. At first,
there is 1 instance of VNF 1 and 1 instance of VNF 2 on
each server. Then, due to the increase of input traffic rate, we
have to add 1 instance for each VNF. However, none of the
two servers has enough resource to accommodate an additional
instance of VNF 1. We have to migrate one instance of VNF
2 from one server to the other to make room for the additional
instance of VNF 1.

Nevertheless, if we can somehow ensure that no migration
is needed (we will design an algorithm for it), the objective
function is equivalent to

∑
t∈[T]

∑
i∈[I](

∑
u∈[U] φixui(t) +

ϕi[
∑
u∈[U] xui(t)−

∑
u∈[U] xui(t− 1)]+). Furthermore, if the

server capacity constraint (12) can be ignored temporarily, then
we can create a new decision variable xi(t) =

∑
u∈[U] xui(t),

denoting the total number of instances of VNF i deployed in
the system in t, and convert the offline problem (10) into the
following:

min
∑
t∈[T]

∑
i∈[I]

(φixi(t) + ϕi[xi(t)− xi(t− 1)]+) (14)

s.t. xi(t) ≥ ni(t),∀i ∈ [I], t ∈ [T] (15)

xi(t) ∈ {0, 1, ...},∀i ∈ [I], t ∈ [T] (16)

The optimization problem (14) deals with the total number
of instances to deploy for each VNF type to fulfil the traffic
demand at each time, without taking care of the detailed
placement of the VNF instances on servers, i.e., how many of
xi(t) to place on a server u. In addition, there is no coupling
of decisions among different types of VNFs, such that we can
separately optimize the total number of instances to deploy for
each VNF, by solving the subproblem:

min
∑
t∈[T]

(φixi(t) + ϕi[xi(t)− xi(t− 1)]+) (17)

s.t. xi(t) ≥ ni(t), xi(t) ∈ {0, 1, ...},∀t ∈ [T]

We observe that the offline optimization problem (17) can be
solved by doing some minor modifications to classic ski-rental
algorithms [19] [20]. It can be verified that if in the next
bϕi/φic time slots, the number of VNF i instances required
is smaller or equal to current number of VNF i instances,
then the most economical way is to remove the extra VNF
i instances and only keep the maximum number of VNF
i instances required by the next bϕi/φic time slots. This
is exactly the idea behind the offline ski-rental algorithms.
Therefore, to design an online algorithm for problem (17),
we can apply the classic ski-rental algorithms, such as that in
[19]. We distinguish idle VNF instances from running VNF
instances. For idle instances, they would not be removed from
servers until the accumulated operational cost is larger than
their deployment cost. If an idle instance is required during
that time duration, we simply turn its state into running without
causing any deployment cost. The detailed algorithm is to be
discussed in Alg. 2.

The pending issue for designing an online algorithm that
solves (10), is to come up with an efficient VNF placement
scheme, which places VNF instances at the total number of
xi(t) from (14) on the servers, ensuring that server capacity
constraint in (12) is respected, and no VNF instance migration
would happen, i.e., from t− 1 to t, the servers are all hosting
more instances of VNF i or are all hosting less instances
of VNF i. In the next subsection, we propose an efficient
pre-planning step, which produces a feasible VNF placement
solution, assuming that the input traffic rate to the service
chain is the largest possible that the system can support. We
then design our online algorithm to solve (10), combining
xi(t)’s computed from (14) and the VNF placement scheme

derived from the pre-planning step, which satisfies the above
conditions.

B. VNF Deployment for Maximum Traffic Rate

We now investigate the maximum input traffic rate αmax

that the system can support in a single time slot, as well as
obtain a feasible VNF deployment solution to serve a flow
at this maximum rate. Given an input traffic rate α, we can
obtain the corresponding minimum number of instances of
each VNF needed, ni, according to Theorem 1, for all i in
the service chain. Then whether U servers are enough to host
these VNFs can be determined by finding a feasibility solution
following optimization problem, where binary variable zu
denotes whether server u is used or not:∑

u∈[U]

xui ≥ ni,∀i ∈ [L] (18)∑
i∈[l]

xuicir ≤ Crzu,∀u ∈ [U], r ∈ [R] (19)

xui ∈ {0, 1, ...}, zui ∈ {0, 1},∀u ∈ [U], i ∈ [L] (20)

To decide the maximum supportable input traffic rate, we
can apply a bi-section algorithm. The complete algorithm is
given in Alg. 1.

Algorithm 1: Pre-planning Step
Input: U,L,R, λ,b, c,C
Output: αmax, xmax

lb = 0, ub =MAXRATE;
while ub − lb > 1 do

m := (ub + lb)/2;
Solve problem (18) by setting ni = d λ̄im

bi
e, using

bin-packing algorithm in [21]
if Exists a feasible solution x to problem (18) then

lb := m
else

ub := m

αmax := lb, xmax := x

In Alg. 1, we set the initial search range for αmax to
[0,MAXRATE], where MAXRATE can be a very large
estimated rate. To solve problem (18) at specific ni’s, we note
that the problem is the high multiplicity variant of a multi-
dimensional bin packing problem [22], which is NP hard if
the length L of the service chain is a large number. However,
the length of a service chain is usually short - the length of
most of the representative NFV service chains is no larger than
4. Hence we take L as a fixed small constant. In this case, we
show that there exists a polynomial-time algorithm to solve the
problem. In particular, Goemans and Rothvoss [21] show that
the 1-dimensional bin packing problem with a fixed number
of item types (L in our model) and high multiplicity can be
solved in polynomial time. We prove that the same algorithm
from [21] can be applied to solve bin packing problems of any
fixed dimensions, i.e., the number of resource types R in our
model, in polynomial time as Theorem 3 shows.

Theorem 3. Alg. 1 runs in polynomial time.

The detailed proof is given in our technical report [18].

C. VNF Placement Scheme

Combining the pre-planning step in Alg. 1 with our insights
in Sec. IV-A, we are able to design an efficient VNF placement
scheme which can guarantee server capacity constraint (12)
is respected and no migration of VNF instances occurs. The
main idea is to guarantee the set of server placement of VNF
instances to serve the input traffic rate α(t) for any t is always
a subset of the set of server placement of VNF instances to
serve the maximum input traffic rate αmax.1 For example,
suppose we have 3 instances of VNF 1 on server 1 and 1
instance of VNF 1 on server 2 to serve αmax; then to serve
α(t), we could deploy 2 instances of VNF 1 on server 1
but never deploy 2 instances of VNF 1 on server 2. Such a
placement scheme always respects server capacity constraint
(12) since the VNF placement to serve αmax is governed by
the constraint already.

To accomplish the above, all we need is a multiset, Si
for VNF i, which includes the IDs of servers where all the
instances of VNF i are placed according to the solution to
serve the maximum traffic rate. For example, if we need 2
instances of VNF i on server 1, 3 instances of VNF i on
server 2 and 1 instance of VNF i on server 3 to serve the
maximum rate, then Si = {1, 1, 2, 2, 2, 3}. Using Si, when
we need to deploy more VNF i instances, we simply eject
sufficient server IDs from Si and deploy VNF i instances on
the respective servers accordingly; when some instances of
VNF i are removed from the servers, we insert the respective
server IDs into Si.

Theorem 4. This VNF placement scheme can guarantee
server capacity constraint (12) is always respected and no
migration of VNF instances occurs.

The detailed proof is given in our technical report [18].

D. Online Algorithm

Our proposed online algorithm to solve problem (10) com-
bines the classic ski-rental algorithm from [19] with our
proposed VNF placement scheme. More specifically, the VNF
instances on the servers are either marked as running or
idle. The total number of running VNF i instances in time
slot t is ni(t) and the total number of all VNF i instances
on the servers in time slot t is xi(t). In each time slot, if
ni(t) ≥ xi(t− 1), then switch all the idle VNF i instances to
running, eject ni(t)− xi(t− 1) elements from Si and deploy
ni(t)−xi(t−1) VNF i instances on the respective servers; if
ni(t− 1) ≤ ni(t) < xi(t− 1), switch ni(t)− ni(t− 1) VNF
i instances, which become idle most recently, into running
state; otherwise, switch ni(t − 1) − ni(t) running VNF i
instances to idle. For each idle VNF i instance, we generate a
“deadline” following a given distribution: P{“deadline” = j} =
(∆i−1

∆i
)∆i−j 1

∆i(1−(1−1/∆i)∆i)
, where ∆i = bϕi/φic. Remove

the idle instance from its server completely after it has been

1We reasonably assume the input traffic rate α(t) in [0, T] is within
[0, αmax], i.e., the datacenter’s capacity is sufficient to serve the input traffic.

Algorithm 2: Online Algorithm for Single Service Chain
Input: n(t), n(t− 1), S, x(t− 1)
Output: x(t)
for i ∈ [L] do

if ni(t) ≥ xi(t− 1) then
Switch all the idle VNF i instances to running;
Eject ni(t)− xi(t− 1) elements from Si;
Place ni(t)− xi(t− 1) instances on respective servers;

else if ni(t− 1) ≤ ni(t) < xi(t− 1) then
Switch ni(t)− ni(t− 1) idle VNF i instances to
running;

else
Switch ni(t− 1)− ni(t) running VNF i instances to
idle;

forall the idle VNF i instances do
if marked as running in the previous time slot then

counter := 0;
deadline := j with probability
(∆i−1

∆i
)∆i−j 1

∆i(1−(1−1/∆i)
∆i)

;

if counter ≥ deadline then
Remove it from the server;
Insert the server ID into Si;

xui(t) :=total # of running and idle VNF i instances on
server u at time t

idle for the “deadline”number of time slots and insert the
corresponding server ID into Si.

It can be proved that our Alg. 2 runs very fast.

Theorem 5. The randomized online algorithm in Alg. 2 has
a worst-case computation complexity of O(K) per time slot,
where K is the maximum number of VNF instances the
datacenter can serve.

The competitive ratio of our Alg. 2 to solve problem (10)
can be shown to be equal to the competitive ratio achieved by
the randomized ski-rental algorithm to solve problem (17).

Theorem 6. The randomized online algorithm in Alg. 2
produces a feasible solution of (10) and achieves a competitive
ratio of e/(e− 1).

The detailed proof is given in our technical report [18].

V. ONLINE ALGORITHM FOR MULTIPLE SERVICE CHAINS

We next focus on the general scenario where there are more
than one service chains in the system.

The algorithm we designed for a single service chain cannot
be extended to the case of multiple service chains, due mainly
to the non-existence of the maximum input flow rate vector
which uniquely decides a MAX VNF deployment solution for
each service chain, i.e., that to serve the maximal flow rates.
When multiple chains coexist and may share the same VNF
instances, we only have pareto maximal input flow rate vectors
among the flows. Since the MAX VNF deployment solution
no longer exists for each chain, we are not able to design VNF
placement solution over time as subsets of the MAX placement
solution, without incurring any VNF migration. Hence, we
adopt a new approach.

Algorithm 3: Online Algorithm for Multiple Service
Chains

Input: n(t), x(t− 1)
Output: x(t)
P = patterns returned by Bin_Packing(n(t));
p = |P|;
K = pattern multiplicities returned by Bin-Packing(n(t));
Let xi denote the pattern in server i in time t− 1;
S1 = {x1, x2..., xU};
S2 = {P (1), ..., P (1)︸ ︷︷ ︸

K(1)

, ..., P (p), ..., P (p)︸ ︷︷ ︸
K(p)

};

wij = [S2(j)− S1(i)]
+;

x(t) = Minimum_Weight_Matching(S1,S2,W);

Our analysis has revealed that any online algorithm which
uses the minimal number of VNF instances at each time
slot is (1 + maxi∈[I]

ϕi

φi
)-competitive, as Theorem 7 shows.

That is, if the online algorithm finds a solution which makes∑
u∈[U] xui(t) = ni(t) in (11) and further satisfies constraint

(12), it is (1 + maxi∈[I]
ϕi

φi
)-competitive.

Theorem 7. Any online algorithm which uses the minimal
number of VNF instances in each time slot and respects the
server capacity constraint is (1 + maxi∈[I]

ϕi

φi
)-competitive.

The detailed proof is given in our technical report [18].
One natural idea is to design an algorithm that packs

this minimal number of VNF instances into servers, without
violating capacities. Again, this can be done using the bin-
packing algorithm in [21]. The bin-packing algorithm returns
a set of patterns and their corresponding multiplicities [21].
A pattern is a feasible placement solution of instances of all
VNFs in a server, which can be described by an I-dimensional
vector V . The i-th component, V (i) in V , denotes the number
of VNF i instances to be deployed on the server. A pattern
can be applied to several servers and the number of times it
is applied is called its multiplicity. However, the bin-packing
algorithm does not tell us which actual server(s) is(are) to be
used for deployment of each pattern.

We map the result patterns to individual servers, trying to
minimize the deployment cost from one time slot to the next.
For example, suppose in the previous time slot t− 1, we have
2 instances of VNF 1 on server 1 and 2 instances of VNF 2 on
server 2. In t, the bin-packing algorithm returns two patterns,
(2,0) and (0,3), each of which is used once. Then we should
map (2,0) to server 1 (i.e., run 2 instances of VNF 1 on server
1 in t) and (0,3) to server 2 (i.e., run 3 instances of VNF 2
on server 2 in t) .

Formally, the deployment cost incurred is
∑
i∈[I] ϕi[V (i)−

xui(t− 1)], if we map a pattern V to a server u. To minimize
deployment cost through mapping, we have a minimum weight
matching problem, where the weight on a link connecting a
pattern to a server is the corresponding deployment cost. The
minimum weight matching problem can be solved efficiently,
e.g., using the Kuhn-Munkres algorithm [23].

Our online algorithm for VNF deployment of multiple

service chains is given in Alg. 3. Note that the mapping
component of the algorithm in general reduces the overall
cost in (11) achieved by the algorithm, as compared to one that
does no mapping but only packs ni(t) instances of VNF i into
servers. Therefore, the competitive ratio that Alg. 3 achieves
is at most (1 + maxi∈[I]

ϕi

φi
) based on Theorem 7.

Theorem 8. The online algorithm in Alg. 3 is (1 +
maxi∈[I]

ϕi

φi
)-competitive.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our online algorithms using
trace-driven simulations. We compare their performance with
the offline optimum, as well the RHC(0) algorithm in [24],
which exactly solves the ILP (10) in each time slot. Our
algorithms can be built on existing frameworks like OpenStack
[13] to automatically perform VNF instance scaling as the
input traffic rate to the service chains varies.
A. Settings

Workload traces: Like in [20] and [5], we use a week of
I/O traces from 1 RAID volume, CAMRESHMSA01-lvm0,
at MSR Cambridge [25], representing activities in a service
used by hundreds of users. We use the trace data as time-
varying input traffic rates to the service chains. The trace data
is normalized such that the peak load is 400Gbps, and the
peak-to-mean ratio (PMR) is 4.27.

Cost benchmark: We use the cost incurred in static provi-
sioning of VNF instances in a datacenter as a benchmark, for
computing cost savings of different algorithms in comparison.
In the static provisioning, we assume that the datacenter
has the complete workload information ahead of time and
provisions a constant number of VNF instances over time
according to the peak load.

Servers and VNFs: For simplicity, we assume CPU capacity
is the only bottleneck in our experiments. There are 1000
servers and each of them has 16 physical CPU cores. There
are four types of VNFs to compose service chains, namely
firewall, load balancer, NAT and IDS. Following configura-
tions in [16], a firewall instance requires 4 CPU cores and can
handle an incoming traffic rate of 900Mbps. A load balancer or
NAT instance requires 2 CPU cores and can handle 900Mbps
incoming traffic rate. An IDS instance requires 8 CPU cores
and can handle 600Mbps incoming traffic rate.

Service chains: We consider the following service chains:
firewall→NAT, firewall→IDS and firewall→IDS→load bal-
ancer. We assume that a firewall filters 10% of the input traffic
and an IDS filters 20% of the input traffic on average. Load
balancers and NATs in the service chains do not change the
flow rates.

VNF operational cost: We set φi proportionally to Ci, and
ϕi/φi ∈ [1, 10]. It is generally reasonable since deployment
cost is on the order of the cost to run a VNF instance for
several minutes [5].

B. Performance of Algorithms for a Single Service Chain

The service chain is firewall→IDS→load balancer. Accord-
ing to Alg. 1 and our setup, with 1000 servers, the system can

handle at most 886Gbps input traffic and in total 985 firewall
instances, 1329 IDS instances and 709 load balancer instances
are required to serve this traffic. One feasible MAX placement
solution is to have 664 servers with 2 IDS instances each,
246 servers with 4 firewall instances each, 88 servers with 8
load balancer instances each, 1 server with 1 IDS instance, 1
firewall instances and 2 load balancer instances and 1 server
with 3 load balancer instances.

1) Impact of Unit Deployment Cost to Operational Cost:
Under different values of ϕi/φi, Fig. 1 shows the cost saving
by comparing three algorithms to the benchmark, our algo-
rithm in Alg. 2, offline optimum derived by solving problem
(10) exactly using MOSEK [26], and the RHC(0) algorithm,
respectively. We can see that our proposed randomized online
algorithm can save up to 70% of the cost and it performs better
than RHC(0) when ϕi/φi is greater than 4. Although RHC(0)
and Alg. 2 have similar performance when ϕi/φi is less than
4, it is worth noting that Alg. 2 guarantees better performance
in the worst case and is computationally tractable (RHC(0)
involves solving ILPs exactly). Also, the cost reduction is
decreasing as ϕi/φi increases, i.e., the smaller the deployment
cost is, the more cost saving we can obtain. This is because a
static provisioning approach will only pay a deployment cost
at the very beginning but a right-sizing approach will pay an
increasing deployment costs each time it decides to vary its
deployment. Therefore, we could save more cost as technology
continues to advance, resulting in the reduction of deployment
cost.

We also investigate the impact of ϕi/φi on the competitive
ratio of different algorithms. The results are shown in Fig.
2. We can see the ratio achieved by our online algorithm is
quite stable as ϕi/φi changes, while RHC(0) performs worse
as ϕi/φi increases. This also confirms a previous result from
[24], which proves RHC(0) is (1 + ϕi/φi)-competitive.

2) Impact of Peak-to-Mean Ratio (PMR): Intuitively, com-
paring to static provisioning, dynamic provisioning can
achieve more cost saving when the input workload varies more
significantly. Our following evaluation confirms this intuition.
Similar to [5], we generate the workload based on the MSR
traces by scaling α(t) as α(t) = Kα(t)γ , and adjust γ and
K to keep the mean constant. We let PMR of the input traffic
rates at different times vary from 2 to 10. Notice when PMR
= 10, the maximal input traffic rate is 879Gbps, which is quite
close to 886Gps. Fig. 3 shows that the cost saving increases
from about 30% at PMR=2 (which is common for workload
in large datacenters) to about 67% for higher PMRs (that are
common in small to medium sized datacenters [20]).

C. Performance of Algorithms for Multiple Service Chains

We experiment with three service chains, namely
firewall→NAT, firewall→IDS and firewall→IDS→load
balancer. We compare the competitive ratios achieved by our
proposed online algorithm in Alg. 3 and RHC(0), computed
against the offline optimum obtained by solving the offline
ILP in (10) exactly.

2 4 6 8 10
0

20

40

60

80

100

ϕi / φi

%
 c

o
s
t

re
d

u
c
ti
o

n

offline optimum
Alg. 2
RHC(0)

Fig. 1. Impact of ϕi/φi on cost
reduction for single service chain

2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

ϕi / φi

c
o

m
p

e
ti
ti
v
e

 r
a

ti
o

Alg. 2
RHC(0)

Fig. 2. Impact of ϕi/φi on com-
petitiveness for single service chain

2 4 6 8 10
20

40

60

80

Peak to mean ratio

%
 c

o
s
t

re
d

u
c
ti
o

n

offline optimum
Alg. 2
RHC(0)

Fig. 3. Impact of PMR for single
service chain

2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

ϕi / φi

c
o

m
p

e
ti
ti
v
e

 r
a

ti
o

RHC(0)
Alg.3

Fig. 4. Impact of ϕi/φi on com-
petitiveness for multiple service
chains

Fig. 4 shows that the competitive ratios of Alg. 3 are only
slightly worse than those of RHC(0). This shows the matching
step is indeed helpful. Note that Alg. 3 does not require solving
an ILP in each time slot while RHC(0) does, Alg. 3 is more
preferable. We also observe that the competitive ratios are
increasing as ϕi/φi becomes larger, which is consistent with
our theoretical competitive ratio analysis.

VII. CONCLUDING REMARKS

Network function virtualization provides a flexible way to
deploy, operate and orchestrate network services with much
less capital and operational expenses. Software middleboxes
(e.g., ClickOS) are rapidly catching up with hardware middle-
boxes in performance. Network operators are already opting
for NFV based solutions. We believe that our proposals
for dynamic VNF provisioning and placement will have a
significant impact on VNF management in the near future.
Our model can be used to determine the optimal numbers
of VNF instances and their optimal placement on servers, to
optimize operational cost and resource utilization over the long
run. Two solutions are designed: for a single service chain,
we obtain a randomized online algorithm with competitive
ratio e/(e − 1); for multiple service chains, we design a
(1+maxi∈[I]

ϕi

φi
)-competitive online algorithm, relevant to the

ratio of deployment cost over operational cost. Our trace driven
simulations demonstrate that the overall cost can be reduced
significantly by our dynamic VNF provisioning algorithms.

REFERENCES

[1] N. ISG, “White Paper Ver. 2,” 2013.
[2] ETSI, “Network Functions Virtualisation (NFV); Terminology for Main

Concepts in NFV,” http://www.etsi.org/deliver/etsi_gs/NFV/001_099/
003/01.01.01_60/gs_NFV003v010101p.pdf.

[3] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
Implementation of a Consolidated Middlebox Architecture,” in Proc. of
NSDI, 2012.

[4] G. ETSI, “Network Functions Virtualisation (NFV); Use Cases,” V1,
vol. 1, 2013.

[5] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic Right-
sizing for Power-proportional Data Centers,” IEEE/ACM Transactions
on Networking (TON), vol. 21, no. 5, pp. 1378–1391, 2013.

[6] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the Art of Network Function Virtualization,”
in Proc. of NSDI, 2014.

[7] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement using SDN,” in Proc.
of SIGCOMM, 2013.

[8] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making Middleboxes Someone Else’s Problem: Network Pro-
cessing as a Cloud Service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, 2012.

[9] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
Dynamic Placement of Virtual Network Functions,” in Proc. of Network
Operations and Management Symposium (NOMS), 2014.

[10] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/Merge: System Support for Elastic Execution in Virtual Middle-
boxes,” in Proc. of NSDI, 2013.

[11] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling Innovation in Network
Function Control,” in Proc. of SIGCOMM, 2014.

[12] X. Meng, V. Pappas, and L. Zhang, “Improving the Scalability of Data
Center Networks with Traffic-aware Virtual Machine Placement,” in
Proc. of INFOCOM, 2010.

[13] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, 2012.

[14] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar, “Stratos: A Network-aware Orches-
tration Layer for Middleboxes in the Cloud,” Technical Report, Tech.
Rep., 2013.

[15] H. Moens and F. De Turck, “VNF-P: A Model for Efficient Placement
of Virtualized Network Functions,” in Proc. of International Conference
on Network and Service Management (CNSM), 2014.

[16] M. Faizul Bari, S. Rahman Chowdhury, R. Ahmed, and R. Boutaba,
“On Orchestrating Virtual Network Functions in NFV,” ArXiv e-prints,
Mar. 2015.

[17] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near Optimal
Placement of Virtual Network Functions,” in Proc. of INFOCOM, 2015.

[18] “Online Scaling VNFs in Datacenters,” Tech. Rep., 2015,
https://www.dropbox.com/s/n1u6gang5nvoqoz/TechReport.pdf?dl=0.

[19] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki, “Compet-
itive Randomized Algorithms for Nonuniform Problems,” Algorithmica,
vol. 11, no. 6, 1994.

[20] T. Lu, M. Chen, and L. L. Andrew, “Simple and Effective Dynamic
Provisioning for Power-proportional Data Centers,” IEEE Transactions
on Parallel and Distributed Systems,, vol. 24, no. 6, 2013.

[21] M. X. Goemans and T. Rothvoß, “Polynomiality for Bin Packing with
a Constant Number of Item Types,” in Proc. of SODA, 2014.

[22] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Approximation
Algorithms for Bin Packing: a Survey,” in Approximation algorithms
for NP-hard problems, 1996.

[23] J. Munkres, “Algorithms for the Assignment and Transportation Prob-
lems,” Journal of the Society for Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[24] M. Lin, Z. Liu, A. Wierman, and L. L. Andrew, “Online Algorithms
for Geographical Load Balancing,” in Proc. of International Green
Computing Conference (IGCC), 2012.

[25] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-loading:
Practical Power Management for Enterprise Storage,” ACM Transactions
on Storage (TOS), vol. 4, no. 3, p. 10, 2008.

[26] A. Mosek, “The MOSEK Optimization Software,” Online at http://www.
mosek. com, vol. 54, 2010.

