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Abstract 

OF THE THESIS OF 

Taher Essam Ali Kourany      for Master of Science 

     Major: Electronics and Communication Engineering 

     The American University in Cairo  

Title: A Framework for Fine-grain Synthesis Optimization of Operational Amplifiers 

Supervisor: Prof. Yehea Ismail, Dr. Emad Hegazi          

This thesis presents a cell-level framework for Operational Amplifiers Synthesis 

(OASYN) coupling both circuit design and layout. For circuit design, the tool applies a 

corner-driven optimization, accounting for on-chip performance variations. By exploring 

the process, voltage, and temperature variations space, the tool extracts design worst case 

solution. The tool undergoes sensitivity analysis along with Pareto-optimality to achieve 

required specifications. For layout phase, OASYN generates a DRC proved automated 

layout based on a sized circuit-level description. Morata et al. (1996) introduced an elegant 

representation of block placement called sequence pair for general floorplans (SP). Like 

TCG and BSG, but unlike O-tree, B*tree, and CBL, SP is P-admissible. Unlike SP, TCG 

supports incremental update during operation and keeps the information of the boundary 

modules as well as their relative positions in the representation. Block placement 

algorithms that are based on SP use heuristic optimization algorithms, e.g., simulated 

annealing where generation of large number of sequence pairs are required. Therefore a 

fast algorithm is needed to generate sequence pairs after each solution perturbation. The 

thesis presents a new simple and efficient O(n) runtime algorithm for fast realization of 

incremental update for cost evaluation. The algorithm integrates sequence pair and 

transitive closure graph advantages into TCG-S* a superior topology update scheme which 

facilitates the search for optimum desired floorplan. Experiments show that TCG-S* is 

better than existing works in terms of area utilization and convergence speed. Routing-

aware placement is implemented in OASYN, handling symmetry constraints, e.g., 
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interdigitization, common centroid, along with congestion elimination and the 

enhancement of placement routability. 
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1.Introduction 

An analog system is typically characterized by a set of performance parameters used to 

quantify the properties of the circuit. Given a fixed topology, circuit synthesis is the process 

of determining numerical values for all components in the circuit such that the circuit 

conforms to a set of performance constraints. The pervasive trend in recent years is the 

integration of whole systems into single-chip. Analog circuitry is widely used in systems 

applications such as telecommunications and robotics, where analog interfaces to an 

external environment are coupled with digital signal processing systems. The demands for 

high performance CMOS analog circuits increased dramatically in recent years, especially 

for digital–analog interface circuits, due to the emergence of system-on-chip (SoC). 

Although analog circuits take up only a minor part of most ASIC’s, their design time and 

cost is very important. Most of knowledge, effort, and time are spent in designing analog 

blocks of the chip since they are largely dominated by heuristics and experience needed to 

achieve required specifications.  

Given a set of specification/requirements that describe the system to be realized, the 

selection of the optimal implementation comes mainly out of experience. Many digital 

parts of such chips can nowadays be synthesized rapidly and reliably using CAD tools 

developed for semicustom design methods such as gate arrays, standard cells, and macro 

cells. On the other hand, analog subsystems still need to be entirely handcrafted by a 

specialist, due to the high degree of nonlinearity and interdependence among design 

variables. Therefore, the design time and cost associated with dedicated analog interface 

components often constitute a bottleneck in semicustom design of mixed analog/digital 

systems. The growing scale of industry and the rapid advancement in integrated circuits 

technology have led to dramatic increase in physical design complexity. The need to tackle 

this complexity and comply with time-to-market has encouraged the wide use of the 

hierarchical design and IP modules for a faster convergence to the optimum design in terms 

of area and speed. Some analog components are replaced with their digital counterparts, 

which are successful to a great extent. However, there are limitations to replace all the 
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analog blocks and what was left are considered to be intellectually challenging. The success 

of the digital design ideas and tools against analog design and its domination over the 

majority of the industry, due to sophisticated accurate tools empowering design time-to-

market, exposed the lack of comparable analog semi-custom tools.  

For a top down, knowledge based approach, analog synthesis problem can be 

decomposed into two parts: firstly the synthesis of sized circuits from behavioral 

specifications and secondly the IC layout generation from these circuits. Design 

automation ideas from digital IC design have only recently begun to migrate into analog 

circuit design. In part, this reflects the inherent complexities of the analog design process. 

Outside of conventional analog/digital systems, there has recently been great interest in the 

design of parallel analog VLSI signal processing architectures. Hence, it is clear that CAD 

tools must be developed to cope with both the complexity of large-scale analog circuit 

designs, and with the requirement for rapid design times. In the digital domain, structured 

abstractions and hierarchy are commonplace, and are relied upon to make seemingly large 

synthesis tasks tractable by breaking them into smaller steps. Such abstractions and 

hierarchy do not currently play a central role in analog design. Some ideas from digital 

design methodologies, such as standard cell libraries and module generators, have recently 

been applied to analog design tasks. However, such techniques usually have several 

drawbacks, e.g., libraries allow the designer to make only crude tradeoffs among 

performance specifications, and they become obsolete rapidly in the face of technological 

evolution. The numerical circuit simulator SPICE is often used as a benchmark of 

comparison to determine the relative accuracy of alternative schemes for evaluating the 

performance of analog circuits.  

 

 

 



3 
 

1.1. Literature Review 

Synthesis comprises two steps: topology selection and sizing. Topology selection means 

selecting the appropriate circuit topology from a library of topologies. Sizing consists of 

choosing appropriate transistor dimensions and biasing voltages to satisfy a given set of 

performance specifications. Topology selection has proven very difficult to automate due 

to its knowledge-intensive nature. Many attempts have been made in order to mimic the 

designer’s expertise and knowledge into automation tools. There exists two approaches 

adopted in analog circuit synthesis: knowledge based approaches and optimization based 

approaches [20]. In the knowledge-based stream, the designer extracts design equations 

and integrates them into the tool to be reused for the same topology. In the optimization-

based approach, the optimizer searches the design space for the circuit that satisfies certain 

constraints and minimizes certain objectives. The optimization-based approach was further 

divided into two approaches: equation-based optimization and simulation-based 

optimization. In the equation-based optimization, circuit evaluation is done through pre-

derived equations for performance specifications, initially extracted by the designer or by 

symbolic analysis. In the simulation-based optimization, the specifications are directly 

measured from the output waveforms of a simulator. The simulation-based approach has 

two major advantages over the equation-based approach: 

• Accurate simulation models are used instead of approximate equations 

• No long preparatory effort to extract all the describing equations. Practically, the 

extraction may rely fully on the simulator capabilities. 

In order to reduce this design effort, analog standard cell libraries can be used. However, 

since the circuits are then not tailored to their application, an optimum solution, with 

respect to power dissipation and area, is not obtained. Furthermore, such libraries, which 

typically have required more than 20 man years of design effort, very rapidly become 

obsolete due to technology evolution. Stochastic combinatorial optimization methods such 

as simulated annealing and genetic algorithms (GAs) require the computation of 
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performance parameters for a large number of circuit sizing alternatives. It is, therefore, 

beneficial to reduce the time associated with generating performance estimates. 

Synthesis tools adopting approaches to equation based strategies have been 

implemented. IDAC: An Interactive Design Tool for Analog CMOS Circuits [1] was one 

of the earliest tools developed in analog design automation, where designer has to specify 

the technology, desired building-block specifications. In IDAC, designer selects from 

different topologies existing in the database. Other tools [2], [3], [6], [22], [23], [24], [25], 

[26], and [27] adopted the same approach.  

 

Figure 1.1 Overview of IDAC system chart 

IDAC adopts a more knowledge based algorithm than an optimization one, by adopting 

equation based strategies and acquiring related circuit parameters e.g. minimum and 
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maximum value of the electrical parameters of MOS transistors, poly, well resistors, and 

layout rules, for computing circuit parasitics. In order to extract design worst-case solution, 

bias currents and mobility have been based on predictive equations which is not as accurate 

as models used nowadays in front-end simulators. These equations have been used to 

model the deterioration of chip performance under extreme high and low temperatures. 

IDAC system flow chart is shown in Fig. 1.1. 

IDAC, KANSYS [4], and OPASYN [3] employed efficient equation based algorithms in 

terms of synthesis time and complexity; generating rough designs more quickly, creating 

an opportunity to explore design space. However as technology advances, it becomes much 

harder to render simple design equations to generate even rough specifications. OASYS[2] 

employed numerical optimization tools along with the circuit simulator to fine-tune device 

sizes in order to achieve the required performance. 

OASYS [2], [28] adopted a hierarchical design strategy, in which analog circuit 

topologies are represented as a hierarchy of templates of abstract functional blocks. 

OASYS framework was based on three main ideas. Circuit topologies are selected from 

among fixed alternatives. A particular topology was chosen as a best candidate from which 

specifications were expected to be met. Secondly, the fixed alternatives for circuit 

topologies are identified hierarchically. A high level module was defined as an 

interconnection between sub-blocks. Finally, system level specifications could be then 

translated into sub-goals or specifications for the sub-block of a topology. The original 

motivation behind using separate selection and translation steps was to avoid the need to 

simultaneously design the interconnection and electrical characteristics of sub-blocks, 

where this hierarchical representation of topologies vastly simplifies the translation task 

since it tends to reduce the number of sub-blocks and simplify their connection. Hence, 

OASYS main contribution in the field of automated analog synthesis is the demonstration 

by which the analog behavior-to-structure synthesis problem could be recast in a highly 

structured form along with hierarchy as the key organizing principle. Translation involves 

knowledge of how performance specifications for a high-level block could be transformed 

into specifications for each sub-block, after which, these new specifications for each sub-
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block would be used to design the transistors within each sub-block. The topology selection 

and translation process are shown in Fig. 1.2. 

Each topology designed in OASYS has a design plan called plan steps in which three 

activities were performed. Heuristics, which are knowledge based decisions, make the 

design state more advanced by including some estimations that are based on the expertise 

of analog designers. After Heuristics planning, computation came next, where quantities 

like currents and biasing are computed from equations where sufficient information is 

available. These steps contributed mainly in assigning each sub-block certain 

specifications to achieve, and at last, a refinement step receives these new specifications, 

initiates sub-block design and retrieves the actual parameters that indicates the real 

performance of the circuit after synthesis. If simulated performance does not meet required 

specification, the topology is rejected and the search approach will be narrowed among the 

rest of the topologies.  

 

Figure 1.2. Topology selection and translation process in OASYS 
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In the selection phase, the algorithm can correct itself and return to a previous successful 

node in order to make an alternative topology style if one of the plan steps failed. On the 

basis of expert designers’ observation in OASYS selection strategies, the tool complies 

with certain structural constraints such as; choosing between differential and single pair 

input nodes, which are totally user defined. Predicting performance limitations of circuits 

is defined as heuristic discrimination, which is based on expert designers’ mature 

assessments of each topology. Obviously, it is the hardest type of discrimination since it is 

based on qualitative decisions which are hard to codify. 

The last type of discrimination is in generate-and-test style which seems to be naive, but 

it is much more natural to compare crafted designs by hand to get an insight into which 

will work better.   Basically, the major innovation behind OASYS [2] is the need to create 

an alternative to flat representations and to represent the tool in a more structured 

hierarchical form. However, Optimization of sub-blocks performances and employing 

knowledge on how choices made in one sub-circuit affects other sub-circuits is a hard 

problem.  

KANSYS: Kanpur Analog Synthesis from the Indian Institute of Technology overcomes 

the drawbacks of hierarchical design by allowing the transfer of expertise among different 

sub-circuits translation algorithms empowering topologies translation in a more efficient 

way. In case of a failing specification in one sub-block, analytical equations are modified 

affecting all the sub-blocks. In addition, a search algorithm traversing the space in a 

hierarchy-aware fashion accounting for multi-objective optimization and process 

variations, is adopted in [28] using GP [29] and age-layered population structure [30]. 

However, quantifying circuit parameters dependency and higher order terms remains a 

hard problem. [21] proposed an approach to reduce independent variables and speed up 

design runtime by computing correction factor (S-factor) from transistor level simulations. 

By multiplying this factor by linearized circuit equations, accurate design can be achieved. 

Other CAD tools adopted a design-to-layout approach [31-33] accounting for post-layout 

synthesis performance deterioration. AIDA [31] is the integration of GENOM-POF for 

circuit synthesis, and LAYGEN II for automated layout generation. GENOM-POF 
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performs circuit synthesis using multi-objective optimization approach, accounting for 

worst-case solution by exploring process, voltage and temperature variations in the design 

space. LAYGEN II generates a DRC proved layout based on the sized circuit descripted 

generate by GENOM-POF and high level layout guidelines. In circuit synthesis, the 

designer specifies design objective, number of optimization variables, the size of the design 

space, and the number of independent variables. Circuit parameters are optimized to obtain 

a set of Pareto-optimal solutions that fulfill all the constraints and shows different tradeoffs 

between circuit specifications. LAYGEN II uses the hierarchical template description, the 

sized devices, and the technology node kit to perform placement and routing followed by 

a validation step. The router uses placed modules, connectivity, symmetry, and sensitivity 

constraints in the optimization process. However, routing-aware-placement solution which 

ensures a better routability and reliability is not considered in the placement process.  

Device Constraints

Placement Constraints

Routing Constraints

Problem Setup

Technology Design Rules

Constrained enumeration of devices layout

Constrained placement and routing

Nestlist Extraction

Layout Netlist

Input: Xd

 

Figure 1.3. Layout optimization process 

Dessouky et al. [32] proposed a layout-oriented circuit synthesis approach through 

passing the layout information at the beginning of the design phase. The approach 

guarantee a sized circuit performance that satisfied required specifications in the presence 

of layout parasistcs. Habal et al. [33] proposed an automated synthesis of circuit layout by 

investigating every feasible layout of each device, and the layout with best geometry are 

selected. The layout optimization process is driven by design, placement, and routing 
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constraints as shown in Fig. 1.3. Layout parasitics are extracted using an integral equation 

field solver without modeling. The first stage of circuit synthesis process involves 

formulating scalar minimization sub-problem on the basis of linearized objective function 

f, followed by solving the sub-problem using generalized boundary curve algorithm 

(GBC). Layout-driven circuit sizing flow chart is shown is Fig. 1.4. 

 

Figure 1.4. Layout-driven circuit sizing flow chart  

A new layout is synthesized every iteration, where f has to be calculated for a new value 

of circuit parameters vector 𝑋𝑑 by simulating generated layout netlist. Finite forward 

difference technique is implemented to calculate the gradient of performance f with respect 

to 𝑋𝑑. 𝑘(𝑖) represents the design parameters vector at ith iteration at which performance is 

evaluated to determine next step by GBC. 

Most of previous work in analog circuit synthesis have adopted hierarchical flow 

approach to optimize performance at cell level. Knowledge and expertise are required to 

be implemented in the tool for inter-processes optimization. However, even if applicable, 

generated sized circuits are outperformed by manual designs in terms of area and 

performance. Other tools adopted optimization algorithms e.g. simulated annealing, 

genetic algorithm which, if not implemented with enough design knowledge, may take a 

very long run time and may fail in achieving high performance. Numerical optimization 

can be adopted in circuit synthesis, since it always gives an output, i.e., if the specifications 

are not met, one has quantitative information of how far away the target is. It is easier 
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compared to other engines to introduce new specifications and schematics. However, such 

optimization is computationally extensive and hides different design tradeoffs between 

circuit parameters. Furthermore, the goal specification depends heavily on the initial 

solution. A fast and intelligent circuit synthesis remains a challenging problem despite the 

high quality of previous work. 

Floorplanning and building block placement are becoming more crucial in physical 

design as the circuit sizes are growing rapidly and hierarchical design with IP blocks are 

widely used in to order to reduce design complexity. In VLSI design, floorplan and block 

placement are considered critical to the performance of design process. Classical 

floorplanning optimizes the area and wirelength of the chip blocks, and therefore, generates 

a compacted overlap-free placement of blocks. Floorplan representations are classified into 

two types; slicing and non-slicing representations. Slicing representation involves 

repetitively subdividing floorplan area horizontally and vertically into finite number of 

non-overlapping structures. Slicing brings faster packing runtime and higher convergence 

speed, compared to non-slicing representation.  Number of blocks per slicing structure and, 

hence, cost evaluations are significantly reduced, where each structure is considered a 

separate solution space. However, optimal solution may not be achieved in the solution 

space of slicing structures. Slicing tree [9] and normalized polish expression [10] are 

popular slicing representation.  

For considerably moderate solution spaces, Non-slicing floorplan can bring optimal 

solution, i.e. minimum area, interconnect delay, and minimum critical path, in a reasonable 

convergence time. SP [11], TCG [12], O-tree [13], and corner block list [14] are widely 

used non-slicing representations. Murata et al. [15] defined P-admissible solution space to 

distinguish non-slicing floorplans by the following four requirements; 

1) Solution space is finite 

2) Every solution is feasible 

3) Packing and cost evaluation can be performed in polynomial time, and 

4) Best evaluated packing in solution space corresponds to an optimal placement. 

According to this classification, SP, TCG, O-tree, and BSG [16] are P-admissible while 

slicing tree, normalized polish expression, B*tree [17], and CBL are not. Since, slicing and 
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normalized polish expression do not generate optimal packing structures, they violate the 

conditions, and thus are not P-admissible representation.  

Guo et al. [13] proposed an order tree (O-tree) representation for a left and bottom 

compacted placement with n.logn run time complexity. An admissible placement is a 

compacted one where blocks can neither move down nor left. According to the 

representation, each rectangular block is defined by its tuple {ℎ𝑖 , 𝑤𝑖}, where ℎ𝑖 and 𝑤𝑖 are 

height and width of blocks respectively. A constraint graph of the placement is G=(V,E), 

where V presents each block in a form of a node. E represents geometric constraints 

between blocks which can be represented in a form of an edge drawn from the boundary 

of a block to another. Given an 8-node tree shown in Fig. 1.5, the placement can be encoded 

as (001010110100110,ABCDEFG). Starting from the root, node A is visited first and a bit 

‘0’ is recorded. Then node B is visited and a bit ‘0’ is recorded. On the way back to the 

root, two bit ‘11’ are recorded. The total number of possible configuration of an n-node 

tree is O(𝑛! 22𝑛−2/𝑛1.5). Placement post packing may not be compacted, resulting in a 

mismatch between O-representation and its placement after a series of compaction 

operations. Similar to O-tree, B*tree solutions may not be feasible, and thus they are not 

P-admissible representations.   

 

Figure 1.5. . Encoding of 8-node O-tree 

Nakatake et al. [16] proposed a method of modules packing based on bounded-sliceline 

grid (BSG) structure. BSG is a meta-grid which does not contain physical dimensions, 

however, it is a topological grid composed of orthogonal lines called the BSG-units. BSG 

divides the planes into rooms associated with binary information coding the geometric 

relations between modules, such that any two rooms are uniquely in either relation. 
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Modules are assigned to BSG rooms in which they inherent the geometric relations 

between their rooms and other room in the meta-grid. Modules packing run time is O(𝑛2). 

Hong et al. [14] proposed an efficient and effective topological representation of Non-

Slicing Floorplan (CBL), which takes only linear time to derive modules placement from 

a representation. Unlike O-tree representation, corner block list defines the floorplan 

structure. Thus CBL is more flexible for floorplan optimization in terms of area and 

wirelength with different widths and heights of modules. Corner block list takes only 𝑛(3 +

[𝑙𝑔 𝑛]) bits to describe, where  𝑙𝑔 𝑛 is the minimum integral number which implies that 

corner block list need fewer bits to describe than SP and BSG needs. Corner block list 

performs recursive detection of corner block in a top-right mode to describe block 

placement. When the detection ends, block names and their orientations are concatenated 

in a reversed manner. The orientation of the corner block is defined by the joint of its left 

and right segment of the block and T-junction containing the joint. If the T-junction is 

rotated by 90 degress, the block is considered as vertically oriented, therefore its orientation 

is denoted by 0. The number of 1’s in the T-junction list denotes the number of T-junctions 

attached to the block. Each string of 1’s in T-junction list is ended by a 0 to separate it from 

other block detection. The advantage of CBL representation is that it does not only 

represent slicing structures, however, it can also represent non-slicing floorplan. The time 

complexity of floorplan realization is O(n) time which is better than SP, TCG, BSG, and 

TCG-S. 

Lin et al. [12] proposed transitive close graph representation (TCG) for general non-

slicing floorplans. TCG uses horizontal and vertical transitive closure graphs 𝐶ℎ, 𝐶𝑣 to 

describe the geometric relation between modules of the placement. Lin et al. extended the 

concept of P-admissible representation to that of P*-admissible one by adding a fifth 

condition; both horizontal and vertical geometrical information between modules are 

defined in the representation. The fifth condition ease the handling of the floorplan design 

problems with further requirements such as module sizing and constraints, e.g., boundary, 

symmetry and proximity constraints. Thereby, the representation corresponds to the 

packing if the P*-admissible conditions are satisfied.  

Consider the uncompact placement in Fig. 1.6. Since O-tree is not a P-admissible 
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representation, it is not flexible in handling uncompacted floorplan structure. Geometric 

relations between modules cannot be directly derived using O-tree and B*-tree 

representation unless the placement is packed. Whereas, TCG can handle P*-admissible 

representation due to its flexibility and elegant features. Some geometric features cannot 

be obtained by O-tree and B*-tree representations, implying that O-tree and B*-tree 

representations are harder to handle floorplan design and render better results in area and 

wirelength optimization problems. Furthermore, due to their compaction operation, 

perturbing the placement solution in O-tree and B*-tree may results in an unpacked 

solution implying that placement will not correspond to the representation after packing 

harming the solution structure and thus the optimum solution. 

 

Figure 1.6. (a) Placement of four uncompact blocks. (b) The corresponding horizontal and vertical 

transitive closure graph 𝐶ℎand 𝐶𝑣 

TCG does not require any additional constraint graph for evaluation. Unlike SP, TCG 

supports incremental update after each solution perturbation and keeps positions of 

boundary modules as well as their geometric relation. Regarding SP, geometric relation 

among modules of a placement is not clear before packing and thus, SP constraint graphs 

are required to be generated from scratch for packing evaluation after each operation. CBL 

has a smaller feasible solution space and a faster packing scheme. However, CBL is not P-

admissible as it represents general incompact placement. Given a TCG, its corresponding 

placement can be derived in O(𝑛2) by performing longest path algorithm, which is covered 

later in Chapter 4. 
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TCG representation is identified by three main properties; First, 𝐶ℎ and 𝐶𝑣 are cyclic. A 

directed edge is constructed for each pair of nodes, which denotes modules in 𝐶ℎ and 𝐶𝑣 

graphs, according to geometric relations of these two modules. Since a pair of modules 

cannot be both below and above (left and right) to one another, the resulting 𝐶ℎ and 𝐶𝑣 

graphs must be acyclic. Second, for the aforementioned property 1, a pair of nodes must 

be connected by an edge in only one of the transitive closure graphs. Property 2 ensures 

that modules do not overlap since there is no horizontal and vertical relations between any 

pair of modules in a placement. The number of edges encoding the geometric relations 

between modules in a placement is 𝑚(𝑚 − 1)/2, where m is the number of modules. 

Third, the transitive closure graph 𝐶ℎ(𝐶𝑣) is equal to itself. 

TCG-S [18] a general floorplan representation was introduced, through integrating the 

properties of TCG and SP for a faster O(𝑛 𝑙𝑜𝑔 𝑛) runtime packing scheme using a 

balanced-binary search tree [19]. Same perturbing algorithm is adopted in both TCG and 

TCG-S representations, only the packing scheme in TCG-S is faster. Sequence Г− is the 

topological order of 𝐶ℎ and 𝐶𝑣 closure graphs and therefore can be determined by 𝐶ℎ and 

𝐶𝑣. Transparency of geometric relation between modules in placements and fast 

incremental update for cost realization are inherited from TCG. Furthermore, TCG-S 

shares the same feasibility properties with TCG. Given a floorplan, Г− can be derived by 

recursively extracting the module on the bottom-left corner of the placement as shown in 

Fig. 1.7. The run time of the extraction process is not indicated in [18]. 𝐶ℎ and 𝐶𝑣 can be 

constructed based on Г− by constructing a directed edge from each node 𝑏𝑖 before 𝑏𝑗 in Г− 

in 𝐶ℎ (𝐶𝑣) if 𝑏𝑖 ⊢ 𝑏𝑗 (𝑏𝑖 ⊥ 𝑏𝑗). 
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Figure 1.7. (a)–(f) Process to extract a Г− from block placement. (g) Resulting TCG-S. 



16 
 

a

b

c

 

Figure 1.8. A block placement with sequence Г− 〈a, b, c〉 

bs

ba

bt

ba

Th Tv

bs

ba

bt

ba

T’h T’v

bs

ba

bt

ba

Th Tv

bb

ba

ba

bb

T’h T’v

bb

bs bt

ba

Th Tv

bc

bs

ba

bb

T’h T’v

btbs

bbbb
bc

ba

bb

bc

ba

bc

bt

bs

bt

bs

bt bt

bs

a a a

b b

c

xa=0

ya=0

xb=x’s=0

yb=y’a=1.5

xc=x’s=0

yc=y’b=4

 

Figure 1.9. Packing scheme for the TCG-S of Fig. 1.8. In each step, the red-black trees 𝑇ℎ and , 𝑇𝑣 

corresponding to the 𝑅ℎ and 𝑅𝑣 right after the module insertion, are shown. 𝑇ℎ
′  (𝑇𝑣

′ ) gives the resulting red-

black tree after removing the modules no longer in 𝑅ℎ (𝑅𝑣) and performing rotation to balance the tree. 

Note that, as a fundamental property of the binary search tree, the search-tree (in-order traversal) 

order is still maintained after the tree rotation. 
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Lin et al. [18] proposed an 𝑂(𝑛𝑙𝑜𝑔𝑛) time packing scheme using Г− and horizontal and 

vertical contours 𝑅ℎ and 𝑅𝑣, where n is the number of modules in a placement. For each 

module in the sequence defined by Г−, the module is packed to a corner formed by two 

previously placed modules in 𝑅ℎ or 𝑅𝑣 determined by the geometric relations defined by 

𝐶ℎ or 𝐶𝑣. 

Definition: Horizontal contour 𝑅ℎ and vertical contour 𝑅𝑣 are lists of modules 𝑏𝑖’s in 

which there does not exist any module 𝑏𝑗 with 𝑦𝑗 ≥ 𝑦𝑖
′, 𝑦𝑗

′ ≥ 𝑦𝑖
′ and 𝑥𝑗 ≥ 𝑥𝑖

′, 𝑥𝑗
′ ≥ 𝑥𝑖

′ 

respectively.  

The coordinates of the right and top boundaries modules in 𝑅ℎ and 𝑅𝑣 are sorted and 

kept in a Red-Black search tree [19] 𝑇ℎ and 𝑇𝑣 respectively. Module 𝑏𝑗 is packed by 

searching for the last module 𝑏𝑝, where 𝑏𝑝 ⊢ 𝑏𝑗 or 𝑏𝑝 ⊥ 𝑏𝑗, in order to compute the x-

coordinate or y-coordinate of 𝑏𝑗 according to the geometrical relation between modules 𝑏𝑝 

and 𝑏𝑗. Module 𝑏𝑘 is traversed from its root to its right child if 𝑏𝑘 ⊢ 𝑏𝑗 (𝑏𝑘 ⊥ 𝑏𝑗), i.e. the 

right (top) boundary of module 𝑏𝑗 is larger than that of module 𝑏𝑘. Therefore, 𝑏𝑗 should be 

located in sub-tree of the search tree. The process alternates to the left child of 𝑏𝑘 if 𝑏𝑘 ⊥ 

𝑏𝑗 (𝑏𝑘 ⊢ 𝑏𝑗). Process continues until a leaf position is encountered and 𝑏𝑗 is then considered 

the leaf node. Fig. 9 shows an example of TCG-S packing scheme of Fig. 8 with sequence 

Г− 〈a b c〉. 

For placement, [34], [35] and [37] used a feasible sequence pair representation to develop 

symmetry constraint-driven placement tool. In order to illustrate a sequence pair 

representation which is symmetrically feasible, one would be tempted to perform minor 

changes to the search space exploration: if the current encoding proves to be consistent 

with the symmetry constraints then the cost of the placement configuration is evaluated 

and the annealing algorithm operates normally. Otherwise, the current encoding is 

infeasible (in symmetry point of view) and therefore, disregarded. Unfortunately, such a 

simple solution is not effective taking into account that the size of the search space without 

symmetry constraints is 𝑂(𝑛2) (the total number of sequence-pairs). The size of the 

solution space becomes significantly smaller if the placement configuration must contain 
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a symmetry group. A better strategy is to explore only those sequence-pairs which comply 

with the symmetry constraints; recognize such sequence pairs and efficiently restrict the 

annealer exploration only to their subspace. 

Whereas, [38] used the SP to tackle the placement problem with boundary constraints. 

A new constraint-driven placement approach is adopted in [36] based on constraints 

extraction via topology and signal flow analysis. Constraints are classified according to 

their critical levels and flexibility. The least flexible constraints has the highest priority in 

the optimization process. 

In high performance circuits, it is required to places groups of devices symmetrically 

with respect to each other. The reason is to match the layout-induced parasitics and 

mechanical stresses in fabrication process within the symmetric groups. Failing to meet 

matching constraints lead to different values of parasitic resistances and capacitances at the 

differential output node. Such parasitic mismatch leads to higher offset voltage at the input 

differential pair and hence, lower gain and common mode rejection ratio. Balasa et al. [34] 

proposed a method to realize and handle symmetry constraints in block placement problem 

using sequence pair representation. Only the symmetry-feasible sequence pairs are 

explored, then passed to the annealer for area optimization.  

Dong et al. [36] proposed a new constraint-driven placement technique for analog 

integrated circuits, where constraint are prioritized according to their critical levels. Such 

classification facilitates the search for better placement solution by reducing devices 

mismatch and critical paths parasitics indicated by the extracted constraints. Circuit 

constraints are extracted according to the topology and the signal flow analysis combined 

with heuristic knowledge of analog design. Symmetry and matching constraints are 

extracted using isomorphism graphs by primitive cell recognition in signal flow analysis. 

Constraints priorities are assigned values indicating their critical effect on performance of 

analog circuit, e.g., differential pair has a higher priority than other symmetry constraints. 

The objective function includes area, wirelength and critical path minimization using less 

flexible first algorithm (LFF).  
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Placement congestion problem is handled in previous literature [39-45] by employing 

routing-aware algorithms in the context of placement problem to guarantee the reliability 

and routability of the optimal placement solution. Constraints driven placement 

optimization are greedy and results in a compact placement solution, where its feasibility 

is questionable in terms of the reliability and the routability of the placed modules. In order 

to make the solution feasible, highly net-congested devices should be separated to create 

free spaces for successful routing. One approach [44] is to expand devices with high net 

congestion during placement and then release them to create routing channels. A 

probabilistic model is used in order to determine which devices need to expand and the 

corresponding expandable levels.  

Operational amplifier is one of the most fundamental components in analog integrated 

circuit design. One of the essential tasks is to provide a high-performance opamp with high 

gain and bandwidth, and fast settling time. High-speed opamps use only one stage to reduce 

devices parasitics in order to achieve higher bandwidth. Telescopic opamps and folded 

cascode opamps are commonly used for this purpose.  

The aim of this research is to present an optimized framework for operational amplifiers 

coupling both circuit design, accounting for process variation, and layout. Automated 

layout process includes floorplan design empowering area minimization, device placement 

accounting for symmetry constraints, and optimization-based transistor-level routing. 

Hence, assist in the introduction of the concept of optimized standard-cell, which is well-

established in the digital flow, in the analog circuit design. 
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2.Circuit level synthesis 

2.1. Folded Cascode OTA 

2.1.1. Introduction 

Folded cascode operational transconductance amplifier (OTA) is one of the most used 

topologies in analog circuits. It is a one stage amplifier since it has only one high impedance 

node at the output. It is considered as a self-compensated OTA due to the high output 

impedance. The compensation is usually achieved by the load capacitance, thus as the load 

capacitance becomes larger the operational amplifier becomes more stable but this comes 

at the expense of a lower bandwidth. Folded cascode OTA provides higher swing compared 

to the telescopic OTA as the input differential pair is in a separate branch making the output 

swing only limited by the overdrive voltage of four transistors instead of five, the case of 

telescopic OTA. 

2.1.2. Basic Operation 

The theory behind the folded cascode amplifier is to apply cascode transistors to the 

input differential pair and use complementary type of devices, converting applied input 

voltages to current and apply the result to a common gate stage. Fig. 2.1 shows the 

schematic of the folded cascode OTA. The static current consumption equation is given 

by: 

𝐼𝑇𝑜𝑡. = 2 ∗ 𝐼3 + 𝐼𝑏𝑖𝑎𝑠 + 𝐼𝐶𝑀𝐹𝐵                                                                                                 ( 2.1 )   

The resistance at the output node can be calculated by: 

𝑅𝑜𝑢𝑡 = 𝑅𝑑𝑜𝑤𝑛//𝑅𝑢𝑝 ≈ (𝑔𝑚5𝑟𝑜5(𝑟𝑜3 // 𝑟𝑜1)) // (𝑔𝑚7𝑟𝑜7𝑟𝑜9)                                 ( 2.2 )   

Therefore, the DC gain can of the amplifier is given by: 

𝐴𝑣 = 𝐺𝑚 ∗ 𝑅𝑜𝑢𝑡 = −𝑔𝑚1 ((𝑔𝑚5𝑟𝑜5(𝑟𝑜3 // 𝑟𝑜1)) // (𝑔𝑚7𝑟𝑜7𝑟𝑜9))                      ( 2.3 )  

Output swing which is difference between 𝑉𝑜𝑢𝑡𝑚𝑎𝑥 and 𝑉𝑜𝑢𝑡𝑚𝑖𝑛 is calculated as follows: 

𝑉𝑜𝑢𝑡𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑉𝑏,1 + 𝑉𝑡ℎ,7      𝑉𝑑𝑑 − 𝑉𝑜𝑑,9 − 𝑉𝑜𝑑,7)                                                      ( 2.4 )  

𝑉𝑜𝑢𝑡𝑚𝑖𝑛 = max (𝑉𝑜𝑑,3 + 𝑉𝑜𝑑,5   𝑉𝑏,2 − 𝑉𝑡ℎ,5)      ( 2.5 ) 
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Figure 2.1. Folded cascode OTA circuit diagram 

𝑉𝑜𝑢𝑡𝑚𝑖𝑛 and 𝑉𝑜𝑢𝑡𝑚𝑎𝑥 are determined according to dc bias of the circuit, the maximum 

output voltage swing is achieved by the condition: 

𝑉𝑏,2 ≤  𝑉𝑜𝑑,3 + 𝑉𝑜𝑑,5 + 𝑉𝑡ℎ,5                                                                                                    ( 2.6 ) 

           

𝑉𝑏,1 ≥ 𝑉𝑑𝑑 −  𝑉𝑜𝑑,7 − 𝑉𝑜𝑑,9 − 𝑉𝑡ℎ,7                                                                                        ( 2.7 ) 

          

Therefore, the absolute maximum output voltage swing is given by: 

𝑆𝑤𝑖𝑛𝑔𝑜𝑢𝑡 =  𝑉𝑑𝑑 − ( 𝑉𝑜𝑑,3 + 𝑉𝑜𝑑,5 +  𝑉𝑜𝑑,7 + 𝑉𝑜𝑑,9)                                                        ( 2.8 )   

Input common mode range which is the difference between 𝑉𝑖𝑛𝐶𝑀,𝑚𝑎𝑥 and 𝑉𝑖𝑛𝐶𝑀,𝑚𝑖𝑛 is 

calculated as follows: 

𝑉𝑖𝑛𝐶𝑀,𝑚𝑖𝑛 = 0                                                                                                                            ( 2.9 )    

𝑉𝑖𝑛𝐶𝑀,𝑚𝑎𝑥 = 𝑉𝑑𝑑 − (𝑉𝑜𝑑,𝐶𝑆 + 𝑉𝑔𝑠,1)                                                                                   ( 2.10 ) 

X 
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Since the input differential pair are PMOS, input common mode voltage level can be 

lowered to 0v without entering cut-off region of PMOS devices. 

The maximum input common mode range is given by: 

𝐶𝑀𝑅𝑎𝑛𝑔𝑒𝑖𝑛𝑝𝑢𝑡 = 𝑉𝑖𝑛𝐶𝑀,𝑚𝑎𝑥 − 𝑉𝑖𝑛𝐶𝑀,𝑚𝑖𝑛 = 𝑉𝑑𝑑 − (𝑉𝑜𝑑,𝐶𝑆 + 𝑉𝑔𝑠,1)                        ( 2.11 ) 

The unity gain frequency is calculated as follows: 

𝑓𝑢 ≈
𝑔𝑚1

2∗𝜋∗𝐶𝑜𝑢𝑡
                                                                                                                            ( 2.12 )  

Bandwidth of the OTA, which represents its dominant pole, can be approximated by: 

𝐵𝑊 = 𝑓𝑝𝑑 =
𝑓𝑢

𝐴𝑣
≈

1

2 ∗ 𝜋 ∗ 𝑅𝑜𝑢𝑡 ∗ 𝐶𝑜𝑢𝑡
                                                                             ( 2.13 ) 

Where, 

𝐶𝑜𝑢𝑡 = 𝐶𝐿 + 𝐶𝑔𝑑,5 + 𝐶𝑔𝑑,7 + 𝐶𝑑𝑏,5 + 𝐶𝑑𝑏,7                                                                        ( 2.14 ) 

The first non-dominant pole is calculated by: 

𝑓𝑝𝑛𝑑,1 =
1

2 ∗ 𝜋 ∗ 𝑅𝐹𝑛𝑜𝑑𝑒 ∗ 𝐶𝐹𝑛𝑜𝑑𝑒
                                                                                        ( 2.15 ) 

Where, 

𝑅𝐹𝑛𝑜𝑑𝑒 = (𝑟𝑜1// 𝑟𝑜3)// (
1

1 + (𝑔𝑚5 + 𝑔𝑚𝑏5)
∗ (1 +

𝑔𝑚7𝑟𝑜7𝑟𝑜9

𝑟𝑜5
)) ≈

1

𝑔𝑚5
         ( 2.16 ) 

𝐶𝐹𝑛𝑜𝑑𝑒 = 𝐶𝑔𝑠,5 + 𝐶𝑔𝑑,3 + 𝐶𝑔𝑑,1 + 𝐶𝑑𝑏,3 + 𝐶𝑑𝑏,1                                                               ( 2.17 ) 

Therefore, 𝑓𝑝𝑛𝑑,1 can be approximated by: 

𝑓𝑝𝑛𝑑,1 =
𝑔𝑚5

2 ∗ 𝜋 ∗ 𝐶𝐹𝑛𝑜𝑑𝑒
                                                                                                         ( 2.18 ) 

The second non-dominant pole at node X is calculated by: 

𝑓𝑝𝑛𝑑,2 =
1

2 ∗ 𝜋 ∗ 𝑅𝑋 ∗ 𝐶𝑋
                                                                                                       ( 2.19 ) 

Where, 

𝑅𝑋 = 𝑟𝑜9// (
1

1 + (𝑔𝑚7 + 𝑔𝑚𝑏7)
∗ (1 +

𝑅𝑌

𝑟𝑜7
) )                                                              ( 2.20 ) 
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𝑅𝑌 = 𝑔𝑚5𝑟𝑜5(𝑟𝑜3//𝑟𝑜1)                                                                                                      ( 2.21 ) 

𝐶𝑋 = 𝐶𝑔𝑠,7 + 𝐶𝑔𝑑,9                                                                                                                   ( 2.22 ) 

Therefore, 𝑓𝑝𝑛𝑑,2 can be approximated by: 

𝑓𝑝𝑛𝑑,2 =
𝑔𝑚7

2𝜋𝐶𝑋
                                                                                                                         ( 2.23 ) 

The Phase margin, which determines the stability of the OTA, is given by: 

𝑃𝑀 = 180 − 𝑡𝑎𝑛−1 (
𝑓𝑢

𝑓𝑝𝑑
) − 𝑡𝑎𝑛−1 (

𝑓𝑢

𝑓𝑝𝑛𝑑,1
) − 𝑡𝑎𝑛−1 (

𝑓𝑢

𝑓𝑝𝑛𝑑.2
)                                ( 2.24 ) 
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2.1.3. Common Mode Feedback  
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Figure 2.2. Common Mode FeedBack Circuit 

The output voltage level of the amplifier is determined by the common mode level of 

the input differential signals. Since the output node is characterized by high impedance, it 

is hard to adjust the DC level of output. A negative feedback system is required to adjust 

the voltage at the output so that output current is the same at both sides of tail transistors. 

The output common mode of the amplifier is sensed by connecting them to a gate of sense 

transistors which are part of the CMFB circuits shown in Fig. 2.2.  
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2.1.4. Bias Circuit 

Voltage biasing results in large current variations because of the process variations. 

Current biasing keeps the current constant in the device and independent of process 

variations. A simple current mirror has a low output impedance implying large variations 

in the mirrored current. A cascode current mirror is required to increase the output 

impedance and reduce the variations in DC output current, since the variations in the output 

voltage is reduced. Therefore, the current will be exactly mirrored the same to output 

transistor. Cascode current mirror circuit shown in Fig. 2.3 is used to simplify the design 

flow. The aspect ratio of the devices are chosen such that the sizing in both branches are 

related to the current by Eq. ( 2.26 ) and ( 2.27 ) . PMOS devices are required to mirror the 

current to the input current source device in input stage, cascode load, and CMFB circuit. 

Currents supplied by the bias circuit to the OTA are adjusted by sizing’s ratio between the 

mirrored devices. 

(𝑊
𝐿⁄ )

3

(𝑊
𝐿⁄ )

0

=
(𝑊

𝐿⁄ )
2

(𝑊
𝐿⁄ )

1

                                                                                                                ( 2.25 ) 

𝐼2

𝐼1
=

(𝑊
𝐿⁄ )

2

(𝑊
𝐿⁄ )

1

                                                                                                                            ( 2.26 ) 

2.1.5. Advantages 

- Large gain due to high output resistance. 

- Moderate output swing. 

- Can be used a unity gain buffer as output swing is relatively higher than other 

amplifier architectures, e.g. telescopic cascode. 

- Higher bandwidth compared to telescopic cascode amplifier due to lower 

impedance at the output node. 

2.1.6. Disadvantages 

- Large power dissipation compared to telescopic and two stage miller compensated 

amplifiers. 
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- Lower phase margin compared to telescopic cascode amplifier due to higher 

capacitance value at folding node. 
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Figure 2.3. Folded Cascode OPAmp Bias circuit 
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2.2. Sensitivity Analysis 

The high number of parameters in analog circuit complex models constitute a 

significant problem in their design, since the parameter estimation becomes a high 

dimensional, multi-modal and predominantly a non-linear problem. Approaches are 

adopted to resolve the problem by implementing a wide range of optimization algorithms, 

which are neither feasible nor efficient in determining the performance dominating 

parameters in the non-monotonically, multi-dimension design space. A sensitivity analysis 

facilitates the search for the most influential parameters in the circuit, allowing the 

reduction of total number of parameter in the optimization process, or quantify some 

interactions effects between input parameter within the circuit model. Sensitivity analysis 

(SA) tools are of immeasurable value, allowing the study of how the uncertainty in model 

output can be apportioned to difference source of uncertainties represented in the model 

inputs. SA has a wide scope of usage and applications; model understanding, verification, 

simplifying models and prioritization of model parameters.  

Definition of sensitivity analysis involves models, inputs and outputs. In order to define 

model input with respect to uncertainty and the sensitivity analysis, a model can be 

classified into: 

 Diagnostic or prognostic: in which the model can be used to understand a law or in 

predicting the behavior of the system given an understandable law. Models thus can 

range from speculations to accurately predicting a system. 

 Data-driven or law-driven: A law-driven model puts together trusted laws which 

have been attributed to the system, in order to predict its behavior. A data-driven 

model treats the components of a system as a signal and derives its properties 

statistically. Law-driven models have the higher capacity to understand system 

behavior under unobserved circumstances. Whereas, data-driven models is only 

limited to the behavior associated with data in their estimations. 
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Definition of model input depends on the model under study. In order to have an 

acceptable grasp of the uncertainty principle and sensitivity analysis, model input is defined 

as any parameters that derives variations in the model output. 

 

Figure 2.4 Parameric bootstrap version of uncertainty and sensitivity analysis 

Consider the flow chart in Fig. 2.4. At the end of the estimation step, parameter values 

as well as their error are known. The model is considered true and uncertainty analysis is 

performed through propagating uncertainty in the parameters of the model, all the way to 

the model output. From uncertainty analysis, the average output and standard deviation is 

computed. This analysis can be repeated with sufficiently large number of parameters 

variations, hence it is called ‘parametric bootstrap’. It is a process of repeatedly propagating 

the uncertainty in the parameters through the model, each iteration computing the average 

output and the standard deviation, in order to increase the accuracy of the output values 

and hence reduce errors. Sensitivity analysis is then performed to determine which of the 

input parameters are more important in influencing the uncertainty of the model output. It 
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is of high significance that objectives and input parameters for uncertainty and sensitivity 

analysis are carefully selected. The more parameters considered as input, the greater and 

the more accurate a variance to be expected in the model output. 

2.2.1. Classification of sensitivity analysis 

Sensitivity analysis can serve a number of useful purposes in modelling. It can uncover 

errors in the model, establish priorities for research, and simplify models. SA can be 

categorized into two approaches; local and global analysis. Local analysis studies the small 

input perturbations on the model output which occur around nominal values, e.g., the mean 

of an input variable. Local SA is considered a deterministic approach, where output 

variations due these small perturbation are obtained by computing the partial derivative of 

the model at a certain point. Derivative-based approach has the advantage of being efficient 

in terms of run time. The model needs to be executed few times according to the dimension 

of the array of derivatives. However, the failing part of this approach is that it is unaware 

if the model input is uncertain or if the model is of unknown linearity. Derivatives are only 

informative around the nominal value where they are computed and hence, do not provide 

for any exploration of the rest of the space of the input parameters. Such disadvantage has 

a minor effect or even no effect for linear systems, however, it matters greatly knowing 

that the system is non-linear and non-monotonic. 

The very basic definition of sensitivity Index (SI) is given by: 

𝑆𝐼𝑖

=
𝑦𝑖

𝑚𝑎𝑥 − 𝑦𝑖
𝑚𝑖𝑛

𝑦𝑖
𝑚𝑎𝑥                                                                                                                               ( 2.27 ) 

Where 𝑦𝑖
𝑚𝑎𝑥 is the maximum between y(𝑥𝑖

𝑚𝑖𝑛) and y(𝑥𝑖
𝑚𝑎𝑥), and y(𝑥𝑖) is computed at 

nominal value 𝑥0. Variable 𝑥𝑖 is moved one-at-a-time (OAT) to its respective  𝑥𝑖
𝑚𝑎𝑥 and 

𝑥𝑖
𝑚𝑖𝑛. 
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2.2.2. Local Sensitivity analysis 

 According to local sensitivity analysis, a simple calculation of sensitivity of f(x) 

can be given considering second order Taylor series, is given by: 

𝑓(𝑥0 + Δ) = 𝑓(𝑥0) + ∑
𝜕𝑓(𝑥0)

𝜕𝑥𝑖

𝑘

𝑖=1

∆𝑖 +
1

2
∑ ∑

𝜕2𝑓(𝑥0)

𝜕𝑥𝑖𝜕𝑥𝑗
∆𝑖∆𝑗

𝑘

𝑗=1

𝑘

𝑖=1

                                  (  2.28 ) 

Using the OAT approach realizing k+1 runs, a finite difference approximation to the first 

order local sensitivity can be computed as follows: 

𝜕𝑓

𝜕𝑥𝑖
≅

𝑦(𝑥0,𝑖 + ∆𝑖) − 𝑦(𝑥0,𝑖)

∆𝑖
                                                                                               ( 2.29 ) 

For uncorrelated inputs variables, expectation vector and the variance of the function f(x) 

is defined as: 

𝐸(𝑌) = 𝑓(𝑥0)                                                                                                                          ( 2.30 ) 

and 

𝑣𝑎𝑟(𝑌) = ∑ [
𝜕𝑓(𝑥0)

𝜕𝑥𝑖
]

2

. 𝑣𝑎𝑟(𝑥𝑖)

𝑘

𝑖=1

                                                                                     ( 2.31 ) 

In order to overcome the large limitation of local SA, which only considers local 

variations accompanied with limited range linearity calculations, global SA has been 

introduced in a statistical framework. Global SA considers the whole range of variations 

of input variables, therefore, can be used in the study of models in order to identify and 

prioritize the most influential inputs parameters, identify non-influential parameters which 

has a very minor effect on the output uncertainty in order to be fixed during design space 

exploration. Global SA can also be used to map the output behavior in function of input 

variables by focusing on certain range of inputs values, and the calibration and validation 

of model equations. The aim of this section is to provide a review on global sensitivity 

analysis which is one of the techniques in ANOVA family. 
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2.2.3. Global Sensitivity analysis 

2.2.3.1. Regression-based correlation analysis 

The correlation coefficient designate the strength and direction of a linear relationship 

between two random variables. The best known coefficient is the Pearson product-moment 

correlation coefficient, which calculated by dividing the covariance of the two variables by 

the product of their standard deviations. Pearson correlation coefficient is defined as: 

𝜌𝑋,𝑌 =
𝐸(𝑋, 𝑌) − 𝐸(𝑋)𝐸(𝑌)

√𝐸(𝑋2) − 𝐸2(𝑋)√𝐸(𝑌2) − 𝐸2(𝑌)
                                                                      ( 2.32 ) 

Combining MonteCarlo simulation, Person correlation coefficient is given by: 

𝑟𝑥,𝑦 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑁

𝑖=1

                                                                               ( 2.33 ) 

Where �̅� is the mean value of 𝑥𝑖 and �̅� is the mean value of 𝑦𝑖. Correlation coefficients 

values range in the interval [-1,1], where 0 indicates a linear relationship and (-1,1) indicate 

a strong relationship between random variables under study. Consider a variable 𝑌 

dependent upon number of variables 𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛), hence the correlation 

coefficient can be used as a sensitivity measure. 

𝑆𝑖 = 𝜌𝑋,𝑌                                                                                                                                    ( 2.34 ) 

The correlation is powerful measure to summarize linear relationships between 

variables. However, in case of non-linearity it may lead to wrong conclusions. Hence, a 

correlation analysis cannot replace individual examination of data. 

Pearson correlation coefficient is combined with regression coefficient obtained by 

linear regression analysis. Regression analysis indicates the strength and direction of a 

relationship between two random variables 𝑋 and 𝑌 as well. Random variable is defined to 

to be dependent and modeled as a function of an independent variable, its parameters, and 

a random error term. In linear regression, in order to model 𝑛 date points there is one 

independent variable 𝑥𝑖, two parameters a and b and an error term 𝜀𝑖. 
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𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝜀𝑖                                                                                                                    ( 2.35 ) 

In order to compute 𝑎 and 𝑏, least square method is used as follows: 

�̂� = �̅� − �̂��̅�                                                                                                                               ( 2.36 ) 

�̂� =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1

                                                                                                   ( 2.37 ) 

The interrelation between linear regression and Pearson correlation coefficient is defined 

by 

�̂� = 𝑟𝑥,𝑦

𝑆𝑦

𝑆𝑥
                                                                                                                                ( 2.38 ) 

Where 𝑆𝑦 and 𝑆𝑥 are the standard deviation of the 𝑛 data points. 

The proportion of variability in the data processed by the linear regression is defined 

by the coefficient of determination 𝑅𝑥,𝑦
2 . The variability of date is measured by computing 

the residuals as follows: 

�̂�𝑖 = 𝑦𝑖 − (�̂� + �̂�𝑥𝑖)                                                                                                               ( 2.39 ) 

Hence, coefficient of determination 𝑅𝑥,𝑦
2  can be calculated as follows: 

𝑅𝑥,𝑦
2 = 1 −

∑ �̂�2
𝑖

𝑁
𝑖=1

∑ (𝑦𝑖 − �̂�)2𝑁
𝑖=1

                                                                                                    ( 2.40 ) 

Where 𝑅𝑥,𝑦
2  is the square of the Pearson correlation coefficient 𝑟𝑥,𝑦, in case of linear 

regression. 

2.2.3.2. Variance-based approaches 

The models under study are described by a function 𝑌 = 𝑓(𝑋), where  𝑋 =

(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) and 𝑋 is a random input vector consisting of 𝑛 random variables. 𝑌 =

(𝑌1, 𝑌2, 𝑌3, … , 𝑌𝑚) denotes the random output vector functions of random variables. 𝑓(𝑋) 

can be decomposed into summands of increasing order components. 
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𝑓(𝑋) = 𝑓0 + ∑ 𝑓1(𝑋1)

𝑛

𝑖=1

+ ∑ 𝑓𝑖,𝑗(𝑋𝑖, 𝑋𝑗)

1≤𝑖≤𝑗≤𝑛

+ ⋯ + 𝑓1,2,…,𝑛(𝑋1, … 𝑋𝑛)                     ( 2.41 ) 

Each random model response 𝑌𝑗, where j = 1,2,…m, can be characterized by its variance 

𝑉𝑗. Each variance 𝑉𝑗 is decomposed into partial variances corresponding to the single 

random input variables 𝑋1, 𝑋2, 𝑋3, …, 𝑋𝑛 according to equation ( 2.42 ), and to relate each 

partial variance to a single sensitivity measure according to equation ( 2.43 ): 

𝑉𝑗 = ∑ 𝑉𝑖
𝑗

𝑛

𝑖=1

+ ∑ 𝑉𝑖,𝑘
𝑗

1≤𝑖≤𝑘≤𝑛

+ ⋯ + 𝑉1,2,…𝑛
𝑗                                                                       ( 2.42 ) 

𝑆𝑖1,…,𝑖𝑠
=

𝑉𝑖1,…,𝑖𝑠

𝑗

𝑉𝑗
 𝑤ℎ𝑒𝑟𝑒 1 < 𝑖1 < 𝑖2 < 𝑖3 … < 𝑖𝑠 ≤ 𝑛                                                  ( 2.43 ) 

Each of the sensitivity measures calculated by equation (11) describes which amount 

of each variance 𝑉𝑗 is generated due to the randomness of the associated random input 

variables and their mapping onto the output variables. As special case the sensitivity 

measures 𝑆𝑖
𝑗
 describing the sole influence of the single input variables 𝑋𝑖 are called the 

main effects. Whereas, sensitivity measures 𝑆𝑖1,…,𝑖𝑠
 describing the influence of 

combinations of input variables are denoted as interaction effects. 

All partial sensitivity indices 𝑆𝑖
𝑗
 are summed up to the total sensitivity measure 𝑆𝑇𝑖

𝑗
 in 

order to evaluate the total effect of the single input variable 𝑋𝑖. Hence, the total sensitivity 

measures consider the interactions among input variables. In order to quantify which 

amount of each variance 𝑉𝑗 is generated due to a single input variable 𝑋𝑖, the corresponding 

total sensitivity measure 𝑆𝑇𝑖
𝑗

 can be normalized as follows: 

𝑛𝑜𝑟𝑚(𝑆𝑇𝑖
𝑗

) =
𝑆𝑇𝑖

𝑗

∑ 𝑆𝑇𝑘
𝑗𝑛

𝑘=1

                                                                                                        ( 2.44 ) 



34 
 

2.3. Overview of OASYN framework 

Figure 2.5 shows an overview of the OASYN framework. The tool acquires a topology 

from two well-known operational amplifiers structures; the Folded Cascode and the Two 

Stage Miller compensated amplifiers, according to designer preferences, along with 

required specification, e.g. gain, GBW, phase margin, output swing, slew rate, load 

capacitor, technology node, input common mode voltage level, and maximum power 

consumption. The tool acquires connectivity electrical constraints, e.g. max current density 

information in each circuit net, and matching constraints for device group placement along 

with matching styles. Circuit synthesizer generates a rough initial estimate sizing based on 

the analytical circuit equations. Then, the tool undergoes sensitivity analysis employing 

Sobol indices in the circuit sizing optimization engine, and a Pareto-optimal set is 

generated for immediate translation of specs to fully sized topology. To the authors’ 

knowledge, this is the first work that examines the whole design space through sensitivity 

analysis in order to account for uncertainty of the non-linear behavior of analog circuits, 

by quantifying higher order interactions between parameters of the circuit taking into 

consideration extreme eprocess, supply, and temperature variations.  
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Figure 2.5. Overview of the OASYN framework 

 

Layout generator tool consists of three main processes. First, a fixed-outline 

floorplanner employing multi-objective optimization on area and wirelength, accounting 

for block placement matching constraints, is implemented. This paper proposes a new, 

simple, efficient, and fast floorplan solution perturbing algorithm with O(n) runtime 

complexity, for fast realization of incremental update for cost evaluation, called TCG-S*. 

The algorithm integrates the advantages of TCG and SP representations, and eliminates 

their disadvantages, into a superior topology update scheme which facilitates the search for 

optimal desired floorplan. 

In order to enhance routability and reliability of the packed optimal placement solution, 

a routing-aware algorithm is implemented within the placement process contemplating the 

congestion problem, smoothing the densities between placed blocks and preserving the 

relative location of the modules. An annealing-based detailed net routing is then executed 

to generate a free DRC layout. 
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2.4. Circuit sizing tool 
The main purpose of the sensitivity analysis is to determine the most influential model 

parameters affecting a model response. Hence, reduce the computational complexity in 

optimization. Local and global analysis are major constituents of sensitivity analysis. The 

high priority parameters in one part of design space may not be the same in another, 

highlighting the importance of global SA. In addition, importance of a subset of variables 

may be subject to the interactions between these variables rather than the sum of the 

individual variables importance. Sensitivity analysis based optimization is employed in 

previous works [5], [7], [8], [46], and [47]. Variance-based Sobol method efficiently 

quantifies synergic effects along with uncertainties in the model input and their effect on 

the model output. 

2.4.1. The Sobol’ Sensitivity Analysis 

The Sobol’ decomposition [51, 52] is one of the family of ANOVA techniques. The 

Interaction of two or more parameters are denoted as Sobol’ indices. The function F(𝜉) of 

a set of input variables 𝜉𝑖, where Ω𝑑 is a dimensional range and d is the total number of 

input variables, is defined by 

𝐹(𝜉) = ∑ 𝐹𝑢(𝜉𝑢)                                                                                                        ( 2.45 )

𝑢⊆(1.2,…𝑑)

 

Where 𝑢 is a set of integers, 𝜉𝑢 = (𝜉𝑢1
, … , 𝜉𝑢𝑠

) and s = |𝑢|. In order to calculate the effect 

of certain input variables on the output uncertainty, 𝑢 represents these sets of variables as 

a subset of the whole variables set, presented in Eq. ( 2.45 ), as will be shown later in the 

section. Eq. ( 2.45 ) is decomposed as follows: 

𝐹(𝜉𝑢) = 𝐹0 + ∑ 𝐹𝑢𝑖
(𝜉𝑢𝑖

)

1≤𝑖≤𝑑

+ ∑ 𝐹𝑢𝑖𝑗
(𝜉𝑢𝑖

, 𝜉𝑢𝑗
) +

1≤𝑖≤𝑗≤𝑑

.. 

                +𝐹𝑢12…𝑑
(𝜉𝑢1

, … , 𝜉𝑢𝑑
)                                                                                            ( 2.46 ) 

In this expansion, the individual terms can be calculated according to 
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𝐹0 = ∫ 𝐹(𝜉)𝑑𝜉

Ω𝑑

                                                                                                                      ( 2.47 ) 

𝐹𝑢(𝜉𝑢) = ∫ 𝐹(𝜉𝑢)𝑑𝜉~𝑢 − ∑ 𝐹𝑣(𝜉𝑣)                                                                                               ( 2.48 )
𝑣⊂𝑢
𝑣≠𝑢Ω𝑑−}𝑢}

 

Where 𝜉~𝑢 is 𝜉 with set 𝑢 excluded 

𝜉~(𝑏) = (𝜉1, … , 𝜉𝑏−1, 𝜉𝑏+1, … , 𝜉𝑑)                                                                                        ( 2.49 ) 

Equation (2.50) defines the total variance of the output function F(𝜉), denoted by D. 𝐷𝑢 

denotes the partial output variance in response to a set of input variables. 

𝐷 = ∫ 𝐹2(𝜉)𝑑𝜉 − 𝐹0
2

Ω𝑑

                                                                                                                         ( 2.50 ) 

𝐷𝑢 = ∫ 𝐹𝑢
2(𝜉𝑢)𝑑𝜉𝑢

Ω|𝑢|

                                                                                                                            ( 2.51 ) 

𝐷𝑢 can be represented as recursive function of conditional variances: 

𝐷𝑢 = 𝑉(𝐸[𝑦|𝜉𝑢]) − ∑ 𝐷𝑣                                                                                                                  ( 2.52 )
𝑣⊂𝑢
𝑣≠𝑢
𝑣≠0

 

And therefore, D can be represented as the summation of the variances 𝐷𝑢: 

𝐷 = ∑ 𝐷𝑢

𝑢⊆{1,2,…𝑑}
𝑢≠0

                                                                                                                    ( 2.53 ) 

𝐷𝑢 measures the variance of output 𝐹(𝜉) according to the interaction between elements of 

𝑢, subtracting the individual effect of elements 𝑣 ⊂ 𝑢. The Sobol’ sensitivity indices can 

be calculated by: 

𝑆𝑢 =  
𝐷𝑢

𝐷
                                                                                                                                                  ( 2.54 ) 
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∑ 𝑆𝑢 = 1

𝑢⊆{1,2,…,𝑑}
𝑢≠0

                                                                                                                                   ( 2.55 ) 

Where 𝑆𝑢 measures the sensitivity of  𝐹(𝜉) by the interaction of elements of 𝑢, excluding 

the effect each variable separately have on output function variance. There are 2𝑑 − 1 

sensitivity indices required to be calculated in order to determine the most significant 

design parameters. 

2.4.2. Computation of Sobol’ Indices by Monte-Carlo 

Sampling  

Calculation of the variances using integrals is extensive process since circuit model 

equations are complex and non-linear. Therefore, a sample set of n realizations of input 

variables 𝜉𝑢 is considered to calculate the average E[y] and the variance D. 

𝐷 = 𝐸[𝑦2] − 𝐸[𝑦]2                                                                                                                               ( 2.56 ) 

According to Eq. (2.47) and (2.56), the sampled estimates of  𝐹0 and D are: 

�̂�0 =
1

𝑛
∑ 𝐹(𝜉(𝑖))

𝑛

𝑖=1

                                                                                                                                 ( 2.57 ) 

�̂� =
1

𝑛
∑ 𝐹2(𝜉(𝑖)) − �̂�0

2
𝑛

𝑖=1

                                                                                                                    ( 2.58 ) 

According to Eq. (2.52), Estimate of 𝐷𝑢 can be calculated by finding an expression for 

the conditional variance estimate as follows:  

𝑉(𝐸[𝑦|𝜉𝑢]) = 𝐸[𝐸[𝑦|𝜉𝑢]2] − 𝐸[𝐸[𝑦|𝜉𝑢]]
2

= 𝐸[𝐸[𝑦|𝜉𝑢]2] − 𝐸[𝑦]2                                 

                            ≈
1

𝑛
∑ (

1

𝑛
∑ 𝐹 (𝜉~𝑢

(𝑗)
, 𝜉𝑢

(𝑖)
)

𝑛

𝑗=1

)

2
𝑛

𝑖=1

− 𝐹0
2                                                                     (2.59 ) 

However, time complexity of computing conditional variances is 𝑂(𝑛2). Sobol [51] 

proposed a faster method to calculate the variances using Monte-Carlo sampling technique 

using two sample sets 𝜉(𝑖)|𝑖=1
𝑛  and 𝜂(𝑖)|𝑖=1

𝑛 .  
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𝐸[𝐸[𝑦|𝜉𝑢]2] = 𝐸[𝐸[𝑦|𝜉𝑢] 𝐸[𝑦|𝜉𝑢]] = ∫ (∫ 𝐹(𝜉~𝑢, 𝜉𝑢)𝑑𝜉~𝑢) ∗ (∫ 𝐹(𝜉~𝑢, 𝜉𝑢)𝑑𝜉−𝑢) 

                      

= ∫ ∫ ∫ 𝐹(𝜉)𝐹(𝜂~𝑢, 𝜉𝑢) 𝑑𝜉𝑑𝜂~𝑢                                                                    ( 2.60 ) 

Substituting Eq. (16) in Eq. (8), estimate of 𝐷𝑢 becomes: 

�̂�𝑢 =
1

𝑛
∑ 𝐹(𝜉(𝑖))𝐹(𝜉𝑢

(𝑖)
) − ∑ �̂�𝑣

𝑣⊂𝑢
𝑣≠𝑢

𝑖=1

                                                                                  ( 2.61 ) 

Where 

(𝜉𝑏)𝑢
(𝑖)

= {
𝜉𝑏

(𝑖)
            𝑏 ∈ 𝑢

𝜂𝑗
(𝑖)

  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                   ( 2.62 ) 

Therefore, 

�̂�{𝑏} =
1

𝑛
∑ 𝐹(𝜉1

(𝑖)
, … , 𝜉𝑑

(𝑖)
) ∗ 𝐹(𝜂1

(𝑖)
, … , 𝜂𝑏−1

(𝑖)
, 𝜉𝑏

(𝑖)
, 𝜂𝑏+1

(𝑖)
, … , 𝜂𝑑

(𝑖)
) − �̂�0

2
                      ( 2.63 )

𝑖=1

  

2.4.3. Circuit Sizing Algorithm 

Algorithm 2.1: Monte_Carlo( U 𝜉_Sample 𝜂_Sample ) 

1. // Initialize Sum with 0 

2. FOR i 0 n-1 DO // no. of samples 

3.  FOR j 0 Var_NUM DO // total number of variables 

4.   SamList1 = concat{SamList1 𝜉_Sample[i,j]}; 

5.   if (j on U) THEN 

6.    SamList2 = concat{SamList2 𝜉_Sample[i,j]}; 

7.    ELSE SamList2 = concat{SamList2 𝜂_Sample[i,j]}; 
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8.  Out_Sim1 = SIMULATE(SamList1); 

9.  Out_Sim2 = SIMULATE(SamList2); 

10.  Sum = Sum+Out_Sim1*Out_Sim2; 

11. RETURN Sum/n; 

Algorithm 2.2: Sobol_Decomp(  List partial rest Result ) 

1. //Initialize partial , res, Result with nil 

2. FOR i 0 length(List)-1 DO 

3.  n = nth(i List); 

4.  rest = List; 

5.  FOR j 0 i DO 

6.   rest = REMOVE(nth(j List) rest); // delete jth element 

7. Result = Sobol_Decomp( rest 0 concat{partial n} nil concat{Result concat{partial 

n}} ); 

8. RETURN Result; 

 

Algorithm 2.3: Sobol_Var( list(U) ) 

1. // calculate Variance D_U 

2. FOR  i 0 length(U)-1 DO 

3.  MC = Monte-Carlo(nth(i U) 𝜉_Sample 𝜂_Sample ); 

4.  if (length(i U) ==1 THEN 

5.   D_U = D_U + MC – F_Avg; 
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6.  ELSE  

7.  D_U = D_U + MC – Sobol_Var( REMOVE(nth(i U) SobolDecomp( nth(i U)  nil 

nil nil ) – F_Avg; 

8. RETURN D_U; 

Optimization is done by computing Sobol’ indices of all circuit parameters with equal 

weights. Each sensitivity index for a set of parameters 𝑆𝑢 measures the uncertainty of 

interactions of these parameters on circuit specs. In each iteration 𝑖, 2𝑑−1 number of indices 

𝑆𝑢𝑖
 are calculated constituting the combinations of parameters interactions in the set 𝑢. Let 

𝑆𝑢𝑖

𝐺
 denote the total sensitivity index for each specification per set of parameters 𝑢. In 

order to decide on the best parameters which contributes to the enhancement of circuit 

specifications, a cost function 𝑆𝑖 is to be determined. The cost function 𝑆𝑖 computes the 

highest effect of set of parameters 𝑢 on the all circuit specifications. The cost function 𝑆𝑖 

for 𝑚 specifications (objectives) for each iteration 𝑖 is given by: 

𝑆𝑖 = 𝑚𝑎𝑥
𝑢

(∑ 𝑆𝑢𝑖

𝑗

𝑚

𝑗=1

)                                                                                                             ( 2.64 ) 

The algorithm rejects any solution that tends to change constraints outside the given their 

boundaries.  

Since the problem deals with multi-objective function, in which optimal solution 

corresponding to each objective is not feasible, the goal is to find a Pareto-optimal set. The 

most significant parameters, which contribute to the highest output variances of output 

specs, are optimized to achieve a Pareto-frontier curve. Since the design space varies each 

step, Sobol’ indices are computed in every iteration. If a Pareto-optimal solution is reached, 

the condition after which it is impossible to achieve higher spec without deteriorating 

others, a globally non-dominated solution is considered to be attained. 
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3.Layout Floorplan 

Morata et al. (1996) introduced an elegant representation of block placement called 

sequence pair for general floorplans (SP). Like TCG and BSG, but unlike O-tree, B*tree, 

and CBL, SP is P-admissible. Unlike SP, TCG supports incremental update during 

operation and keeps the information of the boundary modules as well as their relative 

positions in the representation. Block placement algorithms that are based on SP use 

heuristic optimization algorithms, e.g., simulated annealing where generation of large 

number of sequence pairs are required. Therefore a fast algorithm is needed to generate 

sequence pairs after each solution perturbation.  

3.1. Comments on TCG-S Representation 

Lin et al. proposed a representation which uses the horizontal and vertical transitive 

closure graphs as well as Г− of SP to represent a placement. Based on Г− as well as 

horizontal and vertical contours Rℎ and R𝑣, O(n log n) time packing scheme is obtained by 

sorting and keeping the coordinates of the right (top) boundaries of module in the search 

order of the Red-Black tree Tℎ (T𝑣) [19]. An O(n) runtime packing sequence update was 

proposed during solution perturbation. The topological ordering of Cℎ and C𝑣 as well as 

sequence Г− are required to be changed to conform with the new placement under each of 

the four operations; rotation, swap, reverse, and move. 

Although the three feasibility properties of TCG mentioned in [12] were maintained, they 

are not sufficient to guarantee an updated configuration of TCG graphs and Г− sequence 

which exactly corresponds to the new placement after each solution perturbation. The 

TCG-S tuples update algorithm would only be sufficient if the modules subjected to one 

of the four operations have exactly the same width and length. However, such condition 

may be satisfied for special constraint placement, e.g., proximity, interdigitated, and 

common centroid symmetry constraints. The algorithm proposed did not consider 

geometry of the modules with respect to each other during operations. Therefore, may 

result in discrepancies between horizontal (vertical) geometric relations of the modules and 
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the ones designated by Cℎ(C𝑣). Post perturbation on modules b𝑖 and b𝑗, b𝑗 ⊥ b𝑘 may 

accidently be updated as b𝑗 ⊢ b𝑘 according to the geometric relation between b𝑖 and b𝑘. 

Also b𝑘 ⊥ b𝑗 through b𝑖 will not be updated in C𝑣 upon swapping b𝑖 and b𝑗. Edge (b𝑘, b𝑗) 

in C𝑣 will not be deleted and hence, the packing sequence Г−will also be incongruously 

updated. The mismatch between TCG-S representation and its placement will not only lead 

to non-optimal solution after a series of operations, it may also generate overlapping 

modules leading to infeasible solution. 

In this section, limitations of TCG-S tuples update algorithm are discussed for each 

operation. Effect of such discrepancy between representation and its corresponding 

placement on the packing evaluation along with the convergence to the optimal solution 

will be outlined. Furthermore, a new simple and efficient O(n) runtime algorithm for fast 

realization of incremental update for cost evaluation. The algorithm integrates SP and TCG 

advantages into TCG-S* a superior topology update scheme which facilitates the search 

for optimum desired floorplan. Experiments show that TCG-S* is better than existing 

works in terms of area utilization, stability, and convergence speed. 

3.1.1. Update of Constraints graph 
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Figure 3.1. Three types of perturbations. (a) The initial TCG (𝐶ℎ and 𝐶𝑣) and the placement. Dimensions 

for the six blocks are: a (6 x 4), b (4 x 6), c (7 x 4), d (6 x 3), e (3 x 2), and f (3 x 3). (b) The resulting TCG 

and placement after rotating module d based on TCG-S. (c) The resulting TCG and placement after 

reversing nodes 𝑛𝑐and 𝑛𝑒 based on TCG-S. (d) The resulting TCG and placement after swapping nodes 

𝑛𝑐and 𝑛𝑑 based on TCG-S. 

 

Figure 3.1(a) shows the initial configuration of TCG and its corresponding placement. 

Module d is rotated as shown in Fig. 3.1(b) and, according to TCG-S, only the weights of 

the corresponding node d in Cℎ and C𝑣 are exchanged. Although such an operation has O(1) 

runtime complexity, it did change the topology of the Cℎ and C𝑣, prompting a mismatch 

between TCG and the corresponding placement. Placement shows that edge (n𝑑, n𝑓) 

should be deleted from Cℎ and a new edge (n𝑓, n𝑑) is to be drawn from node f to node d in 

C𝑣.  

Figure 3.1(c) shows a reverse operation between two modules c and e. Reverse 

operation involves reversing the direction of a reduction edge (n𝑐, n𝑒) in a transitive closure 

(c) reverse (𝑛𝑐, 𝑛𝑒) 

(d) swap 𝑛𝑐, 𝑛𝑑 
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graph, which corresponds to deleting edge (n𝑐, n𝑒), adding  a new edge (n𝑒, n𝑐) in the same 

transitive closure graph C𝑣. According to TCG-S, for each node n𝑘 ∈ fanin(𝑛𝑒) ∪ {n𝑒} and 

n𝑙 ∈ fanout(𝑛𝑐) ∪ {n𝑐} in the new graph, the edge (n𝑘, n𝑙) is to be added to the graph and 

the corresponding edges (n𝑘, n𝑙) (or(n𝑙, n𝑘)) is to be deleted in the other transitive closure 

graph to maintain the TCG. Therefore, for each node n𝑘 ∈ {a, b, e} and n𝑙 ∈ {c}, edge (n𝑘, 

n𝑙) is checked whether it exists in C𝑣. Since all the edges already exists except (n𝑒, n𝑐), 

nothing is changed. Geometric relation between module b and module e has changed as 

shown in the placement. Prior the reverse operation, b𝑏 ⊥ b𝑒, whereas post the reverse, b𝑒 

⊢ b𝑏. Consequently, the edge (n𝑏, n𝑒) is to be deleted from C𝑣 and a corresponding edge 

(n𝑒, n𝑏) is to be added to the other transitive graph Cℎ. Since there are at most O(n) n𝑘’s 

nodes and O(n) n𝑙’s nodes, i.e., O(𝑛2) (n𝑘, n𝑙) edges, time complexity of the reverse 

operation is  O(𝑛2) where n is the number of modules in a placement,  

Figure 3.1(d) shows a TCG and its corresponding placement post swapping module c 

and d. According to TCG-S, in order to swap two modules c and d, only nodes n𝑐 and n𝑑 

designating the modules are to be exchanged in both Cℎ and C𝑣. Notice that nodes n𝑐 and 

n𝑑 have been exchanged in Fig. 3.1(d), where fanin(𝑛𝑐) is exchanged with fanin(𝑛𝑑). 

Similarly, fanout(𝑛𝑐) is exchanged with fanout(𝑛𝑑). fanin(𝑛𝑐) are {𝑛𝑏} and fanin(𝑛𝑑) are 

{𝑛𝑎, 𝑛𝑒, 𝑛𝑏}. The placement shows that there is no geometric relation between modules b 

and d in 𝐶𝑣, but rather in 𝐶ℎ. The edge (n𝑏, n𝑑) is to be deleted form 𝐶𝑣 and a corresponding 

edge (n𝑑, n𝑏) is to be added to the other transitive closure graph 𝐶ℎ. 

As a deduction, all operations are prone to changing the topology of the TCGs. The 

reason of such incongruousity between the TCG and its placement is that the geometry and 

dimensions of the blocks in a placement with respect to each other has not been considered 

while perturbing a placement solution.   

3.1.2. Packing Sequence Г− Update 

Consider the TCG and placement shown in Fig. 3.1(c). The packing sequence Г− can be 

obtained using equivalence of SP and TCG proposed by [18], by repeatedly extracting a 

node n𝑖 with fanin(𝑛𝑖) = 0 in Cℎand C𝑣. Similarly, Г+ is obtained by repeatedly extracting 
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a node n𝑖 with fanin(𝑛𝑖) = 0 in Cℎand fanout(𝑛𝑖) = 0 in C𝑣. Accordingly, the sequences Г+ 

and Г− are (〈c e a d b f〉, 〈a b e c d f〉) respectively. For evaluating SP, packing cost can be 

calculated using the longest common sequence proposed by [11]. By computing lcs(Г+, 

Г−) and lcs(Г+
𝑅 , Г−), width and height are determined and hence, the whole placement area. 

The positions of the modules during each solution perturbation can be computed while 

evaluating the packing cost using the last common sequence algorithm. Based on C𝑣 graph 

shown in Fig. 3.1(c) and the aforementioned LCS algorithm, 𝑦𝑒 > 𝑦𝑏
′ . lcs(Г+, Г−) which 

holds the value of block f position plus its weight in x-direction (𝑦𝑓
′), equals to 16. Whereas, 

lcs(Г+
𝑅 , Г−), which holds the value of block c position plus its weight in y-direction, equals 

to 12. Placement span in the initial TCG configuration is (13, 12), became (16, 12) after 

reverse operation. Thus the perturbing solution is diverging and deviating from the desired 

one. The mismatch between TCG and its corresponding placement during perturbation is 

obvious. 

Lin et al. proposed a scheme for updating sequence Г− in reverse operation, in which 

module b𝑖 is deleted and inserted following b𝑗 in sequence Г−. For each module b𝑘 between 

b𝑖 and b𝑗 in the sequence Г−, in which edge (n𝑖, n𝑘) exists in the graph, b𝑘 is deleted and 

inserted following the most recently inserted module. Consider the placement shown in 

Fig. 3.1(b), Assume that edge (n𝑎, n𝑒)  is reversed. Edges (n𝑎, n𝑘), where node n𝑘 ∈ {n𝑐, 

n𝑏, n𝑒} and node n𝑙 ∈ {n𝑎, n𝑐}, that doesn’t exist in the C𝑣 graph will be added to C𝑣 and 

deleted from the corresponding graph. Therefore, the new added edges are (n𝑐, n𝑎), (n𝑒, 

n𝑐), (n𝑏, n𝑎), and (n𝑒 , n𝑎). Accordingly, b𝑎 is deleted from Г− and inserted following b𝑒. 

Since, edge (n𝑎, n𝑐), (n𝑎, n𝑏) doesn’t exist nothing is changed. The new Г− is 〈b c e a d f〉, 

whereas transforming TCG into SP results in Г− equals 〈b e c a d f〉. Thus, the proposed 

algorithm for updating Г− is only feasible if the edge considered for move is a reduction 

edge, where no module b𝑘 exists between b𝑖 and b𝑗. Incongruous TCG graphs and its 

corresponding Г− results in infeasible solution during packing cost evaluation by the binary 

search tree. 

Therefore, the limitations of the proposed update scheme in [18] did not only tend to 

increase the convergence time of the floorplan and make it harder to converge to the desired 
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solution, by miscalculating packing cost, it may also generate infeasible solution after a 

series of operations. 

3.2. TCG-S* Perturbing Algorithm 

3.2.1. TCG Topology Update 

The section proposes a new simple and efficient O(n) runtime algorithm, where n is the 

number of modules in a placement, for the update of the constraint graphs Cℎ and C𝑣 during 

perturbation, based on the knowledge of the position of the modules. 

3.2.1.1. Rotate  

The rotate operation involves rotating a module b𝑖 without changing its position. Rotate 

operation involves exchanging weights of module b𝑖 in both Cℎ and C𝑣. Edges (n𝑖, n𝑘) are 

required to be updated in both Cℎ and C𝑣, where n𝑘 ∈ fanin(𝑛𝑖) ∪ fanout(𝑛𝑖) in both Cℎ 

and C𝑣. First, edge (n𝑖, n𝑗) is deleted from C𝑣 and added to Ch, where n𝑗 ∈ fanout(𝑛𝑖) ∪ 

fanin(𝑛𝑖). All modules b𝑗 ∈ fanout(𝑛𝑖) in 𝐶ℎ ∪ fanout(𝑛𝑖) in 𝐶𝑣 in which 𝑦𝑗 > 𝑦𝑖 are checked 

whether there exists a vertical relation with b𝑖. If exists, an edge (n𝑖, n𝑗) is added to C𝑣 and 

the corresponding edge (n𝑖, n𝑗) is deleted from the other transitive graph. Otherwise, an 

edge (𝑛𝑖, 𝑛𝑗) is added to Cℎ. Similarly, to obtain fanin(n𝑖) in C𝑣 and its corresponding 

update in both Cℎ and C𝑣, all modules b𝑗 with 𝑦𝑗
′ < 𝑦𝑖

′ are checked whether there exists a 

vertical relation with b𝑖. If exists, an edge (𝑛𝑗 , 𝑛𝑖) is added to 𝐶𝑣 and the corresponding 

edge (ni, nj) is deleted from 𝐶ℎ. Otherwise, edge (𝑛𝑖, 𝑛𝑗) is added to Cℎ.  
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Figure 3.2. Three types of perturbations. (a) The resulting TCG and placement after rotating module. (b) 

The resulting TCG and placement after reversing nodes ncand ne. (c) The resulting TCG and placement 

after swapping nodes ncand nd. 

Figure 3.2(a) shows the resulting TCG and its corresponding placement post reversing 

module d. Notice that weights of the node n𝑑 have been exchanged in both Cℎ and C𝑣. 

fanout(𝑛𝑖) ∪ fanin(𝑛𝑖) = {nb}. Therefore, edge (n𝑑, n𝑗) is deleted from C𝑣 and added to 

Ch, where n𝑗 ∈ {nb}. fanout(𝑛𝑑) in 𝐶𝑣 = ∅,  fanout(𝑛𝑑) in 𝐶ℎ = {nf}. Since module 𝑦𝑓 < 

𝑦𝑑, nothing is changed. To obtain fanin(nd) in Cv, module nj ∈ {nb, nf} in which 𝑦𝑗
′ < 𝑦𝑑

′  

and nj has vertical relation with module d, is added to 𝐶𝑣 and the corresponding edge (𝑛𝑑, 

(b) reverse (𝑛𝑐, 𝑛𝑒) 

 

(c) swap 𝑛𝑐, 𝑛𝑑 

 

(d) move 𝑛𝑑, 𝑛𝑓 
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𝑛𝑗) is to be deleted from 𝐶ℎ. Therefore, edges (𝑛𝑏, 𝑛𝑑) and (𝑛𝑓, 𝑛𝑑) are added to 𝐶𝑣 and 

edge (𝑛𝑑, 𝑛𝑓) is deleted from 𝐶ℎ. 

Theorem 1: Rotate operation takes O(n) runtime, where n is the number of modules in a 

placement. 

Proof: The time complexity is dominated by checking whether 𝑛𝑖 ⊥  𝑛𝑗 , where 𝑛𝑗  ∈ 

fanout(𝑛𝑖) in 𝐶ℎ ∪ fanout(𝑛𝑖) in 𝐶𝑣, and by deleting all edges (𝑛𝑖, 𝑛𝑘) from 𝐶𝑣, where n𝑘 

∈ fanout(𝑛𝑖) ∪ fanin(𝑛𝑖). Since there are at most O(n) n𝑗’s and O(n) n𝑘’s, rotate operation 

only takes O(n) runtime in total. 

3.2.1.2. Swap 

To swap modules 𝑏𝑖 and 𝑏𝑗, their values in the position array are exchanged. Edge (𝑛𝑖 ,  

𝑛𝑗) is deleted from a transitive closure graph and a corresponding edge (𝑛𝑗 , 𝑛𝑖) is added to 

the same graph. Edges (𝑛𝑘, 𝑛𝑗), where node 𝑛𝑘 ∈ fanin(𝑛𝑗) ∉ fanin(𝑛𝑖) in 𝐶ℎ, are deleted 

from 𝐶ℎ and corresponding edges (𝑛𝑘, 𝑛𝑖) are added to 𝐶ℎ. Similarly, Edges (𝑛𝑖, 𝑛𝑘), in 

which node 𝑛𝑘 ∈ fanout(𝑛𝑖) ∉ fanout(𝑛𝑗) in 𝐶ℎ, are deleted from 𝐶ℎ and corresponding 

edges (𝑛𝑗 , 𝑛𝑘) are added to 𝐶ℎ. Edges (𝑛𝑗 , 𝑛𝑘), where node 𝑛𝑘 ∈ fanout(𝑛𝑗) ∉ fanout(𝑛𝑖) in 

𝐶𝑣, are deleted from 𝐶𝑣. Similarly, edges (𝑛𝑖, 𝑛𝑘), where node 𝑛𝑘 ∈ fanout(𝑛𝑖) ∉ fanout(𝑛𝑗) 

in 𝐶𝑣, are deleted from 𝐶𝑣. Edges (𝑛𝑗 , 𝑛𝑘), where node 𝑛𝑘 ∈ fanin(𝑛𝑗) ∉ fanin(𝑛𝑖) in 𝐶𝑣, 

are deleted from 𝐶𝑣. Similarly, edges (𝑛𝑖, 𝑛𝑘), where node 𝑛𝑘 ∈ fanin(𝑛𝑖) ∉ fanin(𝑛𝑗) in 

𝐶𝑣, are deleted from 𝐶𝑣. For nodes 𝑛𝑘 ∈ fanout(𝑛𝑗) in 𝐶𝑣 ∪ fanout(𝑛𝑗) in 𝐶ℎ, where  𝑥𝑘
′  > 

𝑥𝑖 and 𝑏𝑖 ⊥ 𝑏𝑘,  an edge (𝑛𝑖, 𝑛𝑘) is added to 𝐶𝑣. If else, edge (𝑛𝑖, 𝑛𝑘) is added to 𝐶ℎ. 

Similarly, for nodes 𝑛𝑘 ∈ fanout(𝑛𝑖) in 𝐶𝑣 ∪ fanout(𝑛𝑖) in 𝐶ℎ, where 𝑥𝑘
′  > 𝑥𝑗 and modules 

𝑏𝑘 and 𝑏𝑗 exhibits a vertical geometric relation, an edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶𝑣. If else, 

edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶ℎ. For nodes 𝑛𝑘 ∈ fanin(𝑛𝑗) in 𝐶𝑣 ∪ fanout(𝑛𝑗) in 𝐶ℎ, where 𝑥𝑘
′  

> 𝑥𝑖 and modules 𝑏𝑘 and 𝑏𝑖 exhibits a vertical geometric relation,  an edge (𝑛𝑖, 𝑛𝑘) is added 

to 𝐶𝑣. If else, edge (𝑛𝑖, 𝑛𝑘) is added to 𝐶ℎ. Similarly, for nodes 𝑛𝑘 ∈ fanin(𝑛𝑖) in 𝐶𝑣 ∪ 

fanout(𝑛𝑖) in 𝐶ℎ, where 𝑥𝑘
′  > 𝑥𝑗 and modules 𝑏𝑘 and 𝑏𝑗 exhibits a vertical geometric 

relation,  an edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶𝑣. If else, edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶ℎ. 
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Figure 3.2(c) shows the resulting TCG and its corresponding placement after swapping 

modules 𝑏𝑐 and 𝑏𝑑. Notice that their positions have been exchanged. Edge (𝑛𝑐, 𝑛𝑑) is 

deleted from 𝐶ℎ and a corresponding edge (𝑛𝑑, 𝑛𝑐) is added to 𝐶ℎ. fanin(𝑛𝑑) in 𝐶ℎ = {𝑛𝑒, 

𝑛𝑎}, fanin(𝑛𝑐) = {∅}. Therefore, edges (𝑛𝑒, 𝑛𝑑) and (𝑛𝑎, 𝑛𝑑) are deleted from 𝐶ℎ and 

corresponding edges (𝑛𝑒, 𝑛𝑐) and (𝑛𝑎, 𝑛𝑐) are added to 𝐶ℎ, where nodes 𝑛𝑒 and 𝑛𝑎 ∈ 

fanin(𝑛𝑑) ∉ fanin(𝑛𝑐). fanout(𝑛𝑐) = {𝑛𝑓}, fanout(𝑛𝑑) = {∅}. Accordingly, edge (𝑛𝑐, 𝑛𝑓) is 

deleted from 𝐶ℎ and corresponding edge (𝑛𝑑, 𝑛𝑓) is added to 𝐶ℎ. Since fanout(𝑛𝑑) in 𝐶𝑣 = 

{∅} and fanout(𝑛𝑐) = {∅}, fanout of nodes 𝑛𝑑 and 𝑛𝑐 in 𝐶𝑣 is not changed. fanin(𝑛𝑑) = 

{𝑛𝑏, 𝑛𝑓}, fanin(𝑛𝑐) = {𝑛𝑎, 𝑛𝑏, 𝑛𝑒}. Edge (𝑛𝑓, 𝑛𝑑) is deleted from 𝐶𝑣, where 𝑛𝑓 ∈ fanin(𝑛𝑑) 

∉ fanin(𝑛𝑐). Similarly, edges (𝑛𝑒, 𝑛𝑐)  and (𝑛𝑎, 𝑛𝑐) are deleted from 𝐶𝑣, where nodes 𝑛𝑎 

and 𝑛𝑒 ∈ fanin(𝑛𝑐) ∉ fanin(𝑛𝑑). Since fanout(𝑛𝑑) in 𝐶𝑣 ∪ fanout(𝑛𝑑) in 𝐶ℎ = {∅}, 

fanout(𝑛𝑐) in 𝐶ℎ is not changed. Since fanout(𝑛𝑐) in 𝐶𝑣  ∪ fanout(𝑛𝑐) in 𝐶ℎ = {∅}, 

fanout(𝑛𝑑) in 𝐶ℎ (𝐶𝑣) is not changed. fanin(𝑛𝑑) in 𝐶𝑣  ∪ fanout(𝑛𝑑) in 𝐶ℎ = {𝑛𝑏, 𝑛𝑓}. 

Edge(𝑛𝑓, 𝑛𝑐) is added 𝐶𝑣 as modules 𝑏𝑓 ⊥ 𝑏𝑐. Similarly, edges (𝑛𝑎, 𝑛𝑑) and (𝑛𝑒, 𝑛𝑑) are 

added to 𝐶𝑣. 

Theorem 2: Swap operation takes O(n) runtime, where n is the number of modules in a 

placement. 

Proof: The time complexity is dominated by checking whether 𝑛𝑖 ⊥ 𝑛𝑘 (𝑛𝑗  ⊥ 𝑛𝑘), where 

𝑛𝑘 ∈ fanout(𝑛𝑗) (fanout(𝑛𝑖)) in 𝐶𝑣 ∪ fanout(𝑛𝑗) (fanout(𝑛𝑖)) in 𝐶ℎ, and checking whether 

𝑛𝑖 ⊥ 𝑛𝑙 (𝑛𝑗  ⊥ 𝑛𝑙), where 𝑛𝑙 ∈ fanin(𝑛𝑗) (fanin(𝑛𝑖)) in 𝐶𝑣 ∪ fanout(𝑛𝑗) (fanout(𝑛𝑖)) in 𝐶ℎ. 

Since there are at most O(n) 𝑛𝑘’s and O(n) 𝑛𝑙’s, operation takes O(n) runtime in total. 

3.2.1.3. Reverse 

Reverse operation reverses the geometric relation between two modules 𝑏𝑖 and 𝑏𝑗. If 

there exists a geometric relation 𝑏𝑖 ⊢ 𝑏𝑗, the new relation after reversing is 𝑏𝑗 ⊢ 𝑏𝑖. 

Reverse operation is a derivative of swap operation, since it involves reversing the 

direction of an edge (𝑛𝑖, 𝑛𝑗), i.e. swap modules 𝑏𝑖 and 𝑏𝑗. Hence, TCG topology update in 

a reverse operation only Swap operation on block 𝑏𝑗. 
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3.2.1.4. Move 

Move operation involves changing the geometric relation of two modules 𝑏𝑖 and 𝑏𝑗 

between horizontal transitive closure graph and vertical one. The move operation can be 

classified into two instances, the one where 𝑏𝑖 ⊥ 𝑏𝑗, and the other where 𝑏𝑖 ⊢ 𝑏𝑗.  

To move an edge (𝑛𝑖, 𝑛𝑗) in 𝐶ℎ (𝐶𝑣), edge (𝑛𝑗 , 𝑛𝑘) is deleted from 𝐶𝑣, where module 𝑛𝑘 

∈ fanout(𝑛𝑗). Edge (𝑛𝑘, 𝑛𝑗) is deleted from 𝐶𝑣, where module 𝑛𝑘 ∈ fanin(𝑛𝑗). Edge (𝑛𝑗 , 

𝑛𝑙), where 𝑛𝑙 ∈ fanout(𝑛𝑗), is deleted from 𝐶𝑣. For each node 𝑛𝑘 ∈ fanout(𝑛𝑗) ∪ fanin(𝑛𝑗) 

in 𝐶𝑣 ∪ fanin(𝑛𝑗) in 𝐶ℎ, if 𝑏𝑗 ⊥ 𝑏𝑘 or 𝑏𝑘 ⊥ 𝑏𝑗, then edge (𝑛𝑘, 𝑛𝑗) ((𝑛𝑗 , 𝑛𝑘)) is deleted from 

𝐶ℎ. If 𝑏𝑗 ⊥ 𝑏𝑘, then edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶𝑣. Else, edge (𝑛𝑘, 𝑛𝑗) is added to 𝐶𝑣. If no 

geometric vertical relation exists between modules 𝑏𝑗 and 𝑏𝑘 and 𝑏𝑗 ⊢ 𝑏𝑘 (𝑏𝑘 ⊢ 𝑏𝑗) in x-

direction, then edge (𝑛𝑘, 𝑛𝑗) ((𝑛𝑗 , 𝑛𝑘)) is deleted from 𝐶ℎ and a corresponding edge (𝑛𝑗 , 

𝑛𝑘) ((𝑛𝑘, 𝑛𝑗)) is added to 𝐶ℎ. To update fanout of node 𝑛𝑖  in 𝐶ℎ and 𝐶𝑣, For each node 𝑛𝑘 

∈ fanout(𝑛𝑖) in 𝐶𝑣 ∪ fanout(𝑛𝑖) in 𝐶ℎ and 𝑦𝑘 > 𝑦𝑖. If  𝑛𝑖 ⊥ 𝑛𝑘 or 𝑛𝑘 ⊥ 𝑛𝑖, then edge (𝑛𝑖, 

𝑛𝑘) is deleted from 𝐶ℎ and the corresponding edge (𝑛𝑖 , 𝑛𝑘) is added to 𝐶𝑣. If no vertical 

relation exists between modules 𝑏𝑖 and 𝑏𝑘, then the edge (𝑛𝑖, 𝑛𝑘) is deleted from 𝐶𝑣 and 

the edge (𝑛𝑖 , 𝑛𝑘) (or(𝑛𝑘, 𝑛𝑖)) is added to 𝐶ℎ. 

Figure 3.2(d) shows the resulting TCG and its corresponding placement after moving the 

edge (𝑛𝑑, 𝑛𝑓) in the 𝐶ℎ in Fig. 3.2(c) to 𝐶𝑣. fanout(𝑛𝑓) in 𝐶𝑣 = {𝑛𝑐}, fanin(𝑛𝑓) in  𝐶ℎ = {𝑛𝑎, 

𝑛𝑏, 𝑛𝑑, 𝑛𝑒}, and fanin(𝑛𝑓) in 𝐶𝑣 = {∅}. Consequently, edge (𝑛𝑓, 𝑛𝑐) is deleted from 𝐶𝑣. 

fanout(𝑛𝑓) ∪ fanin(𝑛𝑓) in 𝐶𝑣 ∪ fanin(𝑛𝑓) in 𝐶ℎ = {𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑, 𝑛𝑒}. Since modules 𝑏𝑎, 

𝑏𝑒, and  𝑏𝑑 ⊥  𝑏𝑓, where { 𝑛𝑎, 𝑛𝑑, 𝑛𝑒} ⊂ {𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑, 𝑛𝑒}, edge (𝑛𝑎, 𝑛𝑓), (𝑛𝑑, 𝑛𝑓), (𝑛𝑒, 

𝑛𝑓)  is deleted from 𝐶ℎ and corresponding edges are added to 𝐶𝑣. Edges (𝑛𝑏, 𝑛𝑓) is deleted 

from 𝐶ℎ and edges (𝑛𝑓, 𝑛𝑏) and (𝑛𝑓, 𝑛𝑐) are added to 𝐶ℎ. fanout(𝑛𝑑) in 𝐶𝑣 ∪ fanout(𝑛𝑑) in 

𝐶ℎ = {𝑛𝑐, 𝑛𝑏, 𝑛𝑓}, from which only 𝑏𝑑 ⊥ 𝑏𝑓. Therefore, edge (𝑛𝑑, 𝑛𝑓) is checked whether 

it exists in 𝐶ℎ. Since edge (𝑛𝑑, 𝑛𝑓) does not exist in  𝐶ℎ and edge (𝑛𝑑, 𝑛𝑓) has already been 

added to 𝐶𝑣, nothing is done.  
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Theorem 3: Move operation takes O(n) runtime, where n is the number of modules in a 

floorplan. 

Proof: The time complexity is dominated by checking whether 𝑏𝑗 ⊥ 𝑏𝑘 (𝑏𝑘 ⊥ 𝑏𝑗), where 

𝑛𝑘 ∈ fanout(𝑛𝑗) ∪ fanin(𝑛𝑗) in 𝐶𝑣 ∪ fanin(𝑛𝑗) in 𝐶ℎ, and checking 𝑏𝑖 ⊥ 𝑏𝑙 (𝑏𝑙 ⊥ 𝑏𝑖),  where 

𝑛𝑙 ∈ fanout(𝑛𝑖) in 𝐶𝑣 ∪ fanout(𝑛𝑖) in 𝐶ℎ. Since there are at most O(n) 𝑛𝑘’s and O(n) 𝑛𝑙’s, 

the operation takes O(n) in total. 

Theorem 5: No reduction edges are required to be obtained for Swap, Reverse and 

Move operations. 

Proof: An edge (𝑛𝑖, 𝑛𝑗) is considered a reduction edge if there does not exist another 

path from 𝑛𝑖 to 𝑛𝑗  except the edge (𝑛𝑖, 𝑛𝑗). Swap, Reverse and move perturbations do not 

require to operate only on reduction edges as in TCG-S representation, since operations in 

TCG-S* update the closure edges (𝑛𝑖, 𝑛𝑗) along with all the reduction edges that form other 

paths from 𝑛𝑖 to 𝑛𝑗 . Therefore, the resulting TCGs are acyclic. Operating on both reduction 

and closure edges increase available move combinations, and facilitates the search for 

minimum packing cost, i.e. the desired solution. 

Property 4: fanin (fanout) edges in 𝐶𝑣 and fanin edges in 𝐶ℎ must be acyclic. 

To guarantee feasible TCG, edges drawn from node 𝑛𝑖 to 𝑛𝑗  in the fanout (𝑛𝑘 to 𝑛𝑖 in 

the fanin) of 𝐶𝑣, as of geometric relation between modules 𝑏𝑖 and 𝑏𝑗 𝑏𝑖 ⊥ 𝑏𝑗, and edges 

drawn from node 𝑛𝑘 to 𝑛𝑗  in the fanin of 𝐶ℎ as 𝑏𝑘 ⊢ 𝑏𝑗 must be acyclic. Since acyclic edges 

in 𝐶ℎ (𝐶𝑣) does not guarantee a feasible solution, nodes 𝑛𝑖, 𝑛𝑗 , and 𝑛𝑘 must be checked that 

their edges in 𝐶𝑣 and 𝐶ℎ combined are acyclic. 𝑏𝑖 ⊥ 𝑏𝑗 (𝑏𝑖 ⊢ 𝑏𝑗), 𝑏𝑘 ⊥ 𝑏𝑖 (𝑏𝑘 ⊢ 𝑏𝑖), and 𝑏𝑘 

⊢ 𝑏𝑗 (𝑏𝑘 ⊥ 𝑏𝑗) cannot exist in a TCG, and thus edges (𝑛𝑖, 𝑛𝑗), (𝑛𝑘 , 𝑛𝑖) in 𝐶ℎ (𝐶𝑣) and (𝑛𝑘, 

𝑛𝑗) in 𝐶𝑣 (𝐶ℎ) cannot exist. 

3.2.2. Packing Sequence Update 

This section introduces an O(n) runtime algorithm, where n is the number of modules in 

a placement, for the update of packing sequences Г+ and Г−based on knowledge of Cℎ, C𝑣, 
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and the positions of the modules. The algorithm depends on updating the TCG topology 

after each perturbation. 

Algorithm 3.1: Update-SP (SeqX, SeqY, A) 

//initialize SeqYNew Arrays with 0 

//initialize Tmp List with nil 

1. FOR i 0 NUM(SeqY)-1 

2.  IF( SeqY[i] ∈ Fout_Cv(A) in 𝐶𝑣 ∪ Fout_Ch(A) THEN { 

3.   SeqYNew[i]=SeqY[i]; 

4.  ELSE 

5.   Tmp = concat{Tmp SeqY[i]}; } 

6. FOR i NUM(SeqY)-NUM(Tmp) NUM(SeqY)-1 

7.  SeqYNew[i] = nth(i-NUM(SeqY)+NUM(Tmp) Tmp); 

8. Tmp = nil; 

9. RETURN SeqYNew 

 

Algorithm 1 shows the update of Г−, sequence Г+ update will be discussed shortly. The 

algorithm updates the position of the module b𝑖, on which perturbation is applied, with 

respect to the ones that precedes and the ones that follows it in the sequence. Any module 

b𝑘, belongs to fanout(𝑏𝑖) in C𝑣 graph ∪ fanout(𝑏𝑖) in Cℎ graph, is to follow module b𝑖 in 

the sequence Г−. When the algorithm ends, the array SeqYNew[1…𝑛] records the 

sequence Г−. Similarly, to update sequence Г+, Any module b𝑘, belongs to fanin(𝑏𝑖) in C𝑣 

graph ∪ fanout(𝑏𝑖) in Cℎ graph, is to follow module b𝑖 in the sequence Г+.  

Tang et al. proposed a fast packing cost evaluation of sequence pair by computing the 

longest common subsequence with minimum time complexity of O(n log log n). However, 

time complexity of the floorplan algorithm is dominated by the construction of constraint 

graphs from scratch after each perturbation for packing cost evaluation, since the geometric 

relations between modules are not transparent to the operations of SP. Thus, the time 

complexity of constructing the constraint graphs is O(𝑛2), where n is the number of 

modules in  a placement. Implementing TCG-S* algorithm with O(n) runtime in total 
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decreases the time complexity of the sequence pair floorplan algorithm to O(n log log n) 

for significantly large n.    

Theorem 5: Algorithm 3.1 correctly returns the new sequence pairs Г+ and Г−.  

Proof: According to sequence pair representation, packing sequence Г− is constructed 

by concatenating the nodes in a placement as in (1) and (2) subject to the condition that 

either 𝑏𝑖 is left to or below 𝑏𝑗, where 𝑏𝑗 follows 𝑏𝑖 in the sequence. Therefore, 𝑏𝑗 follows 

𝑏𝑖 in Г− only if 𝑏𝑖 ⊢ 𝑏𝑗 or 𝑏𝑖 ⊥ 𝑏𝑗. Additionally, based on property (2) of TCG discussed 

in [2], the two nodes 𝑛𝑖 and 𝑛𝑗  are connected by exactly one edge either in 𝐶𝑣 or 𝐶ℎ. If 𝑛𝑗  

∉ fanout(𝑏𝑖) either in 𝐶𝑣 or 𝐶ℎ, then 𝑛𝑗  ∈ to fanin(𝑏𝑖) either in 𝐶𝑣 or 𝐶ℎ. Therefore, 

algorithm 3.1 correctly returns the new sequence pair. 

Theorem 6: Algorithm 3.1 updates the packing sequences in O(n) runtime. 

Proof: The time complexity of updating sequence Г− in algorithm 3.1 is dominated by 

checking whether b𝑗 is a member of fanout(𝑏𝑖) in both C𝑣 and Cℎ. Since, time complexity 

of updating sequence Г+ and Г− are the same, and in worst case scenario there are at most 

O(n-1) of b𝑗’s, time complexity of algorithm 1 is O(n) in total. 

3.2.3. Equivalence of TCG and SP 

Lin et al. proposed a transformation from TCG to SP using fanin and fanout of TCGs 

[18]. Time complexity of such algorithm merely depends on the configuration of TCG. For 

each node n𝑘 in the TCG, a node n𝑙 is checked whether edge (n𝑘, n𝑙) or (n𝑙, n𝑘) exists in 

Cℎ or Cℎ. if exists, the edge is deleted. In worst case, there exist O(n-1) n𝑘’s and O(n) n𝑙’s, 

thus the time complexity is O(𝑛2). TCG-S* packing sequence update algorithm returns the 

updated sequences Г+  and Г− in O(n) runtime which makes it superior to the update 

proposed by [18]. 

Likewise, a reverse transformation from SP to TCG can be obtained. Given a sequence 

pair (Г+, Г−), the fanin and fanout of all nodes in both transitive closure graphs can be 

obtained by determining the common nodes in the subsequence of the inspected node in 

each of Г+ and Г− according to the horizontal and vertical constraints. Accordingly, in 

order to obtain fanout(n𝑖) in x-direction from Г+ and Г−, subsequence of node n𝑖 in Г+ ∩ 
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subsequence of node n𝑖 in Г− is determined. Subsequence of node n𝑖 in Г+
𝑅  ∩ subsequence 

of node n𝑖 in Г− determines fanout(n𝑖) in y-direction. Subsequence of node n𝑖 in Г+
𝑅  ∩ 

subsequence of node n𝑖 in Г−
𝑅  determines fanin(n𝑖) in x-direction. Finally, subsequence of 

node n𝑖 in Г+ ∩ subsequence of node n𝑖 in Г−
𝑅  determines fanin(n𝑖) in y-direction. Example, 

for the placement shown in Fig. 3.2(a) with sequence pair (〈e c a d b f〉, 〈a b c e f d〉), 

fanout(n𝑎) in x-direction = {n𝑏, n𝑑, n𝑓}, fanout(n𝑎) in y-direction = {n𝑐, n𝑒}, fanin(n𝑎) in 

x-direction = {∅}, and fanin(n𝑎) in y-direction = {∅}. 

3.3. Floor Planning Algorithm 

A simulated annealing based algorithm [54] is developed using TCG-S for non-slicing 

floorplan design with the updated perturbing algorithm TCG-S*. Given an initial solution 

represented by TCG and SP, the algorithm perturbs the placement to obtain new TCG and 

SP. The new TCG must satisfy the three properties mentioned in [12], and the new packing 

sequences pair must show equivalence with TCG as well. Slack computation proposed by 

[55] is implemented in order to improve move selection in simulated annealing. 

Contribution to wirelength minimization is discussed in this section as well. 

3.3.1. Slack Computation 
Blocks that constrain each other in the same direction in the order that any attempt to 

minimize path length will result in blocks overlap, lie on the critical path of floorplan. 

Hence, the slack value in that direction is zero. These blocks are good candidates for move 

selection towards reducing span of the floorplan. Slack based moves along with the moves 

of TCG give a directed movement towards area minimization through the determination of 

zero slack blocks, which represents the critical paths of floorplan. 
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x-Slack for block c = 

x(right) - x(left)

y-Slack for block a = 

y(top) - y(bottom)  

Figure 3.3. Slack computation (a) floorplan evaluation in left to right and bottom to top mode. (b) floorplan 

evaluation from right to left and top to bottom mode. 

Table 1. MCNC Benchmark circuits 

Circuit #Module #I/O Pads #Nets #Pins 

apte 9 73 97 214 

xerox 10 107 203 696 

hp 11 43 83 264 

 

Slacks can be computed in left-to-right mode or right-to-left mode. Fig. 3.3 shows 

floorplan evaluation for the same sequence pair in bottom-left mode and top-right mode. 

To compute slacks of blocks in floorplan, first, LCS of the two sequences is computed 

in the left to right mode. Then the two sequences are reversed for LCS computation is the 

left to right mode. For example, LCS of blocks in x-direction in the left to right mode is 

computed by calculating lcs(Г+
𝑅 , Г−

𝑅), whereas to compute LCS in y-direction, lcs(Г+, Г−
𝑅) 

is calculated. Algorithm 3.2 computes the LCS of the blocks using the sequence pair. 

Algorithm 3.3 calls LCS function after initializing the sequence pair in reversed order. 

Algorithm 3.2:  

(b) Right-Top Packing (a) Left-Bottom Packing 
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LCS_Calc(X,Y, weights) 

1. initialize_length_array L with 0; 

2. initialize_position_array P; 

3. initialize_result_array R; 

4. For i = 0 TO n-1 DO 

5.  p = match[X[i]]; 

6.  b = X[i]; 

7.  max = L[p]+weights[i]; 

8.  P[i] = L[p]; 

9.  For j = p TO n-1 DO 

10.   IF(max > L[j] && Y[j] ∈ Fout(b)) 

11.   THEN 

12.    L[j] = max; 

13. R[0] = P[0,…,n-1]; 

14. R[1] = L[n-1]; 

15. RETURN R; 

 

Algorithm 3.3:  

Slack (X,Y, PosX, PosY, wX, wY) 

1. initialize_arrays Rx_BL, Ry_BL; 

2. initialize_array Rx_TR, Ry_TR; 
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3. /*evaluate LCS X in bottom-left mode*/ 

4. LCSX_BL = LCS_Calc(X,Y, wX); 

5. /*evaluate LCS Y in bottom-left mode*/ 

6. For i = 0 TO n-1 DO 

7.  𝑋𝑅[i] = X[n-1-i]; 

8.  𝑊𝑌𝐵𝐿
𝑅 [i] = wY[n-1-i]; 

9. LCSY_BL = LCS_Calc(𝑋𝑅, Y, 𝑊𝑌𝑅); 

10. /*evaluate LCS X in top-right mode*/ 

11. For i = 0 TO n-1 DO 

12.  𝑌𝑅[i] = Y[n-1-i]; 

13.  𝑊𝑋𝑅[i] = wX[n-1-i]; 

14. 𝐿𝐶𝑆𝑋𝑅_TR = LCS_Calc(𝑋𝑅, 𝑌𝑅, W𝑋𝑅); 

15. /*evaluate LCS Y in top-right mode*/ 

16.𝐿𝐶𝑆𝑌𝑅_TR = LCS_Calc(X, 𝑌𝑅, wY); 

17. For i = 0 TO n-1 DO 

18.  LCSX_TR[i] = 𝐿𝐶𝑆𝑋𝑅_TR[n-1-i]; 

19.  LCSY_TR[i] = 𝐿𝐶𝑆𝑌𝑅_TR[n-1-i]; 

20./*compute slack*/ 

21. For i = 0 TO n-1 DO 

22.  SlackX[i] = max(LCSX_BL[i])-LCSX_BL[i]-LCSX_TR[i]+wX[i]; 
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23.  SlackY[i] = max(LCSY_BL[i])-LCSY_BL[i]-LCSY_TR[i]+wY[i];  

Based on the equivalence between TCG and SP, LCS function returns floorplan span in 

x-direction (y-direction) faster. Since block b𝑖 in a placement is only bounded by its fanout 

blocks in Cℎ (C𝑣), only these blocks affect the total length of candidates sequences in the 

path of block b𝑖. Let k denote the index of module b𝑖 in sequence Г+ and p denote the 

index of mobule b𝑖 in sequence Г−. Therefore, computing lcs(Г+[1…k], Г−[1…p] ) only 

considers the fanout of blocks in the common subsequence of (Г+[1…k-1], Г−[1…p-1]). 
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4.Placement and Routing 

4.1. Constraints-based Placement 

Placement of analog circuits is an error prone and time consuming process. It can easily 

take an experienced designer weeks or months to layout even a relatively small circuit. 

Some devices are needed to be placed at close proximity and symmetrically with respect 

to an axis or to a center point. This can reduce the effect of parasitic mismatches, which 

will cause degradation of the circuit performance. Circuit sensitivity to thermal gradients 

and process variations can be reduced by placing symmetric devices close to each other. 

4.1.1. Overview of Analog Placement Methods 

In order to automatically produce analog device-level layouts matching in density and 

performance the high-quality manual layouts, a placement tool must not only provide a 

good rectangle packing functionality (which must be common to any placement method) 

but, additionally, it must include also analog-specific capabilities. Such specific features 

are, for instance; 1) the ability to deal with topological constraints for symmetry and device 

matching; 2) the ability to arrange devices such that critical structures are shared in 

common (also known as device merging) in order to reduce both layout density and induced 

parasitics; and 3) the existence of a (built-in) library of predefined module generators and 

the ability to exploit their reshaping capabilities during the placement process. Besides 

these specific features of analog placement, the main goal of optimally packing arbitrarily 

sized modules is similar to that of other very large scale integrated circuits (VLSI) 

placement problems—chip floorplanning, standard cell and macro cell digital placement. 

Due to the complexity of the basic problem, several heuristic classes of placement 

techniques have been attempted. 

The constructive placement techniques, which consist in evolving gradually the 

placement solution by selecting one module at a time and positioning it in the “best” 

available location, were among the first developed for VLSI layout. Several systems for 

analog placement employ constructive methods: Kayal et al. developed an expert 
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knowledge base to guide the placement [56]; Mehranfar suggested a schematic-driven 

approach, using a constructive scheme based on connectivity and relative positioning in 

the input schematic [57]. Although these methods are fast, scaling well with the problem 

size, the results can be poor due to the order dependence, lacking of global view in dealing 

with a variety of interacting quality measures. Branch-and-bound placement techniques 

use a controlled enumeration of all possible layout configurations in the search space, 

where a lower bound of the chosen cost function is used to prune the search. The branch-

and-bound algorithms eventually find the optimal solution as they explore exhaustively the 

search space. However, they are effective only for problems of very small size as the 

number of visited configurations grows exponentially with the size of the problem. The 

related integer linear programming (ILP) placement models suffer the same scaling 

drawback as most ILP packages are based on branch-and-bound approaches. Even if the 

placement problems are tackled hierarchically, the branch-and-bound methods are less 

attractive for analog device placement due to usually a much larger search space than 

digital problems of similar size (for instance, due to the presence of “soft” capacitors which 

can be implemented in a large number of versions). More recently, a placement technique 

iteratively combining min-cut partitioning and force-directed placement (DLP) has been 

employed in an interactive environment for full-custom designs [58]. 

The simulated annealing [54] and genetic algorithms are the most effective choice for 

solving industrial analog placement problems. These algorithms use stochastically 

controlled hill-climbing to avoid local minima during the optimization process. In addition, 

they do not impose severe constraints on the size of the problems or on the mathematical 

properties of the cost function. While efficiently trading off between a variety of layout 

factors as area, total net length, aspect ratio, maximum chip width and/or height, cell 

orientation, “soft” cell shape, etc., they are very flexible—supporting incremental addition 

of new functionality, and they are relatively easy to implement (although good tuning needs 

more time).  
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Existing approaches to automated placement generation can be classified into two 

categories; 

i. Template driven layout 

This approach is based on a known layout pattern or layout template which specifies 

necessary device-to-device, device-to-wire, or wire-wire special relationship for a 

typical circuit. It is fast and easy to obtain a compact layout. However, this approach 

lacks flexibility as matching varies from circuit design to another. 

ii. Constraint-based layout 

It is more flexible than template driven layout approach. Fig. 4.1 shows the general 

flow of the constraint-driven or performance-driven layout. It usually starts with the 

circuit analysis based on the netlist and/or performance specification of the design to 

generate the layout constraints. The placement and routing process is required to meet 

the constraints, and the final compaction stage is applied to optimize area utilization. 

 

Figure 4.1 Constraint-driven analog layout generation flow 

According to [48] and [49], device group placement is classified into four categories; 

the cross-couple, inter-digitated, common-centroid, and general stacking matching styles. 

These four styles are studied thoroughly in [50]. This section mainly studies and impements 

the common-centroid and inter-digitated matching styles in automated device group 
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placement in order to reduce systematic device mismatch. The inputs of placement 

algorithm are the aspect ratio bounds, which is computed in the floorplan optimization 

process, devices to be matched, and matching style. 

 

4.1.2. A Review on Simulated Annealing Optimization 

Algorithm 

At each layout optimization stage, one wants to optimize the eventual performance of the 

system without compromising the feasibility of the subsequent stage. The basic elements 

of simulated annealing are: 

i. A finite set S. 

ii. A real-valued cost function J defined on S. let 𝑆∗ be the set of global minima 

of the function J, assumed to be a proper subset of S.  

iii. For each 𝑖 ⊂ 𝑆, a set 𝑆(𝑖) ⊂ 𝑆 − {𝑖}, called the set of neighbors of i.  

iv. For every 𝑖, a collection of positive coefficients 𝑞𝑖𝑗, 𝑗 ∈ 𝑆(𝑖), such that 

∑ 𝑞𝑖𝑗 = 1𝑗 ∈𝑆(𝑖) . It is assumed that 𝑗 ∈ 𝑆(𝑖) if 𝑖 ∈ 𝑆(𝑗). 

v. A non-increasing function T: 𝑁 − [0, ∝], called the cooling schedule. N is the 

set of positive integers, and T(t) is called the temperature at time t. 

vi. An initial state 𝑥(0) ∈ 𝑆. 

 

Given the above elements, the SA algorithm consists of a discrete-time inhomogeneous 

Markov Chain 𝑥(𝑡), whose evolution we now describe. If the current state 𝑥(𝑡) is equal to 

𝑖, choose a neighbor 𝑗 to 𝑖 at random; the probability that any particular 𝑗 ∈ 𝑆(𝑖) is selected 

is equal to 𝑞𝑖𝑗. Once 𝑗 is chosen, the next state 𝑥(𝑡 + 1) is determined as follows: 

If 𝐽(𝑗)  ≤  𝐽(𝑖), then 𝑥(𝑡 + 1)  =  𝑗 

If 𝐽(𝑗)  >  𝐽(𝑖) then 

 𝑋(𝑡 + 1)  =  𝑗   with probability 𝑒𝑥𝑝[−(𝐽(𝑗) − 𝐽(𝑖))/𝑇(𝑡)]  
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𝑋(𝑡 + 1)  =  𝑖   otherwise 

Formally, 

    𝑃[𝑥(𝑡 + 1) =  𝑗|𝑥(𝑡) =  𝑖|  = 𝑞𝑖𝑗 exp [−
1

𝑇(𝑡)
𝑚𝑎𝑥{0, 𝐽(𝑗) − 𝐽(𝑖)}]  

                                                                                                                  𝑖𝑓 𝑗 ≠ 𝑖, 𝑗 ∈ 𝑆(𝑖)      ( 4.1 ) 

 

If 𝑗 ≠ 𝑖, 𝑗 ∉ 𝑆(𝑖), 𝑡ℎ𝑒𝑛 𝑃[𝑥(𝑡 + 1) = 𝑗|𝑥(𝑡) = 𝑖|] = 0. 

The rationale behind the SA algorithm is best understood by considering a homogeneous 

Markov chain 𝑋𝑇(𝑡) in which the temperature 𝑇(𝑡) is held at constant value 𝑇. Assume 

that the Markov chain 𝑋𝑇(𝑡) is irreducible and periodic and that 𝑞𝑖𝑗 = 𝑞𝑗𝑖 for all 𝑖, 𝑗. Then 

𝑋𝑇(𝑡) is a reversible Markov chain, and its invariant probability distribution is given by 

𝜋𝑇(𝑖) =
1

𝑍𝑇
exp [−

𝐽(𝑖)

𝑇
]  𝑖 ∈ 𝑆,                                                                                               ( 4.2 ) 

where 𝑍𝑇 is a normalizing constant. (This is easily shown by verifying that the detailed 

balance equations hold). The probability distribution function 𝜋𝑇 is concentrated on set 𝑆∗ 

of global minima 𝐽. This latter property remains valid if the condition 𝑞𝑖𝑗 = 𝑞𝑗𝑖 is relaxed. 

The probability distribution (4.2), known as the Gibbs distribution, plays an important 

role in statistical mechanics. Statistical physicists have been interested in generating a 

sample element 𝑆, drawn according to the probability distribution 𝜋𝑇. This is accomplished 

by simulating Markov chain 𝑋𝑇(𝑡) until it reaches equilibrium, where this method is known 

as Metropolis algorithm (Metropolis et al., 1953). In the context of optimization, an optimal 

element of S can be generated with high probability if a random sample is generated 

according to 𝜋𝑇, with 𝑇 being very small. One difficulty with this approach is that when T 

is very small, the time is takes for Markov chain to reach equilibrium can be excessive. 

The SA algorithm tries to resolve this drawback by using a slow cooling rate 𝑇(𝑡). 
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The SA can be viewed as a local search algorithm in which that there are occasional 

upward moves that lead to cost increase. 

Assume that 𝑋𝑇(𝑡) is irreducible and periodic. According to this assumption, SA 

algorithm converges if lim
𝑡→∞

(𝑃[𝑥(𝑡) ∈ 𝑆∗]) = 1. SA convergence condition according to 

Hajek is presented next. 

Theorem (Hajek, 1988): state 𝑖 communicates with 𝑆∗ at height ℎ if there exists a path in 

𝑆, with each element of the path being neighbor of the preceding element. The path starts 

at 𝑖 and ends at some element at 𝑆∗ and such that the largest value of 𝐽 along the path is 

𝐽(𝑖) + ℎ. Let 𝑑∗ be the smallest number such that every 𝑖 ∈ 𝑆 communicates with 𝑆∗ at 

height 𝑑∗. Then, the SA algorithm converges if and only if: 

lim
𝑡→∞

(𝑇(𝑡)) = 0                                                                                                                           ( 4.3 ) 

and, 

∑ exp [−
𝑑∗

𝑇(𝑡)
] = ∞

∞

𝑡=1

                                                                                                               (4.4 ) 

𝑇(𝑡) =
𝑑

𝑙𝑜𝑔𝑡′
                                                                                                                              ( 4.5 ) 

where d is a positive constant. Hajek theorem states that SA converges if and only if 𝑑 ≥

𝑑∗. 

The constant 𝑑∗ is the measure of the difficulty of x(t) to escape the local minima and 

travel from a non-optimal state to 𝑆∗. A problem with 𝑑∗ > 0, in the sense that the problem 

has at least one local minima which is not the optimal solution, is the primary concern. In 

order to have an acceptable grasp on Hajek theorem, consider a local minimum with depth 

𝑑∗. The SA makes an infinite number of trials to escape from it, and the probability of 

success at each trial, as discussed earlier, is exp (−𝑑∗/𝑇(𝑡)). Therefore, according to 

equation (4.4), an infinite number of trial will guarantee a successful escape. 
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In order to get more intuition on the interpretation of Hajeks’ theorem, the connection 

between SA and the Markov chain is further analyzed. Formally, the statistics of Markov 

chain 𝑥(𝑡) under a slowly variation cooling schedule T(t) remains fairly unchanged if the 

cooling schedule is used in which the temperature is held constant for a long time period. 

Let 𝑡𝑘 = 1 and 𝑡𝑘+1 = exp (𝑘𝑑). Then let �̂�(𝑡) = 1/𝑘, for  𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1. Consider the 

kth element [𝑡𝑘, 𝑡𝑘+1] of the piecewise constant schedule �̂�(𝑡). In order to study the 

convergence of the chain 𝑥1/𝑘(𝑡), the eigenvalues of its transition probability matrix is real. 

Its relaxation time is determined by its second-largest eigenvalue 𝜆2 for which good 

estimates are available, at least in the limit as 𝑘 ⟶ ∞. e.g., Chiang and Chow, 1988 and 

Holley and Stroock, 1988. In particular, if the cost function J has a unique global minimum, 

the relaxation time is approximated by 𝑒𝑥𝑝(𝑘𝑑∗), which is the same constant 𝑑∗ defined 

in the Hajek theorem. This gives more solid evidence on the convergence condition 𝑑 >

𝑑∗ for the schedule �̂�(𝑡). If 𝑑 < 𝑑∗, then it means that at each temperature 1/k, 𝑥1/𝑘(𝑡) is 

run with a negligible fraction of its relaxation time which is not enough for 𝜋𝑇(𝑖; 𝑡) to stay 

close to 𝜋𝑇(𝑖). Whereas, if 𝑑 < 𝑑∗, then the interval [𝑡𝑘, 𝑡𝑘+1] corresponds to exp (𝑘(𝑑∗ −

𝑑) relaxation times of 𝑥1/𝑘(𝑡) which implies that 𝜋𝑇(𝑖; 𝑡) is very close to 𝜋𝑇(𝑖) as k tends 

to ∞. 

In practice, despite the lack of solid theoretical justification of SA convergence speed, 

SA was widely used by researchers in the past decades. Generally, the performance of SA 

is mixed; in some cases, it outperformed the best known heuristics for these cases, and, in 

others, heuristics performed better. The choice of the cooling schedule influences 

significantly the convergence of the SA, and hence, the quality of the solution generated. 

To sum up, SA is a generally applicable and easy-to-implement probabilistic 

approximation algorithm which is able to generate good solution for an optimization 

problem. 
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4.1.3. Inter-digitated matching style 

The device matching placement with inter-digitated matching style is one dimensional 

common centroid array as shown Fig. 4.1. The two devices are marked as A and B. 

Therefore, the matching pattern is AB_BA or AB_AB. Each Inter-digitated group 𝐺𝑖 

contains 𝑆𝑖 devices, placed according to the bounding length and width, 𝐿𝐵 and 𝑊𝐵 

respectively, for the whole group in the pattern AB_AB. 𝐿𝐺  denotes the sum of 𝑆𝑖 

horizontal weights and 𝑁𝑆 denotes the number of segments per row. The inputs of the 

algorithm are devices to be matched and number of device fingers per segment 𝑁𝑓𝑆. 

 

Figure 4.2 An example of inter-digitated array 

 

Algorithm 4.1: interdig(𝐺𝑖,  𝑁𝑓𝑆,  𝐿𝐵 , 𝑊𝐵 ) 

1. // calculate coordinates of devices fingers placement. 

2. // initialize m, RelX, RelY with 0 

3. while (m < number of fingers per device) DO 

4.  FOR each device 𝑆𝑖 DO 

5.   FOR each finger in segment range from 1 TO 𝑁𝑓𝑆 DO 

6.    find x-position PosX = RelX; // relative x position 
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7.    find y-position PosY = RelY; // relative y position 

8.    increment RelX: RelX = RelX + Hweights; 

9.    y.max = max(y.max Vweights); 

10.   IF (RelX + Hweights > 𝑁𝑠*Hweights THEN { 

11.    RelX = 0; 

12.    RelY = y.max; } 

13.  m = m+𝑁𝑓𝑆 

 

4.1.4. Common-centroid matching style 

The matching of common centroid style requires centroids of matched devices to exactly 

coincide. Fig. 4.2 shows an example of matched devices by common centroid style.  

 

Figure 4.3 An example of common centroid array 

 

Each common-centroid group 𝐺𝑖 contains 𝑆𝑖 devices, placed according to the bounding 

length and width, 𝐿𝐵 and 𝑊𝐵 respectively, for the whole group in which centroid of all 

devices should coincide. 𝐿𝐺  denotes the sum of 𝑆𝑖 horizontal weights, 𝑤𝐻 and 𝑤𝑣 denotes 
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finger horizontal and vertical weights respectively, 𝑁𝑓 denotes number of device fingers, 

and 𝑁𝑆 denotes the number of devices finger per row.  

 

Algorithm 4.2: comcentroid(𝐺𝑖, 𝑁𝑆, 𝑤𝐻, 𝑤𝑣) 

1. // calculate coordinates of devices fingers placement 

2. // initialize radprev, rad, Xrel, Yrel with 0 

3. while (rad <=𝑁𝑆*𝑤𝑣) DO 

4.  increment rad: rad = rad + 𝑤𝐻; 

5.  Yrel = 0; 

6.  find x-position: Xpos = Xrel; 

7.  find mirror x-position: Xneg = -Xpos -𝑤𝐻; 

8.  while (Yrel < 𝑁𝑓*𝑆𝑖/(𝑁𝑠 ∗ 2)) DO { 

9.   find y-position: Ypos = Yrel; 

10.   find mirror y-position: Yneg=-Ypos-𝑤𝑣; 

11.   P[F_num] = list(Xpos Ypos); 

12.   P[F_num+1] = list(Xneg Yneg); 

13.   P[F_num+2] = list(Xneg Ypos); 

14.   P[F_num+3] = list(Xpos Yneg); 

15.   F_num = F_num+4; 

16.   increment relative position: Yrel = Yrel +𝑤𝑣; 

17.  increment relative position: Xrel = Xrel +𝑤𝐻; 
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18.  F[i] = F_num; 

19.  i = i+1; 

20. // initialize k, s with 0 

21. while (k < 𝑁𝑓) DO { 

22.  // find number of device fingers per row:  

23. 𝐹𝑅𝑛𝑢𝑚 = F[s]/NUM(𝑆𝑖); 

24. FOR each device 𝑆𝑖 DO 

25. FOR each device finger m range from k TO min(𝐹𝑅𝑛𝑢𝑚 𝑁𝑓-𝑘) DO 

26.  Posx.finger = nth(0 P[k+m]); 

27.  Posy.finger = nth(1 P[k+m]); 

28.  s = s+1; 

29.  k = k+𝐹𝑅𝑛𝑢𝑚*NUM(𝑆𝑖); } 
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4.2. Optimization-Based Router 

After placement, specific legal routing must be found for the wires needed to connect 

the circuits. The techniques typically applied to generate such routing are sequential in 

nature, treating one wire at a time with incomplete information about the positions and 

effects of the other wires. Annealing is inherently free of this sequence dependence. Nets 

with many pins must first be broken into connections-pairs of pins joined by a single 

continuous wire. This "ordering" of each net is highly dependent on the nature of the 

circuits being connected and the package technology 

Based on simulated annealing algorithm [54], the router starts from the attained 

placement, after constructing routing channels to ensure the reliability and routability of 

the placement solution. The router requires modules terminal positions, allowed routing 

layers, and technology design rules to generate a DRC clean routing. The cost function 

which computes the probability of accepting a candidate net is given by: 

𝑃 = 𝑚𝑖𝑛 (1 𝑒
−

∆𝐷
𝐷𝑜𝑙𝑑

.
1
𝑇)                                                                                                              ( 4.6 ) 

Where T is a constant-rate decaying temperature and ∆𝐷 presents the difference 

between the new and the old distance between the routed net and the destination terminal, 

in the sense that ∆𝐷 becomes more negative as the routed net approaches the destination. 

Distance between the candidate net and the target pin is calculated by; 

𝐷 = 𝑚𝑖𝑛( 𝑎𝑏𝑠(𝑋2 − 𝑋1
′)  𝑎𝑏𝑠(𝑋1 − 𝑋2

′ ) ) +  𝑚𝑖𝑛(𝑎𝑏𝑠(𝑌2 − 𝑌1
′) 𝑎𝑏𝑠(𝑌1 − 𝑌2

′))      ( 4.7 ) 

The probability P is then compared with a threshold constant r. A candidate net is 

accepted if P ≥ r. Hence, chosen net is the one with the least cost, i.e., minimum 

wirelength.  

During routing, each net is instantiated with its electrical constraints, e.g. current 

density, according to designer preferences, which are automatically converted to the 

corresponding wire width and layer according to a lookup table generated from the 
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technology file used. The algorithm searches for the minimum metal width satisfying the 

rms current density specified by the designer, according to available routing layers and the 

blockages surrounding the routed net within the DRC spacing specified for each blockage 

layer. The minimum DRC spacing allowed for each metal layer is defined by; the width, 

the layer of examined metals, and the length of the part in which metal lines are in a close 

proximity.  Given a number of routing layers, each net is routed with a different metal layer 

in the presence of obstacles, e.g. wires, in order to ensure minimum wirelength. Metal lines 

are forbidden to pass over the devices.  Multiple power straps are generated using reserved 

metal layers in Manhattan-like style to account for supply drop and hence prevent 

performance degradation. 
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5.Experimental Results 

OASYN framework is implemented in 10,000 lines of code using SKILL programming 

language on a 2.4-GHz core i3 processor with 2GB of memory. Table 3,4, and 5 show 

simulated results of the circuit synthesizer for Folded Cascode OpAmp topology. 

Experiments are implemented using 65nm TSMC technology node. Table 6 shows 

simulated results of the circuit synthesizer for the same topology accounting for process, 

temperature, and supply variations with the minimum specs reported. Table 7 shows 

detailed simulated results for each corner.  

Based on the MCNC benchmark circuits shown in Table I, experiments on area 

optimization, convergence speed, and convergence stability are conducted for each 

representation in the literature. Number of modules, I/O pads, nets and pins of the 

benchmark circuits are shown in Table I. Area and run time comparisons among different 

floorplan representations; SP, O-tree, B*-tree, enhanced O-tree, CBL, TCG, and TCG-S 

are shown in Table 2. TCG-S employing TCG-S* perturbing algorithm achieves almost 

the state-of-art area usage for the five benchmark circuits at the highest convergence speed.  

Figure 5.1 shows the placements for the devices sizings indicated in Table 5 for 

simultaneous area and matching constraints optimization. Figure 5.2 shows the placement 

and routing results. Figure 5.3 shows the DRC Error messages of which there are no DRC 

spacing errors included (only density and CAD layer errors). 
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Table 2. Area and Runtime Comparisons among SP (On Sun Sparc Ultra60), O-Tree (On Sun Sparc Ultra60), B -TREE (On Sun Sparc Ultra 60), Enhanced 

O-Tree (On Sun Sparc Ultra60), CBL (On Sun Sparc 20), TCG (On Sun Sparc Ultra60), TCG-S (On Sun Sparc Ultra60), and TCG-S* (On Intel Core-i3) for 

Area Optimization 

 

Circuit 

 

SP 

 

O-tree 

 

B*-tree 

Enhanced         

O-tree 

 

CBL 

 

TCG 

 

TCG-S 

 

TCG-S* 

Area 

(𝑚𝑚2) 

Time 

(sec) 

Area 

(𝑚𝑚2) 

Time 

(sec) 

Area 

(𝑚𝑚2) 

Time 

(sec) 

Area 

(𝑚𝑚2) 

Time 

(sec) 

Area 

(𝑚𝑚2) 

Time 

(sec) 

Area 

(𝑚𝑚2) 

Time 

(sec) 

Area 

(𝑚𝑚2) 

Time 

(sec) 

Area 

(𝑚𝑚2) 

Time 

(sec) 

apte 48.12 13 47.1 38 46.92 7 46.92 11 NA NA 46.92 1 46.92 1 46.92 0.2 

xerox 20.69 15 20.1 118 19.83 25 20.21 38 20.96 30 19.83 18 19.796 5 20.74 0.62 

hp 9.93 5 9.21 57 8.947 55 9.16 19 66.14 32 8.947 20 8.947 7 9.37 10 

 

Table 3. Folded Cascode OpAmp Synthesis Results 

Metric Specifications Simulated Results Synthesized Circuit Parameters 

Open Loop Gain (dB) 60 60 L1 = 228n. L3 = 490n. L5 = 500n. 

L7 = 3.6u. L9 = 2.7u. Lss = 510n.  

W1 = 221u. W3 = 51.8u. W5 = 21.4u.  

W7 = 305u. W9 = 5.3u. Wss = 1.58u 

Vb1 = 0.642. Vb2 = 0.439 

Mt9 = 46. Mtss = 54 

GBW (HZ) 350M 398M 

Phase Margin (degree) 60 65.87 

Current Consumption (mA) 2 1.75 

Output Swing (v) 0.8 0.9898 

Slew Rate (v/us) none 230 

Load Cap. (pF) 1 

VICM(v) 0.5 
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Table 4. Folded Cascode OpAmp Synthesis Results 

Metric Specifications Simulated Results Synthesized Circuit Parameters 

Open Loop Gain (dB) 60 60 L1 = 258n. L3 = 550n. L5 = 530n.  

L7 = 3.6u. L9 = 2.16u. Lss = 480n. 

W1 = 252u. W3 = 114u. W5 = 40.7u. 

W7 = 557u. W9 = 5.2u. Wss = 8.914u 

Vb1 = 0.642. Vb2 = 0.449 

Mt9 = 82. Mtss = 80. 

GBW (HZ) 600M 605.2M 

Phase Margin (degree) 55 58.19 

Current Consumption (mA) 3 2.88 

Output Swing (v) 0.8 1.006 

Slew Rate (v/us) none 542 

Load Cap. (pF) 1 

VICM (v) 0.5 

 

Table 5. Folded Cascode OpAmp Synthesis Results 

Metric Specifications Simulated Results Synthesized Circuit Parameters 

Open Loop Gain (dB) 60 60 L1 = 258n. L3 = 550n. L5 = 500n.  

L7 = 3.6u. L9 = 1.77u. Lss = 480n. 

W1 = 355u. W3 = 170u. W5 = 56.8u. 

W7 = 800u. W9 = 5.1u. Wss = 13u 

Vb1 = 0.642. Vb2 = 0.474 

Mt9 = 100. Mtss = 117. 

GBW (HZ) 0.8G 0.81G 

Phase Margin (degree) 50 51.66 

Current Consumption (mA) 4 3.797 

Output Swing (v) 0.9 1.055 

Slew Rate (v/us) none 794 

Load Cap. (pF) 1 

VICM (v) 0.5 
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Table 6. Folded Cascode OpAmp Synthesis Results on Process, Voltage, and Temperature Corners 

Metric Specifications Simulated Results (min) Post Layout Simulated Results (min) Synthesized Circuit Parameters 

Open Loop Gain (dB) 50 52.7 43.3 L1 = 200n. L3 = 520n. L5 = 500n.  

L7 = 3.6u. L9 = 1.2u. Lss = 300n. 

W1 = 156u. W3 = 34u. W5 = 52u.  

W7 = 60u. W9 = 6u. Wss = 20u 

Vb1 = 0.642. Vb2 = 0.48 

Mt9 = 10. Mtss = 28. 

GBW (HZ) 200M 251M 136M 

Phase Margin (degree) 50 56.8 52.4 

Current Consumption (mA) 2 1.51 1.09 

Output Swing (v) 0.7 0.74 0.62 

Slew Rate (v/us) none 148.7 122.3 

Load Cap. (pF) 1 

VICM (v) 0.5 
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Table 7. Folded Cascode OpAmp Synthesis Results on Process, Voltage, and Temperature Corners 

C
o

rn
ers 

Process SS FF SF FS TT 

Temp 0 80 0 80 0 80 0 80 0 80 

Supply 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 

M
etric 

Gain(dB) 61.5 53.6 59.5 52.7 60.1 59.9 56.7 56.3 60.4 55.6 57.5 54.0 60.7 59.7 58.1 56.6 60.9 58.2 58.4 55.77 

GBW(MHz) 251 306 298 251 430 542 394 427 381 361 338 287 284 525 334 412 345 458 353 357 

PM(deg) 56.8 77.4 60.8 79.3 58.6 62.5 63.3 67.2 60.0 74.1 66.7 77.4 56.8 62.8 59.8 67.3 57.57 67.6 62.1 71.9 

I(mA) 0.40 1.33 0.69 1.4 0.84 1.44 1.1 1.5 0.76 1.4 1.03 1.5 0.45 1.4 0.76 1.43 0.60 1.4 0.90 1.46 

Swing(v) 1.24 0.99 1.02 0.78 0.97 1.0 0.74 0.77 1.11 1.0 0.87 0.78 1.11 1.02 0.88 0.80 1.11 1.02 0.89 0.80 

SLR(v/us) 148 553 274 582 336 590 445 617 303 586 417 612 172 561 304 589.6 236 575 362 601 

Load Cap.(pF) 1 

VICM (v) 0.5 
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Figure 5.1. Generated Folded Cascode OpAmp Layout with the Common Feedback Circuit for Simultaneous Area and Matching Constraints Optimization. 

Area  = 29.665x102.065 um2 
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Figure 5.2 Automated Placement and routing solution (Area = 146*47 um2) 
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Figure 5.3 Calibre DRC Message of the placement solution 
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Figure 5.4 Calibre LVS Message of the layout solution 
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Conclusion 

 In this Thesis, a framework is presented for synthesis of operational amplifiers on 

the cell-level. The tool optimizes the design on both circuit and layout phases by exploring 

the corners design space and optimizing on worst case solution. Although the results shown 

are promising, yet other constraints and optimization factors need to be weighed into the 

tool design flow. The tool undermines the effects of boundary constraints, isolation 

constraints, and total wirelength of the routed nets. Floorplan area optimizer showed state-

of-art results as optimization is applied on relatively few number of blocks. However, as 

number of blocks increase, the optimizer finds it more difficult to search for the optimum 

solution compared to other representations. Hence, a complexity analysis for TCG-S* 

based area optimizer is required to be studied. Considering the circuit synthesis tool, area 

optimization was only introduced in a later stage limiting the design space for area-power 

optimization. Applying the aforementioned enhancements and upgrading the tool on the 

system level can assist in the introduction of the concept of optimized standard-cell, which 

is well-established in the digital flow, in analog design. 

Future Works 

- Simultaneous optimization on area and wirelength. Wirelength of a net is estimated 

by half perimeter of the minimum bounding box enclosing the terminals of the net. 

- Could SA be trapped in a local maxima? 

Simulated annealing can be applied to reduce the effect of the highly non-linear 

non-monotonic behavior of the model. 

- Perform Sobol’s sensitivity analysis on other amplifier topologies, e.g., Two-Stage 

Miller compensated OTA, to prove the universality of the algorithm and its minor 

dependency on the law and the model.  

- Area Power optimization can be introduced earlier in the design stage, either by a 

rough calculation of the area based on the device gate dimensions or by looping 

through schematic and layout phases. 



83 
 

References 

[1] M. Degrauwe et al., “IDAC: An interactive design tao1 for analog CMOS circuits,” 

IEEE J. Solid-State Circuits, vol. 22, pp. 1106-1 115, Dec. 1987 

[2] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS: A framework for analog circuit 

synthesis,” IEEE Trans. Computer-Aided Design Integrated Circuits and Systems, vol. 

8, no. 12, pp. 1247–1266, Dec. 1989. 

[3] H. Y. Koh, C. H. Séquin, and P. R. Gray, “OPASYN: A compiler for CMOS 

operational amplifiers,” IEEE Trans. Compute.-Aided Design Integrated Circuits and 

Systems, vol. 9, no. 2, pp. 113–125, Feb. 1990. 

[4] S.K. Gupta and M.M. Hasan, “KANSYS: a CAD tool for analog circuit synthesis,” in 

Proc. of Ninth International Conference on VLSI Design, pp. 333 – 334, 1996. 

[5] N. Fujip, “Second Order Sensitivity Analysis for a Class of Shape Optimization 

Problems”, In Proc. IEEE 20th International Conference on Industrial Electronics, 

Control and Instrumentation, Sep. 1994, pp. 1176-1178.  

[6] F. M. E1-Turky and R. A. Nordin, “BLADES: An expert system for analog circuit 

design,” in Proc. Int. Conf. Circuits Syst., 1986, pp. 552–555. 

[7] H. Yang, A. Agarwal, and R. Vemuri, “Fast analog circuit synthesis using multi-

parameter sensitivity analysis based on element-coefficient diagrams,” in Proc. IEEE 

Comput. Soc. Annu. Symp. VLSI, Tampa, FL 2005, pp. 71–76. 

[8] H. Yang, R. Vemuri, “Efficient Temperature-Dependent Symbolic Sensitivity Analysis 

and Symbolic Performance Evaluation in Analog Circuit Synthesis”, In Proc. IEEE 

Design, Automation and Test in Europe, Mar. 2006, pp. 1-2. 

[9] R. H. J. M. Otten, “Automatic floorplan design,” in Proc. Design Auto-mation Conf., 

1982, pp. 261–267.  

[10] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in Proc. Design 

Automation Conf., 1986, pp. 101–107.  

[11] X. Tang, R. Tian, and D. Wong, “Fast evaluation of sequence pair in block 

placement by longest common subsequence computation,” IEEE Trans. CAD ICs., vol. 

20, no. 12, pp. 1406–1413, Dec. 2001. 



84 
 

[12] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph-based representation 

for general floorplans,” IEEE Trans. VLSI Syst., 2003. 

[13] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-tree representation of 

nonslicing floorplan and its applications,” in Proc. Design Automation Conf., 1999, pp. 

268–273. 

[14] X. Hong, G. Huang, T. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu, “Corner block 

list: An effective and efficient topological representation of nonslicing floorplan,” in 

Proc. Int. Conf. Computer-Aided Design, 2000, pp. 8–12. 

[15] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module placement 

based on rectangle-packing by the sequence pair,” IEEE Trans. Computer-Aided 

Design, vol. 15, pp. 1518–1524, Dec. 1996. 

[16] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module placement on 

BSG-structure and IC layout applications,” in Proc. Int. Conf. Computer-Aided Design, 

1996, pp. 484–491.  

[17] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B -trees: A new 

representation for nonslicing floorplans,” in Proc. Design Automation Conf., 2000, pp. 

458–463. 

[18] J.-M. Lin and Y.-W. Chang, ‘TCG-S: Orthogonal Coupling of P*-admissible Rep- 

representations for General Floorplans.” IEEE Trans. Computer-Aided Design, Vol. 

24. No. 6, June 2004. 

[19] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algo-rithms, 2nd 

ed. New York: MIT Press/McGraw-Hill, 2001. 

[20] G. Giclcn and R.A. Rutcnbar, "Computcr-Aidcd Dcsign of Analog and Mixed-

Signal Integrated Circuits." Proceedings of the IEEE, 88(12): 1825-1852. Dcc. 2000. 

[21] M. zakaria, M. Madbouly, M. A. El-Nozahi,, and M. Dessouky,“Knowledge-Based 

Design Automation of Highly Non-Linear Circuits Using Simulation Correction.” 

Proceedings of the 15th International Conference on Microelectronics, Dec. 2003, pp. 

46-49. 



85 
 

[22] C. Toumazou, C. A. Makris, and C. M. Berrah, “ISAID: A methodology for 

automated analog IC design,” in Proc. Int. Symp. Circuits Syst., 1990, vol. 1, pp. 531–

555. 

[23] E. Berkcan, M. d’Abreu, and W. Laughton, “Analog compilation based on 

successive decompositions,” in Proc. Des. Autom. Conf., 1988, pp. 369–375. 

[24] Z. Ning, A. J. Mouthaan, and H.Wallinga, “SEAS: A simulated evolution approach 

for analog circuit synthesis,” in Proc. Custom Integr. Circuits Conf., 1991, pp. 5.2-1–

5.2-4. 

[25] K. Swings, S. Donnay, and W. M. C. Sansen, “HECTOR: A hierarchical topology-

construction program for analog circuits based on a declarative approach to circuit 

modeling,” in Proc. Custom Integr. Circuits Conf., 1991, pp. 5.3/1–5.3/4. 

[26] B. A. A. Antao and A. J. Brodersen, “ARCHGEN: Automated synthesis of analog 

systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no. 2, pp. 231–

244, Jun. 1995. 

[27] N. C. Horta and J. E. Franca, “Algorithm-driven synthesis of data conversion 

architectures,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 10, no. 

16, pp. 1116–1135, Oct. 1997. 

[28] T. McConaghy, P. Palmers, M. Steyaert, and G. Gielen, “Variation aware structural 

synthesis of analog circuits via hierarchical building blocks and structural homotopy,” 

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 28, no. 9, pp. 1281–1294, 

Sep. 2009. 

[29] J. R. Koza, Genetic Programming: On the Programming of Computers by Means 

of Natural Selection. Cambridge, MA: MIT Press, 1992.  

[30] G. S. Hornby, “ALPS: The age-layered population structure for reducing the 

problem of premature convergence,” in Proc. Conf. Genetic Evol. Comput., M. Keijzer, 

M. Cattolico, D. Arnold, V. Babovic, C. Blum, P. Bosman, M. V. Butz, C. 

CoelloCoello, D. Dasgupta, S. G. Ficici, J. Foster, A. Hernandez-Aguirre, G. Hornby, 

H. Lipson, P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryan, and D. Thierens, Eds., 

2006, vol. 1, pp. 815–822. 



86 
 

[31] R. Martins, N. Lourenço, S. Rodrigues, J. Guilherme, N. Horta, “AIDA: Automated 

Analog IC Design Flow from Circuit Level to Layout”, Proceedings of International 

Conference on Synthesis, Modeling, Analysis and Simulation Methods and 

Applications to Circuit Design (SMACD), Seville, Spain, Sep. 2012. 

[32] M. Dessouky, M.-M. Louerat, and J. Porte, "Layout-oriented synthesis of high 

performance analog circuits," In Proceedings of Conference on Design, Automation 

and Test in Europe (DATE), pp. 53-57, 2000. 

[33] H. Habal and H. Graeb, “Constraint-based layout-driven sizing of analog circuits,” 

IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol.30, no. 8, pp. 1089–

1102, Aug. 2011. 

[34] F. Balasa, K. Lampaert, “Symmetry within the sequence-pair representation in the 

context of placement for analog design,” IEEE Trans. CAD of IC’s and Syst., vol. 19, 

no. 7, pp. 721-731, 2000. 

[35] K. Krishnamoorthy, S. Maruvada, and F. Balasa, “Topological placement with 

multiple symmetry groups of devices for analog layout design,” in Proc. IEEE Int. 

Symp. Circuits Syst., May 2007, pp. 2032 2035. 

[36] S. Dong, Z. Zhou, X. Hong, “A New Constraint-Driven Placement Approach for 

Analog Circuits”, In Proc. IEEE 8th International Conference on Solid-State and 

Integrated Circuit Technology, 2006, pp. 1763 – 1765. 

[37] L. Xiao and E. Young, “Analog placement with common centroid and 1-D 

symmetry constraints,” in Proc. IEEE ASP-DAC, Jan. 2009, pp. 353–360. 

[38] J. Lai, M.-S. Lin, T.-C. Wong, and L.-C. Wang, “Module placement with boundary 

constraints using the sequence-pair representation,” in Proc. IEEE Asia and South 

Pacific Design Automation Conf., 2001, pp. 515–520. 

[39] A.B. Kahng S. Reda, “Wirelength Minimization for Min-Cut Placements via 

Placement Feedback”, IEEE Trans. Computer-Aided Design of Integrated Circuits and 

Systems, Vol. 25,  no. 7, pp. 1301-1312, July 2006. 

[40] L. Xiao, E. F. Y. Young, X. He, and K. P. Pun, “Practical placement and routing 

techniques for analog circuit designs,” in Proc. IEEE/ACM Int. Conf. on Comput.-

Aided Des., 2010, pp. 675–679. 



87 
 

[41] Cheng-Wu Lin, Chun-Po Huang, Soon-Jyh Chang, Jai-Ming Lin. Routing-aware 

Placement Algorithms for Modern Analog Integrated Circuits. Circuits and Systems 

(MWSCAS), 2011. IEEE 54th International Midwest Symposium on. Pages: 1-4, 2011. 

[42] H. Ou, H.C. Chien, Y. Chang, “Simultaneous Analog Placement and Routing with 

Current Flow and Current Density Considerations”, In Proc. IEEE Design Automation 

Conference (DAC), May 2013, pp. 1-6. 

[43] W. Liu, C. Koh, and Y. Li, “Optimization of Placement Solutions for Routability”, 

In Proc. IEEE Design Automation Conference (DAC), May 2013, pp. 1-9. 

[44] H. Zhou, C. Sham, H. Yao, “Congestion-Oriented Approach in Placement for 

Analog and Mixed-Signal Circuits”, In Proc. IEEE 5th Asia Symposium on  Quality 

Electronic Design, 2013, pp. 97-102. 

[45] L. Zhang and Y. Jiang, “Global-routing driven placement strategy in analog VLSI 

physical designs,” in Proc. MWSCAS, 2005, pp. 1239–1242. 

[46] H. Yang, R. Vemuri, “Efficient Symbolic Sensitivity based Parasitic-Inclusive 

Optimization in Layout Aware Analog Circuit Synthesis”, In Proc. IEEE 20th 

International Conference on VLSI Design, 2007, Jan. 2007, 201-206. 

[47] L. C. Severo, A. Girardi, “Parameter Variation and Sensitivity Analysis of a Two-

Stage Miller Amplifier”, In Proc. IEEE Argentine School of Micro-Nanoelectronics, 

Technology and Applications, Oct. 2010, pp. 78-81. 

[48] Yiu-Cheong Tam, Evangline F.Y. Young, Chris Chu. Analog Placement with 

Symmetry and Other Placement Constraints. Computer- Aided Design. Pages: 349-

354, 2006.  

[49] Ender Yilmaz, Gunhan Dundar. Analog Layout Generator for CMOS Circuit. 

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions in, 

28(1). Pages: 32-45, 2009. 

[50] Y. Wu, X. Zhang, L. Chen, S. Fang, “Automatic Placement for Matched Devices 

of Analog Circuits”, In Proc. IEEE Int. Conf. on Natural Computation, July 2013, pp. 

1723-1727.  

[51] Sobol IM. Sensitivity estimates for nonlinear mathematical models. Mathematical 

Modelling and Computational Experiments 1993;1(4): 407–14. 



88 
 

[52] Crestaux T, Le Maitre O, Martinez JM. Polynomial chaos expansion for sensitivity 

analysis. Reliability Engineering and System Safety, 2009; 94: 1161–1172.  

[53] L. Dawei, Q. Zhou, J. Bian, Y. Cai X. Hong, “Cell Shifting Aware of Wirelength 

and Overlap”, In proc. IEEE Quality of Electronic Design, Mar. 2009, pp. 506-510. 

[54] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated 

Annealing,” Science, vol. 220, no. 4598, pp.671–680, May 13, 1983. 

[55] S.N. Adya and I.L. Markov. Fixed-outline floorplanning: Enabling hierarchical 

design. IEEE Trans. on VLSI Systems, 11(6):1120–1135, December 2003. 

[56] M. Kayal, S. Piguet, M. Declerq, and B. Hochet, “SALIM: A layout generation tool 

for analog ICs,” in Proc. IEEE Custom Integrated Circuits Conf., 1988, pp. 7.5.1–7.5.4. 

[57] S. W. Mehranfar, “STAT: A schematic to artwork translator for custom analog 

cells,” Proc. 1990 IEEE Custom Integrated Circuits Conf., pp. 30.2.1–30.2.3, 1990. 

[58] E. Malavasi, J. L. Ganley, and E. Charbon, “Quick placement with geometric 

constraints,” in Proc. IEEE Custom Integrated Circuits Conf., 1997, pp. 561–564. 

 


	A framework for fine-grain synthesis optimization of operational amplifiers
	Recommended Citation
	APA Citation
	MLA Citation


	tmp.1592508243.pdf.tQzyG

