
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations

2-1-2015

A framework for fine-grain synthesis optimization of operational A framework for fine-grain synthesis optimization of operational

amplifiers amplifiers

Taher Essam

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
Essam, T. (2015).A framework for fine-grain synthesis optimization of operational amplifiers [Master’s
thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/45

MLA Citation
Essam, Taher. A framework for fine-grain synthesis optimization of operational amplifiers. 2015.
American University in Cairo, Master's thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/45

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact mark.muehlhaeusler@aucegypt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUC Knowledge Fountain (American Univ. in Cairo)

https://core.ac.uk/display/333723186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/45?utm_source=fount.aucegypt.edu%2Fetds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/45?utm_source=fount.aucegypt.edu%2Fetds%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

The American University in Cairo

School of Science and Engineering

A Framework for Fine-grain Synthesis Optimization of Operational Amplifiers

A Thesis Submitted to

Electronics and Communication Engineering Department

In partial fulfillment of the requirements for

the degree of Master of Arts/Science

By Taher Essam Ali Kourany

Under the supervision of:

Prof. Yehea Ismail, Dr. Emad Hegazi

January/2015

Cairo, Egypt

ii

The American University in Cairo

School of Science and Engineering (SSE)

A Framework for Fine-grain Synthesis Optimization of Operational Amplifiers

A Thesis Submitted by

Taher Essam Ali Kourany

Submitted to Department of Electronics

January/2015

In partial fulfillment of the requirements for

The degree of Master of Science

has been approved by

Thesis Supervisor

Affiliation:

Date ____________________

Thesis first Reader

Affiliation:

Date ____________________

Thesis Second Reader

Affiliation:

Date ____________________

Department Chair

Date ____________________

Dean of SSE

Date ____________________

i

To my Parents and Egypt,

You Mean the World to me.

ii

A man ought to read

 just as his inclination leads him;

for what he reads as a task

 will do him a little good.

 SAMUEL JOHNSON

iii

Acknowledgment

First of all, I have to thank God for giving me power and patience to finish my master

thesis.

I’d like to show my gratitude for my supervisor Prof. Yehea Ismail for the great

opportunity that he gave to me. I’d like to thank him for his support, guidance and for the

great effort that he exerted during my masters. He provided me with all the facilities that I

need in my research.

I’d like to show my gratitude to my dear brother Ali Kotb and my beloved friends Hoda

Ahmed, Nehal Hussein, Hazem Medhat, and Dalia Ahmed for their support and help. They

helped me a lot in solving the problems I faced. I’d like to thank them for their advice and

good spirit. We spent unforgettable time together.

I’d like to make a special acknowledgment to Eng. Soha Hamed for her guidance

throughout the difficulties i experienced while working on my thesis.

I am thankful for all those who discouraged me, it taught me perseverance. It’s because

of them, I did it myself.

iv

Abstract

OF THE THESIS OF

Taher Essam Ali Kourany for Master of Science

 Major: Electronics and Communication Engineering

 The American University in Cairo

Title: A Framework for Fine-grain Synthesis Optimization of Operational Amplifiers

Supervisor: Prof. Yehea Ismail, Dr. Emad Hegazi

This thesis presents a cell-level framework for Operational Amplifiers Synthesis

(OASYN) coupling both circuit design and layout. For circuit design, the tool applies a

corner-driven optimization, accounting for on-chip performance variations. By exploring

the process, voltage, and temperature variations space, the tool extracts design worst case

solution. The tool undergoes sensitivity analysis along with Pareto-optimality to achieve

required specifications. For layout phase, OASYN generates a DRC proved automated

layout based on a sized circuit-level description. Morata et al. (1996) introduced an elegant

representation of block placement called sequence pair for general floorplans (SP). Like

TCG and BSG, but unlike O-tree, B*tree, and CBL, SP is P-admissible. Unlike SP, TCG

supports incremental update during operation and keeps the information of the boundary

modules as well as their relative positions in the representation. Block placement

algorithms that are based on SP use heuristic optimization algorithms, e.g., simulated

annealing where generation of large number of sequence pairs are required. Therefore a

fast algorithm is needed to generate sequence pairs after each solution perturbation. The

thesis presents a new simple and efficient O(n) runtime algorithm for fast realization of

incremental update for cost evaluation. The algorithm integrates sequence pair and

transitive closure graph advantages into TCG-S* a superior topology update scheme which

facilitates the search for optimum desired floorplan. Experiments show that TCG-S* is

better than existing works in terms of area utilization and convergence speed. Routing-

aware placement is implemented in OASYN, handling symmetry constraints, e.g.,

v

interdigitization, common centroid, along with congestion elimination and the

enhancement of placement routability.

vi

Table of Contents

1. Introduction ... 1

1.1. Literature Review .. 3

2. Circuit level synthesis.. 20

2.1. Folded Cascode OTA .. 20

2.1.1. Introduction ... 20

2.1.2. Basic Operation ... 20

2.1.3. Common Mode Feedback .. 24

2.1.4. Bias Circuit .. 25

2.1.5. Advantages .. 25

2.1.6. Disadvantages .. 25

2.2. Sensitivity Analysis ... 27

2.2.1. Classification of sensitivity analysis .. 29

2.2.2. Local Sensitivity analysis .. 30

2.2.3. Global Sensitivity analysis .. 31

2.3. Overview of OASYN framework .. 34

2.4. Circuit sizing tool .. 36

2.4.1. The Sobol’ Sensitivity Analysis .. 36

2.4.2. Computation of Sobol’ Indices by Monte-Carlo Sampling 38

2.4.3. Circuit Sizing Algorithm ... 39

3. Layout Floorplan ... 42

3.1. Comments on TCG-S Representation ... 42

3.1.1. Update of Constraints graph .. 43

3.1.2. Packing Sequence Г − Update .. 45

3.2. TCG-S* Perturbing Algorithm .. 47

3.2.1. TCG Topology Update .. 47

3.2.2. Packing Sequence Update ... 52

3.2.3. Equivalence of TCG and SP .. 54

3.3. Floor Planning Algorithm .. 55

3.3.1. Slack Computation .. 55

vii

4. Placement and Routing .. 60

4.1. Constraints-based Placement ... 60

4.1.1. Overview of Analog Placement Methods .. 60

4.1.2. A Review on Simulated Annealing Optimization Algorithm 63

4.1.3. Inter-digitated matching style .. 67

4.1.4. Common-centroid matching style ... 68

4.2. Optimization-Based Router ... 71

5. Experimental Results ... 73

Conclusion ... 82

Future Works ... 82

References ... 83

viii

List of Figures

Figure 1.1 Overview of IDAC system chart .. 4

Figure 1.2. Topology selection and translation process in OASYS .. 6

Figure 1.3. Layout optimization process ... 8

Figure 1.4. Layout-driven circuit sizing flow chart ... 9

Figure 1.5. . Encoding of 8-node O-tree .. 11

Figure 1.6. (a) Placement of four uncompact blocks. (b) The corresponding horizontal and

vertical transitive closure graph 𝐶ℎand 𝐶𝑣.. 13

Figure 1.7. (a)–(f) Process to extract a Г − from block placement. (g) Resulting TCG-S. 15

Figure 1.8. A block placement with sequence Г − 〈a, b, c〉 .. 16

Figure 2.1. Folded cascode OTA circuit diagram ... 21

Figure 2.2. Common Mode FeedBack Circuit .. 24

Figure 2.3. Folded Cascode OPAmp Bias circuit .. 26

Figure 2.4 Parameric bootstrap version of uncertainty and sensitivity analysis 28

Figure 2.5. Overview of the OASYN framework ... 35

Figure 3.1. Three types of perturbations. (a) The initial TCG (𝐶ℎ and 𝐶𝑣) and the placement.

Dimensions for the six blocks are: a (6 x 4), b (4 x 6), c (7 x 4), d (6 x 3), e (3 x 2), and f (3 x 3).

(b) The resulting TCG and placement after rotating module d based on TCG-S. (c) The resulting

TCG and placement after reversing nodes 𝑛𝑐and 𝑛𝑒 based on TCG-S. (d) The resulting TCG and

placement after swapping nodes 𝑛𝑐and 𝑛𝑑 based on TCG-S. .. 44

Figure 3.2. Three types of perturbations. (a) The resulting TCG and placement after rotating

module. (b) The resulting TCG and placement after reversing nodes ncand ne. (c) The resulting

TCG and placement after swapping nodes ncand nd. ... 48

Figure 3.3. Slack computation (a) floorplan evaluation in left to right and bottom to top mode. (b)

floorplan evaluation from right to left and top to bottom mode. ... 56

Figure 4.1 Constraint-driven analog layout generation flow ... 62

Figure 4.2 An example of inter-digitated array ... 67

Figure 4.3 An example of common centroid array .. 68

Figure 5.1. Generated Folded Cascode OpAmp Layout with the Common Feedback Circuit for

Simultaneous Area and Matching Constraints Optimization. Area = 29.665x102.065 um2 78

Figure 5.2 Automated Placement and routing solution (Area = 146*47 um2) 79

Figure 5.3 Calibre DRC Message of the placement solution .. 80

Figure 5.4 Calibre LVS Message of the layout solution ... 81

ix

List of Tables

Table 1. MCNC Benchmark circuits ... 56

Table 2. Area and Runtime Comparisons among SP (On Sun Sparc Ultra60), O-Tree (On Sun

Sparc Ultra60), B -TREE (On Sun Sparc Ultra 60), Enhanced O-Tree (On Sun Sparc Ultra60),

CBL (On Sun Sparc 20), TCG (On Sun Sparc Ultra60), TCG-S (On Sun Sparc Ultra60), and

TCG-S* (On Intel Core-i3) for Area Optimization ... 74

Table 3. Folded Cascode OpAmp Synthesis Results .. 74

Table 4. Folded Cascode OpAmp Synthesis Results .. 75

Table 5. Folded Cascode OpAmp Synthesis Results .. 75

Table 6. Folded Cascode OpAmp Synthesis Results on Process, Voltage, and Temperature

Corners .. 76

Table 7. Folded Cascode OpAmp Synthesis Results on Process, Voltage, and Temperature

Corners .. 77

x

1

1.Introduction

An analog system is typically characterized by a set of performance parameters used to

quantify the properties of the circuit. Given a fixed topology, circuit synthesis is the process

of determining numerical values for all components in the circuit such that the circuit

conforms to a set of performance constraints. The pervasive trend in recent years is the

integration of whole systems into single-chip. Analog circuitry is widely used in systems

applications such as telecommunications and robotics, where analog interfaces to an

external environment are coupled with digital signal processing systems. The demands for

high performance CMOS analog circuits increased dramatically in recent years, especially

for digital–analog interface circuits, due to the emergence of system-on-chip (SoC).

Although analog circuits take up only a minor part of most ASIC’s, their design time and

cost is very important. Most of knowledge, effort, and time are spent in designing analog

blocks of the chip since they are largely dominated by heuristics and experience needed to

achieve required specifications.

Given a set of specification/requirements that describe the system to be realized, the

selection of the optimal implementation comes mainly out of experience. Many digital

parts of such chips can nowadays be synthesized rapidly and reliably using CAD tools

developed for semicustom design methods such as gate arrays, standard cells, and macro

cells. On the other hand, analog subsystems still need to be entirely handcrafted by a

specialist, due to the high degree of nonlinearity and interdependence among design

variables. Therefore, the design time and cost associated with dedicated analog interface

components often constitute a bottleneck in semicustom design of mixed analog/digital

systems. The growing scale of industry and the rapid advancement in integrated circuits

technology have led to dramatic increase in physical design complexity. The need to tackle

this complexity and comply with time-to-market has encouraged the wide use of the

hierarchical design and IP modules for a faster convergence to the optimum design in terms

of area and speed. Some analog components are replaced with their digital counterparts,

which are successful to a great extent. However, there are limitations to replace all the

2

analog blocks and what was left are considered to be intellectually challenging. The success

of the digital design ideas and tools against analog design and its domination over the

majority of the industry, due to sophisticated accurate tools empowering design time-to-

market, exposed the lack of comparable analog semi-custom tools.

For a top down, knowledge based approach, analog synthesis problem can be

decomposed into two parts: firstly the synthesis of sized circuits from behavioral

specifications and secondly the IC layout generation from these circuits. Design

automation ideas from digital IC design have only recently begun to migrate into analog

circuit design. In part, this reflects the inherent complexities of the analog design process.

Outside of conventional analog/digital systems, there has recently been great interest in the

design of parallel analog VLSI signal processing architectures. Hence, it is clear that CAD

tools must be developed to cope with both the complexity of large-scale analog circuit

designs, and with the requirement for rapid design times. In the digital domain, structured

abstractions and hierarchy are commonplace, and are relied upon to make seemingly large

synthesis tasks tractable by breaking them into smaller steps. Such abstractions and

hierarchy do not currently play a central role in analog design. Some ideas from digital

design methodologies, such as standard cell libraries and module generators, have recently

been applied to analog design tasks. However, such techniques usually have several

drawbacks, e.g., libraries allow the designer to make only crude tradeoffs among

performance specifications, and they become obsolete rapidly in the face of technological

evolution. The numerical circuit simulator SPICE is often used as a benchmark of

comparison to determine the relative accuracy of alternative schemes for evaluating the

performance of analog circuits.

3

1.1. Literature Review

Synthesis comprises two steps: topology selection and sizing. Topology selection means

selecting the appropriate circuit topology from a library of topologies. Sizing consists of

choosing appropriate transistor dimensions and biasing voltages to satisfy a given set of

performance specifications. Topology selection has proven very difficult to automate due

to its knowledge-intensive nature. Many attempts have been made in order to mimic the

designer’s expertise and knowledge into automation tools. There exists two approaches

adopted in analog circuit synthesis: knowledge based approaches and optimization based

approaches [20]. In the knowledge-based stream, the designer extracts design equations

and integrates them into the tool to be reused for the same topology. In the optimization-

based approach, the optimizer searches the design space for the circuit that satisfies certain

constraints and minimizes certain objectives. The optimization-based approach was further

divided into two approaches: equation-based optimization and simulation-based

optimization. In the equation-based optimization, circuit evaluation is done through pre-

derived equations for performance specifications, initially extracted by the designer or by

symbolic analysis. In the simulation-based optimization, the specifications are directly

measured from the output waveforms of a simulator. The simulation-based approach has

two major advantages over the equation-based approach:

• Accurate simulation models are used instead of approximate equations

• No long preparatory effort to extract all the describing equations. Practically, the

extraction may rely fully on the simulator capabilities.

In order to reduce this design effort, analog standard cell libraries can be used. However,

since the circuits are then not tailored to their application, an optimum solution, with

respect to power dissipation and area, is not obtained. Furthermore, such libraries, which

typically have required more than 20 man years of design effort, very rapidly become

obsolete due to technology evolution. Stochastic combinatorial optimization methods such

as simulated annealing and genetic algorithms (GAs) require the computation of

4

performance parameters for a large number of circuit sizing alternatives. It is, therefore,

beneficial to reduce the time associated with generating performance estimates.

Synthesis tools adopting approaches to equation based strategies have been

implemented. IDAC: An Interactive Design Tool for Analog CMOS Circuits [1] was one

of the earliest tools developed in analog design automation, where designer has to specify

the technology, desired building-block specifications. In IDAC, designer selects from

different topologies existing in the database. Other tools [2], [3], [6], [22], [23], [24], [25],

[26], and [27] adopted the same approach.

Figure 1.1 Overview of IDAC system chart

IDAC adopts a more knowledge based algorithm than an optimization one, by adopting

equation based strategies and acquiring related circuit parameters e.g. minimum and

5

maximum value of the electrical parameters of MOS transistors, poly, well resistors, and

layout rules, for computing circuit parasitics. In order to extract design worst-case solution,

bias currents and mobility have been based on predictive equations which is not as accurate

as models used nowadays in front-end simulators. These equations have been used to

model the deterioration of chip performance under extreme high and low temperatures.

IDAC system flow chart is shown in Fig. 1.1.

IDAC, KANSYS [4], and OPASYN [3] employed efficient equation based algorithms in

terms of synthesis time and complexity; generating rough designs more quickly, creating

an opportunity to explore design space. However as technology advances, it becomes much

harder to render simple design equations to generate even rough specifications. OASYS[2]

employed numerical optimization tools along with the circuit simulator to fine-tune device

sizes in order to achieve the required performance.

OASYS [2], [28] adopted a hierarchical design strategy, in which analog circuit

topologies are represented as a hierarchy of templates of abstract functional blocks.

OASYS framework was based on three main ideas. Circuit topologies are selected from

among fixed alternatives. A particular topology was chosen as a best candidate from which

specifications were expected to be met. Secondly, the fixed alternatives for circuit

topologies are identified hierarchically. A high level module was defined as an

interconnection between sub-blocks. Finally, system level specifications could be then

translated into sub-goals or specifications for the sub-block of a topology. The original

motivation behind using separate selection and translation steps was to avoid the need to

simultaneously design the interconnection and electrical characteristics of sub-blocks,

where this hierarchical representation of topologies vastly simplifies the translation task

since it tends to reduce the number of sub-blocks and simplify their connection. Hence,

OASYS main contribution in the field of automated analog synthesis is the demonstration

by which the analog behavior-to-structure synthesis problem could be recast in a highly

structured form along with hierarchy as the key organizing principle. Translation involves

knowledge of how performance specifications for a high-level block could be transformed

into specifications for each sub-block, after which, these new specifications for each sub-

6

block would be used to design the transistors within each sub-block. The topology selection

and translation process are shown in Fig. 1.2.

Each topology designed in OASYS has a design plan called plan steps in which three

activities were performed. Heuristics, which are knowledge based decisions, make the

design state more advanced by including some estimations that are based on the expertise

of analog designers. After Heuristics planning, computation came next, where quantities

like currents and biasing are computed from equations where sufficient information is

available. These steps contributed mainly in assigning each sub-block certain

specifications to achieve, and at last, a refinement step receives these new specifications,

initiates sub-block design and retrieves the actual parameters that indicates the real

performance of the circuit after synthesis. If simulated performance does not meet required

specification, the topology is rejected and the search approach will be narrowed among the

rest of the topologies.

Figure 1.2. Topology selection and translation process in OASYS

7

In the selection phase, the algorithm can correct itself and return to a previous successful

node in order to make an alternative topology style if one of the plan steps failed. On the

basis of expert designers’ observation in OASYS selection strategies, the tool complies

with certain structural constraints such as; choosing between differential and single pair

input nodes, which are totally user defined. Predicting performance limitations of circuits

is defined as heuristic discrimination, which is based on expert designers’ mature

assessments of each topology. Obviously, it is the hardest type of discrimination since it is

based on qualitative decisions which are hard to codify.

The last type of discrimination is in generate-and-test style which seems to be naive, but

it is much more natural to compare crafted designs by hand to get an insight into which

will work better. Basically, the major innovation behind OASYS [2] is the need to create

an alternative to flat representations and to represent the tool in a more structured

hierarchical form. However, Optimization of sub-blocks performances and employing

knowledge on how choices made in one sub-circuit affects other sub-circuits is a hard

problem.

KANSYS: Kanpur Analog Synthesis from the Indian Institute of Technology overcomes

the drawbacks of hierarchical design by allowing the transfer of expertise among different

sub-circuits translation algorithms empowering topologies translation in a more efficient

way. In case of a failing specification in one sub-block, analytical equations are modified

affecting all the sub-blocks. In addition, a search algorithm traversing the space in a

hierarchy-aware fashion accounting for multi-objective optimization and process

variations, is adopted in [28] using GP [29] and age-layered population structure [30].

However, quantifying circuit parameters dependency and higher order terms remains a

hard problem. [21] proposed an approach to reduce independent variables and speed up

design runtime by computing correction factor (S-factor) from transistor level simulations.

By multiplying this factor by linearized circuit equations, accurate design can be achieved.

Other CAD tools adopted a design-to-layout approach [31-33] accounting for post-layout

synthesis performance deterioration. AIDA [31] is the integration of GENOM-POF for

circuit synthesis, and LAYGEN II for automated layout generation. GENOM-POF

8

performs circuit synthesis using multi-objective optimization approach, accounting for

worst-case solution by exploring process, voltage and temperature variations in the design

space. LAYGEN II generates a DRC proved layout based on the sized circuit descripted

generate by GENOM-POF and high level layout guidelines. In circuit synthesis, the

designer specifies design objective, number of optimization variables, the size of the design

space, and the number of independent variables. Circuit parameters are optimized to obtain

a set of Pareto-optimal solutions that fulfill all the constraints and shows different tradeoffs

between circuit specifications. LAYGEN II uses the hierarchical template description, the

sized devices, and the technology node kit to perform placement and routing followed by

a validation step. The router uses placed modules, connectivity, symmetry, and sensitivity

constraints in the optimization process. However, routing-aware-placement solution which

ensures a better routability and reliability is not considered in the placement process.

Device Constraints

Placement Constraints

Routing Constraints

Problem Setup

Technology Design Rules

Constrained enumeration of devices layout

Constrained placement and routing

Nestlist Extraction

Layout Netlist

Input: Xd

Figure 1.3. Layout optimization process

Dessouky et al. [32] proposed a layout-oriented circuit synthesis approach through

passing the layout information at the beginning of the design phase. The approach

guarantee a sized circuit performance that satisfied required specifications in the presence

of layout parasistcs. Habal et al. [33] proposed an automated synthesis of circuit layout by

investigating every feasible layout of each device, and the layout with best geometry are

selected. The layout optimization process is driven by design, placement, and routing

9

constraints as shown in Fig. 1.3. Layout parasitics are extracted using an integral equation

field solver without modeling. The first stage of circuit synthesis process involves

formulating scalar minimization sub-problem on the basis of linearized objective function

f, followed by solving the sub-problem using generalized boundary curve algorithm

(GBC). Layout-driven circuit sizing flow chart is shown is Fig. 1.4.

Figure 1.4. Layout-driven circuit sizing flow chart

A new layout is synthesized every iteration, where f has to be calculated for a new value

of circuit parameters vector 𝑋𝑑 by simulating generated layout netlist. Finite forward

difference technique is implemented to calculate the gradient of performance f with respect

to 𝑋𝑑. 𝑘(𝑖) represents the design parameters vector at ith iteration at which performance is

evaluated to determine next step by GBC.

Most of previous work in analog circuit synthesis have adopted hierarchical flow

approach to optimize performance at cell level. Knowledge and expertise are required to

be implemented in the tool for inter-processes optimization. However, even if applicable,

generated sized circuits are outperformed by manual designs in terms of area and

performance. Other tools adopted optimization algorithms e.g. simulated annealing,

genetic algorithm which, if not implemented with enough design knowledge, may take a

very long run time and may fail in achieving high performance. Numerical optimization

can be adopted in circuit synthesis, since it always gives an output, i.e., if the specifications

are not met, one has quantitative information of how far away the target is. It is easier

10

compared to other engines to introduce new specifications and schematics. However, such

optimization is computationally extensive and hides different design tradeoffs between

circuit parameters. Furthermore, the goal specification depends heavily on the initial

solution. A fast and intelligent circuit synthesis remains a challenging problem despite the

high quality of previous work.

Floorplanning and building block placement are becoming more crucial in physical

design as the circuit sizes are growing rapidly and hierarchical design with IP blocks are

widely used in to order to reduce design complexity. In VLSI design, floorplan and block

placement are considered critical to the performance of design process. Classical

floorplanning optimizes the area and wirelength of the chip blocks, and therefore, generates

a compacted overlap-free placement of blocks. Floorplan representations are classified into

two types; slicing and non-slicing representations. Slicing representation involves

repetitively subdividing floorplan area horizontally and vertically into finite number of

non-overlapping structures. Slicing brings faster packing runtime and higher convergence

speed, compared to non-slicing representation. Number of blocks per slicing structure and,

hence, cost evaluations are significantly reduced, where each structure is considered a

separate solution space. However, optimal solution may not be achieved in the solution

space of slicing structures. Slicing tree [9] and normalized polish expression [10] are

popular slicing representation.

For considerably moderate solution spaces, Non-slicing floorplan can bring optimal

solution, i.e. minimum area, interconnect delay, and minimum critical path, in a reasonable

convergence time. SP [11], TCG [12], O-tree [13], and corner block list [14] are widely

used non-slicing representations. Murata et al. [15] defined P-admissible solution space to

distinguish non-slicing floorplans by the following four requirements;

1) Solution space is finite

2) Every solution is feasible

3) Packing and cost evaluation can be performed in polynomial time, and

4) Best evaluated packing in solution space corresponds to an optimal placement.

According to this classification, SP, TCG, O-tree, and BSG [16] are P-admissible while

slicing tree, normalized polish expression, B*tree [17], and CBL are not. Since, slicing and

11

normalized polish expression do not generate optimal packing structures, they violate the

conditions, and thus are not P-admissible representation.

Guo et al. [13] proposed an order tree (O-tree) representation for a left and bottom

compacted placement with n.logn run time complexity. An admissible placement is a

compacted one where blocks can neither move down nor left. According to the

representation, each rectangular block is defined by its tuple {ℎ𝑖 , 𝑤𝑖}, where ℎ𝑖 and 𝑤𝑖 are

height and width of blocks respectively. A constraint graph of the placement is G=(V,E),

where V presents each block in a form of a node. E represents geometric constraints

between blocks which can be represented in a form of an edge drawn from the boundary

of a block to another. Given an 8-node tree shown in Fig. 1.5, the placement can be encoded

as (001010110100110,ABCDEFG). Starting from the root, node A is visited first and a bit

‘0’ is recorded. Then node B is visited and a bit ‘0’ is recorded. On the way back to the

root, two bit ‘11’ are recorded. The total number of possible configuration of an n-node

tree is O(𝑛! 22𝑛−2/𝑛1.5). Placement post packing may not be compacted, resulting in a

mismatch between O-representation and its placement after a series of compaction

operations. Similar to O-tree, B*tree solutions may not be feasible, and thus they are not

P-admissible representations.

Figure 1.5. . Encoding of 8-node O-tree

Nakatake et al. [16] proposed a method of modules packing based on bounded-sliceline

grid (BSG) structure. BSG is a meta-grid which does not contain physical dimensions,

however, it is a topological grid composed of orthogonal lines called the BSG-units. BSG

divides the planes into rooms associated with binary information coding the geometric

relations between modules, such that any two rooms are uniquely in either relation.

12

Modules are assigned to BSG rooms in which they inherent the geometric relations

between their rooms and other room in the meta-grid. Modules packing run time is O(𝑛2).

Hong et al. [14] proposed an efficient and effective topological representation of Non-

Slicing Floorplan (CBL), which takes only linear time to derive modules placement from

a representation. Unlike O-tree representation, corner block list defines the floorplan

structure. Thus CBL is more flexible for floorplan optimization in terms of area and

wirelength with different widths and heights of modules. Corner block list takes only 𝑛(3 +

[𝑙𝑔 𝑛]) bits to describe, where 𝑙𝑔 𝑛 is the minimum integral number which implies that

corner block list need fewer bits to describe than SP and BSG needs. Corner block list

performs recursive detection of corner block in a top-right mode to describe block

placement. When the detection ends, block names and their orientations are concatenated

in a reversed manner. The orientation of the corner block is defined by the joint of its left

and right segment of the block and T-junction containing the joint. If the T-junction is

rotated by 90 degress, the block is considered as vertically oriented, therefore its orientation

is denoted by 0. The number of 1’s in the T-junction list denotes the number of T-junctions

attached to the block. Each string of 1’s in T-junction list is ended by a 0 to separate it from

other block detection. The advantage of CBL representation is that it does not only

represent slicing structures, however, it can also represent non-slicing floorplan. The time

complexity of floorplan realization is O(n) time which is better than SP, TCG, BSG, and

TCG-S.

Lin et al. [12] proposed transitive close graph representation (TCG) for general non-

slicing floorplans. TCG uses horizontal and vertical transitive closure graphs 𝐶ℎ, 𝐶𝑣 to

describe the geometric relation between modules of the placement. Lin et al. extended the

concept of P-admissible representation to that of P*-admissible one by adding a fifth

condition; both horizontal and vertical geometrical information between modules are

defined in the representation. The fifth condition ease the handling of the floorplan design

problems with further requirements such as module sizing and constraints, e.g., boundary,

symmetry and proximity constraints. Thereby, the representation corresponds to the

packing if the P*-admissible conditions are satisfied.

Consider the uncompact placement in Fig. 1.6. Since O-tree is not a P-admissible

13

representation, it is not flexible in handling uncompacted floorplan structure. Geometric

relations between modules cannot be directly derived using O-tree and B*-tree

representation unless the placement is packed. Whereas, TCG can handle P*-admissible

representation due to its flexibility and elegant features. Some geometric features cannot

be obtained by O-tree and B*-tree representations, implying that O-tree and B*-tree

representations are harder to handle floorplan design and render better results in area and

wirelength optimization problems. Furthermore, due to their compaction operation,

perturbing the placement solution in O-tree and B*-tree may results in an unpacked

solution implying that placement will not correspond to the representation after packing

harming the solution structure and thus the optimum solution.

Figure 1.6. (a) Placement of four uncompact blocks. (b) The corresponding horizontal and vertical

transitive closure graph 𝐶ℎand 𝐶𝑣

TCG does not require any additional constraint graph for evaluation. Unlike SP, TCG

supports incremental update after each solution perturbation and keeps positions of

boundary modules as well as their geometric relation. Regarding SP, geometric relation

among modules of a placement is not clear before packing and thus, SP constraint graphs

are required to be generated from scratch for packing evaluation after each operation. CBL

has a smaller feasible solution space and a faster packing scheme. However, CBL is not P-

admissible as it represents general incompact placement. Given a TCG, its corresponding

placement can be derived in O(𝑛2) by performing longest path algorithm, which is covered

later in Chapter 4.

14

TCG representation is identified by three main properties; First, 𝐶ℎ and 𝐶𝑣 are cyclic. A

directed edge is constructed for each pair of nodes, which denotes modules in 𝐶ℎ and 𝐶𝑣

graphs, according to geometric relations of these two modules. Since a pair of modules

cannot be both below and above (left and right) to one another, the resulting 𝐶ℎ and 𝐶𝑣

graphs must be acyclic. Second, for the aforementioned property 1, a pair of nodes must

be connected by an edge in only one of the transitive closure graphs. Property 2 ensures

that modules do not overlap since there is no horizontal and vertical relations between any

pair of modules in a placement. The number of edges encoding the geometric relations

between modules in a placement is 𝑚(𝑚 − 1)/2, where m is the number of modules.

Third, the transitive closure graph 𝐶ℎ(𝐶𝑣) is equal to itself.

TCG-S [18] a general floorplan representation was introduced, through integrating the

properties of TCG and SP for a faster O(𝑛 𝑙𝑜𝑔 𝑛) runtime packing scheme using a

balanced-binary search tree [19]. Same perturbing algorithm is adopted in both TCG and

TCG-S representations, only the packing scheme in TCG-S is faster. Sequence Г− is the

topological order of 𝐶ℎ and 𝐶𝑣 closure graphs and therefore can be determined by 𝐶ℎ and

𝐶𝑣. Transparency of geometric relation between modules in placements and fast

incremental update for cost realization are inherited from TCG. Furthermore, TCG-S

shares the same feasibility properties with TCG. Given a floorplan, Г− can be derived by

recursively extracting the module on the bottom-left corner of the placement as shown in

Fig. 1.7. The run time of the extraction process is not indicated in [18]. 𝐶ℎ and 𝐶𝑣 can be

constructed based on Г− by constructing a directed edge from each node 𝑏𝑖 before 𝑏𝑗 in Г−

in 𝐶ℎ (𝐶𝑣) if 𝑏𝑖 ⊢ 𝑏𝑗 (𝑏𝑖 ⊥ 𝑏𝑗).

15

Figure 1.7. (a)–(f) Process to extract a Г− from block placement. (g) Resulting TCG-S.

16

a

b

c

Figure 1.8. A block placement with sequence Г− 〈a, b, c〉

bs

ba

bt

ba

Th Tv

bs

ba

bt

ba

T’h T’v

bs

ba

bt

ba

Th Tv

bb

ba

ba

bb

T’h T’v

bb

bs bt

ba

Th Tv

bc

bs

ba

bb

T’h T’v

btbs

bbbb
bc

ba

bb

bc

ba

bc

bt

bs

bt

bs

bt bt

bs

a a a

b b

c

xa=0

ya=0

xb=x’s=0

yb=y’a=1.5

xc=x’s=0

yc=y’b=4

Figure 1.9. Packing scheme for the TCG-S of Fig. 1.8. In each step, the red-black trees 𝑇ℎ and , 𝑇𝑣

corresponding to the 𝑅ℎ and 𝑅𝑣 right after the module insertion, are shown. 𝑇ℎ
′ (𝑇𝑣

′) gives the resulting red-

black tree after removing the modules no longer in 𝑅ℎ (𝑅𝑣) and performing rotation to balance the tree.

Note that, as a fundamental property of the binary search tree, the search-tree (in-order traversal)

order is still maintained after the tree rotation.

17

Lin et al. [18] proposed an 𝑂(𝑛𝑙𝑜𝑔𝑛) time packing scheme using Г− and horizontal and

vertical contours 𝑅ℎ and 𝑅𝑣, where n is the number of modules in a placement. For each

module in the sequence defined by Г−, the module is packed to a corner formed by two

previously placed modules in 𝑅ℎ or 𝑅𝑣 determined by the geometric relations defined by

𝐶ℎ or 𝐶𝑣.

Definition: Horizontal contour 𝑅ℎ and vertical contour 𝑅𝑣 are lists of modules 𝑏𝑖’s in

which there does not exist any module 𝑏𝑗 with 𝑦𝑗 ≥ 𝑦𝑖
′, 𝑦𝑗

′ ≥ 𝑦𝑖
′ and 𝑥𝑗 ≥ 𝑥𝑖

′, 𝑥𝑗
′ ≥ 𝑥𝑖

′

respectively.

The coordinates of the right and top boundaries modules in 𝑅ℎ and 𝑅𝑣 are sorted and

kept in a Red-Black search tree [19] 𝑇ℎ and 𝑇𝑣 respectively. Module 𝑏𝑗 is packed by

searching for the last module 𝑏𝑝, where 𝑏𝑝 ⊢ 𝑏𝑗 or 𝑏𝑝 ⊥ 𝑏𝑗, in order to compute the x-

coordinate or y-coordinate of 𝑏𝑗 according to the geometrical relation between modules 𝑏𝑝

and 𝑏𝑗. Module 𝑏𝑘 is traversed from its root to its right child if 𝑏𝑘 ⊢ 𝑏𝑗 (𝑏𝑘 ⊥ 𝑏𝑗), i.e. the

right (top) boundary of module 𝑏𝑗 is larger than that of module 𝑏𝑘. Therefore, 𝑏𝑗 should be

located in sub-tree of the search tree. The process alternates to the left child of 𝑏𝑘 if 𝑏𝑘 ⊥

𝑏𝑗 (𝑏𝑘 ⊢ 𝑏𝑗). Process continues until a leaf position is encountered and 𝑏𝑗 is then considered

the leaf node. Fig. 9 shows an example of TCG-S packing scheme of Fig. 8 with sequence

Г− 〈a b c〉.

For placement, [34], [35] and [37] used a feasible sequence pair representation to develop

symmetry constraint-driven placement tool. In order to illustrate a sequence pair

representation which is symmetrically feasible, one would be tempted to perform minor

changes to the search space exploration: if the current encoding proves to be consistent

with the symmetry constraints then the cost of the placement configuration is evaluated

and the annealing algorithm operates normally. Otherwise, the current encoding is

infeasible (in symmetry point of view) and therefore, disregarded. Unfortunately, such a

simple solution is not effective taking into account that the size of the search space without

symmetry constraints is 𝑂(𝑛2) (the total number of sequence-pairs). The size of the

solution space becomes significantly smaller if the placement configuration must contain

18

a symmetry group. A better strategy is to explore only those sequence-pairs which comply

with the symmetry constraints; recognize such sequence pairs and efficiently restrict the

annealer exploration only to their subspace.

Whereas, [38] used the SP to tackle the placement problem with boundary constraints.

A new constraint-driven placement approach is adopted in [36] based on constraints

extraction via topology and signal flow analysis. Constraints are classified according to

their critical levels and flexibility. The least flexible constraints has the highest priority in

the optimization process.

In high performance circuits, it is required to places groups of devices symmetrically

with respect to each other. The reason is to match the layout-induced parasitics and

mechanical stresses in fabrication process within the symmetric groups. Failing to meet

matching constraints lead to different values of parasitic resistances and capacitances at the

differential output node. Such parasitic mismatch leads to higher offset voltage at the input

differential pair and hence, lower gain and common mode rejection ratio. Balasa et al. [34]

proposed a method to realize and handle symmetry constraints in block placement problem

using sequence pair representation. Only the symmetry-feasible sequence pairs are

explored, then passed to the annealer for area optimization.

Dong et al. [36] proposed a new constraint-driven placement technique for analog

integrated circuits, where constraint are prioritized according to their critical levels. Such

classification facilitates the search for better placement solution by reducing devices

mismatch and critical paths parasitics indicated by the extracted constraints. Circuit

constraints are extracted according to the topology and the signal flow analysis combined

with heuristic knowledge of analog design. Symmetry and matching constraints are

extracted using isomorphism graphs by primitive cell recognition in signal flow analysis.

Constraints priorities are assigned values indicating their critical effect on performance of

analog circuit, e.g., differential pair has a higher priority than other symmetry constraints.

The objective function includes area, wirelength and critical path minimization using less

flexible first algorithm (LFF).

19

Placement congestion problem is handled in previous literature [39-45] by employing

routing-aware algorithms in the context of placement problem to guarantee the reliability

and routability of the optimal placement solution. Constraints driven placement

optimization are greedy and results in a compact placement solution, where its feasibility

is questionable in terms of the reliability and the routability of the placed modules. In order

to make the solution feasible, highly net-congested devices should be separated to create

free spaces for successful routing. One approach [44] is to expand devices with high net

congestion during placement and then release them to create routing channels. A

probabilistic model is used in order to determine which devices need to expand and the

corresponding expandable levels.

Operational amplifier is one of the most fundamental components in analog integrated

circuit design. One of the essential tasks is to provide a high-performance opamp with high

gain and bandwidth, and fast settling time. High-speed opamps use only one stage to reduce

devices parasitics in order to achieve higher bandwidth. Telescopic opamps and folded

cascode opamps are commonly used for this purpose.

The aim of this research is to present an optimized framework for operational amplifiers

coupling both circuit design, accounting for process variation, and layout. Automated

layout process includes floorplan design empowering area minimization, device placement

accounting for symmetry constraints, and optimization-based transistor-level routing.

Hence, assist in the introduction of the concept of optimized standard-cell, which is well-

established in the digital flow, in the analog circuit design.

20

2.Circuit level synthesis

2.1. Folded Cascode OTA

2.1.1. Introduction

Folded cascode operational transconductance amplifier (OTA) is one of the most used

topologies in analog circuits. It is a one stage amplifier since it has only one high impedance

node at the output. It is considered as a self-compensated OTA due to the high output

impedance. The compensation is usually achieved by the load capacitance, thus as the load

capacitance becomes larger the operational amplifier becomes more stable but this comes

at the expense of a lower bandwidth. Folded cascode OTA provides higher swing compared

to the telescopic OTA as the input differential pair is in a separate branch making the output

swing only limited by the overdrive voltage of four transistors instead of five, the case of

telescopic OTA.

2.1.2. Basic Operation

The theory behind the folded cascode amplifier is to apply cascode transistors to the

input differential pair and use complementary type of devices, converting applied input

voltages to current and apply the result to a common gate stage. Fig. 2.1 shows the

schematic of the folded cascode OTA. The static current consumption equation is given

by:

𝐼𝑇𝑜𝑡. = 2 ∗ 𝐼3 + 𝐼𝑏𝑖𝑎𝑠 + 𝐼𝐶𝑀𝐹𝐵 (2.1)

The resistance at the output node can be calculated by:

𝑅𝑜𝑢𝑡 = 𝑅𝑑𝑜𝑤𝑛//𝑅𝑢𝑝 ≈ (𝑔𝑚5𝑟𝑜5(𝑟𝑜3 // 𝑟𝑜1)) // (𝑔𝑚7𝑟𝑜7𝑟𝑜9) (2.2)

Therefore, the DC gain can of the amplifier is given by:

𝐴𝑣 = 𝐺𝑚 ∗ 𝑅𝑜𝑢𝑡 = −𝑔𝑚1 ((𝑔𝑚5𝑟𝑜5(𝑟𝑜3 // 𝑟𝑜1)) // (𝑔𝑚7𝑟𝑜7𝑟𝑜9)) (2.3)

Output swing which is difference between 𝑉𝑜𝑢𝑡𝑚𝑎𝑥 and 𝑉𝑜𝑢𝑡𝑚𝑖𝑛 is calculated as follows:

𝑉𝑜𝑢𝑡𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑉𝑏,1 + 𝑉𝑡ℎ,7 𝑉𝑑𝑑 − 𝑉𝑜𝑑,9 − 𝑉𝑜𝑑,7) (2.4)

𝑉𝑜𝑢𝑡𝑚𝑖𝑛 = max (𝑉𝑜𝑑,3 + 𝑉𝑜𝑑,5 𝑉𝑏,2 − 𝑉𝑡ℎ,5) (2.5)

21

M2M1

M3

M6

M4

M5

M9

M7

M10

M8

Vin-Vin+

Vout+

Vout-

Vb1

Vb2

Vc9

CMFB

CLCL

VCM

Figure 2.1. Folded cascode OTA circuit diagram

𝑉𝑜𝑢𝑡𝑚𝑖𝑛 and 𝑉𝑜𝑢𝑡𝑚𝑎𝑥 are determined according to dc bias of the circuit, the maximum

output voltage swing is achieved by the condition:

𝑉𝑏,2 ≤ 𝑉𝑜𝑑,3 + 𝑉𝑜𝑑,5 + 𝑉𝑡ℎ,5 (2.6)

𝑉𝑏,1 ≥ 𝑉𝑑𝑑 − 𝑉𝑜𝑑,7 − 𝑉𝑜𝑑,9 − 𝑉𝑡ℎ,7 (2.7)

Therefore, the absolute maximum output voltage swing is given by:

𝑆𝑤𝑖𝑛𝑔𝑜𝑢𝑡 = 𝑉𝑑𝑑 − (𝑉𝑜𝑑,3 + 𝑉𝑜𝑑,5 + 𝑉𝑜𝑑,7 + 𝑉𝑜𝑑,9) (2.8)

Input common mode range which is the difference between 𝑉𝑖𝑛𝐶𝑀,𝑚𝑎𝑥 and 𝑉𝑖𝑛𝐶𝑀,𝑚𝑖𝑛 is

calculated as follows:

𝑉𝑖𝑛𝐶𝑀,𝑚𝑖𝑛 = 0 (2.9)

𝑉𝑖𝑛𝐶𝑀,𝑚𝑎𝑥 = 𝑉𝑑𝑑 − (𝑉𝑜𝑑,𝐶𝑆 + 𝑉𝑔𝑠,1) (2.10)

X

22

Since the input differential pair are PMOS, input common mode voltage level can be

lowered to 0v without entering cut-off region of PMOS devices.

The maximum input common mode range is given by:

𝐶𝑀𝑅𝑎𝑛𝑔𝑒𝑖𝑛𝑝𝑢𝑡 = 𝑉𝑖𝑛𝐶𝑀,𝑚𝑎𝑥 − 𝑉𝑖𝑛𝐶𝑀,𝑚𝑖𝑛 = 𝑉𝑑𝑑 − (𝑉𝑜𝑑,𝐶𝑆 + 𝑉𝑔𝑠,1) (2.11)

The unity gain frequency is calculated as follows:

𝑓𝑢 ≈
𝑔𝑚1

2∗𝜋∗𝐶𝑜𝑢𝑡
 (2.12)

Bandwidth of the OTA, which represents its dominant pole, can be approximated by:

𝐵𝑊 = 𝑓𝑝𝑑 =
𝑓𝑢

𝐴𝑣
≈

1

2 ∗ 𝜋 ∗ 𝑅𝑜𝑢𝑡 ∗ 𝐶𝑜𝑢𝑡
 (2.13)

Where,

𝐶𝑜𝑢𝑡 = 𝐶𝐿 + 𝐶𝑔𝑑,5 + 𝐶𝑔𝑑,7 + 𝐶𝑑𝑏,5 + 𝐶𝑑𝑏,7 (2.14)

The first non-dominant pole is calculated by:

𝑓𝑝𝑛𝑑,1 =
1

2 ∗ 𝜋 ∗ 𝑅𝐹𝑛𝑜𝑑𝑒 ∗ 𝐶𝐹𝑛𝑜𝑑𝑒
 (2.15)

Where,

𝑅𝐹𝑛𝑜𝑑𝑒 = (𝑟𝑜1// 𝑟𝑜3)// (
1

1 + (𝑔𝑚5 + 𝑔𝑚𝑏5)
∗ (1 +

𝑔𝑚7𝑟𝑜7𝑟𝑜9

𝑟𝑜5
)) ≈

1

𝑔𝑚5
 (2.16)

𝐶𝐹𝑛𝑜𝑑𝑒 = 𝐶𝑔𝑠,5 + 𝐶𝑔𝑑,3 + 𝐶𝑔𝑑,1 + 𝐶𝑑𝑏,3 + 𝐶𝑑𝑏,1 (2.17)

Therefore, 𝑓𝑝𝑛𝑑,1 can be approximated by:

𝑓𝑝𝑛𝑑,1 =
𝑔𝑚5

2 ∗ 𝜋 ∗ 𝐶𝐹𝑛𝑜𝑑𝑒
 (2.18)

The second non-dominant pole at node X is calculated by:

𝑓𝑝𝑛𝑑,2 =
1

2 ∗ 𝜋 ∗ 𝑅𝑋 ∗ 𝐶𝑋
 (2.19)

Where,

𝑅𝑋 = 𝑟𝑜9// (
1

1 + (𝑔𝑚7 + 𝑔𝑚𝑏7)
∗ (1 +

𝑅𝑌

𝑟𝑜7
)) (2.20)

23

𝑅𝑌 = 𝑔𝑚5𝑟𝑜5(𝑟𝑜3//𝑟𝑜1) (2.21)

𝐶𝑋 = 𝐶𝑔𝑠,7 + 𝐶𝑔𝑑,9 (2.22)

Therefore, 𝑓𝑝𝑛𝑑,2 can be approximated by:

𝑓𝑝𝑛𝑑,2 =
𝑔𝑚7

2𝜋𝐶𝑋
 (2.23)

The Phase margin, which determines the stability of the OTA, is given by:

𝑃𝑀 = 180 − 𝑡𝑎𝑛−1 (
𝑓𝑢

𝑓𝑝𝑑
) − 𝑡𝑎𝑛−1 (

𝑓𝑢

𝑓𝑝𝑛𝑑,1
) − 𝑡𝑎𝑛−1 (

𝑓𝑢

𝑓𝑝𝑛𝑑.2
) (2.24)

24

2.1.3. Common Mode Feedback

Vout+ Vout- VRef

VcCM

M12M11

M16M14M13

M15

VCM

Figure 2.2. Common Mode FeedBack Circuit

The output voltage level of the amplifier is determined by the common mode level of

the input differential signals. Since the output node is characterized by high impedance, it

is hard to adjust the DC level of output. A negative feedback system is required to adjust

the voltage at the output so that output current is the same at both sides of tail transistors.

The output common mode of the amplifier is sensed by connecting them to a gate of sense

transistors which are part of the CMFB circuits shown in Fig. 2.2.

25

2.1.4. Bias Circuit

Voltage biasing results in large current variations because of the process variations.

Current biasing keeps the current constant in the device and independent of process

variations. A simple current mirror has a low output impedance implying large variations

in the mirrored current. A cascode current mirror is required to increase the output

impedance and reduce the variations in DC output current, since the variations in the output

voltage is reduced. Therefore, the current will be exactly mirrored the same to output

transistor. Cascode current mirror circuit shown in Fig. 2.3 is used to simplify the design

flow. The aspect ratio of the devices are chosen such that the sizing in both branches are

related to the current by Eq. (2.26) and (2.27) . PMOS devices are required to mirror the

current to the input current source device in input stage, cascode load, and CMFB circuit.

Currents supplied by the bias circuit to the OTA are adjusted by sizing’s ratio between the

mirrored devices.

(𝑊
𝐿⁄)

3

(𝑊
𝐿⁄)

0

=
(𝑊

𝐿⁄)
2

(𝑊
𝐿⁄)

1

 (2.25)

𝐼2

𝐼1
=

(𝑊
𝐿⁄)

2

(𝑊
𝐿⁄)

1

 (2.26)

2.1.5. Advantages

- Large gain due to high output resistance.

- Moderate output swing.

- Can be used a unity gain buffer as output swing is relatively higher than other

amplifier architectures, e.g. telescopic cascode.

- Higher bandwidth compared to telescopic cascode amplifier due to lower

impedance at the output node.

2.1.6. Disadvantages

- Large power dissipation compared to telescopic and two stage miller compensated

amplifiers.

26

- Lower phase margin compared to telescopic cascode amplifier due to higher

capacitance value at folding node.

Vcss

Mb5

McssMc9Mccm

Mb1

Mb6

Mb3

Mb4 Mb2

Idc

Vc9
Vccm

Vd1

Vd2

Figure 2.3. Folded Cascode OPAmp Bias circuit

27

2.2. Sensitivity Analysis

The high number of parameters in analog circuit complex models constitute a

significant problem in their design, since the parameter estimation becomes a high

dimensional, multi-modal and predominantly a non-linear problem. Approaches are

adopted to resolve the problem by implementing a wide range of optimization algorithms,

which are neither feasible nor efficient in determining the performance dominating

parameters in the non-monotonically, multi-dimension design space. A sensitivity analysis

facilitates the search for the most influential parameters in the circuit, allowing the

reduction of total number of parameter in the optimization process, or quantify some

interactions effects between input parameter within the circuit model. Sensitivity analysis

(SA) tools are of immeasurable value, allowing the study of how the uncertainty in model

output can be apportioned to difference source of uncertainties represented in the model

inputs. SA has a wide scope of usage and applications; model understanding, verification,

simplifying models and prioritization of model parameters.

Definition of sensitivity analysis involves models, inputs and outputs. In order to define

model input with respect to uncertainty and the sensitivity analysis, a model can be

classified into:

 Diagnostic or prognostic: in which the model can be used to understand a law or in

predicting the behavior of the system given an understandable law. Models thus can

range from speculations to accurately predicting a system.

 Data-driven or law-driven: A law-driven model puts together trusted laws which

have been attributed to the system, in order to predict its behavior. A data-driven

model treats the components of a system as a signal and derives its properties

statistically. Law-driven models have the higher capacity to understand system

behavior under unobserved circumstances. Whereas, data-driven models is only

limited to the behavior associated with data in their estimations.

28

Definition of model input depends on the model under study. In order to have an

acceptable grasp of the uncertainty principle and sensitivity analysis, model input is defined

as any parameters that derives variations in the model output.

Figure 2.4 Parameric bootstrap version of uncertainty and sensitivity analysis

Consider the flow chart in Fig. 2.4. At the end of the estimation step, parameter values

as well as their error are known. The model is considered true and uncertainty analysis is

performed through propagating uncertainty in the parameters of the model, all the way to

the model output. From uncertainty analysis, the average output and standard deviation is

computed. This analysis can be repeated with sufficiently large number of parameters

variations, hence it is called ‘parametric bootstrap’. It is a process of repeatedly propagating

the uncertainty in the parameters through the model, each iteration computing the average

output and the standard deviation, in order to increase the accuracy of the output values

and hence reduce errors. Sensitivity analysis is then performed to determine which of the

input parameters are more important in influencing the uncertainty of the model output. It

29

is of high significance that objectives and input parameters for uncertainty and sensitivity

analysis are carefully selected. The more parameters considered as input, the greater and

the more accurate a variance to be expected in the model output.

2.2.1. Classification of sensitivity analysis

Sensitivity analysis can serve a number of useful purposes in modelling. It can uncover

errors in the model, establish priorities for research, and simplify models. SA can be

categorized into two approaches; local and global analysis. Local analysis studies the small

input perturbations on the model output which occur around nominal values, e.g., the mean

of an input variable. Local SA is considered a deterministic approach, where output

variations due these small perturbation are obtained by computing the partial derivative of

the model at a certain point. Derivative-based approach has the advantage of being efficient

in terms of run time. The model needs to be executed few times according to the dimension

of the array of derivatives. However, the failing part of this approach is that it is unaware

if the model input is uncertain or if the model is of unknown linearity. Derivatives are only

informative around the nominal value where they are computed and hence, do not provide

for any exploration of the rest of the space of the input parameters. Such disadvantage has

a minor effect or even no effect for linear systems, however, it matters greatly knowing

that the system is non-linear and non-monotonic.

The very basic definition of sensitivity Index (SI) is given by:

𝑆𝐼𝑖

=
𝑦𝑖

𝑚𝑎𝑥 − 𝑦𝑖
𝑚𝑖𝑛

𝑦𝑖
𝑚𝑎𝑥 (2.27)

Where 𝑦𝑖
𝑚𝑎𝑥 is the maximum between y(𝑥𝑖

𝑚𝑖𝑛) and y(𝑥𝑖
𝑚𝑎𝑥), and y(𝑥𝑖) is computed at

nominal value 𝑥0. Variable 𝑥𝑖 is moved one-at-a-time (OAT) to its respective 𝑥𝑖
𝑚𝑎𝑥 and

𝑥𝑖
𝑚𝑖𝑛.

30

2.2.2. Local Sensitivity analysis

 According to local sensitivity analysis, a simple calculation of sensitivity of f(x)

can be given considering second order Taylor series, is given by:

𝑓(𝑥0 + Δ) = 𝑓(𝑥0) + ∑
𝜕𝑓(𝑥0)

𝜕𝑥𝑖

𝑘

𝑖=1

∆𝑖 +
1

2
∑ ∑

𝜕2𝑓(𝑥0)

𝜕𝑥𝑖𝜕𝑥𝑗
∆𝑖∆𝑗

𝑘

𝑗=1

𝑘

𝑖=1

 (2.28)

Using the OAT approach realizing k+1 runs, a finite difference approximation to the first

order local sensitivity can be computed as follows:

𝜕𝑓

𝜕𝑥𝑖
≅

𝑦(𝑥0,𝑖 + ∆𝑖) − 𝑦(𝑥0,𝑖)

∆𝑖
 (2.29)

For uncorrelated inputs variables, expectation vector and the variance of the function f(x)

is defined as:

𝐸(𝑌) = 𝑓(𝑥0) (2.30)

and

𝑣𝑎𝑟(𝑌) = ∑ [
𝜕𝑓(𝑥0)

𝜕𝑥𝑖
]

2

. 𝑣𝑎𝑟(𝑥𝑖)

𝑘

𝑖=1

 (2.31)

In order to overcome the large limitation of local SA, which only considers local

variations accompanied with limited range linearity calculations, global SA has been

introduced in a statistical framework. Global SA considers the whole range of variations

of input variables, therefore, can be used in the study of models in order to identify and

prioritize the most influential inputs parameters, identify non-influential parameters which

has a very minor effect on the output uncertainty in order to be fixed during design space

exploration. Global SA can also be used to map the output behavior in function of input

variables by focusing on certain range of inputs values, and the calibration and validation

of model equations. The aim of this section is to provide a review on global sensitivity

analysis which is one of the techniques in ANOVA family.

31

2.2.3. Global Sensitivity analysis

2.2.3.1. Regression-based correlation analysis

The correlation coefficient designate the strength and direction of a linear relationship

between two random variables. The best known coefficient is the Pearson product-moment

correlation coefficient, which calculated by dividing the covariance of the two variables by

the product of their standard deviations. Pearson correlation coefficient is defined as:

𝜌𝑋,𝑌 =
𝐸(𝑋, 𝑌) − 𝐸(𝑋)𝐸(𝑌)

√𝐸(𝑋2) − 𝐸2(𝑋)√𝐸(𝑌2) − 𝐸2(𝑌)
 (2.32)

Combining MonteCarlo simulation, Person correlation coefficient is given by:

𝑟𝑥,𝑦 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑁

𝑖=1

 (2.33)

Where �̅� is the mean value of 𝑥𝑖 and �̅� is the mean value of 𝑦𝑖. Correlation coefficients

values range in the interval [-1,1], where 0 indicates a linear relationship and (-1,1) indicate

a strong relationship between random variables under study. Consider a variable 𝑌

dependent upon number of variables 𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛), hence the correlation

coefficient can be used as a sensitivity measure.

𝑆𝑖 = 𝜌𝑋,𝑌 (2.34)

The correlation is powerful measure to summarize linear relationships between

variables. However, in case of non-linearity it may lead to wrong conclusions. Hence, a

correlation analysis cannot replace individual examination of data.

Pearson correlation coefficient is combined with regression coefficient obtained by

linear regression analysis. Regression analysis indicates the strength and direction of a

relationship between two random variables 𝑋 and 𝑌 as well. Random variable is defined to

to be dependent and modeled as a function of an independent variable, its parameters, and

a random error term. In linear regression, in order to model 𝑛 date points there is one

independent variable 𝑥𝑖, two parameters a and b and an error term 𝜀𝑖.

32

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝜀𝑖 (2.35)

In order to compute 𝑎 and 𝑏, least square method is used as follows:

�̂� = �̅� − �̂��̅� (2.36)

�̂� =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1

 (2.37)

The interrelation between linear regression and Pearson correlation coefficient is defined

by

�̂� = 𝑟𝑥,𝑦

𝑆𝑦

𝑆𝑥
 (2.38)

Where 𝑆𝑦 and 𝑆𝑥 are the standard deviation of the 𝑛 data points.

The proportion of variability in the data processed by the linear regression is defined

by the coefficient of determination 𝑅𝑥,𝑦
2 . The variability of date is measured by computing

the residuals as follows:

�̂�𝑖 = 𝑦𝑖 − (�̂� + �̂�𝑥𝑖) (2.39)

Hence, coefficient of determination 𝑅𝑥,𝑦
2 can be calculated as follows:

𝑅𝑥,𝑦
2 = 1 −

∑ �̂�2
𝑖

𝑁
𝑖=1

∑ (𝑦𝑖 − �̂�)2𝑁
𝑖=1

 (2.40)

Where 𝑅𝑥,𝑦
2 is the square of the Pearson correlation coefficient 𝑟𝑥,𝑦, in case of linear

regression.

2.2.3.2. Variance-based approaches

The models under study are described by a function 𝑌 = 𝑓(𝑋), where 𝑋 =

(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) and 𝑋 is a random input vector consisting of 𝑛 random variables. 𝑌 =

(𝑌1, 𝑌2, 𝑌3, … , 𝑌𝑚) denotes the random output vector functions of random variables. 𝑓(𝑋)

can be decomposed into summands of increasing order components.

33

𝑓(𝑋) = 𝑓0 + ∑ 𝑓1(𝑋1)

𝑛

𝑖=1

+ ∑ 𝑓𝑖,𝑗(𝑋𝑖, 𝑋𝑗)

1≤𝑖≤𝑗≤𝑛

+ ⋯ + 𝑓1,2,…,𝑛(𝑋1, … 𝑋𝑛) (2.41)

Each random model response 𝑌𝑗, where j = 1,2,…m, can be characterized by its variance

𝑉𝑗. Each variance 𝑉𝑗 is decomposed into partial variances corresponding to the single

random input variables 𝑋1, 𝑋2, 𝑋3, …, 𝑋𝑛 according to equation (2.42), and to relate each

partial variance to a single sensitivity measure according to equation (2.43):

𝑉𝑗 = ∑ 𝑉𝑖
𝑗

𝑛

𝑖=1

+ ∑ 𝑉𝑖,𝑘
𝑗

1≤𝑖≤𝑘≤𝑛

+ ⋯ + 𝑉1,2,…𝑛
𝑗 (2.42)

𝑆𝑖1,…,𝑖𝑠
=

𝑉𝑖1,…,𝑖𝑠

𝑗

𝑉𝑗
 𝑤ℎ𝑒𝑟𝑒 1 < 𝑖1 < 𝑖2 < 𝑖3 … < 𝑖𝑠 ≤ 𝑛 (2.43)

Each of the sensitivity measures calculated by equation (11) describes which amount

of each variance 𝑉𝑗 is generated due to the randomness of the associated random input

variables and their mapping onto the output variables. As special case the sensitivity

measures 𝑆𝑖
𝑗
 describing the sole influence of the single input variables 𝑋𝑖 are called the

main effects. Whereas, sensitivity measures 𝑆𝑖1,…,𝑖𝑠
 describing the influence of

combinations of input variables are denoted as interaction effects.

All partial sensitivity indices 𝑆𝑖
𝑗
 are summed up to the total sensitivity measure 𝑆𝑇𝑖

𝑗
 in

order to evaluate the total effect of the single input variable 𝑋𝑖. Hence, the total sensitivity

measures consider the interactions among input variables. In order to quantify which

amount of each variance 𝑉𝑗 is generated due to a single input variable 𝑋𝑖, the corresponding

total sensitivity measure 𝑆𝑇𝑖
𝑗

 can be normalized as follows:

𝑛𝑜𝑟𝑚(𝑆𝑇𝑖
𝑗

) =
𝑆𝑇𝑖

𝑗

∑ 𝑆𝑇𝑘
𝑗𝑛

𝑘=1

 (2.44)

34

2.3. Overview of OASYN framework

Figure 2.5 shows an overview of the OASYN framework. The tool acquires a topology

from two well-known operational amplifiers structures; the Folded Cascode and the Two

Stage Miller compensated amplifiers, according to designer preferences, along with

required specification, e.g. gain, GBW, phase margin, output swing, slew rate, load

capacitor, technology node, input common mode voltage level, and maximum power

consumption. The tool acquires connectivity electrical constraints, e.g. max current density

information in each circuit net, and matching constraints for device group placement along

with matching styles. Circuit synthesizer generates a rough initial estimate sizing based on

the analytical circuit equations. Then, the tool undergoes sensitivity analysis employing

Sobol indices in the circuit sizing optimization engine, and a Pareto-optimal set is

generated for immediate translation of specs to fully sized topology. To the authors’

knowledge, this is the first work that examines the whole design space through sensitivity

analysis in order to account for uncertainty of the non-linear behavior of analog circuits,

by quantifying higher order interactions between parameters of the circuit taking into

consideration extreme eprocess, supply, and temperature variations.

35

SIZING TOOLINPUTS

TEMPLATE

Circuit

Topology

[Folded

Cascode,

Two Stage]

Connectivity

& Constraints

Technology kit

User Specifications

(Gain, GBW,

VinCm, Current

SWING, Phase

Margin, Load Cap)

Rough Estimate Sizing

using Analytical circuit

equation

OPTIMIZATION ENGINE

Circuit Sensitivity

Analysis

Generate Pareto-

Optimal frontier curve

EVALUATION ENGINE

Performance meets specifications
across all corners ?

S
IM

U
L

A
T

EO
P

T
IM

IZ
E

LAYOUT GENERATOR

Fixed Outline Floor Planning

TCG-S* Non-Slicing

Representation

Floorplan area minimization

Devices Matching

Techniques

[Common

Centroid, Inter-

digitation]

PLACEMENT

ROUTING

Load DRC rules, net current density

Simulated Annealing

Optimization Engine
VALIDATION

PEX SIMULATION
DRC/LVS CLEAN

GDSII FILE

Figure 2.5. Overview of the OASYN framework

Layout generator tool consists of three main processes. First, a fixed-outline

floorplanner employing multi-objective optimization on area and wirelength, accounting

for block placement matching constraints, is implemented. This paper proposes a new,

simple, efficient, and fast floorplan solution perturbing algorithm with O(n) runtime

complexity, for fast realization of incremental update for cost evaluation, called TCG-S*.

The algorithm integrates the advantages of TCG and SP representations, and eliminates

their disadvantages, into a superior topology update scheme which facilitates the search for

optimal desired floorplan.

In order to enhance routability and reliability of the packed optimal placement solution,

a routing-aware algorithm is implemented within the placement process contemplating the

congestion problem, smoothing the densities between placed blocks and preserving the

relative location of the modules. An annealing-based detailed net routing is then executed

to generate a free DRC layout.

36

2.4. Circuit sizing tool
The main purpose of the sensitivity analysis is to determine the most influential model

parameters affecting a model response. Hence, reduce the computational complexity in

optimization. Local and global analysis are major constituents of sensitivity analysis. The

high priority parameters in one part of design space may not be the same in another,

highlighting the importance of global SA. In addition, importance of a subset of variables

may be subject to the interactions between these variables rather than the sum of the

individual variables importance. Sensitivity analysis based optimization is employed in

previous works [5], [7], [8], [46], and [47]. Variance-based Sobol method efficiently

quantifies synergic effects along with uncertainties in the model input and their effect on

the model output.

2.4.1. The Sobol’ Sensitivity Analysis

The Sobol’ decomposition [51, 52] is one of the family of ANOVA techniques. The

Interaction of two or more parameters are denoted as Sobol’ indices. The function F(𝜉) of

a set of input variables 𝜉𝑖, where Ω𝑑 is a dimensional range and d is the total number of

input variables, is defined by

𝐹(𝜉) = ∑ 𝐹𝑢(𝜉𝑢) (2.45)

𝑢⊆(1.2,…𝑑)

Where 𝑢 is a set of integers, 𝜉𝑢 = (𝜉𝑢1
, … , 𝜉𝑢𝑠

) and s = |𝑢|. In order to calculate the effect

of certain input variables on the output uncertainty, 𝑢 represents these sets of variables as

a subset of the whole variables set, presented in Eq. (2.45), as will be shown later in the

section. Eq. (2.45) is decomposed as follows:

𝐹(𝜉𝑢) = 𝐹0 + ∑ 𝐹𝑢𝑖
(𝜉𝑢𝑖

)

1≤𝑖≤𝑑

+ ∑ 𝐹𝑢𝑖𝑗
(𝜉𝑢𝑖

, 𝜉𝑢𝑗
) +

1≤𝑖≤𝑗≤𝑑

..

 +𝐹𝑢12…𝑑
(𝜉𝑢1

, … , 𝜉𝑢𝑑
) (2.46)

In this expansion, the individual terms can be calculated according to

37

𝐹0 = ∫ 𝐹(𝜉)𝑑𝜉

Ω𝑑

 (2.47)

𝐹𝑢(𝜉𝑢) = ∫ 𝐹(𝜉𝑢)𝑑𝜉~𝑢 − ∑ 𝐹𝑣(𝜉𝑣) (2.48)
𝑣⊂𝑢
𝑣≠𝑢Ω𝑑−}𝑢}

Where 𝜉~𝑢 is 𝜉 with set 𝑢 excluded

𝜉~(𝑏) = (𝜉1, … , 𝜉𝑏−1, 𝜉𝑏+1, … , 𝜉𝑑) (2.49)

Equation (2.50) defines the total variance of the output function F(𝜉), denoted by D. 𝐷𝑢

denotes the partial output variance in response to a set of input variables.

𝐷 = ∫ 𝐹2(𝜉)𝑑𝜉 − 𝐹0
2

Ω𝑑

 (2.50)

𝐷𝑢 = ∫ 𝐹𝑢
2(𝜉𝑢)𝑑𝜉𝑢

Ω|𝑢|

 (2.51)

𝐷𝑢 can be represented as recursive function of conditional variances:

𝐷𝑢 = 𝑉(𝐸[𝑦|𝜉𝑢]) − ∑ 𝐷𝑣 (2.52)
𝑣⊂𝑢
𝑣≠𝑢
𝑣≠0

And therefore, D can be represented as the summation of the variances 𝐷𝑢:

𝐷 = ∑ 𝐷𝑢

𝑢⊆{1,2,…𝑑}
𝑢≠0

 (2.53)

𝐷𝑢 measures the variance of output 𝐹(𝜉) according to the interaction between elements of

𝑢, subtracting the individual effect of elements 𝑣 ⊂ 𝑢. The Sobol’ sensitivity indices can

be calculated by:

𝑆𝑢 =
𝐷𝑢

𝐷
 (2.54)

38

∑ 𝑆𝑢 = 1

𝑢⊆{1,2,…,𝑑}
𝑢≠0

 (2.55)

Where 𝑆𝑢 measures the sensitivity of 𝐹(𝜉) by the interaction of elements of 𝑢, excluding

the effect each variable separately have on output function variance. There are 2𝑑 − 1

sensitivity indices required to be calculated in order to determine the most significant

design parameters.

2.4.2. Computation of Sobol’ Indices by Monte-Carlo

Sampling

Calculation of the variances using integrals is extensive process since circuit model

equations are complex and non-linear. Therefore, a sample set of n realizations of input

variables 𝜉𝑢 is considered to calculate the average E[y] and the variance D.

𝐷 = 𝐸[𝑦2] − 𝐸[𝑦]2 (2.56)

According to Eq. (2.47) and (2.56), the sampled estimates of 𝐹0 and D are:

�̂�0 =
1

𝑛
∑ 𝐹(𝜉(𝑖))

𝑛

𝑖=1

 (2.57)

�̂� =
1

𝑛
∑ 𝐹2(𝜉(𝑖)) − �̂�0

2
𝑛

𝑖=1

 (2.58)

According to Eq. (2.52), Estimate of 𝐷𝑢 can be calculated by finding an expression for

the conditional variance estimate as follows:

𝑉(𝐸[𝑦|𝜉𝑢]) = 𝐸[𝐸[𝑦|𝜉𝑢]2] − 𝐸[𝐸[𝑦|𝜉𝑢]]
2

= 𝐸[𝐸[𝑦|𝜉𝑢]2] − 𝐸[𝑦]2

 ≈
1

𝑛
∑ (

1

𝑛
∑ 𝐹 (𝜉~𝑢

(𝑗)
, 𝜉𝑢

(𝑖)
)

𝑛

𝑗=1

)

2
𝑛

𝑖=1

− 𝐹0
2 (2.59)

However, time complexity of computing conditional variances is 𝑂(𝑛2). Sobol [51]

proposed a faster method to calculate the variances using Monte-Carlo sampling technique

using two sample sets 𝜉(𝑖)|𝑖=1
𝑛 and 𝜂(𝑖)|𝑖=1

𝑛 .

39

𝐸[𝐸[𝑦|𝜉𝑢]2] = 𝐸[𝐸[𝑦|𝜉𝑢] 𝐸[𝑦|𝜉𝑢]] = ∫ (∫ 𝐹(𝜉~𝑢, 𝜉𝑢)𝑑𝜉~𝑢) ∗ (∫ 𝐹(𝜉~𝑢, 𝜉𝑢)𝑑𝜉−𝑢)

= ∫ ∫ ∫ 𝐹(𝜉)𝐹(𝜂~𝑢, 𝜉𝑢) 𝑑𝜉𝑑𝜂~𝑢 (2.60)

Substituting Eq. (16) in Eq. (8), estimate of 𝐷𝑢 becomes:

�̂�𝑢 =
1

𝑛
∑ 𝐹(𝜉(𝑖))𝐹(𝜉𝑢

(𝑖)
) − ∑ �̂�𝑣

𝑣⊂𝑢
𝑣≠𝑢

𝑖=1

 (2.61)

Where

(𝜉𝑏)𝑢
(𝑖)

= {
𝜉𝑏

(𝑖)
 𝑏 ∈ 𝑢

𝜂𝑗
(𝑖)

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.62)

Therefore,

�̂�{𝑏} =
1

𝑛
∑ 𝐹(𝜉1

(𝑖)
, … , 𝜉𝑑

(𝑖)
) ∗ 𝐹(𝜂1

(𝑖)
, … , 𝜂𝑏−1

(𝑖)
, 𝜉𝑏

(𝑖)
, 𝜂𝑏+1

(𝑖)
, … , 𝜂𝑑

(𝑖)
) − �̂�0

2
 (2.63)

𝑖=1

2.4.3. Circuit Sizing Algorithm

Algorithm 2.1: Monte_Carlo(U 𝜉_Sample 𝜂_Sample)

1. // Initialize Sum with 0

2. FOR i 0 n-1 DO // no. of samples

3. FOR j 0 Var_NUM DO // total number of variables

4. SamList1 = concat{SamList1 𝜉_Sample[i,j]};

5. if (j on U) THEN

6. SamList2 = concat{SamList2 𝜉_Sample[i,j]};

7. ELSE SamList2 = concat{SamList2 𝜂_Sample[i,j]};

40

8. Out_Sim1 = SIMULATE(SamList1);

9. Out_Sim2 = SIMULATE(SamList2);

10. Sum = Sum+Out_Sim1*Out_Sim2;

11. RETURN Sum/n;

Algorithm 2.2: Sobol_Decomp(List partial rest Result)

1. //Initialize partial , res, Result with nil

2. FOR i 0 length(List)-1 DO

3. n = nth(i List);

4. rest = List;

5. FOR j 0 i DO

6. rest = REMOVE(nth(j List) rest); // delete jth element

7. Result = Sobol_Decomp(rest 0 concat{partial n} nil concat{Result concat{partial

n}});

8. RETURN Result;

Algorithm 2.3: Sobol_Var(list(U))

1. // calculate Variance D_U

2. FOR i 0 length(U)-1 DO

3. MC = Monte-Carlo(nth(i U) 𝜉_Sample 𝜂_Sample);

4. if (length(i U) ==1 THEN

5. D_U = D_U + MC – F_Avg;

41

6. ELSE

7. D_U = D_U + MC – Sobol_Var(REMOVE(nth(i U) SobolDecomp(nth(i U) nil

nil nil) – F_Avg;

8. RETURN D_U;

Optimization is done by computing Sobol’ indices of all circuit parameters with equal

weights. Each sensitivity index for a set of parameters 𝑆𝑢 measures the uncertainty of

interactions of these parameters on circuit specs. In each iteration 𝑖, 2𝑑−1 number of indices

𝑆𝑢𝑖
 are calculated constituting the combinations of parameters interactions in the set 𝑢. Let

𝑆𝑢𝑖

𝐺
 denote the total sensitivity index for each specification per set of parameters 𝑢. In

order to decide on the best parameters which contributes to the enhancement of circuit

specifications, a cost function 𝑆𝑖 is to be determined. The cost function 𝑆𝑖 computes the

highest effect of set of parameters 𝑢 on the all circuit specifications. The cost function 𝑆𝑖

for 𝑚 specifications (objectives) for each iteration 𝑖 is given by:

𝑆𝑖 = 𝑚𝑎𝑥
𝑢

(∑ 𝑆𝑢𝑖

𝑗

𝑚

𝑗=1

) (2.64)

The algorithm rejects any solution that tends to change constraints outside the given their

boundaries.

Since the problem deals with multi-objective function, in which optimal solution

corresponding to each objective is not feasible, the goal is to find a Pareto-optimal set. The

most significant parameters, which contribute to the highest output variances of output

specs, are optimized to achieve a Pareto-frontier curve. Since the design space varies each

step, Sobol’ indices are computed in every iteration. If a Pareto-optimal solution is reached,

the condition after which it is impossible to achieve higher spec without deteriorating

others, a globally non-dominated solution is considered to be attained.

42

3.Layout Floorplan

Morata et al. (1996) introduced an elegant representation of block placement called

sequence pair for general floorplans (SP). Like TCG and BSG, but unlike O-tree, B*tree,

and CBL, SP is P-admissible. Unlike SP, TCG supports incremental update during

operation and keeps the information of the boundary modules as well as their relative

positions in the representation. Block placement algorithms that are based on SP use

heuristic optimization algorithms, e.g., simulated annealing where generation of large

number of sequence pairs are required. Therefore a fast algorithm is needed to generate

sequence pairs after each solution perturbation.

3.1. Comments on TCG-S Representation

Lin et al. proposed a representation which uses the horizontal and vertical transitive

closure graphs as well as Г− of SP to represent a placement. Based on Г− as well as

horizontal and vertical contours Rℎ and R𝑣, O(n log n) time packing scheme is obtained by

sorting and keeping the coordinates of the right (top) boundaries of module in the search

order of the Red-Black tree Tℎ (T𝑣) [19]. An O(n) runtime packing sequence update was

proposed during solution perturbation. The topological ordering of Cℎ and C𝑣 as well as

sequence Г− are required to be changed to conform with the new placement under each of

the four operations; rotation, swap, reverse, and move.

Although the three feasibility properties of TCG mentioned in [12] were maintained, they

are not sufficient to guarantee an updated configuration of TCG graphs and Г− sequence

which exactly corresponds to the new placement after each solution perturbation. The

TCG-S tuples update algorithm would only be sufficient if the modules subjected to one

of the four operations have exactly the same width and length. However, such condition

may be satisfied for special constraint placement, e.g., proximity, interdigitated, and

common centroid symmetry constraints. The algorithm proposed did not consider

geometry of the modules with respect to each other during operations. Therefore, may

result in discrepancies between horizontal (vertical) geometric relations of the modules and

43

the ones designated by Cℎ(C𝑣). Post perturbation on modules b𝑖 and b𝑗, b𝑗 ⊥ b𝑘 may

accidently be updated as b𝑗 ⊢ b𝑘 according to the geometric relation between b𝑖 and b𝑘.

Also b𝑘 ⊥ b𝑗 through b𝑖 will not be updated in C𝑣 upon swapping b𝑖 and b𝑗. Edge (b𝑘, b𝑗)

in C𝑣 will not be deleted and hence, the packing sequence Г−will also be incongruously

updated. The mismatch between TCG-S representation and its placement will not only lead

to non-optimal solution after a series of operations, it may also generate overlapping

modules leading to infeasible solution.

In this section, limitations of TCG-S tuples update algorithm are discussed for each

operation. Effect of such discrepancy between representation and its corresponding

placement on the packing evaluation along with the convergence to the optimal solution

will be outlined. Furthermore, a new simple and efficient O(n) runtime algorithm for fast

realization of incremental update for cost evaluation. The algorithm integrates SP and TCG

advantages into TCG-S* a superior topology update scheme which facilitates the search

for optimum desired floorplan. Experiments show that TCG-S* is better than existing

works in terms of area utilization, stability, and convergence speed.

3.1.1. Update of Constraints graph

a
b

d
c

e

f

ne
nd

nc

na nb
nf

ne nd

nfnc

na

nb

ne
nd

nc

na nb
nf

ne nd

nfnc

na

nb

a
b

dc

e

f

(a) initial configuration of TCG

(b) rotate module d

44

nc
nd

ne

na nb
nf

nc nd

nfne

na

nb

a
b

dc

e

f

nd
nc

ne

na nb
nf

nd nc

nfne

na

nb

a
b

d c

e

f

Figure 3.1. Three types of perturbations. (a) The initial TCG (𝐶ℎ and 𝐶𝑣) and the placement. Dimensions

for the six blocks are: a (6 x 4), b (4 x 6), c (7 x 4), d (6 x 3), e (3 x 2), and f (3 x 3). (b) The resulting TCG

and placement after rotating module d based on TCG-S. (c) The resulting TCG and placement after

reversing nodes 𝑛𝑐and 𝑛𝑒 based on TCG-S. (d) The resulting TCG and placement after swapping nodes

𝑛𝑐and 𝑛𝑑 based on TCG-S.

Figure 3.1(a) shows the initial configuration of TCG and its corresponding placement.

Module d is rotated as shown in Fig. 3.1(b) and, according to TCG-S, only the weights of

the corresponding node d in Cℎ and C𝑣 are exchanged. Although such an operation has O(1)

runtime complexity, it did change the topology of the Cℎ and C𝑣, prompting a mismatch

between TCG and the corresponding placement. Placement shows that edge (n𝑑, n𝑓)

should be deleted from Cℎ and a new edge (n𝑓, n𝑑) is to be drawn from node f to node d in

C𝑣.

Figure 3.1(c) shows a reverse operation between two modules c and e. Reverse

operation involves reversing the direction of a reduction edge (n𝑐, n𝑒) in a transitive closure

(c) reverse (𝑛𝑐, 𝑛𝑒)

(d) swap 𝑛𝑐, 𝑛𝑑

45

graph, which corresponds to deleting edge (n𝑐, n𝑒), adding a new edge (n𝑒, n𝑐) in the same

transitive closure graph C𝑣. According to TCG-S, for each node n𝑘 ∈ fanin(𝑛𝑒) ∪ {n𝑒} and

n𝑙 ∈ fanout(𝑛𝑐) ∪ {n𝑐} in the new graph, the edge (n𝑘, n𝑙) is to be added to the graph and

the corresponding edges (n𝑘, n𝑙) (or(n𝑙, n𝑘)) is to be deleted in the other transitive closure

graph to maintain the TCG. Therefore, for each node n𝑘 ∈ {a, b, e} and n𝑙 ∈ {c}, edge (n𝑘,

n𝑙) is checked whether it exists in C𝑣. Since all the edges already exists except (n𝑒, n𝑐),

nothing is changed. Geometric relation between module b and module e has changed as

shown in the placement. Prior the reverse operation, b𝑏 ⊥ b𝑒, whereas post the reverse, b𝑒

⊢ b𝑏. Consequently, the edge (n𝑏, n𝑒) is to be deleted from C𝑣 and a corresponding edge

(n𝑒, n𝑏) is to be added to the other transitive graph Cℎ. Since there are at most O(n) n𝑘’s

nodes and O(n) n𝑙’s nodes, i.e., O(𝑛2) (n𝑘, n𝑙) edges, time complexity of the reverse

operation is O(𝑛2) where n is the number of modules in a placement,

Figure 3.1(d) shows a TCG and its corresponding placement post swapping module c

and d. According to TCG-S, in order to swap two modules c and d, only nodes n𝑐 and n𝑑

designating the modules are to be exchanged in both Cℎ and C𝑣. Notice that nodes n𝑐 and

n𝑑 have been exchanged in Fig. 3.1(d), where fanin(𝑛𝑐) is exchanged with fanin(𝑛𝑑).

Similarly, fanout(𝑛𝑐) is exchanged with fanout(𝑛𝑑). fanin(𝑛𝑐) are {𝑛𝑏} and fanin(𝑛𝑑) are

{𝑛𝑎, 𝑛𝑒, 𝑛𝑏}. The placement shows that there is no geometric relation between modules b

and d in 𝐶𝑣, but rather in 𝐶ℎ. The edge (n𝑏, n𝑑) is to be deleted form 𝐶𝑣 and a corresponding

edge (n𝑑, n𝑏) is to be added to the other transitive closure graph 𝐶ℎ.

As a deduction, all operations are prone to changing the topology of the TCGs. The

reason of such incongruousity between the TCG and its placement is that the geometry and

dimensions of the blocks in a placement with respect to each other has not been considered

while perturbing a placement solution.

3.1.2. Packing Sequence Г− Update

Consider the TCG and placement shown in Fig. 3.1(c). The packing sequence Г− can be

obtained using equivalence of SP and TCG proposed by [18], by repeatedly extracting a

node n𝑖 with fanin(𝑛𝑖) = 0 in Cℎand C𝑣. Similarly, Г+ is obtained by repeatedly extracting

46

a node n𝑖 with fanin(𝑛𝑖) = 0 in Cℎand fanout(𝑛𝑖) = 0 in C𝑣. Accordingly, the sequences Г+

and Г− are (〈c e a d b f〉, 〈a b e c d f〉) respectively. For evaluating SP, packing cost can be

calculated using the longest common sequence proposed by [11]. By computing lcs(Г+,

Г−) and lcs(Г+
𝑅 , Г−), width and height are determined and hence, the whole placement area.

The positions of the modules during each solution perturbation can be computed while

evaluating the packing cost using the last common sequence algorithm. Based on C𝑣 graph

shown in Fig. 3.1(c) and the aforementioned LCS algorithm, 𝑦𝑒 > 𝑦𝑏
′ . lcs(Г+, Г−) which

holds the value of block f position plus its weight in x-direction (𝑦𝑓
′), equals to 16. Whereas,

lcs(Г+
𝑅 , Г−), which holds the value of block c position plus its weight in y-direction, equals

to 12. Placement span in the initial TCG configuration is (13, 12), became (16, 12) after

reverse operation. Thus the perturbing solution is diverging and deviating from the desired

one. The mismatch between TCG and its corresponding placement during perturbation is

obvious.

Lin et al. proposed a scheme for updating sequence Г− in reverse operation, in which

module b𝑖 is deleted and inserted following b𝑗 in sequence Г−. For each module b𝑘 between

b𝑖 and b𝑗 in the sequence Г−, in which edge (n𝑖, n𝑘) exists in the graph, b𝑘 is deleted and

inserted following the most recently inserted module. Consider the placement shown in

Fig. 3.1(b), Assume that edge (n𝑎, n𝑒) is reversed. Edges (n𝑎, n𝑘), where node n𝑘 ∈ {n𝑐,

n𝑏, n𝑒} and node n𝑙 ∈ {n𝑎, n𝑐}, that doesn’t exist in the C𝑣 graph will be added to C𝑣 and

deleted from the corresponding graph. Therefore, the new added edges are (n𝑐, n𝑎), (n𝑒,

n𝑐), (n𝑏, n𝑎), and (n𝑒 , n𝑎). Accordingly, b𝑎 is deleted from Г− and inserted following b𝑒.

Since, edge (n𝑎, n𝑐), (n𝑎, n𝑏) doesn’t exist nothing is changed. The new Г− is 〈b c e a d f〉,

whereas transforming TCG into SP results in Г− equals 〈b e c a d f〉. Thus, the proposed

algorithm for updating Г− is only feasible if the edge considered for move is a reduction

edge, where no module b𝑘 exists between b𝑖 and b𝑗. Incongruous TCG graphs and its

corresponding Г− results in infeasible solution during packing cost evaluation by the binary

search tree.

Therefore, the limitations of the proposed update scheme in [18] did not only tend to

increase the convergence time of the floorplan and make it harder to converge to the desired

47

solution, by miscalculating packing cost, it may also generate infeasible solution after a

series of operations.

3.2. TCG-S* Perturbing Algorithm

3.2.1. TCG Topology Update

The section proposes a new simple and efficient O(n) runtime algorithm, where n is the

number of modules in a placement, for the update of the constraint graphs Cℎ and C𝑣 during

perturbation, based on the knowledge of the position of the modules.

3.2.1.1. Rotate

The rotate operation involves rotating a module b𝑖 without changing its position. Rotate

operation involves exchanging weights of module b𝑖 in both Cℎ and C𝑣. Edges (n𝑖, n𝑘) are

required to be updated in both Cℎ and C𝑣, where n𝑘 ∈ fanin(𝑛𝑖) ∪ fanout(𝑛𝑖) in both Cℎ

and C𝑣. First, edge (n𝑖, n𝑗) is deleted from C𝑣 and added to Ch, where n𝑗 ∈ fanout(𝑛𝑖) ∪

fanin(𝑛𝑖). All modules b𝑗 ∈ fanout(𝑛𝑖) in 𝐶ℎ ∪ fanout(𝑛𝑖) in 𝐶𝑣 in which 𝑦𝑗 > 𝑦𝑖 are checked

whether there exists a vertical relation with b𝑖. If exists, an edge (n𝑖, n𝑗) is added to C𝑣 and

the corresponding edge (n𝑖, n𝑗) is deleted from the other transitive graph. Otherwise, an

edge (𝑛𝑖, 𝑛𝑗) is added to Cℎ. Similarly, to obtain fanin(n𝑖) in C𝑣 and its corresponding

update in both Cℎ and C𝑣, all modules b𝑗 with 𝑦𝑗
′ < 𝑦𝑖

′ are checked whether there exists a

vertical relation with b𝑖. If exists, an edge (𝑛𝑗 , 𝑛𝑖) is added to 𝐶𝑣 and the corresponding

edge (ni, nj) is deleted from 𝐶ℎ. Otherwise, edge (𝑛𝑖, 𝑛𝑗) is added to Cℎ.

ne
nd

nc

na nb
nf

ne nd

nfnc

na

nb

a
b

dc

e

f

(a) rotate module d

48

nc
nd

ne

na nb
nf

nc nd

nfne

na

nb

a
b

dc

e

f

nd
nc

ne

na nb
nf

nd nc

nfne

na

nb

a
b

d c

e

f

nd
nc

ne

na nb

nf
nd nc

nbne

na

nf

a
b

d c

e

f

Figure 3.2. Three types of perturbations. (a) The resulting TCG and placement after rotating module. (b)

The resulting TCG and placement after reversing nodes ncand ne. (c) The resulting TCG and placement

after swapping nodes ncand nd.

Figure 3.2(a) shows the resulting TCG and its corresponding placement post reversing

module d. Notice that weights of the node n𝑑 have been exchanged in both Cℎ and C𝑣.

fanout(𝑛𝑖) ∪ fanin(𝑛𝑖) = {nb}. Therefore, edge (n𝑑, n𝑗) is deleted from C𝑣 and added to

Ch, where n𝑗 ∈ {nb}. fanout(𝑛𝑑) in 𝐶𝑣 = ∅, fanout(𝑛𝑑) in 𝐶ℎ = {nf}. Since module 𝑦𝑓 <

𝑦𝑑, nothing is changed. To obtain fanin(nd) in Cv, module nj ∈ {nb, nf} in which 𝑦𝑗
′ < 𝑦𝑑

′

and nj has vertical relation with module d, is added to 𝐶𝑣 and the corresponding edge (𝑛𝑑,

(b) reverse (𝑛𝑐, 𝑛𝑒)

(c) swap 𝑛𝑐, 𝑛𝑑

(d) move 𝑛𝑑, 𝑛𝑓

49

𝑛𝑗) is to be deleted from 𝐶ℎ. Therefore, edges (𝑛𝑏, 𝑛𝑑) and (𝑛𝑓, 𝑛𝑑) are added to 𝐶𝑣 and

edge (𝑛𝑑, 𝑛𝑓) is deleted from 𝐶ℎ.

Theorem 1: Rotate operation takes O(n) runtime, where n is the number of modules in a

placement.

Proof: The time complexity is dominated by checking whether 𝑛𝑖 ⊥ 𝑛𝑗 , where 𝑛𝑗 ∈

fanout(𝑛𝑖) in 𝐶ℎ ∪ fanout(𝑛𝑖) in 𝐶𝑣, and by deleting all edges (𝑛𝑖, 𝑛𝑘) from 𝐶𝑣, where n𝑘

∈ fanout(𝑛𝑖) ∪ fanin(𝑛𝑖). Since there are at most O(n) n𝑗’s and O(n) n𝑘’s, rotate operation

only takes O(n) runtime in total.

3.2.1.2. Swap

To swap modules 𝑏𝑖 and 𝑏𝑗, their values in the position array are exchanged. Edge (𝑛𝑖 ,

𝑛𝑗) is deleted from a transitive closure graph and a corresponding edge (𝑛𝑗 , 𝑛𝑖) is added to

the same graph. Edges (𝑛𝑘, 𝑛𝑗), where node 𝑛𝑘 ∈ fanin(𝑛𝑗) ∉ fanin(𝑛𝑖) in 𝐶ℎ, are deleted

from 𝐶ℎ and corresponding edges (𝑛𝑘, 𝑛𝑖) are added to 𝐶ℎ. Similarly, Edges (𝑛𝑖, 𝑛𝑘), in

which node 𝑛𝑘 ∈ fanout(𝑛𝑖) ∉ fanout(𝑛𝑗) in 𝐶ℎ, are deleted from 𝐶ℎ and corresponding

edges (𝑛𝑗 , 𝑛𝑘) are added to 𝐶ℎ. Edges (𝑛𝑗 , 𝑛𝑘), where node 𝑛𝑘 ∈ fanout(𝑛𝑗) ∉ fanout(𝑛𝑖) in

𝐶𝑣, are deleted from 𝐶𝑣. Similarly, edges (𝑛𝑖, 𝑛𝑘), where node 𝑛𝑘 ∈ fanout(𝑛𝑖) ∉ fanout(𝑛𝑗)

in 𝐶𝑣, are deleted from 𝐶𝑣. Edges (𝑛𝑗 , 𝑛𝑘), where node 𝑛𝑘 ∈ fanin(𝑛𝑗) ∉ fanin(𝑛𝑖) in 𝐶𝑣,

are deleted from 𝐶𝑣. Similarly, edges (𝑛𝑖, 𝑛𝑘), where node 𝑛𝑘 ∈ fanin(𝑛𝑖) ∉ fanin(𝑛𝑗) in

𝐶𝑣, are deleted from 𝐶𝑣. For nodes 𝑛𝑘 ∈ fanout(𝑛𝑗) in 𝐶𝑣 ∪ fanout(𝑛𝑗) in 𝐶ℎ, where 𝑥𝑘
′ >

𝑥𝑖 and 𝑏𝑖 ⊥ 𝑏𝑘, an edge (𝑛𝑖, 𝑛𝑘) is added to 𝐶𝑣. If else, edge (𝑛𝑖, 𝑛𝑘) is added to 𝐶ℎ.

Similarly, for nodes 𝑛𝑘 ∈ fanout(𝑛𝑖) in 𝐶𝑣 ∪ fanout(𝑛𝑖) in 𝐶ℎ, where 𝑥𝑘
′ > 𝑥𝑗 and modules

𝑏𝑘 and 𝑏𝑗 exhibits a vertical geometric relation, an edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶𝑣. If else,

edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶ℎ. For nodes 𝑛𝑘 ∈ fanin(𝑛𝑗) in 𝐶𝑣 ∪ fanout(𝑛𝑗) in 𝐶ℎ, where 𝑥𝑘
′

> 𝑥𝑖 and modules 𝑏𝑘 and 𝑏𝑖 exhibits a vertical geometric relation, an edge (𝑛𝑖, 𝑛𝑘) is added

to 𝐶𝑣. If else, edge (𝑛𝑖, 𝑛𝑘) is added to 𝐶ℎ. Similarly, for nodes 𝑛𝑘 ∈ fanin(𝑛𝑖) in 𝐶𝑣 ∪

fanout(𝑛𝑖) in 𝐶ℎ, where 𝑥𝑘
′ > 𝑥𝑗 and modules 𝑏𝑘 and 𝑏𝑗 exhibits a vertical geometric

relation, an edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶𝑣. If else, edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶ℎ.

50

Figure 3.2(c) shows the resulting TCG and its corresponding placement after swapping

modules 𝑏𝑐 and 𝑏𝑑. Notice that their positions have been exchanged. Edge (𝑛𝑐, 𝑛𝑑) is

deleted from 𝐶ℎ and a corresponding edge (𝑛𝑑, 𝑛𝑐) is added to 𝐶ℎ. fanin(𝑛𝑑) in 𝐶ℎ = {𝑛𝑒,

𝑛𝑎}, fanin(𝑛𝑐) = {∅}. Therefore, edges (𝑛𝑒, 𝑛𝑑) and (𝑛𝑎, 𝑛𝑑) are deleted from 𝐶ℎ and

corresponding edges (𝑛𝑒, 𝑛𝑐) and (𝑛𝑎, 𝑛𝑐) are added to 𝐶ℎ, where nodes 𝑛𝑒 and 𝑛𝑎 ∈

fanin(𝑛𝑑) ∉ fanin(𝑛𝑐). fanout(𝑛𝑐) = {𝑛𝑓}, fanout(𝑛𝑑) = {∅}. Accordingly, edge (𝑛𝑐, 𝑛𝑓) is

deleted from 𝐶ℎ and corresponding edge (𝑛𝑑, 𝑛𝑓) is added to 𝐶ℎ. Since fanout(𝑛𝑑) in 𝐶𝑣 =

{∅} and fanout(𝑛𝑐) = {∅}, fanout of nodes 𝑛𝑑 and 𝑛𝑐 in 𝐶𝑣 is not changed. fanin(𝑛𝑑) =

{𝑛𝑏, 𝑛𝑓}, fanin(𝑛𝑐) = {𝑛𝑎, 𝑛𝑏, 𝑛𝑒}. Edge (𝑛𝑓, 𝑛𝑑) is deleted from 𝐶𝑣, where 𝑛𝑓 ∈ fanin(𝑛𝑑)

∉ fanin(𝑛𝑐). Similarly, edges (𝑛𝑒, 𝑛𝑐) and (𝑛𝑎, 𝑛𝑐) are deleted from 𝐶𝑣, where nodes 𝑛𝑎

and 𝑛𝑒 ∈ fanin(𝑛𝑐) ∉ fanin(𝑛𝑑). Since fanout(𝑛𝑑) in 𝐶𝑣 ∪ fanout(𝑛𝑑) in 𝐶ℎ = {∅},

fanout(𝑛𝑐) in 𝐶ℎ is not changed. Since fanout(𝑛𝑐) in 𝐶𝑣 ∪ fanout(𝑛𝑐) in 𝐶ℎ = {∅},

fanout(𝑛𝑑) in 𝐶ℎ (𝐶𝑣) is not changed. fanin(𝑛𝑑) in 𝐶𝑣 ∪ fanout(𝑛𝑑) in 𝐶ℎ = {𝑛𝑏, 𝑛𝑓}.

Edge(𝑛𝑓, 𝑛𝑐) is added 𝐶𝑣 as modules 𝑏𝑓 ⊥ 𝑏𝑐. Similarly, edges (𝑛𝑎, 𝑛𝑑) and (𝑛𝑒, 𝑛𝑑) are

added to 𝐶𝑣.

Theorem 2: Swap operation takes O(n) runtime, where n is the number of modules in a

placement.

Proof: The time complexity is dominated by checking whether 𝑛𝑖 ⊥ 𝑛𝑘 (𝑛𝑗 ⊥ 𝑛𝑘), where

𝑛𝑘 ∈ fanout(𝑛𝑗) (fanout(𝑛𝑖)) in 𝐶𝑣 ∪ fanout(𝑛𝑗) (fanout(𝑛𝑖)) in 𝐶ℎ, and checking whether

𝑛𝑖 ⊥ 𝑛𝑙 (𝑛𝑗 ⊥ 𝑛𝑙), where 𝑛𝑙 ∈ fanin(𝑛𝑗) (fanin(𝑛𝑖)) in 𝐶𝑣 ∪ fanout(𝑛𝑗) (fanout(𝑛𝑖)) in 𝐶ℎ.

Since there are at most O(n) 𝑛𝑘’s and O(n) 𝑛𝑙’s, operation takes O(n) runtime in total.

3.2.1.3. Reverse

Reverse operation reverses the geometric relation between two modules 𝑏𝑖 and 𝑏𝑗. If

there exists a geometric relation 𝑏𝑖 ⊢ 𝑏𝑗, the new relation after reversing is 𝑏𝑗 ⊢ 𝑏𝑖.

Reverse operation is a derivative of swap operation, since it involves reversing the

direction of an edge (𝑛𝑖, 𝑛𝑗), i.e. swap modules 𝑏𝑖 and 𝑏𝑗. Hence, TCG topology update in

a reverse operation only Swap operation on block 𝑏𝑗.

51

3.2.1.4. Move

Move operation involves changing the geometric relation of two modules 𝑏𝑖 and 𝑏𝑗

between horizontal transitive closure graph and vertical one. The move operation can be

classified into two instances, the one where 𝑏𝑖 ⊥ 𝑏𝑗, and the other where 𝑏𝑖 ⊢ 𝑏𝑗.

To move an edge (𝑛𝑖, 𝑛𝑗) in 𝐶ℎ (𝐶𝑣), edge (𝑛𝑗 , 𝑛𝑘) is deleted from 𝐶𝑣, where module 𝑛𝑘

∈ fanout(𝑛𝑗). Edge (𝑛𝑘, 𝑛𝑗) is deleted from 𝐶𝑣, where module 𝑛𝑘 ∈ fanin(𝑛𝑗). Edge (𝑛𝑗 ,

𝑛𝑙), where 𝑛𝑙 ∈ fanout(𝑛𝑗), is deleted from 𝐶𝑣. For each node 𝑛𝑘 ∈ fanout(𝑛𝑗) ∪ fanin(𝑛𝑗)

in 𝐶𝑣 ∪ fanin(𝑛𝑗) in 𝐶ℎ, if 𝑏𝑗 ⊥ 𝑏𝑘 or 𝑏𝑘 ⊥ 𝑏𝑗, then edge (𝑛𝑘, 𝑛𝑗) ((𝑛𝑗 , 𝑛𝑘)) is deleted from

𝐶ℎ. If 𝑏𝑗 ⊥ 𝑏𝑘, then edge (𝑛𝑗 , 𝑛𝑘) is added to 𝐶𝑣. Else, edge (𝑛𝑘, 𝑛𝑗) is added to 𝐶𝑣. If no

geometric vertical relation exists between modules 𝑏𝑗 and 𝑏𝑘 and 𝑏𝑗 ⊢ 𝑏𝑘 (𝑏𝑘 ⊢ 𝑏𝑗) in x-

direction, then edge (𝑛𝑘, 𝑛𝑗) ((𝑛𝑗 , 𝑛𝑘)) is deleted from 𝐶ℎ and a corresponding edge (𝑛𝑗 ,

𝑛𝑘) ((𝑛𝑘, 𝑛𝑗)) is added to 𝐶ℎ. To update fanout of node 𝑛𝑖 in 𝐶ℎ and 𝐶𝑣, For each node 𝑛𝑘

∈ fanout(𝑛𝑖) in 𝐶𝑣 ∪ fanout(𝑛𝑖) in 𝐶ℎ and 𝑦𝑘 > 𝑦𝑖. If 𝑛𝑖 ⊥ 𝑛𝑘 or 𝑛𝑘 ⊥ 𝑛𝑖, then edge (𝑛𝑖,

𝑛𝑘) is deleted from 𝐶ℎ and the corresponding edge (𝑛𝑖 , 𝑛𝑘) is added to 𝐶𝑣. If no vertical

relation exists between modules 𝑏𝑖 and 𝑏𝑘, then the edge (𝑛𝑖, 𝑛𝑘) is deleted from 𝐶𝑣 and

the edge (𝑛𝑖 , 𝑛𝑘) (or(𝑛𝑘, 𝑛𝑖)) is added to 𝐶ℎ.

Figure 3.2(d) shows the resulting TCG and its corresponding placement after moving the

edge (𝑛𝑑, 𝑛𝑓) in the 𝐶ℎ in Fig. 3.2(c) to 𝐶𝑣. fanout(𝑛𝑓) in 𝐶𝑣 = {𝑛𝑐}, fanin(𝑛𝑓) in 𝐶ℎ = {𝑛𝑎,

𝑛𝑏, 𝑛𝑑, 𝑛𝑒}, and fanin(𝑛𝑓) in 𝐶𝑣 = {∅}. Consequently, edge (𝑛𝑓, 𝑛𝑐) is deleted from 𝐶𝑣.

fanout(𝑛𝑓) ∪ fanin(𝑛𝑓) in 𝐶𝑣 ∪ fanin(𝑛𝑓) in 𝐶ℎ = {𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑, 𝑛𝑒}. Since modules 𝑏𝑎,

𝑏𝑒, and 𝑏𝑑 ⊥ 𝑏𝑓, where { 𝑛𝑎, 𝑛𝑑, 𝑛𝑒} ⊂ {𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑, 𝑛𝑒}, edge (𝑛𝑎, 𝑛𝑓), (𝑛𝑑, 𝑛𝑓), (𝑛𝑒,

𝑛𝑓) is deleted from 𝐶ℎ and corresponding edges are added to 𝐶𝑣. Edges (𝑛𝑏, 𝑛𝑓) is deleted

from 𝐶ℎ and edges (𝑛𝑓, 𝑛𝑏) and (𝑛𝑓, 𝑛𝑐) are added to 𝐶ℎ. fanout(𝑛𝑑) in 𝐶𝑣 ∪ fanout(𝑛𝑑) in

𝐶ℎ = {𝑛𝑐, 𝑛𝑏, 𝑛𝑓}, from which only 𝑏𝑑 ⊥ 𝑏𝑓. Therefore, edge (𝑛𝑑, 𝑛𝑓) is checked whether

it exists in 𝐶ℎ. Since edge (𝑛𝑑, 𝑛𝑓) does not exist in 𝐶ℎ and edge (𝑛𝑑, 𝑛𝑓) has already been

added to 𝐶𝑣, nothing is done.

52

Theorem 3: Move operation takes O(n) runtime, where n is the number of modules in a

floorplan.

Proof: The time complexity is dominated by checking whether 𝑏𝑗 ⊥ 𝑏𝑘 (𝑏𝑘 ⊥ 𝑏𝑗), where

𝑛𝑘 ∈ fanout(𝑛𝑗) ∪ fanin(𝑛𝑗) in 𝐶𝑣 ∪ fanin(𝑛𝑗) in 𝐶ℎ, and checking 𝑏𝑖 ⊥ 𝑏𝑙 (𝑏𝑙 ⊥ 𝑏𝑖), where

𝑛𝑙 ∈ fanout(𝑛𝑖) in 𝐶𝑣 ∪ fanout(𝑛𝑖) in 𝐶ℎ. Since there are at most O(n) 𝑛𝑘’s and O(n) 𝑛𝑙’s,

the operation takes O(n) in total.

Theorem 5: No reduction edges are required to be obtained for Swap, Reverse and

Move operations.

Proof: An edge (𝑛𝑖, 𝑛𝑗) is considered a reduction edge if there does not exist another

path from 𝑛𝑖 to 𝑛𝑗 except the edge (𝑛𝑖, 𝑛𝑗). Swap, Reverse and move perturbations do not

require to operate only on reduction edges as in TCG-S representation, since operations in

TCG-S* update the closure edges (𝑛𝑖, 𝑛𝑗) along with all the reduction edges that form other

paths from 𝑛𝑖 to 𝑛𝑗 . Therefore, the resulting TCGs are acyclic. Operating on both reduction

and closure edges increase available move combinations, and facilitates the search for

minimum packing cost, i.e. the desired solution.

Property 4: fanin (fanout) edges in 𝐶𝑣 and fanin edges in 𝐶ℎ must be acyclic.

To guarantee feasible TCG, edges drawn from node 𝑛𝑖 to 𝑛𝑗 in the fanout (𝑛𝑘 to 𝑛𝑖 in

the fanin) of 𝐶𝑣, as of geometric relation between modules 𝑏𝑖 and 𝑏𝑗 𝑏𝑖 ⊥ 𝑏𝑗, and edges

drawn from node 𝑛𝑘 to 𝑛𝑗 in the fanin of 𝐶ℎ as 𝑏𝑘 ⊢ 𝑏𝑗 must be acyclic. Since acyclic edges

in 𝐶ℎ (𝐶𝑣) does not guarantee a feasible solution, nodes 𝑛𝑖, 𝑛𝑗 , and 𝑛𝑘 must be checked that

their edges in 𝐶𝑣 and 𝐶ℎ combined are acyclic. 𝑏𝑖 ⊥ 𝑏𝑗 (𝑏𝑖 ⊢ 𝑏𝑗), 𝑏𝑘 ⊥ 𝑏𝑖 (𝑏𝑘 ⊢ 𝑏𝑖), and 𝑏𝑘

⊢ 𝑏𝑗 (𝑏𝑘 ⊥ 𝑏𝑗) cannot exist in a TCG, and thus edges (𝑛𝑖, 𝑛𝑗), (𝑛𝑘 , 𝑛𝑖) in 𝐶ℎ (𝐶𝑣) and (𝑛𝑘,

𝑛𝑗) in 𝐶𝑣 (𝐶ℎ) cannot exist.

3.2.2. Packing Sequence Update

This section introduces an O(n) runtime algorithm, where n is the number of modules in

a placement, for the update of packing sequences Г+ and Г−based on knowledge of Cℎ, C𝑣,

53

and the positions of the modules. The algorithm depends on updating the TCG topology

after each perturbation.

Algorithm 3.1: Update-SP (SeqX, SeqY, A)

//initialize SeqYNew Arrays with 0

//initialize Tmp List with nil

1. FOR i 0 NUM(SeqY)-1

2. IF(SeqY[i] ∈ Fout_Cv(A) in 𝐶𝑣 ∪ Fout_Ch(A) THEN {

3. SeqYNew[i]=SeqY[i];

4. ELSE

5. Tmp = concat{Tmp SeqY[i]}; }

6. FOR i NUM(SeqY)-NUM(Tmp) NUM(SeqY)-1

7. SeqYNew[i] = nth(i-NUM(SeqY)+NUM(Tmp) Tmp);

8. Tmp = nil;

9. RETURN SeqYNew

Algorithm 1 shows the update of Г−, sequence Г+ update will be discussed shortly. The

algorithm updates the position of the module b𝑖, on which perturbation is applied, with

respect to the ones that precedes and the ones that follows it in the sequence. Any module

b𝑘, belongs to fanout(𝑏𝑖) in C𝑣 graph ∪ fanout(𝑏𝑖) in Cℎ graph, is to follow module b𝑖 in

the sequence Г−. When the algorithm ends, the array SeqYNew[1…𝑛] records the

sequence Г−. Similarly, to update sequence Г+, Any module b𝑘, belongs to fanin(𝑏𝑖) in C𝑣

graph ∪ fanout(𝑏𝑖) in Cℎ graph, is to follow module b𝑖 in the sequence Г+.

Tang et al. proposed a fast packing cost evaluation of sequence pair by computing the

longest common subsequence with minimum time complexity of O(n log log n). However,

time complexity of the floorplan algorithm is dominated by the construction of constraint

graphs from scratch after each perturbation for packing cost evaluation, since the geometric

relations between modules are not transparent to the operations of SP. Thus, the time

complexity of constructing the constraint graphs is O(𝑛2), where n is the number of

modules in a placement. Implementing TCG-S* algorithm with O(n) runtime in total

54

decreases the time complexity of the sequence pair floorplan algorithm to O(n log log n)

for significantly large n.

Theorem 5: Algorithm 3.1 correctly returns the new sequence pairs Г+ and Г−.

Proof: According to sequence pair representation, packing sequence Г− is constructed

by concatenating the nodes in a placement as in (1) and (2) subject to the condition that

either 𝑏𝑖 is left to or below 𝑏𝑗, where 𝑏𝑗 follows 𝑏𝑖 in the sequence. Therefore, 𝑏𝑗 follows

𝑏𝑖 in Г− only if 𝑏𝑖 ⊢ 𝑏𝑗 or 𝑏𝑖 ⊥ 𝑏𝑗. Additionally, based on property (2) of TCG discussed

in [2], the two nodes 𝑛𝑖 and 𝑛𝑗 are connected by exactly one edge either in 𝐶𝑣 or 𝐶ℎ. If 𝑛𝑗

∉ fanout(𝑏𝑖) either in 𝐶𝑣 or 𝐶ℎ, then 𝑛𝑗 ∈ to fanin(𝑏𝑖) either in 𝐶𝑣 or 𝐶ℎ. Therefore,

algorithm 3.1 correctly returns the new sequence pair.

Theorem 6: Algorithm 3.1 updates the packing sequences in O(n) runtime.

Proof: The time complexity of updating sequence Г− in algorithm 3.1 is dominated by

checking whether b𝑗 is a member of fanout(𝑏𝑖) in both C𝑣 and Cℎ. Since, time complexity

of updating sequence Г+ and Г− are the same, and in worst case scenario there are at most

O(n-1) of b𝑗’s, time complexity of algorithm 1 is O(n) in total.

3.2.3. Equivalence of TCG and SP

Lin et al. proposed a transformation from TCG to SP using fanin and fanout of TCGs

[18]. Time complexity of such algorithm merely depends on the configuration of TCG. For

each node n𝑘 in the TCG, a node n𝑙 is checked whether edge (n𝑘, n𝑙) or (n𝑙, n𝑘) exists in

Cℎ or Cℎ. if exists, the edge is deleted. In worst case, there exist O(n-1) n𝑘’s and O(n) n𝑙’s,

thus the time complexity is O(𝑛2). TCG-S* packing sequence update algorithm returns the

updated sequences Г+ and Г− in O(n) runtime which makes it superior to the update

proposed by [18].

Likewise, a reverse transformation from SP to TCG can be obtained. Given a sequence

pair (Г+, Г−), the fanin and fanout of all nodes in both transitive closure graphs can be

obtained by determining the common nodes in the subsequence of the inspected node in

each of Г+ and Г− according to the horizontal and vertical constraints. Accordingly, in

order to obtain fanout(n𝑖) in x-direction from Г+ and Г−, subsequence of node n𝑖 in Г+ ∩

55

subsequence of node n𝑖 in Г− is determined. Subsequence of node n𝑖 in Г+
𝑅 ∩ subsequence

of node n𝑖 in Г− determines fanout(n𝑖) in y-direction. Subsequence of node n𝑖 in Г+
𝑅 ∩

subsequence of node n𝑖 in Г−
𝑅 determines fanin(n𝑖) in x-direction. Finally, subsequence of

node n𝑖 in Г+ ∩ subsequence of node n𝑖 in Г−
𝑅 determines fanin(n𝑖) in y-direction. Example,

for the placement shown in Fig. 3.2(a) with sequence pair (〈e c a d b f〉, 〈a b c e f d〉),

fanout(n𝑎) in x-direction = {n𝑏, n𝑑, n𝑓}, fanout(n𝑎) in y-direction = {n𝑐, n𝑒}, fanin(n𝑎) in

x-direction = {∅}, and fanin(n𝑎) in y-direction = {∅}.

3.3. Floor Planning Algorithm

A simulated annealing based algorithm [54] is developed using TCG-S for non-slicing

floorplan design with the updated perturbing algorithm TCG-S*. Given an initial solution

represented by TCG and SP, the algorithm perturbs the placement to obtain new TCG and

SP. The new TCG must satisfy the three properties mentioned in [12], and the new packing

sequences pair must show equivalence with TCG as well. Slack computation proposed by

[55] is implemented in order to improve move selection in simulated annealing.

Contribution to wirelength minimization is discussed in this section as well.

3.3.1. Slack Computation
Blocks that constrain each other in the same direction in the order that any attempt to

minimize path length will result in blocks overlap, lie on the critical path of floorplan.

Hence, the slack value in that direction is zero. These blocks are good candidates for move

selection towards reducing span of the floorplan. Slack based moves along with the moves

of TCG give a directed movement towards area minimization through the determination of

zero slack blocks, which represents the critical paths of floorplan.

56

a
b

d
c

e

f

a
b

d
c

e

f

x-Slack for block c =

x(right) - x(left)

y-Slack for block a =

y(top) - y(bottom)

Figure 3.3. Slack computation (a) floorplan evaluation in left to right and bottom to top mode. (b) floorplan

evaluation from right to left and top to bottom mode.

Table 1. MCNC Benchmark circuits

Circuit #Module #I/O Pads #Nets #Pins

apte 9 73 97 214

xerox 10 107 203 696

hp 11 43 83 264

Slacks can be computed in left-to-right mode or right-to-left mode. Fig. 3.3 shows

floorplan evaluation for the same sequence pair in bottom-left mode and top-right mode.

To compute slacks of blocks in floorplan, first, LCS of the two sequences is computed

in the left to right mode. Then the two sequences are reversed for LCS computation is the

left to right mode. For example, LCS of blocks in x-direction in the left to right mode is

computed by calculating lcs(Г+
𝑅 , Г−

𝑅), whereas to compute LCS in y-direction, lcs(Г+, Г−
𝑅)

is calculated. Algorithm 3.2 computes the LCS of the blocks using the sequence pair.

Algorithm 3.3 calls LCS function after initializing the sequence pair in reversed order.

Algorithm 3.2:

(b) Right-Top Packing (a) Left-Bottom Packing

57

LCS_Calc(X,Y, weights)

1. initialize_length_array L with 0;

2. initialize_position_array P;

3. initialize_result_array R;

4. For i = 0 TO n-1 DO

5. p = match[X[i]];

6. b = X[i];

7. max = L[p]+weights[i];

8. P[i] = L[p];

9. For j = p TO n-1 DO

10. IF(max > L[j] && Y[j] ∈ Fout(b))

11. THEN

12. L[j] = max;

13. R[0] = P[0,…,n-1];

14. R[1] = L[n-1];

15. RETURN R;

Algorithm 3.3:

Slack (X,Y, PosX, PosY, wX, wY)

1. initialize_arrays Rx_BL, Ry_BL;

2. initialize_array Rx_TR, Ry_TR;

58

3. /*evaluate LCS X in bottom-left mode*/

4. LCSX_BL = LCS_Calc(X,Y, wX);

5. /*evaluate LCS Y in bottom-left mode*/

6. For i = 0 TO n-1 DO

7. 𝑋𝑅[i] = X[n-1-i];

8. 𝑊𝑌𝐵𝐿
𝑅 [i] = wY[n-1-i];

9. LCSY_BL = LCS_Calc(𝑋𝑅, Y, 𝑊𝑌𝑅);

10. /*evaluate LCS X in top-right mode*/

11. For i = 0 TO n-1 DO

12. 𝑌𝑅[i] = Y[n-1-i];

13. 𝑊𝑋𝑅[i] = wX[n-1-i];

14. 𝐿𝐶𝑆𝑋𝑅_TR = LCS_Calc(𝑋𝑅, 𝑌𝑅, W𝑋𝑅);

15. /*evaluate LCS Y in top-right mode*/

16.𝐿𝐶𝑆𝑌𝑅_TR = LCS_Calc(X, 𝑌𝑅, wY);

17. For i = 0 TO n-1 DO

18. LCSX_TR[i] = 𝐿𝐶𝑆𝑋𝑅_TR[n-1-i];

19. LCSY_TR[i] = 𝐿𝐶𝑆𝑌𝑅_TR[n-1-i];

20./*compute slack*/

21. For i = 0 TO n-1 DO

22. SlackX[i] = max(LCSX_BL[i])-LCSX_BL[i]-LCSX_TR[i]+wX[i];

59

23. SlackY[i] = max(LCSY_BL[i])-LCSY_BL[i]-LCSY_TR[i]+wY[i];

Based on the equivalence between TCG and SP, LCS function returns floorplan span in

x-direction (y-direction) faster. Since block b𝑖 in a placement is only bounded by its fanout

blocks in Cℎ (C𝑣), only these blocks affect the total length of candidates sequences in the

path of block b𝑖. Let k denote the index of module b𝑖 in sequence Г+ and p denote the

index of mobule b𝑖 in sequence Г−. Therefore, computing lcs(Г+[1…k], Г−[1…p]) only

considers the fanout of blocks in the common subsequence of (Г+[1…k-1], Г−[1…p-1]).

60

4.Placement and Routing

4.1. Constraints-based Placement

Placement of analog circuits is an error prone and time consuming process. It can easily

take an experienced designer weeks or months to layout even a relatively small circuit.

Some devices are needed to be placed at close proximity and symmetrically with respect

to an axis or to a center point. This can reduce the effect of parasitic mismatches, which

will cause degradation of the circuit performance. Circuit sensitivity to thermal gradients

and process variations can be reduced by placing symmetric devices close to each other.

4.1.1. Overview of Analog Placement Methods

In order to automatically produce analog device-level layouts matching in density and

performance the high-quality manual layouts, a placement tool must not only provide a

good rectangle packing functionality (which must be common to any placement method)

but, additionally, it must include also analog-specific capabilities. Such specific features

are, for instance; 1) the ability to deal with topological constraints for symmetry and device

matching; 2) the ability to arrange devices such that critical structures are shared in

common (also known as device merging) in order to reduce both layout density and induced

parasitics; and 3) the existence of a (built-in) library of predefined module generators and

the ability to exploit their reshaping capabilities during the placement process. Besides

these specific features of analog placement, the main goal of optimally packing arbitrarily

sized modules is similar to that of other very large scale integrated circuits (VLSI)

placement problems—chip floorplanning, standard cell and macro cell digital placement.

Due to the complexity of the basic problem, several heuristic classes of placement

techniques have been attempted.

The constructive placement techniques, which consist in evolving gradually the

placement solution by selecting one module at a time and positioning it in the “best”

available location, were among the first developed for VLSI layout. Several systems for

analog placement employ constructive methods: Kayal et al. developed an expert

61

knowledge base to guide the placement [56]; Mehranfar suggested a schematic-driven

approach, using a constructive scheme based on connectivity and relative positioning in

the input schematic [57]. Although these methods are fast, scaling well with the problem

size, the results can be poor due to the order dependence, lacking of global view in dealing

with a variety of interacting quality measures. Branch-and-bound placement techniques

use a controlled enumeration of all possible layout configurations in the search space,

where a lower bound of the chosen cost function is used to prune the search. The branch-

and-bound algorithms eventually find the optimal solution as they explore exhaustively the

search space. However, they are effective only for problems of very small size as the

number of visited configurations grows exponentially with the size of the problem. The

related integer linear programming (ILP) placement models suffer the same scaling

drawback as most ILP packages are based on branch-and-bound approaches. Even if the

placement problems are tackled hierarchically, the branch-and-bound methods are less

attractive for analog device placement due to usually a much larger search space than

digital problems of similar size (for instance, due to the presence of “soft” capacitors which

can be implemented in a large number of versions). More recently, a placement technique

iteratively combining min-cut partitioning and force-directed placement (DLP) has been

employed in an interactive environment for full-custom designs [58].

The simulated annealing [54] and genetic algorithms are the most effective choice for

solving industrial analog placement problems. These algorithms use stochastically

controlled hill-climbing to avoid local minima during the optimization process. In addition,

they do not impose severe constraints on the size of the problems or on the mathematical

properties of the cost function. While efficiently trading off between a variety of layout

factors as area, total net length, aspect ratio, maximum chip width and/or height, cell

orientation, “soft” cell shape, etc., they are very flexible—supporting incremental addition

of new functionality, and they are relatively easy to implement (although good tuning needs

more time).

62

Existing approaches to automated placement generation can be classified into two

categories;

i. Template driven layout

This approach is based on a known layout pattern or layout template which specifies

necessary device-to-device, device-to-wire, or wire-wire special relationship for a

typical circuit. It is fast and easy to obtain a compact layout. However, this approach

lacks flexibility as matching varies from circuit design to another.

ii. Constraint-based layout

It is more flexible than template driven layout approach. Fig. 4.1 shows the general

flow of the constraint-driven or performance-driven layout. It usually starts with the

circuit analysis based on the netlist and/or performance specification of the design to

generate the layout constraints. The placement and routing process is required to meet

the constraints, and the final compaction stage is applied to optimize area utilization.

Figure 4.1 Constraint-driven analog layout generation flow

According to [48] and [49], device group placement is classified into four categories;

the cross-couple, inter-digitated, common-centroid, and general stacking matching styles.

These four styles are studied thoroughly in [50]. This section mainly studies and impements

the common-centroid and inter-digitated matching styles in automated device group

63

placement in order to reduce systematic device mismatch. The inputs of placement

algorithm are the aspect ratio bounds, which is computed in the floorplan optimization

process, devices to be matched, and matching style.

4.1.2. A Review on Simulated Annealing Optimization

Algorithm

At each layout optimization stage, one wants to optimize the eventual performance of the

system without compromising the feasibility of the subsequent stage. The basic elements

of simulated annealing are:

i. A finite set S.

ii. A real-valued cost function J defined on S. let 𝑆∗ be the set of global minima

of the function J, assumed to be a proper subset of S.

iii. For each 𝑖 ⊂ 𝑆, a set 𝑆(𝑖) ⊂ 𝑆 − {𝑖}, called the set of neighbors of i.

iv. For every 𝑖, a collection of positive coefficients 𝑞𝑖𝑗, 𝑗 ∈ 𝑆(𝑖), such that

∑ 𝑞𝑖𝑗 = 1𝑗 ∈𝑆(𝑖) . It is assumed that 𝑗 ∈ 𝑆(𝑖) if 𝑖 ∈ 𝑆(𝑗).

v. A non-increasing function T: 𝑁 − [0, ∝], called the cooling schedule. N is the

set of positive integers, and T(t) is called the temperature at time t.

vi. An initial state 𝑥(0) ∈ 𝑆.

Given the above elements, the SA algorithm consists of a discrete-time inhomogeneous

Markov Chain 𝑥(𝑡), whose evolution we now describe. If the current state 𝑥(𝑡) is equal to

𝑖, choose a neighbor 𝑗 to 𝑖 at random; the probability that any particular 𝑗 ∈ 𝑆(𝑖) is selected

is equal to 𝑞𝑖𝑗. Once 𝑗 is chosen, the next state 𝑥(𝑡 + 1) is determined as follows:

If 𝐽(𝑗) ≤ 𝐽(𝑖), then 𝑥(𝑡 + 1) = 𝑗

If 𝐽(𝑗) > 𝐽(𝑖) then

 𝑋(𝑡 + 1) = 𝑗 with probability 𝑒𝑥𝑝[−(𝐽(𝑗) − 𝐽(𝑖))/𝑇(𝑡)]

64

𝑋(𝑡 + 1) = 𝑖 otherwise

Formally,

 𝑃[𝑥(𝑡 + 1) = 𝑗|𝑥(𝑡) = 𝑖| = 𝑞𝑖𝑗 exp [−
1

𝑇(𝑡)
𝑚𝑎𝑥{0, 𝐽(𝑗) − 𝐽(𝑖)}]

 𝑖𝑓 𝑗 ≠ 𝑖, 𝑗 ∈ 𝑆(𝑖) (4.1)

If 𝑗 ≠ 𝑖, 𝑗 ∉ 𝑆(𝑖), 𝑡ℎ𝑒𝑛 𝑃[𝑥(𝑡 + 1) = 𝑗|𝑥(𝑡) = 𝑖|] = 0.

The rationale behind the SA algorithm is best understood by considering a homogeneous

Markov chain 𝑋𝑇(𝑡) in which the temperature 𝑇(𝑡) is held at constant value 𝑇. Assume

that the Markov chain 𝑋𝑇(𝑡) is irreducible and periodic and that 𝑞𝑖𝑗 = 𝑞𝑗𝑖 for all 𝑖, 𝑗. Then

𝑋𝑇(𝑡) is a reversible Markov chain, and its invariant probability distribution is given by

𝜋𝑇(𝑖) =
1

𝑍𝑇
exp [−

𝐽(𝑖)

𝑇
] 𝑖 ∈ 𝑆, (4.2)

where 𝑍𝑇 is a normalizing constant. (This is easily shown by verifying that the detailed

balance equations hold). The probability distribution function 𝜋𝑇 is concentrated on set 𝑆∗

of global minima 𝐽. This latter property remains valid if the condition 𝑞𝑖𝑗 = 𝑞𝑗𝑖 is relaxed.

The probability distribution (4.2), known as the Gibbs distribution, plays an important

role in statistical mechanics. Statistical physicists have been interested in generating a

sample element 𝑆, drawn according to the probability distribution 𝜋𝑇. This is accomplished

by simulating Markov chain 𝑋𝑇(𝑡) until it reaches equilibrium, where this method is known

as Metropolis algorithm (Metropolis et al., 1953). In the context of optimization, an optimal

element of S can be generated with high probability if a random sample is generated

according to 𝜋𝑇, with 𝑇 being very small. One difficulty with this approach is that when T

is very small, the time is takes for Markov chain to reach equilibrium can be excessive.

The SA algorithm tries to resolve this drawback by using a slow cooling rate 𝑇(𝑡).

65

The SA can be viewed as a local search algorithm in which that there are occasional

upward moves that lead to cost increase.

Assume that 𝑋𝑇(𝑡) is irreducible and periodic. According to this assumption, SA

algorithm converges if lim
𝑡→∞

(𝑃[𝑥(𝑡) ∈ 𝑆∗]) = 1. SA convergence condition according to

Hajek is presented next.

Theorem (Hajek, 1988): state 𝑖 communicates with 𝑆∗ at height ℎ if there exists a path in

𝑆, with each element of the path being neighbor of the preceding element. The path starts

at 𝑖 and ends at some element at 𝑆∗ and such that the largest value of 𝐽 along the path is

𝐽(𝑖) + ℎ. Let 𝑑∗ be the smallest number such that every 𝑖 ∈ 𝑆 communicates with 𝑆∗ at

height 𝑑∗. Then, the SA algorithm converges if and only if:

lim
𝑡→∞

(𝑇(𝑡)) = 0 (4.3)

and,

∑ exp [−
𝑑∗

𝑇(𝑡)
] = ∞

∞

𝑡=1

 (4.4)

𝑇(𝑡) =
𝑑

𝑙𝑜𝑔𝑡′
 (4.5)

where d is a positive constant. Hajek theorem states that SA converges if and only if 𝑑 ≥

𝑑∗.

The constant 𝑑∗ is the measure of the difficulty of x(t) to escape the local minima and

travel from a non-optimal state to 𝑆∗. A problem with 𝑑∗ > 0, in the sense that the problem

has at least one local minima which is not the optimal solution, is the primary concern. In

order to have an acceptable grasp on Hajek theorem, consider a local minimum with depth

𝑑∗. The SA makes an infinite number of trials to escape from it, and the probability of

success at each trial, as discussed earlier, is exp (−𝑑∗/𝑇(𝑡)). Therefore, according to

equation (4.4), an infinite number of trial will guarantee a successful escape.

66

In order to get more intuition on the interpretation of Hajeks’ theorem, the connection

between SA and the Markov chain is further analyzed. Formally, the statistics of Markov

chain 𝑥(𝑡) under a slowly variation cooling schedule T(t) remains fairly unchanged if the

cooling schedule is used in which the temperature is held constant for a long time period.

Let 𝑡𝑘 = 1 and 𝑡𝑘+1 = exp (𝑘𝑑). Then let �̂�(𝑡) = 1/𝑘, for 𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1. Consider the

kth element [𝑡𝑘, 𝑡𝑘+1] of the piecewise constant schedule �̂�(𝑡). In order to study the

convergence of the chain 𝑥1/𝑘(𝑡), the eigenvalues of its transition probability matrix is real.

Its relaxation time is determined by its second-largest eigenvalue 𝜆2 for which good

estimates are available, at least in the limit as 𝑘 ⟶ ∞. e.g., Chiang and Chow, 1988 and

Holley and Stroock, 1988. In particular, if the cost function J has a unique global minimum,

the relaxation time is approximated by 𝑒𝑥𝑝(𝑘𝑑∗), which is the same constant 𝑑∗ defined

in the Hajek theorem. This gives more solid evidence on the convergence condition 𝑑 >

𝑑∗ for the schedule �̂�(𝑡). If 𝑑 < 𝑑∗, then it means that at each temperature 1/k, 𝑥1/𝑘(𝑡) is

run with a negligible fraction of its relaxation time which is not enough for 𝜋𝑇(𝑖; 𝑡) to stay

close to 𝜋𝑇(𝑖). Whereas, if 𝑑 < 𝑑∗, then the interval [𝑡𝑘, 𝑡𝑘+1] corresponds to exp (𝑘(𝑑∗ −

𝑑) relaxation times of 𝑥1/𝑘(𝑡) which implies that 𝜋𝑇(𝑖; 𝑡) is very close to 𝜋𝑇(𝑖) as k tends

to ∞.

In practice, despite the lack of solid theoretical justification of SA convergence speed,

SA was widely used by researchers in the past decades. Generally, the performance of SA

is mixed; in some cases, it outperformed the best known heuristics for these cases, and, in

others, heuristics performed better. The choice of the cooling schedule influences

significantly the convergence of the SA, and hence, the quality of the solution generated.

To sum up, SA is a generally applicable and easy-to-implement probabilistic

approximation algorithm which is able to generate good solution for an optimization

problem.

67

4.1.3. Inter-digitated matching style

The device matching placement with inter-digitated matching style is one dimensional

common centroid array as shown Fig. 4.1. The two devices are marked as A and B.

Therefore, the matching pattern is AB_BA or AB_AB. Each Inter-digitated group 𝐺𝑖

contains 𝑆𝑖 devices, placed according to the bounding length and width, 𝐿𝐵 and 𝑊𝐵

respectively, for the whole group in the pattern AB_AB. 𝐿𝐺 denotes the sum of 𝑆𝑖

horizontal weights and 𝑁𝑆 denotes the number of segments per row. The inputs of the

algorithm are devices to be matched and number of device fingers per segment 𝑁𝑓𝑆.

Figure 4.2 An example of inter-digitated array

Algorithm 4.1: interdig(𝐺𝑖, 𝑁𝑓𝑆, 𝐿𝐵 , 𝑊𝐵)

1. // calculate coordinates of devices fingers placement.

2. // initialize m, RelX, RelY with 0

3. while (m < number of fingers per device) DO

4. FOR each device 𝑆𝑖 DO

5. FOR each finger in segment range from 1 TO 𝑁𝑓𝑆 DO

6. find x-position PosX = RelX; // relative x position

68

7. find y-position PosY = RelY; // relative y position

8. increment RelX: RelX = RelX + Hweights;

9. y.max = max(y.max Vweights);

10. IF (RelX + Hweights > 𝑁𝑠*Hweights THEN {

11. RelX = 0;

12. RelY = y.max; }

13. m = m+𝑁𝑓𝑆

4.1.4. Common-centroid matching style

The matching of common centroid style requires centroids of matched devices to exactly

coincide. Fig. 4.2 shows an example of matched devices by common centroid style.

Figure 4.3 An example of common centroid array

Each common-centroid group 𝐺𝑖 contains 𝑆𝑖 devices, placed according to the bounding

length and width, 𝐿𝐵 and 𝑊𝐵 respectively, for the whole group in which centroid of all

devices should coincide. 𝐿𝐺 denotes the sum of 𝑆𝑖 horizontal weights, 𝑤𝐻 and 𝑤𝑣 denotes

69

finger horizontal and vertical weights respectively, 𝑁𝑓 denotes number of device fingers,

and 𝑁𝑆 denotes the number of devices finger per row.

Algorithm 4.2: comcentroid(𝐺𝑖, 𝑁𝑆, 𝑤𝐻, 𝑤𝑣)

1. // calculate coordinates of devices fingers placement

2. // initialize radprev, rad, Xrel, Yrel with 0

3. while (rad <=𝑁𝑆*𝑤𝑣) DO

4. increment rad: rad = rad + 𝑤𝐻;

5. Yrel = 0;

6. find x-position: Xpos = Xrel;

7. find mirror x-position: Xneg = -Xpos -𝑤𝐻;

8. while (Yrel < 𝑁𝑓*𝑆𝑖/(𝑁𝑠 ∗ 2)) DO {

9. find y-position: Ypos = Yrel;

10. find mirror y-position: Yneg=-Ypos-𝑤𝑣;

11. P[F_num] = list(Xpos Ypos);

12. P[F_num+1] = list(Xneg Yneg);

13. P[F_num+2] = list(Xneg Ypos);

14. P[F_num+3] = list(Xpos Yneg);

15. F_num = F_num+4;

16. increment relative position: Yrel = Yrel +𝑤𝑣;

17. increment relative position: Xrel = Xrel +𝑤𝐻;

70

18. F[i] = F_num;

19. i = i+1;

20. // initialize k, s with 0

21. while (k < 𝑁𝑓) DO {

22. // find number of device fingers per row:

23. 𝐹𝑅𝑛𝑢𝑚 = F[s]/NUM(𝑆𝑖);

24. FOR each device 𝑆𝑖 DO

25. FOR each device finger m range from k TO min(𝐹𝑅𝑛𝑢𝑚 𝑁𝑓-𝑘) DO

26. Posx.finger = nth(0 P[k+m]);

27. Posy.finger = nth(1 P[k+m]);

28. s = s+1;

29. k = k+𝐹𝑅𝑛𝑢𝑚*NUM(𝑆𝑖); }

71

4.2. Optimization-Based Router

After placement, specific legal routing must be found for the wires needed to connect

the circuits. The techniques typically applied to generate such routing are sequential in

nature, treating one wire at a time with incomplete information about the positions and

effects of the other wires. Annealing is inherently free of this sequence dependence. Nets

with many pins must first be broken into connections-pairs of pins joined by a single

continuous wire. This "ordering" of each net is highly dependent on the nature of the

circuits being connected and the package technology

Based on simulated annealing algorithm [54], the router starts from the attained

placement, after constructing routing channels to ensure the reliability and routability of

the placement solution. The router requires modules terminal positions, allowed routing

layers, and technology design rules to generate a DRC clean routing. The cost function

which computes the probability of accepting a candidate net is given by:

𝑃 = 𝑚𝑖𝑛 (1 𝑒
−

∆𝐷
𝐷𝑜𝑙𝑑

.
1
𝑇) (4.6)

Where T is a constant-rate decaying temperature and ∆𝐷 presents the difference

between the new and the old distance between the routed net and the destination terminal,

in the sense that ∆𝐷 becomes more negative as the routed net approaches the destination.

Distance between the candidate net and the target pin is calculated by;

𝐷 = 𝑚𝑖𝑛(𝑎𝑏𝑠(𝑋2 − 𝑋1
′) 𝑎𝑏𝑠(𝑋1 − 𝑋2

′)) + 𝑚𝑖𝑛(𝑎𝑏𝑠(𝑌2 − 𝑌1
′) 𝑎𝑏𝑠(𝑌1 − 𝑌2

′)) (4.7)

The probability P is then compared with a threshold constant r. A candidate net is

accepted if P ≥ r. Hence, chosen net is the one with the least cost, i.e., minimum

wirelength.

During routing, each net is instantiated with its electrical constraints, e.g. current

density, according to designer preferences, which are automatically converted to the

corresponding wire width and layer according to a lookup table generated from the

72

technology file used. The algorithm searches for the minimum metal width satisfying the

rms current density specified by the designer, according to available routing layers and the

blockages surrounding the routed net within the DRC spacing specified for each blockage

layer. The minimum DRC spacing allowed for each metal layer is defined by; the width,

the layer of examined metals, and the length of the part in which metal lines are in a close

proximity. Given a number of routing layers, each net is routed with a different metal layer

in the presence of obstacles, e.g. wires, in order to ensure minimum wirelength. Metal lines

are forbidden to pass over the devices. Multiple power straps are generated using reserved

metal layers in Manhattan-like style to account for supply drop and hence prevent

performance degradation.

73

5.Experimental Results

OASYN framework is implemented in 10,000 lines of code using SKILL programming

language on a 2.4-GHz core i3 processor with 2GB of memory. Table 3,4, and 5 show

simulated results of the circuit synthesizer for Folded Cascode OpAmp topology.

Experiments are implemented using 65nm TSMC technology node. Table 6 shows

simulated results of the circuit synthesizer for the same topology accounting for process,

temperature, and supply variations with the minimum specs reported. Table 7 shows

detailed simulated results for each corner.

Based on the MCNC benchmark circuits shown in Table I, experiments on area

optimization, convergence speed, and convergence stability are conducted for each

representation in the literature. Number of modules, I/O pads, nets and pins of the

benchmark circuits are shown in Table I. Area and run time comparisons among different

floorplan representations; SP, O-tree, B*-tree, enhanced O-tree, CBL, TCG, and TCG-S

are shown in Table 2. TCG-S employing TCG-S* perturbing algorithm achieves almost

the state-of-art area usage for the five benchmark circuits at the highest convergence speed.

Figure 5.1 shows the placements for the devices sizings indicated in Table 5 for

simultaneous area and matching constraints optimization. Figure 5.2 shows the placement

and routing results. Figure 5.3 shows the DRC Error messages of which there are no DRC

spacing errors included (only density and CAD layer errors).

74

Table 2. Area and Runtime Comparisons among SP (On Sun Sparc Ultra60), O-Tree (On Sun Sparc Ultra60), B -TREE (On Sun Sparc Ultra 60), Enhanced

O-Tree (On Sun Sparc Ultra60), CBL (On Sun Sparc 20), TCG (On Sun Sparc Ultra60), TCG-S (On Sun Sparc Ultra60), and TCG-S* (On Intel Core-i3) for

Area Optimization

Circuit

SP

O-tree

B*-tree

Enhanced

O-tree

CBL

TCG

TCG-S

TCG-S*

Area

(𝑚𝑚2)

Time

(sec)

Area

(𝑚𝑚2)

Time

(sec)

Area

(𝑚𝑚2)

Time

(sec)

Area

(𝑚𝑚2)

Time

(sec)

Area

(𝑚𝑚2)

Time

(sec)

Area

(𝑚𝑚2)

Time

(sec)

Area

(𝑚𝑚2)

Time

(sec)

Area

(𝑚𝑚2)

Time

(sec)

apte 48.12 13 47.1 38 46.92 7 46.92 11 NA NA 46.92 1 46.92 1 46.92 0.2

xerox 20.69 15 20.1 118 19.83 25 20.21 38 20.96 30 19.83 18 19.796 5 20.74 0.62

hp 9.93 5 9.21 57 8.947 55 9.16 19 66.14 32 8.947 20 8.947 7 9.37 10

Table 3. Folded Cascode OpAmp Synthesis Results

Metric Specifications Simulated Results Synthesized Circuit Parameters

Open Loop Gain (dB) 60 60 L1 = 228n. L3 = 490n. L5 = 500n.

L7 = 3.6u. L9 = 2.7u. Lss = 510n.

W1 = 221u. W3 = 51.8u. W5 = 21.4u.

W7 = 305u. W9 = 5.3u. Wss = 1.58u

Vb1 = 0.642. Vb2 = 0.439

Mt9 = 46. Mtss = 54

GBW (HZ) 350M 398M

Phase Margin (degree) 60 65.87

Current Consumption (mA) 2 1.75

Output Swing (v) 0.8 0.9898

Slew Rate (v/us) none 230

Load Cap. (pF) 1

VICM(v) 0.5

75

Table 4. Folded Cascode OpAmp Synthesis Results

Metric Specifications Simulated Results Synthesized Circuit Parameters

Open Loop Gain (dB) 60 60 L1 = 258n. L3 = 550n. L5 = 530n.

L7 = 3.6u. L9 = 2.16u. Lss = 480n.

W1 = 252u. W3 = 114u. W5 = 40.7u.

W7 = 557u. W9 = 5.2u. Wss = 8.914u

Vb1 = 0.642. Vb2 = 0.449

Mt9 = 82. Mtss = 80.

GBW (HZ) 600M 605.2M

Phase Margin (degree) 55 58.19

Current Consumption (mA) 3 2.88

Output Swing (v) 0.8 1.006

Slew Rate (v/us) none 542

Load Cap. (pF) 1

VICM (v) 0.5

Table 5. Folded Cascode OpAmp Synthesis Results

Metric Specifications Simulated Results Synthesized Circuit Parameters

Open Loop Gain (dB) 60 60 L1 = 258n. L3 = 550n. L5 = 500n.

L7 = 3.6u. L9 = 1.77u. Lss = 480n.

W1 = 355u. W3 = 170u. W5 = 56.8u.

W7 = 800u. W9 = 5.1u. Wss = 13u

Vb1 = 0.642. Vb2 = 0.474

Mt9 = 100. Mtss = 117.

GBW (HZ) 0.8G 0.81G

Phase Margin (degree) 50 51.66

Current Consumption (mA) 4 3.797

Output Swing (v) 0.9 1.055

Slew Rate (v/us) none 794

Load Cap. (pF) 1

VICM (v) 0.5

76

Table 6. Folded Cascode OpAmp Synthesis Results on Process, Voltage, and Temperature Corners

Metric Specifications Simulated Results (min) Post Layout Simulated Results (min) Synthesized Circuit Parameters

Open Loop Gain (dB) 50 52.7 43.3 L1 = 200n. L3 = 520n. L5 = 500n.

L7 = 3.6u. L9 = 1.2u. Lss = 300n.

W1 = 156u. W3 = 34u. W5 = 52u.

W7 = 60u. W9 = 6u. Wss = 20u

Vb1 = 0.642. Vb2 = 0.48

Mt9 = 10. Mtss = 28.

GBW (HZ) 200M 251M 136M

Phase Margin (degree) 50 56.8 52.4

Current Consumption (mA) 2 1.51 1.09

Output Swing (v) 0.7 0.74 0.62

Slew Rate (v/us) none 148.7 122.3

Load Cap. (pF) 1

VICM (v) 0.5

77

Table 7. Folded Cascode OpAmp Synthesis Results on Process, Voltage, and Temperature Corners

C
o

rn
ers

Process SS FF SF FS TT

Temp 0 80 0 80 0 80 0 80 0 80

Supply 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1

M
etric

Gain(dB) 61.5 53.6 59.5 52.7 60.1 59.9 56.7 56.3 60.4 55.6 57.5 54.0 60.7 59.7 58.1 56.6 60.9 58.2 58.4 55.77

GBW(MHz) 251 306 298 251 430 542 394 427 381 361 338 287 284 525 334 412 345 458 353 357

PM(deg) 56.8 77.4 60.8 79.3 58.6 62.5 63.3 67.2 60.0 74.1 66.7 77.4 56.8 62.8 59.8 67.3 57.57 67.6 62.1 71.9

I(mA) 0.40 1.33 0.69 1.4 0.84 1.44 1.1 1.5 0.76 1.4 1.03 1.5 0.45 1.4 0.76 1.43 0.60 1.4 0.90 1.46

Swing(v) 1.24 0.99 1.02 0.78 0.97 1.0 0.74 0.77 1.11 1.0 0.87 0.78 1.11 1.02 0.88 0.80 1.11 1.02 0.89 0.80

SLR(v/us) 148 553 274 582 336 590 445 617 303 586 417 612 172 561 304 589.6 236 575 362 601

Load Cap.(pF) 1

VICM (v) 0.5

78

Figure 5.1. Generated Folded Cascode OpAmp Layout with the Common Feedback Circuit for Simultaneous Area and Matching Constraints Optimization.

Area = 29.665x102.065 um2

79

Figure 5.2 Automated Placement and routing solution (Area = 146*47 um2)

80

Figure 5.3 Calibre DRC Message of the placement solution

81

Figure 5.4 Calibre LVS Message of the layout solution

82

Conclusion

 In this Thesis, a framework is presented for synthesis of operational amplifiers on

the cell-level. The tool optimizes the design on both circuit and layout phases by exploring

the corners design space and optimizing on worst case solution. Although the results shown

are promising, yet other constraints and optimization factors need to be weighed into the

tool design flow. The tool undermines the effects of boundary constraints, isolation

constraints, and total wirelength of the routed nets. Floorplan area optimizer showed state-

of-art results as optimization is applied on relatively few number of blocks. However, as

number of blocks increase, the optimizer finds it more difficult to search for the optimum

solution compared to other representations. Hence, a complexity analysis for TCG-S*

based area optimizer is required to be studied. Considering the circuit synthesis tool, area

optimization was only introduced in a later stage limiting the design space for area-power

optimization. Applying the aforementioned enhancements and upgrading the tool on the

system level can assist in the introduction of the concept of optimized standard-cell, which

is well-established in the digital flow, in analog design.

Future Works

- Simultaneous optimization on area and wirelength. Wirelength of a net is estimated

by half perimeter of the minimum bounding box enclosing the terminals of the net.

- Could SA be trapped in a local maxima?

Simulated annealing can be applied to reduce the effect of the highly non-linear

non-monotonic behavior of the model.

- Perform Sobol’s sensitivity analysis on other amplifier topologies, e.g., Two-Stage

Miller compensated OTA, to prove the universality of the algorithm and its minor

dependency on the law and the model.

- Area Power optimization can be introduced earlier in the design stage, either by a

rough calculation of the area based on the device gate dimensions or by looping

through schematic and layout phases.

83

References

[1] M. Degrauwe et al., “IDAC: An interactive design tao1 for analog CMOS circuits,”

IEEE J. Solid-State Circuits, vol. 22, pp. 1106-1 115, Dec. 1987

[2] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS: A framework for analog circuit

synthesis,” IEEE Trans. Computer-Aided Design Integrated Circuits and Systems, vol.

8, no. 12, pp. 1247–1266, Dec. 1989.

[3] H. Y. Koh, C. H. Séquin, and P. R. Gray, “OPASYN: A compiler for CMOS

operational amplifiers,” IEEE Trans. Compute.-Aided Design Integrated Circuits and

Systems, vol. 9, no. 2, pp. 113–125, Feb. 1990.

[4] S.K. Gupta and M.M. Hasan, “KANSYS: a CAD tool for analog circuit synthesis,” in

Proc. of Ninth International Conference on VLSI Design, pp. 333 – 334, 1996.

[5] N. Fujip, “Second Order Sensitivity Analysis for a Class of Shape Optimization

Problems”, In Proc. IEEE 20th International Conference on Industrial Electronics,

Control and Instrumentation, Sep. 1994, pp. 1176-1178.

[6] F. M. E1-Turky and R. A. Nordin, “BLADES: An expert system for analog circuit

design,” in Proc. Int. Conf. Circuits Syst., 1986, pp. 552–555.

[7] H. Yang, A. Agarwal, and R. Vemuri, “Fast analog circuit synthesis using multi-

parameter sensitivity analysis based on element-coefficient diagrams,” in Proc. IEEE

Comput. Soc. Annu. Symp. VLSI, Tampa, FL 2005, pp. 71–76.

[8] H. Yang, R. Vemuri, “Efficient Temperature-Dependent Symbolic Sensitivity Analysis

and Symbolic Performance Evaluation in Analog Circuit Synthesis”, In Proc. IEEE

Design, Automation and Test in Europe, Mar. 2006, pp. 1-2.

[9] R. H. J. M. Otten, “Automatic floorplan design,” in Proc. Design Auto-mation Conf.,

1982, pp. 261–267.

[10] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in Proc. Design

Automation Conf., 1986, pp. 101–107.

[11] X. Tang, R. Tian, and D. Wong, “Fast evaluation of sequence pair in block

placement by longest common subsequence computation,” IEEE Trans. CAD ICs., vol.

20, no. 12, pp. 1406–1413, Dec. 2001.

84

[12] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph-based representation

for general floorplans,” IEEE Trans. VLSI Syst., 2003.

[13] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-tree representation of

nonslicing floorplan and its applications,” in Proc. Design Automation Conf., 1999, pp.

268–273.

[14] X. Hong, G. Huang, T. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu, “Corner block

list: An effective and efficient topological representation of nonslicing floorplan,” in

Proc. Int. Conf. Computer-Aided Design, 2000, pp. 8–12.

[15] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module placement

based on rectangle-packing by the sequence pair,” IEEE Trans. Computer-Aided

Design, vol. 15, pp. 1518–1524, Dec. 1996.

[16] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module placement on

BSG-structure and IC layout applications,” in Proc. Int. Conf. Computer-Aided Design,

1996, pp. 484–491.

[17] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B -trees: A new

representation for nonslicing floorplans,” in Proc. Design Automation Conf., 2000, pp.

458–463.

[18] J.-M. Lin and Y.-W. Chang, ‘TCG-S: Orthogonal Coupling of P*-admissible Rep-

representations for General Floorplans.” IEEE Trans. Computer-Aided Design, Vol.

24. No. 6, June 2004.

[19] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algo-rithms, 2nd

ed. New York: MIT Press/McGraw-Hill, 2001.

[20] G. Giclcn and R.A. Rutcnbar, "Computcr-Aidcd Dcsign of Analog and Mixed-

Signal Integrated Circuits." Proceedings of the IEEE, 88(12): 1825-1852. Dcc. 2000.

[21] M. zakaria, M. Madbouly, M. A. El-Nozahi,, and M. Dessouky,“Knowledge-Based

Design Automation of Highly Non-Linear Circuits Using Simulation Correction.”

Proceedings of the 15th International Conference on Microelectronics, Dec. 2003, pp.

46-49.

85

[22] C. Toumazou, C. A. Makris, and C. M. Berrah, “ISAID: A methodology for

automated analog IC design,” in Proc. Int. Symp. Circuits Syst., 1990, vol. 1, pp. 531–

555.

[23] E. Berkcan, M. d’Abreu, and W. Laughton, “Analog compilation based on

successive decompositions,” in Proc. Des. Autom. Conf., 1988, pp. 369–375.

[24] Z. Ning, A. J. Mouthaan, and H.Wallinga, “SEAS: A simulated evolution approach

for analog circuit synthesis,” in Proc. Custom Integr. Circuits Conf., 1991, pp. 5.2-1–

5.2-4.

[25] K. Swings, S. Donnay, and W. M. C. Sansen, “HECTOR: A hierarchical topology-

construction program for analog circuits based on a declarative approach to circuit

modeling,” in Proc. Custom Integr. Circuits Conf., 1991, pp. 5.3/1–5.3/4.

[26] B. A. A. Antao and A. J. Brodersen, “ARCHGEN: Automated synthesis of analog

systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no. 2, pp. 231–

244, Jun. 1995.

[27] N. C. Horta and J. E. Franca, “Algorithm-driven synthesis of data conversion

architectures,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 10, no.

16, pp. 1116–1135, Oct. 1997.

[28] T. McConaghy, P. Palmers, M. Steyaert, and G. Gielen, “Variation aware structural

synthesis of analog circuits via hierarchical building blocks and structural homotopy,”

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 28, no. 9, pp. 1281–1294,

Sep. 2009.

[29] J. R. Koza, Genetic Programming: On the Programming of Computers by Means

of Natural Selection. Cambridge, MA: MIT Press, 1992.

[30] G. S. Hornby, “ALPS: The age-layered population structure for reducing the

problem of premature convergence,” in Proc. Conf. Genetic Evol. Comput., M. Keijzer,

M. Cattolico, D. Arnold, V. Babovic, C. Blum, P. Bosman, M. V. Butz, C.

CoelloCoello, D. Dasgupta, S. G. Ficici, J. Foster, A. Hernandez-Aguirre, G. Hornby,

H. Lipson, P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryan, and D. Thierens, Eds.,

2006, vol. 1, pp. 815–822.

86

[31] R. Martins, N. Lourenço, S. Rodrigues, J. Guilherme, N. Horta, “AIDA: Automated

Analog IC Design Flow from Circuit Level to Layout”, Proceedings of International

Conference on Synthesis, Modeling, Analysis and Simulation Methods and

Applications to Circuit Design (SMACD), Seville, Spain, Sep. 2012.

[32] M. Dessouky, M.-M. Louerat, and J. Porte, "Layout-oriented synthesis of high

performance analog circuits," In Proceedings of Conference on Design, Automation

and Test in Europe (DATE), pp. 53-57, 2000.

[33] H. Habal and H. Graeb, “Constraint-based layout-driven sizing of analog circuits,”

IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol.30, no. 8, pp. 1089–

1102, Aug. 2011.

[34] F. Balasa, K. Lampaert, “Symmetry within the sequence-pair representation in the

context of placement for analog design,” IEEE Trans. CAD of IC’s and Syst., vol. 19,

no. 7, pp. 721-731, 2000.

[35] K. Krishnamoorthy, S. Maruvada, and F. Balasa, “Topological placement with

multiple symmetry groups of devices for analog layout design,” in Proc. IEEE Int.

Symp. Circuits Syst., May 2007, pp. 2032 2035.

[36] S. Dong, Z. Zhou, X. Hong, “A New Constraint-Driven Placement Approach for

Analog Circuits”, In Proc. IEEE 8th International Conference on Solid-State and

Integrated Circuit Technology, 2006, pp. 1763 – 1765.

[37] L. Xiao and E. Young, “Analog placement with common centroid and 1-D

symmetry constraints,” in Proc. IEEE ASP-DAC, Jan. 2009, pp. 353–360.

[38] J. Lai, M.-S. Lin, T.-C. Wong, and L.-C. Wang, “Module placement with boundary

constraints using the sequence-pair representation,” in Proc. IEEE Asia and South

Pacific Design Automation Conf., 2001, pp. 515–520.

[39] A.B. Kahng S. Reda, “Wirelength Minimization for Min-Cut Placements via

Placement Feedback”, IEEE Trans. Computer-Aided Design of Integrated Circuits and

Systems, Vol. 25, no. 7, pp. 1301-1312, July 2006.

[40] L. Xiao, E. F. Y. Young, X. He, and K. P. Pun, “Practical placement and routing

techniques for analog circuit designs,” in Proc. IEEE/ACM Int. Conf. on Comput.-

Aided Des., 2010, pp. 675–679.

87

[41] Cheng-Wu Lin, Chun-Po Huang, Soon-Jyh Chang, Jai-Ming Lin. Routing-aware

Placement Algorithms for Modern Analog Integrated Circuits. Circuits and Systems

(MWSCAS), 2011. IEEE 54th International Midwest Symposium on. Pages: 1-4, 2011.

[42] H. Ou, H.C. Chien, Y. Chang, “Simultaneous Analog Placement and Routing with

Current Flow and Current Density Considerations”, In Proc. IEEE Design Automation

Conference (DAC), May 2013, pp. 1-6.

[43] W. Liu, C. Koh, and Y. Li, “Optimization of Placement Solutions for Routability”,

In Proc. IEEE Design Automation Conference (DAC), May 2013, pp. 1-9.

[44] H. Zhou, C. Sham, H. Yao, “Congestion-Oriented Approach in Placement for

Analog and Mixed-Signal Circuits”, In Proc. IEEE 5th Asia Symposium on Quality

Electronic Design, 2013, pp. 97-102.

[45] L. Zhang and Y. Jiang, “Global-routing driven placement strategy in analog VLSI

physical designs,” in Proc. MWSCAS, 2005, pp. 1239–1242.

[46] H. Yang, R. Vemuri, “Efficient Symbolic Sensitivity based Parasitic-Inclusive

Optimization in Layout Aware Analog Circuit Synthesis”, In Proc. IEEE 20th

International Conference on VLSI Design, 2007, Jan. 2007, 201-206.

[47] L. C. Severo, A. Girardi, “Parameter Variation and Sensitivity Analysis of a Two-

Stage Miller Amplifier”, In Proc. IEEE Argentine School of Micro-Nanoelectronics,

Technology and Applications, Oct. 2010, pp. 78-81.

[48] Yiu-Cheong Tam, Evangline F.Y. Young, Chris Chu. Analog Placement with

Symmetry and Other Placement Constraints. Computer- Aided Design. Pages: 349-

354, 2006.

[49] Ender Yilmaz, Gunhan Dundar. Analog Layout Generator for CMOS Circuit.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions in,

28(1). Pages: 32-45, 2009.

[50] Y. Wu, X. Zhang, L. Chen, S. Fang, “Automatic Placement for Matched Devices

of Analog Circuits”, In Proc. IEEE Int. Conf. on Natural Computation, July 2013, pp.

1723-1727.

[51] Sobol IM. Sensitivity estimates for nonlinear mathematical models. Mathematical

Modelling and Computational Experiments 1993;1(4): 407–14.

88

[52] Crestaux T, Le Maitre O, Martinez JM. Polynomial chaos expansion for sensitivity

analysis. Reliability Engineering and System Safety, 2009; 94: 1161–1172.

[53] L. Dawei, Q. Zhou, J. Bian, Y. Cai X. Hong, “Cell Shifting Aware of Wirelength

and Overlap”, In proc. IEEE Quality of Electronic Design, Mar. 2009, pp. 506-510.

[54] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science, vol. 220, no. 4598, pp.671–680, May 13, 1983.

[55] S.N. Adya and I.L. Markov. Fixed-outline floorplanning: Enabling hierarchical

design. IEEE Trans. on VLSI Systems, 11(6):1120–1135, December 2003.

[56] M. Kayal, S. Piguet, M. Declerq, and B. Hochet, “SALIM: A layout generation tool

for analog ICs,” in Proc. IEEE Custom Integrated Circuits Conf., 1988, pp. 7.5.1–7.5.4.

[57] S. W. Mehranfar, “STAT: A schematic to artwork translator for custom analog

cells,” Proc. 1990 IEEE Custom Integrated Circuits Conf., pp. 30.2.1–30.2.3, 1990.

[58] E. Malavasi, J. L. Ganley, and E. Charbon, “Quick placement with geometric

constraints,” in Proc. IEEE Custom Integrated Circuits Conf., 1997, pp. 561–564.

	A framework for fine-grain synthesis optimization of operational amplifiers
	Recommended Citation
	APA Citation
	MLA Citation

	tmp.1592508243.pdf.tQzyG

