
TIGHT COUPLING OF TIMING-DRIVEN PLACEMENT
AND RETIMING

Ingmar Neumann Wolfgang Kunz

University Frankfurt/Main
Department of Computer Science

Electronic Design Automation Group
60054 Frankfurt/Main, Germany

ABSTRACT
Retiming is a widely investigated technique for performance
optimization. In general, it performs extensive modifications on a
circuit netlist, leaving it unclear, whether the achieved performance
improvement will still be valid after placement has been performed.
This paper presents an approach for integrating retiming into a
timing-driven placement environment. The experimental results
show the benefit of the proposed approach on circuit performance in
comparison with design flows using retiming only as a pre- or post-
placement optimization method.

1. INTRODUCTION

In the development of high performance circuits, circuit speed can
be considered the most important single optimization criterion.
Therefore, a lot of methods for minimizing cycle time have been
developed. A powerful technique, proposed by Leiserson and
Saxe [1][2], is retiming, which relocates registers while preserving
the functionality of a circuit. Leiserson and Saxe developed
algorithms both for cycle time minimization and for register area
minimization of circuits with edge triggered flip flops. Since then,
many improvements and extensions to the original ideas have
been developed, like acceleration techniques [3], which
dramatically speed up execution time, algorithms for retiming
level clocked circuits [4][5], algorithms taking registers setup and
hold times into account [6][7], algorithms for retiming registers
with enable inputs [8] as well as algorithms that can improve
testability [9].

The original algorithm developed by Leiserson and Saxe finds a
retiming for a circuit such that a given cycle time is met if such a
retiming exists, in polynomial time. It is based on a simple timing
model which assumes gate delays to be load independent.
Unfortunately, for CMOS technology which is the most widely
used technology today, this model is not accurate enough as gate
delays cannot be considered to be load independent and retiming
registers may change the loads of gates. The advent of deep-
submicron technologies exacerbated the situation further by
increasing the influence of wire length on the total delay. Loads
resulting from wires are affected by retiming even more than loads
resulting from gate inputs and, above all, are not known before
placement.

In [10]-[12], more sophisticated timing models are used to
incorporate wire delays. However, the algorithms using these
models suffer from long run times. Additionally, all load changes
of wires connected to a particular cell that would result from

retiming the cell must be known prior to the retiming process. In
practice, those changes are hard to predict exactly. Further, from
a physical point of view, retiming means to remove some cells
from the placement, leaving gaps, and to insert other cells at other
locations. Making the placement legal by removing cell
overlapping will shift cells and change the lengths of nets which
are not directly affected by the retiming process. These effects
make it impossible to predict whether the optimum solution
produced by the retiming algorithm will still be valid after
placement has been performed. In the worst case, retiming can
even decrease circuit speed.

An approach to overcome these problems was presented in [13].
After performing a conventional placement and routing, an
optimization loop consisting of wire length estimation, retiming,
and register placement is entered. Even though this approach
produces promising results and ensures that retiming will not
deteriorate cycle time, it does not fully exploit the potential of
coupling placement and retiming. A placement algorithm tries to
optimize the placement with regard to a given netlist topology
which is modified significantly by retiming. Especially, a timing-
driven placer will aggressively try to shorten wires on critical
paths, while paying less attention to less critical wires. This can
lead to a balance of path lengths, reducing the optimization
potential for retiming.

To overcome these difficulties and to be able to take more
advantage of integrating retiming into placement, we propose a
much tighter coupling between placement and retiming in this
paper. Our approach does not use retiming for a post-placement
optimization, but employs it as an optimization technique
throughout the whole placement process.

2. TIGHT COUPLING OF PLACEMENT
AND RETIMING

2.1 Overview

The core of our approach is a timing-driven simulated annealing-
based standard cell placement algorithm using dynamic
temperature control and dynamic critical net weighting. At each
temperature level, first, load capacitances are calculated from net
length estimations and a static timing analysis is performed. If
timing constraints are not met, a retiming based cycle time
optimization step is performed, based on the previously calculated
capacitance values trying to meet the constraint or, if this was not
possible, at least to improve circuit performance. Afterwards, the
newly created registers are inserted into the placement using a

0-7803-6685-9/01/$10.00©2001 IEEE
V-351

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14502849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

very fast placement approach, and the cycle time is calculated
again. If timing constraints are met now, or at least an
improvement has been achieved, the new configuration is
accepted, otherwise it will be rejected. Afterwards, net weights are
recalculated and the placer begins another iteration. Figure 1 gives
an overview of the placement procedure at a particular
temperature level.

timing analysis

retiming

placement step

net weighting

constraints met or improvement achieved? reject changes

register placement

decrease temperature

timing constraints met?

timing analysis

n

n y

y

Figure 1. Placement at a particular temperature level

2.2 Retiming

To be able to retime circuit netlists with tens or even hundreds of
thousands of gates, very fast algorithms are needed. Especially,
when retiming is used as an optimization step, which is performed
numerous times in a timing-driven placement environment, it is
not sufficient to have algorithms of polynomial complexity, but
near-linear complexity algorithms are required. For this reason we
use the original FEAS algorithm [2], extended by an acceleration
technique similar as [13].

2.3 Register Placement

In general, a simulated annealing-based placer will be able to find
good positions for the newly created registers, independent from
their initial position. But this process will take a lot of time if
these initial positions are chosen randomly, making it impossible
to verify immediately after the registers have been inserted
whether or not a cycle time improvement has been achieved.
Furthermore, it can save a lot of effort for the placer, if the new
registers are inserted at “reasonable” locations, especially at low
temperatures, when cells aren’t allowed to make large jumps.

Therefore we use a separate register placement step to provide the
timing analyzer quickly with realistic assumptions about the wire
lengths after retiming has been performed. For each new register a
position is determined such that the sum of the lengths of the nets
connected to this register is minimized. In many situations, the
result will not be a particular vertex, but a target area of
rectangular shape. In the latter case, we look for the most suitable
cell gap inside this area and position the register there. This helps
to keep the modifications of the original placement as small as
possible. If the gap isn’t large enough, neighbor cells are pushed
aside first. By doing so it is always guaranteed that no cell
overlapping occurs. At this point, no further work is done to reuse
gaps left by deleted registers, also no work is done to balance the

total row length, because these tasks are performed by the
simulated annealing placer later. An example of inserting a single
additional register is shown in Figure 2.

new register

target
area for
center of
register

shifted

Figure 2. Single register placement example

2.4 Repeated Check of Retiming and Placement

After retiming has been performed and the newly introduced
registers have been added to the placement, wire lengths are
estimated again, and timing analysis is repeated to check whether
cycle time really has been improved. At a first glance this check
may seem unnecessary, because retiming-based cycle time
optimization of a synchronous network should at least not
deteriorate the cycle time. However, in our experiments it turned
out that when the effect of retiming on the placement is taken into
account, it is indeed possible that a retiming step increases cycle
time. The first reason for this is that retiming may increase the
number of registers in a circuit, sometimes dramatically. In typical
standard cell libraries, flip flops and latches have a far greater area
requirement than simple logic cells. So already small increases in
register count may result in a significant increase in area
requirement. This leads to longer wires and may offset the
performance gain achieved by retiming. The second reason is that
modifying placement changes the positions of cells and the
lengths of nets, which are not directly affected by retiming. These
effects cannot be taken into account by the retiming algorithm and
may also result in a cycle time deterioration.

Therefore, a newly retimed configuration will only be accepted, if
immediately after the registers have been inserted a performance
improvement has been achieved, otherwise the modifications of
placement and netlist will be rejected.

3. EXPERIMENTAL RESULTS
We have implemented all components of the placement
environment in C++ and linked them together into one single
application. The experimental results have been obtained on a Sun
Ultra Sparc 5 Workstation.

The main aim of our work was to investigate the optimization
potential of a tight coupling of timing-driven placement and
retiming. Therefore, a comparison of three different design flows
is of interest:

V-352

• A conventional design flow consisting of retiming a logic
netlist, followed by timing-driven placement

• Timing-driven placement, followed by a single retiming step
using the delay values calculated from the final placement.
After performing a register placement step as described in
chapter 2.3, additionally some placement steps at very low
temperatures are performed to achieve uniform row lengths
again.

• A tight coupling of retiming and placement as described in
this paper.

For our experiments we mapped the larger circuits of the
ISCAS-89 benchmark set [14] onto a 0.18 µm standard cell
library. The properties of these circuits are shown in Table 1.
Column 2, 3, and 4 contain the total number of cells, the number
of nets, and the number of registers for each circuit. Column 5
contains the minimum cycle time (c.t.), expressed in nanoseconds,
when wire loads are ignored.

circuit #cells #nets #FF c.t.
S1423 731 749 74 7.93
S1488 659 668 6 3.22
S1494 653 662 6 3.29
S5387 2958 2994 179 2.52
S9234 5825 5845 228 5.83
S9234.1 5805 5804 269 5.83
S13207 8620 8652 669 6.71
S13207.1 8589 8652 638 6.45
S15850 10369 10384 597 8.54
S15850.1 10306 10384 534 8.27
S35932 17793 17829 1728 3.15
S38584 20705 20718 1452 5.49
S38584.1 20679 20718 1426 6.72
S38417 23815 23844 1636 5.19

Table 1. Used ISCAS-89 benchmarks

The performance results of our experiments are shown in Table 2.
Column 2 contains the achieved cycle time for a conventional
timing-driven placement approach without any application of
retiming. A comparison with the cycle time values from Column 5
of Table 1 shows a portion of wire delay on the total delay of
26%-70%. Then, for each of the previously described design
flows which use retiming, the achieved cycle time in nanoseconds
and the total number of registers are shown. Columns 3 and 4
contain the results for pre-placement retiming, columns 5 and 6
contain the results for post-placement retiming, and columns 7
and 8 show the results for the approach presented in this paper.

The wire lengths values used for the final cycle time calculation
have been estimated for each net by using the semi-perimeter of
the bounding rectangle times a correcting factor depending on the
number of terminals and the length to width ratio of the bounding
box.

none pre-
placement

post-
placement

tight
couplingcircuit

c.t. c.t. #FF c.t. #FF c.t. #FF
S1423 12.4 10.6 113 10.7 112 10.6 114
S1488 4.39 4.53 7 4.39 6 4.30 6
S1494 4.46 4.53 7 4.46 6 4.45 6
S5387 3.95 4.37 325 3.95 179 3.85 348
S9234 10.2 7.31 268 7.08 249 6.26 462
S9234.1 10.3 7.34 269 7.66 242 7.36 553
S13207 10.0 9.31 950 10.0 669 8.30 943
S13207.1 10.5 9.79 640 9.38 641 9.18 641
S15850 15.3 12.5 962 15.3 597 12.6 3355
S15850.1 14.8 13.4 586 11.4 610 10.3 659
S35932 10.6 10.4 2826 10.5 2193 8.98 2841
S38584 17.0 19.0 3379 17.0 1452 16.2 3330
S38584.1 14.1 13.0 1428 13.4 1428 12.8 1429
S38417 15.2 12.5 2006 10.7 2193 10.2 2479

Table 2. Performance results and register counts

The experimental results show that in most cases applying
retiming only before placement achieved the smallest performance
improvement of all strategies. In a few cases cycle time was even
larger after placement. If retiming was applied once after
placement we achieved somewhat better results, and in no case
there was an increase of cycle time. However, this approach was
outperformed by our new approach using tight coupling, which
produced equal or better results for each benchmark. Table 3 gives
a summarizing overview of the approaches by comparing the
achieved cycle time improvements.

improvement pre-placement
retiming

post-placement
retiming

tight
coupling

minimum -11.8% 0% +0.02%
maximum +28.7% +31.2% +38.6%
average +6.7 +9.98% +15.9%

Table 3. Achieved improvements

Table 4 contains the CPU run times in seconds for a conventional
timing-driven placement without retiming and for a tight coupling
of placement and retiming. The results show that the increase in
run time caused by integrating retiming is moderate. Despite the
fact, that retiming is performed numerous times, for the majority
of the benchmarks the overall run time of our approach is still
dominated by the simulated annealing-based placer core.

circuit placem.
only

tight
coupling

circuit placem.
only

tight
coupling

S1423 100 104 S13207.1 5747 7598
S1488 115 126 S15850 7073 18102
S1494 115 125 S15850.1 7665 9721
S5387 1066 1591 S35932 29107 48365
S9234 3227 4014 S38584 22249 46323
S9234.1 3148 4091 S38584.1 21518 33945
S13207 5464 9075 S38417 37614 52284

Table 4. CPU run times

To illustrate the importance of taking the increase in register area
during retiming into account as described in chapter 2.4, we
additionally conducted some experiments using our new approach

V-353

without checking the result after register placement. A new
configuration produced by the retiming algorithm is accepted in
every case. The results given in table 5 show an increase in cycle
time of 6% and an increase of register count of 34% on average, if
review was disabled.

cycle time review after
register placement

enabled disabledcircuit

c.t. #FF c.t. #FF
S1423 10.6 114 10.5 128
S1488 4.30 6 4.52 9
S1494 4.45 6 4.70 9
S5387 3.85 348 3.82 452
S9234 6.26 462 6.24 472
S9234.1 7.36 553 7.88 469
S13207 8.30 943 8.31 931
S13207.1 9.18 641 9.99 948
S15850 12.6 3355 14.1 6034
S15850.1 10.3 659 10.7 660
S35932 8.98 2841 9.93 2846
S38584 16.2 3330 17.7 3872
S38584.1 12.8 1429 14.7 3371
S38417 10.2 2479 11.5 3631

Table 5. Results with and without review after register
placement

4. CONCLUSION

A new approach for integrating retiming into the physical design
process has been proposed. Instead of using retiming as a pre- or a
post-placement optimization method, it is applied as a cycle time
improvement technique throughout the whole placement process.
At each temperature level of a simulated annealing-based standard
cell placement algorithm, a retiming step is performed first.
Immediately after inserting new registers using a fast insertion
technique, cycle time is checked to ensure that no performance
deterioration due to area increase occurs. By using an efficient
retiming approach it is ensured that, despite the fact that retiming
is performed very often, the overall run time of the approach is
still dominated by the placement algorithm. The experimental
results show that this approach exploits the optimization potential
of coupling retiming and placement significantly better than
applying retiming only before or after placement. The results also
show that an increase in register count which can result from a
retiming step cannot be ignored, not only because of the increase
in area but also for performance reasons.

5. REFERENCES
[1] Leiserson C., Saxe B., “Optimizing Synchronous Systems”,

Journal of VLSI and Computers Systems, pp. 41-67, 1983.
[2] Leiserson C., Saxe B., “Retiming Synchronous Circuitry”,

pp.5-35, Algorithmica 6(1) 1991.
[3] Shenoy N., Rudell R., “Efficient Implementation of

Retiming”, Proc. ICCAD-94, pp. 226-233, 1994
[4] Lockyear B., Ebeling C., “Optimal retiming of level-clocked

circuits using symmetric clock schedules”, IEEE

Transactions on Computer Aided Design, vol. 13, no. 9, pp.
1097-1109 1994.

[5] Ishii A., Leiserson C., Papaefthymiou M., “Optimizing two-
phase, level-clocked circuitry”, Advanced Research in VLSI
and Parallel Systems, Proc. of the 1992 Brown/MIT
Conference, pp. 246-264, 1992

[6] Papaefthymiou M., “Asymptotically Efficient Retiming
Under Setup and Hold Constraints”, Proc. ICCAD-98
pp.288-295, 1998

[7] Sundararajan V., Sapatnekar S., Parhi K., “MARSH: Min-
Area Retiming with Setup and Hold Constraints”, Proc.
ICCAD-99, pp. 2-13, 1999

[8] Eckl K., Madre J., Zepter P., Legl C., “A Practical Approach
to Multiple-Class Retiming”, Proc. DAC-99, pp. 237-242,
1999

[9] El-Maleh A., Marchok T., Rajski J., Maly W., “Behavior and
Testability Preservation Under the Retiming
Transformation”, IEEE Transactions on Computer Aided
Design, vol. 16., no. 5, pp. 528-542, 1997

[10] Soyata T., Friedman E., “Retiming with Non-Zero Clock
Skew, Variable Register, and Interconnect Delay”, Proc.
ICCAD-94, pp. 234-241, 1994

[11] Soyata T., Friedman E., Mulligan J., “Incorporating
Interconnect, Register, and Clock Distribution Delays into
the Retiming Process”, IEEE Transactions on Computer
Aided Design, vol. 16, no. 1, pp.105-120, 1997

[12] Lalgudi K., Papaefthymiou M., “DELAY: An Efficient Tool
for Retiming with Realistic Delay Modeling”, Proc. DAC-95,
pp. 304-309, 1995

[13] Tien T. et al., “Integrating Logic Retiming and Register
Placement”, Proc. ICCAD-98, pp. 136-139, 1998

[14] Collaborative Benchmarking Laboratory, Department of
Computer Science at North Carolina State University,
http://www.cbl.ncsu.edu

V-354

