
Copyright

by

Tao Luo

2007

The Dissertation Committee for Tao Luo
certifies that this is the approved version of the following dissertation:

Nanometer VLSI Placement and Optimization for

Multi-Objective Design Closure

Committee:

David Z. Pan, Supervisor

Jacob Abraham

David Newmark

Nur Touba

Michael Orshansky

John Zhang

Nanometer VLSI Placement and Optimization for

Multi-Objective Design Closure

by

Tao Luo, M.S., B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2007

To my parents and my wife.

Acknowledgments

I would like to thank my advisor, first and foremost, Dr. David Pan, for all

his guidance, encouragement, support, and patience throughout my Ph.D study and

his assistance on my career planning. What I have learned from Dr. Pan have made

a part of my life. I am very grateful for all that he has done for me.

Special Thanks go to Dr. David Newmark and Dr. Charles Alpert, who

have provided me research opportunities in AMD North Austin Design Center and

IBM Austin Research Lab. Their insights on research and mentoring experiences

have made this dissertation possible. I believe what I have learned from them will

continue guiding me beyond my graduation.

I am also extremely grateful to the members of my Ph.D. committee, Dr.

Jacob Abraham, Dr. Nur Touba, Dr. Michael Orshansky, and Dr. John Zhang, for

their interests in this research and supports during my completion of this disserta-

tion.

Many thanks to other staff members in the Department of Electrical and

Computer Engineering, especially Andrew Kieschnick and Melanie Gulick. An-

drew is such a skillful and conscientious system administrator who has never failed

to provide in time support to our research. Melanie is a warm-hearted graduate

program coordinator that has been always so friendly and helpful to the students.

I am also grateful to students in UT VLSI Design Automation group for

v

many inspiriting discussions on research and their helps on varies aspects.

I would like to thank my family, especially to my understanding and patient

wife, Hwa Fen, for supporting me in my Ph.D. pursuit. Without her support, I could

not imagine my Ph.D. being accomplished.

Finally, I would like to express my appreciation to the donors of the Engi-

neering Doctoral Fellowship for their generous financial support and the Semicon-

ductor Research Corporation for funding my research with contract number 1321-

001.

vi

Nanometer VLSI Placement and Optimization for

Multi-Objective Design Closure

Publication No.

Tao Luo, Ph.D.

The University of Texas at Austin, 2007

Supervisor: David Z. Pan

In a VLSI physical synthesis flow, placement directly defines the interconnection,

which affects many other design objectives, such as timing, power consumption,

congestion, and thermal issues. With the scaling of technology, the relative inter-

connect delay increases dramatically. As a result, placement has become a bottle-

neck in deep sub-micron physical synthesis. In this dissertation, I propose several

optimization algorithms from global placement, placement migration, timing driven

placements, to incremental power optimizations for multi-objective VLSI design

closure. The first work is DPlace, a new global placement algorithm that scales

well to the modern large-scale circuit placement problems. DPlace simulates the

natural diffusion process to spread cells smoothly over the placement region, and

uses both analytical and discrete techniques to improve the wire length. However,

global placement is never sufficient for multi-objective design closure, a variety of

design objectives have to be improved incrementally, such as timing, routing con-

gestion, signal integrity, and heat distribution. Placement migration is a critical step

vii

to address the cell overlaps appearing during incremental optimizations. To achieve

high placement stability, I propose a computational geometry based placement mi-

gration flow to cope with placement changes, and a new stability metric to measure

the “similarity” between two placements accurately. Our placement migration al-

gorithm has clear advantage over conventional legalization algorithms such that the

neighborhood characteristics of the original placement are preserved. For timing

closure in high performance designs, I present a linear programming based incre-

mental timing driven placement to improve the timing on critical paths directly.

I further present an efficient timing driven placement algorithm (Pyramids). Two

formulations of Pyramids are proposed, which are suitable for different optimiza-

tion stages in a physical synthesis flow. Both approaches find the optimal location

for timing of a cell in constant time, through computational geometry based ap-

proaches. For fast convergence of design closure, placement should be integrated

with other optimization techniques. I propose to combine placement, gate sizing

and Vt swapping techniques to reduce the total power consumption, especially the

leakage power, which is becoming increasingly critical for nanometer VLSI design

closure.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1
1.1 Background of physical design and motivations 1

1.1.1 The role of placement in modern physical synthesis 4
1.1.1.1 Global placement 5
1.1.1.2 Detailed and incremental placement 6

1.1.2 Motivations . 7
1.2 Overview of the dissertation . 8

Chapter 2. DPlace: A Stable and Efficient Global Placement 11
2.1 Introduction . 11
2.2 Background: Force directed placement 14

2.2.1 Quadratic placement . 14
2.2.2 Force-directed quadratic placement 16

2.2.2.1 Constant forces . 17
2.2.2.2 Fixed point forces 20

2.3 Analytical placement model in DPlace 21
2.3.1 Diffusion spreading . 21
2.3.2 The proposed approach . 22

2.4 Global Placement in DPlace . 22
2.4.1 Diffusion based placement 23

ix

2.4.2 Anchor cells . 25
2.4.3 HPWL transformation in a quadratic system 29
2.4.4 Fixed blockages . 31
2.4.5 Wire length improvement heuristics 32

2.5 Legalization and detailed placement 35
2.6 Overall algorithm . 35
2.7 Experiments . 38
2.8 Summary . 39

Chapter 3. Computational Geometry Based Placement Migration 41
3.1 Introduction . 41
3.2 Bin Based Spreading . 43

3.2.1 Bin Stretching . 44
3.2.2 Cell Interpolation . 46
3.2.3 Bin Based Spreading Algorithm 47

3.3 Delaunay Triangle Based Overlapping Removing 49
3.3.1 Delaunay Triangulation . 49
3.3.2 Fine-grain Overlapping Reduction 51

3.4 Computational Geometry based Legalization 54
3.5 Geometric Placement Stability Metrics 56
3.6 Experimental Results . 59
3.7 Summary . 63

Chapter 4. A New LP Based Incremental Timing Driven Placement 65
4.1 Introduction . 65
4.2 Problem Formulation . 68

4.2.1 LP formulation . 68
4.2.2 The capacitive load and delay models 70

4.3 Path Based Delay Sensitivity . 72
4.4 Criticality Adjacency Network . 75

4.4.1 Criticality adjacency network 77
4.4.2 The timing perturbation constraints 80

4.5 The Overall Linear Program Algorithm 80

x

4.6 Timing aware spreading for legalization 82
4.7 Experimental Results . 83
4.8 Summary . 85

Chapter 5. Pyramids: Computational Geometry-based Approach for Timing-
Driven Placement 86

5.1 Introduction . 86
5.2 Preliminaries of Pyramids formulations 88
5.3 Pyramids algorithm for timing-driven detailed placement (DP) . . . 91

5.3.1 Optimal cell location computation in Pyramids DP 92
5.3.2 Pyramids-DP algorithm . 95

5.4 Pyramids algorithm for critical paths refinement (CP) 98
5.4.1 Linear Buffered-Path Delay Estimation 99
5.4.2 Pyramids-CP formulations 100
5.4.3 Compute the optimal location in Pyramids-CP 101

5.4.3.1 Optimize the sequential gate 102
5.4.3.2 Optimize the combinational gate 103

5.4.4 Pyramids-CP algorithm . 105
5.5 Experiments . 105

5.5.1 Pyramids-DP experiments in OpenAccess environment 106
5.5.2 Pyramids-CP experiments in an industrial flow 108

5.6 Summary . 110

Chapter 6. Total Power Optimization Combining Placement, Sizing and
Multi-Vt Through Slack Distribution Management 112

6.1 Introduction . 112
6.2 Motivation & proposed approach 114

6.2.1 The proposed flow . 116
6.2.2 Practical design constraints 117

6.2.2.1 The slew and noise related constraints 118
6.2.2.2 Short circuit power constraint 118

6.3 LP based placement for power . 119
6.3.1 The LP formulations . 120

xi

6.4 GP based gate sizing for power . 122
6.4.1 Cell classification . 122
6.4.2 The GP models . 123
6.4.3 Gate sizing effectiveness analysis 125
6.4.4 GP for near-critical cells . 126
6.4.5 GP for non-critical cells . 127
6.4.6 Modeling important constraints 128

6.4.6.1 The max slew constraint 128
6.4.6.2 Effective fan-out constraint for noise tolerance . . . 129
6.4.6.3 Short circuit power constraint 129

6.5 Vt swapping algorithm . 130
6.6 Experimental Results . 131
6.7 Summary . 134

Chapter 7. Conclusions 136

Bibliography 139

Vita 151

xii

List of Tables

2.1 Statistics on new Hessian A′ and the Hessian A for conventional
formulation, and the quadratic solver runtime comparisons 36

2.2 Wire length and runtime comparison with FastPlace3.0, mPL6, Capo10.2,
and APlace2.0 on ISPD2005 benchmark 37

2.3 Wire length (×106) comparison with other placers in ISPD 2005
placement contest . 37

3.1 The wirelength, stability, and CPU time comparison with computa-
tion geometry/Delaunay based migration, followed by the legaliza-
tion engine in the IBM environment (see details in [60]). 61

3.2 Wirelength, stability and CPU comparison of our Delaunay-based
migration/legalization tool and the two publicly available detailed
placement engines from FastPlace and Fengshui. 64

4.1 The key notations in this chapter. 69
4.2 Experimental results . 85

5.1 The characteristics of the ISCAS benchmarks 107
5.2 Pyramids-DP Results on ISCAS benchmarks 108
5.3 Pyramids-DP results with fixed sequential cells 109
5.4 The model used in Pyramids-CP is coherent with the actual timing

model . 110
5.5 Comparison of Pyramids-CP with the COG 111

6.1 Normalized delay and leakage current for a cell with different thresh-
old voltages in 65nm technology 114

6.2 Total power comparison . 131
6.3 Leakage power comparison . 133
6.4 Dynamic power comparison . 133
6.5 Runtime breakup(s) . 135

xiii

List of Figures

1.1 ITRS2005: Delay for metal 1 and global wiring versus feature size . 3

2.1 Transformations of the multi-pin net into multiple two-in nets. Only
the x coordinates are showed in these figures 15

2.2 The quadratic placement formulation of a simple circuit in the x
direction. p0 and p3 are the x coordinate of the fixed pins 17

2.3 Force directed placement: adding forces to push cells out of the
region with congestion . 18

2.4 Adding the constant force on a cell is equivalent to shifting its con-
nected objects . 18

2.5 An example of the fixed point addition formulation, p0, p3, v1, and
v2 are the x coordinate of the fixed real and virtual pins, respectively 19

2.6 The diffusion and wire length reduction iteration in bigblue1(from
ISPD 2005 placement benchmark suite) 24

2.7 The quadratic placement formulation by using clique model. For
simplicity, we assume the weight of each transformed two-pin net
is 0.25. 26

2.8 The quadratic placement formulation by using star model. S is the x
coordinate of the star, which is a moveable object in the placement.
For simplicity, we assume the weight of each transformed two-pin
net is 0.25. The dimension of the Hessian matrix A is equal to the
number of cells plus the number of stars 26

2.9 The quadratic placement formulation after the anchor cell insertion.
C is the x coordinate of the anchor cell, which is a constant. The
new Hessian matrix A is extremely sparse compared with that by
using the star or clique formulation. 26

2.10 The comparison of non-zero entries in all rows in the sparse matrix
A and A′

. The x-axis is the number of non-zero entries, the y-axis
is the row counts. In hessian of the quadratic formulation, each row
corresponds to the connected movable objects of each movable cell
in the netlist. The insertion of anchor cells change the number of
non-zero entries in each row from the pin degree of the correspond-
ing net to the pin degree of the corresponding cell. Therefore, most
of rows in matrix A′ has only 2-3 non-zero entries. Such linear
system takes very short time to solve. 28

xiv

2.11 Net weights computation. A = {n4},B = {n1,n2,n3} in this example 30
2.12 Dynamic density on blockages . 32
2.13 Improve the initial ordering of the placement 33

3.1 Illustration of bin and corner stretching 45
3.2 Cell location interpolation on stretched bin 46
3.3 Delaunay triangulation captures the relative order, which can be

used to spread cells during placement. 50
3.4 Delaunay triangulation of a placement region 51
3.5 Tree structure for Delaunay edge traversing 52
3.6 Delaunay force to reduce overlapping 54
3.7 Relative distance of cell i. 57
3.8 Histogram of Ri from three legalizers on ibm01. 62
3.9 Histogram of top 1% Ri from three legalizers on ibm01. 63

4.1 The normalized coefficient for Slew is much smaller than that for
Cap in both formulas . 73

4.2 A circuit example for delay propagation sensitivity computation . . 76
4.3 The advantages of the criticality adjacency network 77
4.4 The criticality adjacency network 79
4.5 Under the weighted nets e1, e2 and e3, the cell’s optimal region

changed . 83

5.1 A subcircuit with one movable gate 90
5.2 The definition of the net length on net 1 91
5.3 Delay curve on net 1 . 92
5.4 Delay curve on on inputs of gate m 93
5.5 Delay curve on on net 3 . 94
5.6 Compute optimal location for the movable gate on each row 96
5.7 The net model in Pyramids-CP . 99
5.8 The shape of delay surface in 2d and 3d spaces 101
5.9 Computation of the optimal region in Pyramids-CP 103
5.10 Delay surface contour on the output net 104

6.1 Slack distribution before and after optimization 115

xv

6.2 Slew rate distribution with and without explicit control 117
6.3 A simple yet effective short circuit power constraint model. 118
6.4 Gate sizing effectiveness analysis 125
6.5 The leakage and dynamic power break up before and after opti-

mizations . 134
6.6 The percentage of different threshold voltage cells 134

xvi

Chapter 1

Introduction

For more than four decades, the technology in semiconductor industry has

been advancing in the remarkable pace predicted by the Moore’s law. However,

since the feature size of the devices scales to nanometer era (90nm and below),

many entangled physical effects in deep submiron region, such as the interconnect,

leakage, and thermal, have made the design closure in physical design even more

challenging.

1.1 Background of physical design and motivations

Physical design/synthesis is a complex multi-phases process. In modern

VLSI design, physical design/synthesis refers to the key design implementation

stages from register-transfer level (RTL) to GDSII layout, including floorplanning,

logic synthesis, placement, gate sizing, buffer insertions, Vt swapping, routing, etc.

In the process of design closure, the global placer generates an initial place-

ment to minimize the wire length. Once large electrical violations are corrected, a

timing profile is obtained through the timing analysis. The timing profile is used

as the basis of the subsequent timing driven global placement iterations. Related to

the focus of this dissertation, a physical synthesis flow typically has the following

1

design phases [5, 6]:

1. Wire-length driven global placement, which generates an initial placement

with minimized wire length.

2. Electrical correction, which uses gate sizing and buffering to fix large electri-

cal violations to make the design in a reasonable shape.

3. Timing driven global placement. The timing information is incorporated in

global placement to improve the timing of the design.

4. Timing driven detailed placement. The design is legalized, and a variety of

incremental optimization techniques are employed to further improve the tim-

ing.

5. Critical path optimization. The design is largely in a good shape at this point.

A variety of techniques, including placement, sizing, and buffering, are used

to further improve the timing for the most critical paths.

6. Power optimization. To size down gates on non-critical part of the chip to

recover some power.

Placement is one of the most important phases in a physical synthesis flow,

which interacts with almost every physical synthesis phase. Briefly, placement is

the step to assign standard cells and blocks into the chip region to satisfy certain

design objectives, such that all standard cells being placed on circuit rows with-

out overlap between any circuit component. As a result, interconnects are largely

determined in the placement phase.

2

Figure 1.1 shows the scaling trend of the interconnect delay and gate delay

predicted by International Technology Roadmap for Semiconductors (ITRS) [9].

As technology scales, the size of the transistors/gate decreases, and the speed of

transistor increases. However, the interconnect delay decreases far less rapidly than

the scaling of feature size, and the relative delay of global wire increases drastically,

as shown in Figure 1.1. Therefore, the timing closure in physical design is much

harder with the technology scaling.

Moreover, although a transistor consumes less dynamic power as it shrinks,

the leakage current increases due to scaling. Nowadays, power has become one of

the dominant performance liming constraints.

Figure 1.1: ITRS2005: Delay for metal 1 and global wiring versus feature size

3

As placement determines global interconnections, it affects almost every

design objective, such as timing, signal integrity, routability, thermal, and power.

The following subsection gives an overview about the role of placement in modern

physical synthesis.

1.1.1 The role of placement in modern physical synthesis

Besides placement, among all other optimization techniques, gate sizing and

Vt swapping are powerful for power reduction and timing improvement. Both gate

sizing and Vt swapping interact with placement closely. Therefore, placement plays

a pivotal role for VLSI design closure.

Major placement objectives include the total wire length, delay, congestion,

power, thermal, the runtime, and stability of the placement algorithm. As the signal

delay is quadratic to wire length, and power is proportional to the wire length, the

total wire length minimization is the primary objective. The congestion is also very

important, which determines the routability of the chip. Furthermore, the runtime

of placement algorithm has become one of the main concerns. Nowadays, some

industry placement problems have multi-million objects with a large amount of

blockages [66, 65]. To generate one solution of a multi-million gates design may

take tens of hours.

Placement is usually divided into two stages, the global placement and the

detailed placement. Although there is no precise criteria to split the global and the

detail placement, the global placement in general spreads cells roughly over the

placement region with global wire length minimization, and the detailed placement

4

snaps cells into circuit rows and removes the residual overlap for a given global

placement solution.

1.1.1.1 Global placement

Historically, existing global placement algorithms can be roughly classi-

fied into three major categories, i.e., the simulated annealing , iterative partitioning

based approach, and analytical placement. Traditional objective in global place-

ment is total wire length optimization. Total wire length is the sum of all inter-

connects among cells and most of existing placements use the Half Parameter Wire

Length (HPWL) for wire length estimation.

Simulated annealing (SA) based approach formulates the placement as a

metallic annealing process [62], which iteratively changes the current solution by a

random small amount, evaluates the new solution, and adopts the new solution by a

certain probability that controlled by parameters. For very small circuits, SA based

approach achieves the best solutions. However, the runtime of the SA placement is

prohibitive and unrealistic for for modern placement.

Min-cut or partitioning based placement recursively partitions cells into

smaller chip subregions [16, 87, 91]. The objective for every partitioning step is

to find a cell partition that minimizes the sum of the weighted cut sizes. Typical

min-cut based placements include Capo [16] and Fengshui [1]. In the ISPD place-

ment contests [45, 65], the wirelength results of partitioning based placements are

not very competitive since the cut-size is not a direct wire length measurement.

Analytical placement has been successful in recent years and achieved im-

5

pressive results on wire length, scalability, and convergence. According to the re-

sults of ISPD 2005 and 2006 placement contest, most of the top ranked placers

are analytical placers. The analytical placement models the placement objectives

as a convex mathematical problem and solve the mathematical problem directly.

Among analytical placement, quadratic placement optimizes the quadratic form of

the HPWL [55, 32, 41, 50, 84, 86, 90] and log-sum-exp placement [47, 18] adopts

a log-sum-exponential HPWL approximation patented by Naylor et al. [67].

1.1.1.2 Detailed and incremental placement

Given a global placement solution, detailed placement finds the legal posi-

tion of cells and further improves the quality. Floating macros may occupy several

rows, but there should be no overlap between objects. In detailed placement, wire

length can be further reduced and various design objects can be improved, such as

the routability, thermal, timing, etc. Detailed placement is more constrained than

the global placement as most of cells are moved locally. Many detailed placers try

to minimize the cell movements during the legalization.

Due to the complexity of modern nanometer designs, it is unlikely to design

one placement algorithm that meets all design objectives in a single run. An indus-

trial design flow may involve multiple improvement placement iterations. Given a

legal placement, one may have to fix some design violations, insert some buffers,

resize some gates, and re-legalize it. This is also referred as incremental placement

problem. Incremental placement is similar as the detailed placement in the theme

of starting from a placement to generate an improved legal solution of the original

6

placement. Timing driven placement focuses on improving the chip timing, and

timing driven placement could be incremental, or at global and detailed placement

levels.

1.1.2 Motivations

While CMOS scaling might be near its physical limit [9], the design tech-

nology is by no means close to its optimality. Placement problem is well known to

be NP-hard. According to the experiments on a set of synthetic benchmarks with

known optimal wire length, all existing placements are still far from optimal [30].

Although has been studied for decades, placement remains a bottleneck of VLSI

design and continuously attracts research attentions.

Placement algorithms are predominantly wire length driven. However, the

relatively increasing interconnect delay makes the problem even more challenging,

especially for the timing driven placement.

Timing has been traditionally the most important design constraint. Mean-

while, chip designers nowadays are facing more and more power problems. The

relative leakage power consumption increases quickly with the CMOS scaling. The

more transistors on a chip, the more power is wasted on leakage, which leads to

thermal issues. Traditional techniques for power reduction, such as clock gating,

may not be sufficient if used alone. A rule of thumb in power optimization is that,

the earlier to take power into consideration, the better chance to reduce the total

power consumption. One has to combine power reduction techniques systemati-

cally, including the power aware placement, to conquer the rising obstacle of power

7

consumption.

The primary focus of this dissertation is to further push the limit of place-

ment driven optimizations for multi-objective design closure. A set of algorithms

at different phases in a physical synthesis flow have been developed, from global

placement, placement migration, incremental timing driven placement to incremen-

tal power optimizations. Major design objectives, such as the wirelength, timing,

and power are addressed from different perspectives.

The following section gives an overview of the dissertation.

1.2 Overview of the dissertation

This dissertation has studied five topics under the unified theme of place-

ment and optimization for multi-objective design closure. Global placement is the

foundation of all optimization phases in a physical synthesis flow. First, I propose

DPlace in chapter 2, a novel global placement algorithm that is guided by a smooth

cell spreading pre-placement stage to ensure the placement stability. Meanwhile,

DPlace has unique properties to scale well with large-scale circuit placement prob-

lems. The DPlace framework interleaves diffusion spreading technique with analyt-

ical and discrete wire length minimization techniques to improve the wire length.

The DPlace framework is flexible. Current implementation adopts the quadratic

placement formulation for wire length minimization. However, any smooth spread-

ing technique and effective analytical wire length minimization technique can be

plugged in the two steps general placement framework in DPlace in chapter 2.

8

Despite the best effort, the global placement alone will never be sufficient

close the timing in a physical synthesis flow. One cannot obtain an complete pic-

ture of the current timing until the placement has stabilized, and even timing-driven

global placement will never be a complete solution. Thus, incremental placement is

desired to take the existing placement and improve the timing or power characteris-

tics of the design incrementally. In other words, incremental placement techniques

help to stabilize the design and to evolve the design toward timing and power clo-

sure.

In incremental placements, the stability of the placement algorithm has high

priority. In other words, the new placement solution generated by an incremental

placer should be as close to the previous solution as possible. A large disturbance to

the existing placement may destroy all previous optimization efforts [75]. In chap-

ter 3, a computational geometry based placement migration tool is proposed to cope

with design changes. The new migration tool perturbs a given illegal placement

smoothly to remove cell overlap, meanwhile preserves the essential characteristics

of the original placement, such as cell ordering, wire length, timing, etc.

While the placement migration algorithm implicitly improves the timing

during optimizations, I present two additional timing driven placement works to

explicitly improve the critical paths. In chapter 4, a linear programming (LP) based

timing driven placement framework is proposed to explicitly improve the critical

timing path in high performance design. The LP placement framework proposed

is a hybrid approach, which combines the flexibility of the net based approach and

the accurate timing view of the path based approach. Furthermore, the Pyramids

9

algorithm proposed in chapter 5 is an efficient timing driven placement algorithm

suitable for both the global and detailed timing driven placement phrases. Given a

movable cell, Pyramids algorithm finds the optimal locations of the cell in constant

time to minimize the associated slacks.

A recent research has tried to reduce the power during placement phase.

The power-aware placement work for dynamic power reduction is proposed in [23].

However, leakage power is not considered. To address the increasingly leakage is-

sues, in chapter 6, we combine placement, gate sizing, and multiple-Vt assignment

algorithm and methodology for total power optimization through effective slack

distribution management.

Finally, we conclude in chapter 7.

10

Chapter 2

DPlace: A Stable and Efficient Global Placement

2.1 Introduction

Although circuit placement has been studied for decades, it continuously

attracts research attentions. The placement problems grow rapidly in both prob-

lem size and complexity. Some industry placement problems contain multi-million

gates and excessive number of blockages [66, 65]. In this chapter, we introduce a

new diffusion based placer that scales well to large scale placement problems.

Historically, existing circuit placement algorithms can be roughly classi-

fied into three major categories, the simulated annealing [62], iterative partition-

ing based approach [16, 87, 91], and analytical placement approach [55, 32, 41,

84, 86, 18, 90, 21, 2]. In placement, the Half Parameter Wire Length (HPWL)

is a common estimation of the routed wire length. Since HPWL model is not

smooth and derivable, quadratic placement optimizes the quadratic form of HPWL

[55, 32, 41, 84, 86, 90], and nonlinear model placement [48, 18, 21, 2] adopts a non-

linear estimation of HPWL model, typically the log-sum-exponential wire length

approximation patented by Naylor et al. [67].

Four existing academic placers [48, 18, 21, 2] that use the log-sum-exponential

wire model have achieved excellent wire length results. It is widely agreed that

11

placement uses log-sum-exponential wire model approximates the HPWL much

closer than the quadratic estimation. However, although still controversial, some

researchers believe that the quadratic placement potentially has advantages for tim-

ing driven placement, as the quadratic approximation of the HPWL gives larger

penalty on longer wires. Meanwhile, the quadratic wire model is not restricted by

any patent.

Diffusion is the flow of particles from a region of higher concentration to a

region with lower concentration, until the concentration on both regions are equal.

The cell spreading in placement shares similar philosophy as the natural diffusion

process, where cells are driven from high density areas to low density areas. Diffu-

sion based technique has been successfully applied to incremental placement opti-

mization [75], and here we use diffusion to move cells in global placement.

In this chapter, we present DPlace: a stable and efficient diffusion based

analytical placement. The DPlace starts with a seed placement, and interleaves

two major optimization steps iteratively, 1) the diffusion based cell spreading step

to even out the density distribution, 2) the wire length improvement step, which

adopts both analytical and discrete wire length improvement techniques. The initial

work of DPlace is presented in a technical report [59]. The following are a few

characteristics of our approach, which differentiates our approach from previous

analytical placement works.

• We propose a new placement framework based on, but not limited to, dif-

fusion spreading and quadratic placement. Any smooth spreading and wire

12

length optimization technique can be inserted in our framework. Most impor-

tantly, we show that it is possible to deal with the overlap removing and wire

length improvement tasks separately and achieve fairly good results. Such an

approach provides flexibility to plug in additional optimizations/constraints

that are non-trivial to integrate in conventional analytical placement frame-

work.

• The anchor cell concept is introduced as the bridge integrating different op-

timization techniques for a stable and efficient global placement, which also

significantly reduces the complexity of large scale placement. In each row

of the hessian of the quadratic formulation, the anchors inserted change the

number of non-zero entries of each row from the number of pins on the corre-

sponding net to the number of pins on the corresponding cell. Such a change

helps to speed up the linear system solver by 24 times for ISPD2005 bench-

mark suite.

• In our placement, to improve the wire length of a given placement by us-

ing quadratic formulation, we present a net weight linearization strategy that

transforms the star model [63, 84] based quadratic objective into HPWL ob-

jective exactly.

In the following, we introduce the analytical placement models in section

2.3. The details of our global placement are described in section 2.4. Section 2.5

is about the legalization and detailed placement. We give the overall algorithm in

13

section 2.6 and show the experimental results in section 6.6, which followed by the

summary in section 2.8.

2.2 Background: Force directed placement

Among existing placement works, analytical placement has been successful

in recent years and achieved impressive results on wire length, scalability and the

speed of convergence. According to the reported results of ISPD 2005 and 2006

placement contest [45, 65], most of the top ranked placers are analytical placers.

Most of existing analytical placements are force directed. A typical force

directed placement need to generate an initial placement with minimized total wire

length without considering the cell overlapping constraint, and the initial placement

solution has excessive overlap among cells. To push cells away from congestion,

in subsequent iterations, a force directed placer adds “spreading force” or density

constraints into the original wire length formulation. In force directed quadratic

placement, the density constraints are combined into the optimization objective ei-

ther by adding the spreading forces as constant force terms or by adding fixed points

to implement the spreading forces. The following section gives an overview of the

force-directed quadratic placement and the analysis of the essential concept in some

of the existing force directed quadratic placement approaches.

2.2.1 Quadratic placement

In circuit placement, a netlist is normally modeled as a hyper-graph with

each node representing an object/cell and each edge representing a net. Let xi and

14

yi denote the coordinates of each cell, Half Parameter Wire Length (HPWL) is

used as an estimation of the routed wire length. Because the equation of HPWL

is difficult to optimize mathematically, quadratic placement minimizes the square

of the length and width of the bounding box of a net, commonly referred as the

quadratic wire length.

X1 X2

P1 P2

X3 X4

P3
P4

1.0

1.0

1.0

1.0

1.0X1 X2

P1 P2

X3 X4

P3
P4

1.0

1.0

1.0

1.0

1.0

(a) A circuit with 5 nets,
4 cells, and 4 pins, one of
the nets is a 4-pin net

X1 X2

P1 P2

X3 X4

P3
P4

1.0

1.0

1.0

1.00.25

X1 X2

P1 P2

X3 X4

P3
P4

1.0

1.0

1.0

1.00.25

(b) Clique model trans-
formation

X1 X2

P1 P2

X3 X4

P3
P4

S

1.0

1.0

1.0

1.0

X1 X2

P1 P2

X3 X4

P3
P4

S

1.0

1.0

1.0

1.0

(c) Star model transfor-
mation

Figure 2.1: Transformations of the multi-pin net into multiple two-in nets. Only the
x coordinates are showed in these figures

In conventional quadratic placement [55], each multi-pin net is transformed

into multiple two pin connections with proper weights by either the clique model

in Figure 2.1(b), or the star model in Figure 2.1(c) [63, 84]. Clique model may

increase the number of non-zero entries in the connectivity matrix significantly, as

the example in Figure 2.7, which may slow down the quadratic solver. One k-pin

net will be transformed into k connections in star model, as shown in Figure 2.1(c).

The combination of the clique and star transformation is also referred as the hybid

model [84].

For a two pin net ei, j that connects cell i and j, the quadratic wire length is

15

defined as wi, j((xi−x j)2 +(yi−y j)2), where wi, j denotes the weight of net ei, j. The

quadratic placement minimizes the sum of all quadratic wire length in the circuit.

The optimization problems in x and y direction are separable and can be treated

independently. Therefore, the cost function in x direction is given by

Φ(x) =
1
2

xT Ax−bT x+ const (2.1)

Assuming there are n movable objects in the netlist. Let A denote the Hes-

sian matrix of the quadratic system, which is essentially the n by n connectivity

matrix of the netlist. A is symmetric and positive definite. x denotes the vector

of x coordinates of all cells. b is the vector encoding all connectivity information

between movable and fixed objects, and the pin offsets are captured in b as well.

The minimizer of the cost function (2.1) can be obtained by taking the gradient of

the cost function to zero, ∂(Φ(x))/∂x = 0, which is determined by the following

system of linear equations

Ax = b (2.2)

Figure 2.2 shows a simple circuit with 2 movable cells and two fixed pins.

The number associated with each net is the net weight. Cell 1 and 2 are in the force

equilibrium status in Figure 2.2, i.e. the sum of the weighted quadratic wire length

is the minimum.

2.2.2 Force-directed quadratic placement

Solving the unconstrained minimization problem in Equation (2.1) results

a placement with significant overlap among cells. A placer needs to push cells

16

0 3 6 91 2 4 5 7 8-1 11

X1 X21.0 2.0 1.0
P0 P3

4.5,6.3

9

0

32

23

21

3

0

2

1

==





=




=






−

−

xx

p

p

x

x

0 3 6 91 2 4 5 7 8-1 11

X1 X21.0 2.0 1.0
P0 P3

4.5,6.3

9

0

32

23

21

3

0

2

1

==





=




=






−

−

xx

p

p

x

x

Figure 2.2: The quadratic placement formulation of a simple circuit in the x direc-
tion. p0 and p3 are the x coordinate of the fixed pins

around to remove overlap. Some placers recursively partition the placement region

to spread cells, such as Gordian [55]. The force-directed placers add spreading

forces into the system in each solving process and reduce the overlap iteratively.

Figure 2.3 shows that cell 1 and 2 are too close to each other, a force directed placer

adds forces to push cells away from the center.

To apply spreading forces into the optimization framework, there are mainly

two types of strategy to implement the force, the constant f orce addition and the

f ixed point addition approach. In each placement iteration, Kraftwork [32] and

FDP [86] add a constant force vector f to the right hand side of Equation (2.2).

The fixed point based approach adds artificial pins and nets to move cells. mFar

[41] uses multiple fixed virtual pins for each cell in every iteration, one is used to

maintain a cell’s force equilibrium state, and others are applied to perturb the cell.

FastPlace [84] uses one fixed virtual pin for both purposes.

2.2.2.1 Constant forces

In every iteration, the force for each cell is computed to reduce the overlap.

In constant force based approach, the force vector f is added to vector b in equation

17

0 3 6 91 2 4 5 7 8-1 11

X1 X21.0 2.0 1.0
P0 P3

f1 = - 2 f2 = 2

0 3 6 91 2 4 5 7 8-1 11

X1 X21.0 2.0 1.0
P0 P3

f1 = - 2 f2 = 2

Figure 2.3: Force directed placement: adding forces to push cells out of the region
with congestion

2.2. The solution of the modified quadratic system generates a placement with

less overlap among cells. In the ith iteration, the force vectors used in 1 to i− 1th

iterations are accumulated to prevent cells collapsing back. The modified equation

with constant forces is given by

Ax = b+
i−1

∑
k=1

fk + fi (2.3)

In constant force based approach, the Hessian (connectivity matrix) is not

changed in each iteration unless the net re-weighting is involved. In such case, the

Hessian A only needs to be pre-conditioned once in the beginning, which will save

runtime as the matrix pre-conditioning is runtime expensive.

8.5,2.3

11

2

32

23

21

23

10

2

1

==




−
=




+
+

=






−

−

xx

fp

fp

x

x

0 3 6 91 2 4 5 7 8-1 11

X1 X2
P0 P3

12-2

1.0 2.0 1.0

8.5,2.3

11

2

32

23

21

23

10

2

1

==




−
=




+
+

=






−

−

xx

fp

fp

x

x

0 3 6 91 2 4 5 7 8-1 11

X1 X2
P0 P3

12-2

1.0 2.0 1.0

0 3 6 91 2 4 5 7 8-1 11

X1 X2
P0 P3

12-2

1.0 2.0 1.0

Figure 2.4: Adding the constant force on a cell is equivalent to shifting its connected
objects

The physical meaning of adding a spreading force to one cell is equivalent

to shifting its connected pins and cells. To add the spreading force in Figure 2.3, a

18

force vector is added into constant vector b in equation 2.2. To add a force vector

is equivalent to shifting the connected objects of each cell, as shown in Figure 2.4.

Pins are shifted outside of the chip, and cells may “jump” out the chip region if

the magnitude and direction of the spreading forces are not properly adjusted. This

tends to happen in the earlier placement iterations, where spreading forces are large

and the force directions are not evenly distributed. Although such a scenario is not

common in ISPD 2005 and 2006 benchmarks, where the initial density distributions

are more even due to a large amount of fixed macros, the force scaling is tricky for

placement with all movable objects, such as the ISPD02 benchmarks [43].

Because the connectivity matrix is not strictly diagonal dominant, and often

ill-conditioned, the solver of the linear system may have stability problem [86], i.e.

cells may jump around when large forces are added. FDP adds a small weight to

a portion of the diagonal terms of the Hessian and the new Kraftwerk [81] adds

weight to all diagonal terms. Such a strategy is equivalent to adding a virtual fixed

pin and net to a cell, as shown in Figure 2.5, which affects the quadratic objective

and improves the stability of the quadratic solver.





+
+

=






+−
−+

223

110

2

1

2

1

32

23

vwp

vwp

x

x

w

w

0 3 6 91 2 4 5 7 8

1.0 2.0 1.0

P0 P3

V1
V2W1 W2

X1 X2 



+
+

=






+−
−+

223

110

2

1

2

1

32

23

vwp

vwp

x

x

w

w

0 3 6 91 2 4 5 7 8

1.0 2.0 1.0

P0 P3

V1
V2W1 W2

X1 X2

Figure 2.5: An example of the fixed point addition formulation, p0, p3, v1, and v2
are the x coordinate of the fixed real and virtual pins, respectively

19

2.2.2.2 Fixed point forces

In fixed-point methods, the fixed points and nets are added to the original

system of linear equations to perturb the placement. In fixed-point based methods,

adding a virtual fixed-point connection to a cell will add a diagonal term in the cor-

responding entry of the cell in the Hessian matrix A and the term in the constant

vector b. In Figure 2.5, to add force to each cell, a virtual pin and connection are

added to each cell with proper weight, and we can see the change in the Hessian

and the constant vector in the figure. Therefore, adding a cell will make the corre-

sponding row and column strictly diagonal dominant in Hessian A, and improve the

condition number of the matrix. As a result, the fixed-point addition based method

tends to be more stable.

The fixed point addition method guarantees cells moving inside the convex

hull defined by the fixed points. If using a large weight for the virtual nets, cells

have less mobility and tend to move steadily toward force directions. However, the

added large virtual net weights may dominate the actual net connections and affect

the optimization objective. On the contrary, if using very small virtual net weights,

fixed-points will be off chip and cells may start to jump out of the boundary. In other

words, the fixed point placement starts to behave similar as the constant force ad-

dition based method. Furthermore, in fixed point based approach, the connectivity

weights will be updated in every iteration and the matrix needs to pre-conditioned

in every solving iteration.

DPlace uses a completely different strategy to spread cells, as introduced in

the following section.

20

2.3 Analytical placement model in DPlace

As mentioned earlier, two major tasks in a typical analytical placement iter-

ation are to remove cell overlaps and to reduce the wire length. The conventional

analytical placement formulates the wire length and density constraints into a math-

ematical problem. However, it is possible to address one issue at a time, which gives

the flexibility to integrate additional optimizations or constraints during the global

placement. In the proposed approach, we iteratively use diffusion to spread out

cells, and repair the wire length afterwards.

2.3.1 Diffusion spreading

In general, an analytical placement tool starts with an initial placement with

good wire length. Such an initial placement solution has excessive overlap among

cells. Force directed placer adds “spreading force” or density constraints into the

original wire length formulation to perturb the placement.

As diffusion has the advantage of smoothness in cell spreading and it pre-

serves the cell relative ordering naturally, we use diffusion to spread cell out di-

rectly. Unfortunately, wire length objective is not modeled in the diffusion formula-

tion. We then apply wire length reduction technique on the diffusion solution, such

as the quadratic placement formulation, while preserving the diffusion improved

density distribution.

In our approach, the quadratic solver is used to recover wire length increased

during the diffusion spreading.

21

2.3.2 The proposed approach

We propose to interleave diffusion with analytical and discrete wire length

minimization technique to improve the wire length, and the quadratic placement

formulation is used. Meanwhile, any smooth spreading technique and analytical

placement technique can be plugged in our two steps general placement framework.

The anchor cells are used to bridge the overlap reduction and the wire length

reduction steps. We use the nets connecting anchor cells and real cells to formulate

an unconstrained wire length minimization problem. Those nets are all “real” nets

and we do not need to use any artificial nets in our formulation.

If the placement stability is not considered, once a netlist is changed, the

placement solutions before and after the change could be completely different. In

our approach, we may add additional constraints for placement stability. For ex-

ample, we may “force” a placement to evolve in a desired way, which potentially

provides flexibility for ECO placement.

2.4 Global Placement in DPlace

Similar as other analytical placements, our placer starts with a seed place-

ment, which has a fair good initial wire length. In the beginning of each iteration,

the diffusion algorithm is called to flow cells away from congested areas.

22

2.4.1 Diffusion based placement

Diffusion in placement is driven by the density gradient, i.e. the steepness

of the density difference. Mathematically, the diffusion process is characterized by

the following differential equation.

∂dx,y(t)
∂t

= D∇2dx,y(t) (2.4)

In the context of placement, dx,y(t) is the cell density at position (x,y) at

time t. D is the diffusivity constant, which determines the speed of the diffusion

process. The discrete approximation method in [75] can be used to solve the diffu-

sion equation.

In diffusion based placement, the placement region is cut into equal size

bins. The bin density is computed as the total cell area enclosed in the bin divided

the bin area. The discrete solver we use to solve the diffusion equation evens out

the densities between neighboring bins as time proceeds.

In every global placement iteration, cells are diffused from high density area

to low density area. The diffusion based pre-placement takes k substeps, where k

is relatively small in earlier placement iterations and becomes larger in the later

iterations.

Figure 2.6 shows the diffusion based placement in circuit bigblue1 from

ISPD2005 placement benchmark suite. The bin size used is 64x64. Figure 2.6(a)

plots the initial placement seed, which is generated by the quadratic placement.

Not surprisingly, the initial placement is extremely poor on density distribution.

23

(a) Initial placement. HPWL: 6.84×107

 0
 10
 20
 30
 40
 50
 60
 70
 80

(b) Initial density map

(c) After diffusion placement. HPWL:
17.3×107

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8

(d) Smooth density distribution. However,
the center is still congested

(e) After wire length reduction. HPWL:
9.63×106

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5

(f) Better density distribution in a global
view

Figure 2.6: The diffusion and wire length reduction iteration in bigblue1(from ISPD
2005 placement benchmark suite)

24

The highest density is 80 times of the bin capacity and cells are highly congested in

the middle of the placement region. Once applying a few iterations of the diffusion

spreading, in Figure 2.6(c), we see how smoothly cells are moved and how effec-

tively the density distribution is improved. The highest density in the placement

region is reduced from 80 to less than 2 times of the bin capacity. Unfortunately,

the wire length of the diffusion solution increases from 6.84 to 17.3. Figure 2.6(e)

shows that once the wire length reduction techniques are applied, the wire length

is reduced to 9.63. Although the densities in a few bins increase, we have a better

density distribution in a global view.

The discrete diffusion algorithm is applied on a hierarchical bin structure.

Our experiments suggest that a fixed bin size from the beginning to the end do

not work well in global placement. If a small bin size is used, cells will spread

smoothly, but slowly, which affects the convergence of the algorithm. Furthermore,

as shown in Figure 2.6(e), it is difficult to reduce the density in the center area of

congestion, if the bin size is too small. We use a large bin size in the beginning

of the placement and reduce the bin size down gradually to resolve the local con-

gestions. In addition, we adjust the density gradients according to local bin density

distribution to improve the speed of convergence. i.e. let cells in highly congested

area move faster.

2.4.2 Anchor cells

To preserve the diffusion improved density distribution in the wire length

repairing step, there are several choices to prevent cells collapsing back. For exam-

25

X1

X2

P1

P2

X3

P3

X4 P4X5

















=

































−
−−−−

−−−
−−−
−−−

4

3

2

1

5

4

3

2

1

21

175.125.025.025.0

25.075.125.025.0

25.025.075.125.0

25.025.025.075.1

p

p

p

p

x

x

x

x

x

X1

X2

P1P1

P2P2

X3

P3P3

X4 P4P4X5

















=

































−
−−−−

−−−
−−−
−−−

4

3

2

1

5

4

3

2

1

21

175.125.025.025.0

25.075.125.025.0

25.025.075.125.0

25.025.025.075.1

p

p

p

p

x

x

x

x

x

Figure 2.7: The quadratic placement formulation by using clique model. For sim-
plicity, we assume the weight of each transformed two-pin net is 0.25.



















=





































−−−−
−

−−
−
−
−

4

3

2

1

5

4

3

2

1

125.025.025.025.0

21

25.0125.1

25.025.1

25.025.1

25.025.1

p

p

p

p

s

x

x

x

x

x

X1

X2

P1

P2

X3

P3

X4 P4

s
X5



















=





































−−−−
−

−−
−
−
−

4

3

2

1

5

4

3

2

1

125.025.025.025.0

21

25.0125.1

25.025.1

25.025.1

25.025.1

p

p

p

p

s

x

x

x

x

x

X1

X2

P1P1

P2P2

X3

P3P3

X4 P4P4

s
X5

Figure 2.8: The quadratic placement formulation by using star model. S is the x
coordinate of the star, which is a moveable object in the placement. For simplicity,
we assume the weight of each transformed two-pin net is 0.25. The dimension of
the Hessian matrix A is equal to the number of cells plus the number of stars

X1

X2

P1

P2

X3

P3

X4 P4

c

X5

















+
+
+

=

































−
−

4

3

2

1

5

4

3

2

1

25.0

25.0

25.0

21

125.1

25.1

25.1

25.1

p

cp

cp

cp

x

x

x

x

x

X1

X2

P1P1

P2P2

X3

P3P3

X4 P4P4

c

X5

















+
+
+

=

































−
−

4

3

2

1

5

4

3

2

1

25.0

25.0

25.0

21

125.1

25.1

25.1

25.1

p

cp

cp

cp

x

x

x

x

x

Figure 2.9: The quadratic placement formulation after the anchor cell insertion. C
is the x coordinate of the anchor cell, which is a constant. The new Hessian matrix
A is extremely sparse compared with that by using the star or clique formulation.

26

ple, we can fix a small percentage of cells, or attach some virtual cells to restrict

the movement of real cells. And then, the quadratic engine is used to pull free cells

toward a better location for improved wire length. In above scenarios, the fixed real

or virtual cells are used as anchors to control the movement of real cells, and we

name them “anchor cells”.

We can either use one anchor per cell or one anchor per net in our frame-

work. An efficient way is to use the star model to transform a portion of multi-pin

nets into two-pin connections and use the star as the anchor of real cells. Compared

with the method to use one anchor per cell, using stars as anchors will have less im-

pact to the original wire objective and imposes less constraint on cell movements.

And we can apply additional HPWL linearization technique by attaching anchor

cells to the nets, as shown in later sections.

In the hybrid model based wire length transformation, multi-pin nets are

converted into star and clique model. All stars will be added back into the Hessian

matrix A as moveable objects, which may increase the dimension of the matrix sig-

nificantly. In ISPD 2005 benchmark, by using star model with a pin threshold as 5

will increase the dimension of the matrix up to 40 percent. Under conventional for-

mulation, solving one iteration of the system of linear equations with a dimension

over 2 million will take several minutes.

Figure 2.7 shows the quadratic placement formulation of a toy circuit using

the clique model. We see how dense is the hessian by using clique transformation.

Figure 2.8 is the formulation by using the star model. The dimension of the Hessian

will increase. Unlike stars, anchor cells are fixed objects. Therefore, anchor cells

27

will not increase the dimension of the Hessian A. Most importantly, in the anchor

cell based quadratic formulation in Figure 2.9, we see that the Hessian matrix is

extremely sparse compared with that by using either the star or clique models.

Let A′ denotes the Hessian matrix in our new formulation. Anchor cells are

not movable objects, thus do not appear in A′. Matrix A′ has the dimension as the

number of movable objects in the netlist. Once cells are diffused, anchor cells are

inserted at the gravity centers of their connected cells and locked. In such a way,

anchor cells will pull free cells around in the subsequent wire length minimization.

The number of non-zero entries in marix A and A'

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11
=>
77

Matrix A

Matrix A'

Figure 2.10: The comparison of non-zero entries in all rows in the sparse matrix A
and A′

. The x-axis is the number of non-zero entries, the y-axis is the row counts. In
hessian of the quadratic formulation, each row corresponds to the connected mov-
able objects of each movable cell in the netlist. The insertion of anchor cells change
the number of non-zero entries in each row from the pin degree of the corresponding
net to the pin degree of the corresponding cell. Therefore, most of rows in matrix
A′ has only 2-3 non-zero entries. Such linear system takes very short time to solve.

Figure 2.10 shows the statistics of the number of non-zero entries in old

Hessian A and new Hessian A′ for circuit adaptec2 in ISPD 2005 benchmark. The

28

dimension of the Hessian A is 354K, while only 254K for the new Hessian A′. In

most of rows, the number of non-zero entries in A are around 3-6, and 1-2 in new

Hessian A′. Circuit bigblue4 in ISPD 2005 benchmark contains 2 million objects.

By using the quadratic solver in [73], in our experiments for bigblue4, it takes 200

seconds for pre-conditioning and 75 seconds for solving using the conventional

quadratic formulation, while only 11 seconds for preconditioning and 4 seconds for

solving using our anchor cells based formulation.

Note that the anchor cell is different from the fixed point used in mFar [41]

and FastPlace [84]. Anchor cell is the bridge connecting the overlap removing and

wire length improvement stages. Fixed point is used to add the spreading forces

back to the quadratic system and perturb the exiting placement.

2.4.3 HPWL transformation in a quadratic system

A major weakness of the quadratic wire formulation is that the quadratic

objective is an approximation of HPWL for a two pin nets. Transforming a multi-

pin net into multiple two-pin nets may enlarge the gap between HPWL and the

actual objective to optimize. To alleviate such a problem, existing techniques iter-

atively linearize the quadratic wire length objective [80][81]. Here we propose a

new liearization technique to transform the quadratic objective into HPWL exactly

in our framework, which helps to reduce the gap between quadratic wire length and

HPWL.

Assuming net e is connected with n cells, and HPWL in direction y is Le. s is

added to decompose the net e into n two-pin connections. Let li denotes the distance

29

n1

n2

n4

n3

Le

l4

l1 l3 l2

s

LsA

LsB
n1

n2

n4

n3

net e

n1

n2

n4

n3

Le

l4

l1 l3 l2

s

LsA

LsB
n1

n2

n4

n3

net e

Figure 2.11: Net weights computation. A = {n4},B = {n1,n2,n3} in this example

between s and cell i and let wi denote the weight of each two pin connection. We

assign all cells into two sets based on if the cell ni has a y coordinate large than

that of star s. As a result, we have two sets, set A = {ni : yi > ys} and set B =

{ni : yi < ys} for each star model transformation. We define the weight of each two

pin net as follows.

wi =
LsA

SAB×|yi− ys| ,∀ni ∈ A

wi =
LsB

SAB×|yi− ys| ,∀ni ∈ B

where

SAB = 0.5∑
ni

|yi− ys|

LsA = max{yi}− ys

LsB = ys−max{yi}

Le = LsA +LsB (2.5)

The anchor cell s is placed at the gravity center of all cells on net e, and SAB

is defined as the half of the sum of all distances from cell i to the star. Star s splits

30

the length Le into two parts, LsA and LsB, as shown in Figure 2.11.

In the following, we show that the above net weighting strategy transforms

the quadratic wire length objective into HPWL objective exactly.

n

∑
i=1

wi(yi− ys)2 = ∑
i∈A

(yi− ys)2×LsA

|yi− ys|×SAB
+ ∑

i∈B

(yi− ys)2×LsB

|yi− ys|×SAB

=
LsA

SAB
∑
i∈A
|yi− ys|+ LsB

SAB
∑
i∈B
|yi− ys|

= LsA +LsB = Le (2.6)

Figure 2.11 shows an example of 4-pin nets transformation.

2.4.4 Fixed blockages

Fixed blockages are obstacles to cell spreading. Modern designs may con-

tain a large number of fixed-blockages, which disrupt the cells from smooth spread-

ing. Cells are often placed on top of the fixed-blockages in initial placement, and

fixed blockages are density obstacles to prevent cells to pass over. If not properly

handled, the wire length may grow dramatically by forcing cells moving out of

blockages.

We use a contour-based density smoothing technique to alleviate the density

obstacles as shown in Figure 2.4.4. First, we identify large blockages, which are

those fixed macros with width and height larger than a certain threshold, such as

1% size of the chip size. In the beginning of the global placement, we adjust the

density on bins covered by blockages, the adjusted density distribution is contour

31

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

S 1

S 3

S 5

S 7

S 9

S 1 1

S 1 3

S 1 5

S 1 7

S 1 9

S 2 1

S 2 3

S 2 5

S 2 7

S 2 9

S 3 1

(a) Initial adjusted densities for blockages

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

S 1

S 4

S 7

S 1 0

S 1 3

S 1 6

S 1 9

S 2 2

S 2 5

S 2 8

S 3 1

(b) Blockage densities increase gradually during
the placement

Figure 2.12: Dynamic density on blockages

based. For a bin covered by a big blockage, the bin density is set to be proportional

to the distance of the bin to the blockage boundary. Therefore the highest density is

in the bin lying in the middle of the blockage.

In the earlier stages of the global placement, the adjusted fixed blockage

density is set to a very small value to allow cells to flow over. As the cells spreading

stabilizes, the adjusted density increases gradually. The density in the middle of

the fixed blockage rises to push overlapping cells out of blockages smoothly. The

diffusion based pre-placement pushes cells over blockage easily according to the

adjusted density distribution.

2.4.5 Wire length improvement heuristics

Beside the core techniques proposed above, there are more issues that will

affect the final wire length quality. Pushing cells away from a region of congestion

often contradicts with wire length optimization objective. Furthermore, Equation

2.2 optimizes the quadratic wire length, which is an indirect estimation of the linear

wire length. The discrepancy between the quadratic approximation and HPWL is

32

(a) Initial placement. HPWL: 209×106

(b) After re-ordering. HPWL: 160×106

Figure 2.13: Improve the initial ordering of the placement

33

magnified in large-scale benchmarks, such as the ISPD2005 benchmarks, which

contains a large amount of fixed macros. Figure 2.13(a) is the initial quadratic

solution for circuit adaptec4. Without cell spreading, the unconstrained quadratic

optimizer generates a solution of 2.09x107 in HPWL, which is already worse than

the final solution in Figure 2.13(b).

In quadratic placement, the wire length improving heuristics are crucial for

the final HPWL results. The poor initial wire length implies that the initial order-

ing among cells are not ideal for HPWL, we interleave the medium improvement

heuristic [86] and the anchor insertion based technique to generate a better initial

cell ordering.

During the placement, wire length improving heuristics are employed be-

tween each iteration, which strongly affect the quality of the final HPWL. In DPlace,

the quadratic optimization step is very fast and most of the CPU time is on wire

length improving heuristics. In our experiments, the medium improvement heuris-

tics used in FDP [86] was found effective in the earlier stages of the global place-

ment. However, the medium improvement heuristic tends to create a lot of overlap

in later iterations. The iterative local refinement technique [84] was found effective

during the later spreading stages. At the point cells stop to spread, iterative local

refinment can also be tuned to improve the density distributions. We use the itera-

tive local refinement [84] to improve the density distribution and further reduce the

wire length during the later stages of global placement.

34

2.5 Legalization and detailed placement

Legalization and detailed placement are non-trivial for the final wire length

quality of the placer. Before legalization, we divide the placement region into reg-

ular bin structures and analyze the density overflow in each bin. We swap cells out

of the overflowed bins and swap cells between bins if such a swap helps to further

reducing the wire length. Once the bin density overflow is below a threshold, we

run a Tetris [40] like legalization flow. We first legalize all movable macros such

that no overlap exist between macros. Blockages/macros will split the placement

region into row segments. We identify all row segments, sort cells and pack cells

into the closet row segment with the minimum cost.

In this work, we use the FastDP [72] as the detailed placement engine to

improve the wire length further.

2.6 Overall algorithm

The overall algorithm of our placer is summarized in Algorithm 1. In every

global placement iteration, cells are diffused to reach a specified density distribu-

tion, and the anchor cell based wire length optimization is performed m times to

reduce the wire length. The larger m, the shorter the wire length, and the worse the

density distribution. Therefore, m is less than 3. We legalize the placement before

using FastDP as the detailed placement for final wire length improvement.

35

Algorithm 1 The Overall Algorithm
1: The global placement
2: Build matrix A, and matrix A′
3: Generate an initial quadratic placement with matrix A
4: Improve the initial cell ordering A
5: Repeat
6: Do diffusion based placement for k iterations
7: Do m iterations
8: Generate anchor cells and lock them at the gravity centers
9: Compute HPWL net weights, update A′x = b

10: Solve x = A′−1b
11: end
12: if (In first a few iterations)
13: Use medium improvement heuristic to repair wire length
14: else if (Cells are roughly spread)
15: Use iterative local refinement to repair wire length
16: Until (reaches a desired density distribution)
17: Further diffuse cells to remove remaining overlap
18: The legalization
19: Legalize the macros, then legalize the standard cells
20: The detailed placement
21: Use FastDP [72] as the detail placer

Table 2.1: Statistics on new Hessian A′ and the Hessian A for conventional formu-
lation, and the quadratic solver runtime comparisons

Matrix A Matrix A′ Solver
Size Entries Precon Solve Size Entries Precon Solve speedup

adaptec1 243K 196K 15.85 4.65 211K 430K 0.53 0.19 24.5x
adaptec2 355K 2099K 25.61 7.38 254K 557K 0.90 0.30 24.6x
adaptec3 674K 3713K 38.18 15.61 494K 1131K 1.74 0.58 26.9x
adaptec4 508K 3676K 38.42 15.51 451K 997K 1.97 0.49 31.7x
bigblue1 392K 2287K 29.78 6.87 278K 603K 1.16 0.36 19.1x
bigblue2 729K 3937K 47.79 22.78 535K 1178K 2.29 0.82 27.8x
bigblue3 1389K 7290K 103.93 39.32 1096K 2714K 4.54 1.70 23.1x
bigblue4 2831K 16850K 221.47 75.70 2169K 5190K 10.66 3.91 19.4x
avg 24.6x

36

Table 2.2: Wire length and runtime comparison with FastPlace3.0, mPL6,
Capo10.2, and APlace2.0 on ISPD2005 benchmark

HPWL ×106 Runtime(s)
D+F FP3 mPL Capo APlace D+F FP3 mPL Capo Aplace

adapt1 78.534 1.011 0.991 1.162 1.001 606 0.69 5.13 10.46 14.99
adapt2 89.415 1.041 1.031 1.124 1.072 842 0.74 3.56 8.93 14.49
adapt3 221.817 0.982 0.962 1.031 0.982 1874 0.82 3.12 5.50 9.68
adapt4 198.506 1.014 0.974 1.045 1.055 1628 0.81 4.68 7.97 17.39
bigbl1 95.339 1.004 1.014 1.144 1.054 903 0.75 4.08 9.98 12.69
bigbl2 160.149 0.962 0.943 1.011 0.953 4656 0.43 2.93 4.99 7.52
bigbl3 363.073 1.046 0.952 1.099 1.130 5409 0.71 1.94 7.01 6.95
bigbl4 869.804 0.958 0.958 1.111 1.005 14026 0.41 1.72 5.61 6.85
Avg 1 1.002 0.978 1.091 1.031 1 0.67x 3.40x 7.56x 11.32x

Table 2.3: Wire length (×106) comparison with other placers in ISPD 2005 place-
ment contest

Placers adapt1 adapt2 adapt3 adapt4 bigbl1 bigbl2 bigbl3 bigbl4 ratio
DP+FD 78.53 89.41 221.82 198.51 95.34 161.15 363.07 869.80 1.034
Aplace 79.50 87.31 218.00 187.65 94.64 143.82 357.89 833.21 1.00
mFAR - 91.53 - 190.84 97.70 168.70 379.95 876.28 1.06
dragon - 94.72 - 200.88 102.39 159.71 380.45 903.96 1.08
mPL - 97.11 - 200.94 98.31 173.22 369.66 904.19 1.09

FastPlace - 107.86 - 204.48 101.56 169.89 458.49 889.87 1.16
Capo - 99.71 - 211.25 108.21 172.30 382.83 1098.76 1.17
NTUP - 100.31 - 206.45 106.54 190.66 411.81 1154.15 1.21
fs50 - 122.89 - 337.22 114.57 285.43 471.15 1040.05 1.50
K&D - 157.65 - 352.01 149.44 322.22 656.19 1403.79 1.84

37

2.7 Experiments

We implement our placer in C++ and run the experiments on a Linux ma-

chine with 3.4 GHz 64-bit Xeon processors and 8G memory. We used the Hybrid

solver [73] as our quadratic system solver, and the FastDP [72] as the detailed placer

to further improve the wire length. Our current focus is to obtain a good wire length

efficiently. We give the wire length and runtime results on ISPD 2005 benchmarks

[66].

The anchor cell based formulation in DPlace gives significant advantage on

the solving speed of the quadratic solver. Table 6.5 shows the statistics of the new

Hessian matrix A′ used in our placer, versus the Hessian matrix A in conventional

formulation. Column Size shows the dimension of the Hessian, and column Entries

shows the non-zero entries in the Hessian. Column Precon. shows the CPU time to

preconditioning each Hessian matrix. Same preconditioning quality targets are used

for the comparison. Column Solve shows the CPU time to solve one iteration of the

quadratic system. Comparing with the conventional Hessian A, the new Hessian A′

is about 30% smaller on the dimension of the matrix. Furthermore, because A′ is

extremely sparse (Figure 2.10 and Table 6.5), the runtime to precondition and solve

the new quadratic system are improved significantly. The quadratic solver achieved

a 24x times speed up on solving time.

In Table 2.2, we compare DPlace with some of state of art academic placers,

including the FastPlace3.0[85], mPL6 [18, 17], Capo10.2 [77] and APlace2.0 [53,

48] on the ISPD 2005 placement benchmark. Our placer and FastPlace3.0 are tested

on the same machine and compared directly. The HPWL and runtime of mPL6,

38

Cap10.2 and APlace2.0 are derived from the FastPlace3.0 paper [85], in which

they are directly compared with that of FastPlace3.0. Although not as accurate as

running all placers on the same machine, we can still roughly compare the relative

runtimes among all placers. For ISPD 2005 benchmark suite, the average HPWL

result of DPlace (using the FastDP as the detailed placer) is 0.2% better than that of

FastPlace3.0, and DPlace wins 5 out of 8 circuits. The average HPWL of DPlace

is 2.2% higher than mPL6, 9.1% and 3.1% better than Capo10.2 and APlace2.0

respectively. The total runtime of DP+FD is about 33% longer than FastPlace3.0,

3.4 times faster than mPL6, 7.56 times faster than Capo10.2 and 11.32 times faster

than APlace2.0.

We compare the HPWL results of DPlace with that of other placers in ISPD

2005 placement contest in Table 2.3. It is to be noted that the results in Table 2.3

were the best possible results generated by each placer, with no runtime limitation,

for the ISPD 2005 placement contest. The ISPD2005 results of APlace1.0 are 3.4%

better than our placer on average. However, the total runtime of APlace1.0 to finish

all circuits are much longer, 113.2 hours for 6 circuits, on a 1.6GHz computer [48],

compared with 8.3 hours for 8 circuits in our case, on a 3.4GHz computer. Other

than Aplace, DPlace generates the best results among all other placers for their

ISPD2005 placement contest versions.

2.8 Summary

In this chapter, we present DPlace, a new analytical placement tool for large

scale placement. DPlace is based on the diffusion placement technique to spread

39

cells smoothly, which generates a golden placement for improved density distribu-

tion. Then DPlace uses the anchor cells based formulation as well as wire length

improvement heuristics to reduce the wire length.

In the wire length reduction stage of DPlace, the Hessian matrix of the an-

chor cells based quadratic formulation is extremely sparse. In our framework, since

it is possible to affix explicit cell movement control in the diffusion stage, our new

formulation has the potential advantages for ECO and timing driven placement, in

which precise cell movement control is required. By using the FastDP as the de-

tailed placement, the HPWL results DPlace are the best among published quadratic

placement works, and close to the best reported results on ISPD 2005 placement

benchmark suite. Also, the runtime of DPlace is much better than most of state-of-

art placers.

40

Chapter 3

Computational Geometry Based Placement Migration

3.1 Introduction

The nature of a physical synthesis flow is highly iterative, and the global

placement is never a complete solution for design closure. In modern placement

and physical synthesis of VLSI circuits, one is increasingly faced with the place-

ment migration problem, which is to take an existing placement, fix some design

violations and re-legalize it. For example, during physical synthesis or Engineering

Change Order (ECO) optimization, many buffers may be inserted and gates resized,

creating a lot of overlapping cells. These cells need to be legalized, but one should

avoid disturbing the previous placement too much to achieve design convergence.

Also another example, post routing congestion analysis may identify severe hot

spots (e.g., congestion, noise, power, thermal), and placement migration is needed

to smoothly spread out cells in these hot spots [74]. Due to the complexity of mod-

ern nanometer designs, it is unlikely to design one placement algorithm that meets

the multi-objective design closure target in a single run. More often, a placement

flow involves multiple placement-improvement iterations. So a stable placement

migration algorithm is crucial for the multi-objective design closure.

These tasks share a common theme of starting with an initial placement that

41

is “good” and perturbing it so that it is improved in some way while still preserving

the essential characteristics (cell ordering, wirelength, etc.) of the original place-

ment. Ideally, the later placement iteration should be able to preserve previous fixes

and accumulate additional improvements to achieve the design closure. Therefore,

the stability of the placement algorithm is very important. Obviously, we do not

want each placement iteration generates entirely different result and destroys all

previous optimization efforts.

Among various placement migration applications, legalization is probably

the most common one. Therefore, the remainder of the paper will discuss our place-

ment migration algorithm in this context. Existing legalization techniques for le-

galization include network flow [57, 13], dynamic programming [1, 52], heuristic

ripple cell movement [42], and single row optimization [49, 14]. The network flow

approach [13] uses minimum cost flows to minimize the weighted sum of (squared)

cell movements. The dynamic programming based approach [1] solves the opti-

mal assignment of cells to placement sites under the constraint of cell ordering.

Mongrel [42] uses a greedy heuristic to move cells from overflowed bins to under

capacity bins in a ripple fashion based on total wire length (TWL) gain. The single

row optimization techniques [49, 14] use dynamic programming to optimally place

cells in a single circuit row.

While there are many existing legalization algorithms, there are very few

works directly targeting incremental and stable placement migration.In this chapter,

we develop a novel technique for stable placement migration based on the compu-

tational geometry. We also propose a new placement stability metric which can

42

be used to measure the placement migration stability. Our algorithm has two key

steps: bin-based cell spreading and Delaunay triangulation based overlap reduction.

The algorithm takes advantage of the computational geometry property of the ex-

isting placement. Thus it captures the relative cell order nicely during placement

migration. Our experimental results compared to other widely used legalization al-

gorithms clearly demonstrate the superiority of our algorithm, with over 10% wire

length reduction and significantly better stability score.

The rest of the chapter is organized as follows. Section 3.2 presents the bin

based spreading algorithm. Section 3.3 presents the Delaunay based overlap reduc-

tion procedure. The complete computational geometry based legalization algorithm

is given in section 3.4. Section 3.5 proposes a new placement stability metric suit-

able for placement migration. Very promising experimental results are obtained in

section 3.6, followed by summary in section 3.7.

3.2 Bin Based Spreading

A placement is close to legal if all that is required to legalize the placement

is to snap cells to rows or perhaps perform minor cell sliding in order to fit the

cells. Assuming the chip layout is divided into equal sized bins, the placement is

considered close to legal if the area density of every bin is less than or equal to Dmax

(e.g., Dmax = 1). For all bins with density greater than Dmax, cells must be migrated

to other bins. Therefore the goal of our migration algorithm is to reduce the density

of each bin to no more than Dmax while avoiding moving these cells far from their

original locations thus preserving the original placement characteristics.

43

Bin based spreading is a geometric approach to evenly reduce cell density

on the congested regions. Suppose we divide the entire placement region into K*L

square bins, there will be (K +1)*(L+1) bin corners. The idea is to move those bin

corners such that the resulting bin capacity would satisfy the density constraints,

and then move cells accordingly. By stretching the bin corners, we preserve the

relative order of neighboring bins; meanwhile by interpolating cells relative to its

bin corners, we preserve the relative order of cells inside the bin. We perform

the bin stretching and cell interpolation iteratively until all the bins are under the

maximum density Dmax.

3.2.1 Bin Stretching

At each iteration, we first compute the bin density Dk,l(n) (the nth iteration),

then compute the amount of stretching needed for each bin. For those overpopu-

lated bins, the idea is to expand that bin such that the density of the new bin is

equal to Dmax. At the same time, to accelerate the spreading process, we allow the

adjacent bins to shrink such that their densities equal to Dmax as well. The amount

of stretching for bin (k, l) on both horizontal and vertical directions can be written

as:

εx
k,l = (

√
Dk,l(n)
Dmax

−1)W

εy
k,l = (

√
Dk,l(n)
Dmax

−1)H (3.1)

where W and H are the bin width and height, respectively.

Stretching each bin itself would generate overlaps between adjacent bins.

44

Therefore we stretch the bin corners of adjacent bins instead of bins itself. Let

(px
k,l(n), py

k,l(n)) denotes the coordinates of an inner bin corner, which is shared by

four neighboring bins, denoted as (k− 1, l− 1), (k− 1, l),(k, l− 1), and (k, l). We

can use (3.1) to compute the amount of horizontal and vertical stretching needed

for each one of the four bins, which will give us four stretched corner positions, and

then compute the combined number of these four as the corner position for next

iteration, (px
k,l(n+1), py

k,l(n+1)),

px
k,l(n+1) = px

k,l(n)+0.5(εx
k−1,l−1 + εx

k−1,l− εx
k,l−1− εx

k,l)

py
k,l(n+1) = py

k,l(n)+0.5(εy
k−1,l−1 + εy

k,l−1− εy
k−1,l− εy

k,l) (3.2)

Because the stretching is uniform on both bin corners on the same bin edge, we

only take half the stretching value given by (3.1). If any neighboring bin is on the

chip boundary, we take the 0.5 factor off.

B3,4 B4,4

B3,3 B4,3

p4,4 (n)
B3,4 B4,4

B3,3 B4,3

p4,4 (n+1)B3,4 B4,4

B3,3 B4,3

p4,4 (n)
B3,4 B4,4

B3,3 B4,3

p4,4 (n+1)

Figure 3.1: Illustration of bin and corner stretching

Figure 3.1 is an illustration of the movement of the corner point p4,4 under

accumulated stretching from all four surrounding bins. Bin (3,3), (4,3), and (4,4)

are over the maximum density, therefore we expand them, while bin (3,4) is under

the maximum density, thus we compact it. We will have four new corner positions

of this corner for each bin. Such process is iterated as needed. After computing

45

coordinates of all points, cells inside the bin will move within the distorted bin as

explained in next section.

3.2.2 Cell Interpolation

βx(n+1),y(n+1)

pk-1,l-1(n+1)

pk-1,l(n+1)

pk,l(n+1)

pk,l-1(n+1)

α

β
x(n),y(n)

pk-1,l-1(n)

pk-1,l(n) pk,l(n)

pk,l-1(n)

α

βx(n+1),y(n+1)

pk-1,l-1(n+1)

pk-1,l(n+1)

pk,l(n+1)

pk,l-1(n+1)

α

β
x(n),y(n)

pk-1,l-1(n)

pk-1,l(n) pk,l(n)

pk,l-1(n)

α

Figure 3.2: Cell location interpolation on stretched bin

The computation of new cell coordinates is a linear interpolation process,

which maps all cells from the original bin into the new bin at the same relative

positions. As shown in Figure 3.2, the four corner coordinates of the bin are

pk−1,l−1(n), pk,l−1(n), pk−1,l(n), and pk,l(n) . Their coordinates after bin stretch-

ing are: pk−1,l−1(n + 1), pk,l−1(n + 1), pk−1,l(n + 1), and pk,l(n + 1). For a cell

(x(n),y(n)) within the bin, the new coordinates x(n + 1) and y(n + 1) can be com-

puted by the following equations.

x(n+1) = γx +β(ξx− γx)

y(n+1) = γy +α(ξy− γy) (3.3)

46

where

α =
x(n)− px

k−1,l−1(n)

px
k,l−1(n)− px

k−1,l−1(n)

β =
y(n)− py

k−1,l−1(n)

py
k−1,l(n)− py

k−1,l−1(n)
γx = px

k−1,l−1(n+1)+α(px
k,l−1(n+1)− px

k−1,l−1(n+1))

ξx = px
k−1,l(n+1)+α(px

k,l(n+1)− px
k−1,l(n+1))

γy = py
k−1,l−1(n+1)+β(py

k−1,l(n+1)− py
k−1,l−1(n+1))

ξy = py
k,l−1(n+1)+β(py

k,l(n+1)− py
k,l−1(n+1))

(3.4)

3.2.3 Bin Based Spreading Algorithm

At each iteration of the bin based spreading algorithm, it first stretches the

bin corner to make congested bin larger, then interpolates cell locations accordingly.

It then restores all the bin boundary and starts an new iteration. The new iteration

recomputes the bin density and repeats all above procedures. The process stops

once that all the bin densities are lower than the maximum density Dmax.

To avoid over expansion in non-congested region, we only change the bin

corners of those bins above Dmax during bin stretching. It assures that cells are

pushed from high density area to low density area steadily and smoothly. It also

reduces unnecessary oscillation and computations.

The stability of the migration process is affected by the bin size (area) as

well. The ideal initial bin size is depending on the size of the circuits. If the bin

47

size is too large, the internal density distribution inside the bin might still violate

the density constraints even if the bin as a whole is under Dmax. However, if the bin

size is too small, oscillation will appear and bin boundary distortion may impact

the smoothness of spreading. We may see cells tend to cluster in some areas. This

problem is solved by a hierarchical addition to our original formulation. The idea

is straightforward. It uses big bin sizes from at the beginning, then recursively

cuts big bins into smaller bins, and adjusts the internal density distribution. The

hierarchical technique is necessary to handle fixed macros. At the time the bin

size is smaller enough, bin edges be close to macro boundaries. Cells will move

along the boundary, they will not move toward the macros. The complete bin based

spreading algorithm is given by Algorithm 2.

Note that our approach is different from the grid warping [88] and cell shift-

ing [84]. At each partition step, grid warping slices the region into 2 x 2 or 4 x 4

equal “volume” quadrilateral grids, transforming the grid (and cells) back to equal

shape rectangles to form the subproblems. The elastic grids in grid warping are the

equivalence to Gordian’s min-cut partition [55], both purpose is for partition, while

our bins are used for spreading directly. We reshape each bin individually at each

step and rely on iterations to flow cells out eventually. The cell shifting [84] tech-

nique is an one dimensional greedy shifting, which is used to generate the spreading

forces for the global placer. It is the quadratic solver that does the actual spreading;

while our approach is a two dimensional approach, and it spreads out cells directly.

48

Algorithm 2 Computational Geometry Bin Based Spreading
1: Procedure: BIN
2: Input: cell placement xi,yi, bin area AB = W ·H, maximum bin density Dmax
3: Output: new placement x̂i, ŷi
4: begin
5: Initialize bin density Dk,l;
6: if AB is too small then return;
7: while any Dk,l > Dmax
8: for each bin with Dk,l > Dmax
9: Compute bin expansion εx

k,l , εy
k,l with (3.1);

10: end for
11: Compute bin corner pk,l(n+1) with (3.2);
12: Interpolate cell locations xi(n+1),yi(n+1) with (3.3);
13: Restore all bin corners, update Dk,l;
14: n = n+1;
15: end while
16: Update x̂i = xi(n), ŷi = yi(n);
17: Reduce bin area AB = AB/2;
18: Recursively call BIN(x̂i, ŷi, AB, Dmax);
19: end

3.3 Delaunay Triangle Based Overlapping Removing

Bin based spreading is good for coarse level spreading. However, to fur-

ther remove overlapping between cells, we need to use more fine-grained migration

techniques. In this section, we will present the Delaunay triangulation based algo-

rithm to effectively remove cell overlap while preserving placement stability.

3.3.1 Delaunay Triangulation

The Delaunay triangulation is the dual of the Voronoi diagram – one of the

most fundamental data structures in computational geometry [36]. The Voronoi

diagram for a collection of geometric objects is a partition of space such that each

49

of them consists of the points closer to one particular object than to any others. It

contains a straight-line edge connecting two sites in the plane if and only if their

Voronoi regions share a common edge. The Delaunay triangle edges of an object

essentially captures its relative proximity relationship with other objects.

Figure 3.3 shows an example of the Voronoi diagram and its corresponding

Delaunay triangulation. For a given VLSI placement to be migrated smoothly to

another solution due to legalization need, congestion or noise mitigation, we can

compute the Delaunay triangulation for all cells efficiently. Based on this Delaunay

triangulation that captures the “preferred” proximity relationships among all fixed

and placeable objects, we can perform stable placement migration, to spread cells

smoothly from congested area, as illustrated in Figure 3.3.

Voronoi edge

Delaunay
triangle

Congested
Voronoi edge

Delaunay
triangle

Congested

Figure 3.3: Delaunay triangulation captures the relative order, which can be used to
spread cells during placement.

Delaunay triangulation is an important topic in computational geometry and

has wide applications in varies field, such as visualization, finite element analysis,

and discrete wireless networks. There are quite a few mature Delaunay triangulation

50

algorithms developed, with the computational complexity ranges from O(nlogn)

to O(n2). The reader is referred to [36] for a comprehensive survey of Delaunay

triangulation and Voronoi diagram.

Given a placement, we can construct the Delaunay triangulation of all the

cells using its center locations as triangle nodes. Then the placement plane becomes

a planar graph G = (V,E), with V = {v1,v2, ...,vn} corresponding cells and E =

{e1,e2, ...em} triangle edges. The boundary of the graph are fixed pads. We only

move non-boundary or non-fixed cells. Figureo 3.4 shows a Delaunay triangulated

placement region.

Figure 3.4: Delaunay triangulation of a placement region

3.3.2 Fine-grain Overlapping Reduction

Because Delaunay triangulation helps to identify all close neighbors of one

cell, such detailed information is valuable for fine-grain adjustments. We use the

Delaunay triangulation to do further cell spreading, where the bin based spreading is

51

not applicable. The Delaunay triangulation based cell overlapping reduction works

as follows.

To iterate through cells in the placement order, we build a tree structure

on the delaunay triangulated placement. One cell in the center of the placement

is selected as the tree root, and all cells connecting to the root by Delaunay edges

are added into the tree as the second level tree nodes. Then all cells connecting to

second level nodes are added as the third level tree nodes. Note that one cell may

connect to two second level tree nodes by Delaunay edges. The cell is added to

one tree node as the child only. The criteria of where to add the cell is to keep the

number of child of each tree node balanced. Similarly, the tree keeps growing until

all cells in the placement are added. Figure 3.5 illustrats the steps to build the tree

on a delaunay triangulated region. Cells with the same color are tree node the same

level.

……
Figure 3.5: Tree structure for Delaunay edge traversing

Starts from the root, the algorithm traverses the tree in breadth-first manner.

For every tree node - cell i, all Delaunay edges connecting cell i with the same

52

or next level nodes are inspected. Let ei, j be the Delaunay edge between cell i

and cell j. From the Delaunay triangle properties, we know that i and j are the

nearest neighbor to each other. If cell i does not overlap with cell j, we do nothing

and move on to the next Delaunay triangle edge. If cell i overlaps with cell j, the

overlap distances on x and y directions are measured and cells will be pushed away

accordingly. Let 4x
i, j and 4y

i, j be the x and y direction overlapping between i and

j, respectively. If 4x
i, j >4y

i, j, a repelling force is generated between cell i and cell

j on x direction. We try to make minimum movement to remove the overlapping.

So the force is inversely proportional to the cell sizes with weight to push the cell

away from congestion. Let f x
i−> j denote the repelling force from cell i to cell j.

f x
i−> j =4x

i, j
w j

wi +w j
(3.5)

where wi and w j are the widths of cells i and j. If 4x
i, j <4y

i, j, the fource will be in

the y-direction, i.e.,

f y
i−> j =4x

i, j
h j

hi +h j
(3.6)

where hi and h j are the heights of cells i and j.

If a movable cell i is connected with multiple neighbors by Delaunay edges,

the total force Fx
i on celli is the superposition of all overlapped neighboring cells

Fx
i = ∑

j∈Neighbor(i)
f x

j−>i (3.7)

where Neighbor(i) denotes the set of cells overlapped with cell i.

53

Figure 3.6 is an example to illustrate how forces are added to the overlap-

ping cells. As shown in Figure 3.6, assume cell A, B, C are within one Delaunay

triangle. We can see that B and C are overlapped, and the overlapping in x direc-

tion is smaller, i.e. 4x
B,C < 4y

B,C. Then the y-directional force f y
B−>C and f y

C−>B

will be applied on cells C and B, respectively. In the case that a cell overlaps with

many surrounding neighbors, the total force tends to cancel each other. This usually

happens at the center of congested area, and we can set certain density threshold to

avoid redundant computation. The cells close to whitespace will move first and pull

cells inside congested areas out smoothly. ∆Y
BC

∆X
BC

A B

C

eB,CeA,C

eA,B B

C

eB,C

fC� B

fB� C

Repelling forces between cell B and C

∆Y
BC

∆X
BC

A B

C

eB,CeA,C

eA,B B

C

eB,C

fC� B

fB� C

Repelling forces between cell B and C

Figure 3.6: Delaunay force to reduce overlapping

The Delaunay triangulation based overlapping reduction process is outlined

in Algorithm 3.

3.4 Computational Geometry based Legalization

Our algorithm consists of two major steps: bin based spreading and De-

launey Triangle based overlap reduction. As described earlier, bin based spreading

54

Algorithm 3 Delaunay Based Overlapping Reduction
1: Procedure: DELT
2: Input: cell placement xi,yi
3: Output: new placement x̂i, ŷi
4: begin
5: while stopping criteria is not satisfied
6: if redo Delaunay condition is satisfied then
7: T = {V,E} ← (xi,yi)
8: end if
9: BFS (T)

10: for each edges ei, j connect with celli
11: check connected cells i and j
12: if i does not overlap with j then continue;
13: if 4x

i, j <4y
i, j

14: compute f x
i→ j

15: else
16: compute f y

i→ j
17: end if
18: for each cell i in T
19: move all cells on force
20: end BFS
21: sum up forces and update coordinates of cell
22: end for
23: end while
24: end

reduces the bin density overflow quickly at coarse level, and the Delaunay Trian-

gle based overlap reduction step works at fine-gained level to reduce the overlap

between adjacent cells. After bin based spreading and Delaunay Triangle based

overlap reduction, the placement should have a max density of Dmax and is roughly

legal. We will run a final legalization step to put cells onto circuit rows without

overlap,which takes very small effort since the density constraint is satisfied at fine

granularity level. The emphasis is to study the impact of our computational ge-

55

ometry placement migration algorithms comparing with other methods, such as the

greedy and the flow, thus we just use a standard legalizer to generate the final legal

placement. In fact, it is almost trivial after our migration. The complete computa-

tional geometry based legalization (CGL) algorithm is given in Algorithm 4). Note

that the combined bin based spreading and Delauney Triangle algorithm gives the

best result. For comparison purpose, we test the bin based spreading algorithm

alone for legalization. It is referred to as CGLB.

Algorithm 4 Computational Geometry Legalization Algorithm
1: Procedure: CGL
2: Input: A cell placement xi,yi
3: Output: A new placement x̂i, ŷi
4: Parameters: Initial bin area: AB, max bin density Dmax
5: begin
6: Call bin based spreading algorithm (Algorithm 2):
7: (x̂i, ŷi)= BIN(xi, yi, AB, Dmax);
8: Call Delauney Triangle based algorithm (Algorithm 3):
9: (x̂i, ŷi)=DELT(x̂i, ŷi);

10: Put cell onto circuit row and remove remaining overlaps;
11: return x̂i, ŷi
12: end

3.5 Geometric Placement Stability Metrics

During placement migration one often needs to compare the difference of

the original (golden) placement with a new placement generated by placement mi-

gration. It can be measured by the placement stability metrics. In the existing

literature [8], two placement stability metrics are used: one measures the average

cell movement between two placements, and the other measures the change of net

56

clusters. During placement migration, however, it is possible that a large number

of cells are shifted, all with a small amount. Thus all nets between cells have very

small changes (like in our Delaunay triangulation spreading). For such scenario,

the absolute cell movement metric is not a good metric [8]. The net cluster met-

ric [8] is good to capture global placement stability where one big cluster can be

moved to another part of the chip. But it is not very suitable for placement migra-

tion applications where most changes are small. During placement migration, it is

desired to keep the relative geometric order and punish the most disruptive changes.

Therefore we propose the following geometric stability metric.

Figure 3.7: Relative distance of cell i.

Suppose we are given two placements: a golden placement A and a new

placement B generated by placement migration. Our idea is to measure the change

of cell placement relative to its neighboring cells and sum up the most significant

changes to capture the difference of these two placements. Both placements have

57

the same number of cells. The coordinates of cell i are (xi,yi) and (x̂i, ŷi) for place-

ment A and B, respectively. We select a group of cells adjacent to cell i in placement

A, and compute the geometric centers (GC) of this group in both placement A and

B as (xGC
i ,yGC

i) and (x̂GC
i , ŷGC

i) as follows.

xGC
i =

max(x j)+min(x j)
2

yGC
i =

max(y j)+min(y j)
2

x̂GC
i =

max(x̂ j)+min(x̂ j)
2

ŷGC
i =

max(ŷ j)+min(ŷ j)
2

(3.8)

where j refers to cells within a certain Euclidian distance to cell i in placement

A. We can then define the relative movement of a cell i from placement A to B as

the squared Euclidian distance of the relative positions of cell i to (xGC
i ,yGC

i)and

(x̂GC
i , ŷGC

i), as shown in following equation:

Ri = [(x̂i− x̂GC
i)− (xi− xGC

i]2 +[(ŷi− ŷGC
i)− (yi− yGC

i)]2 (3.9)

The new placement stability metric Ri for each cell i essentially captures

the relative change w.r.t. to its geometric neighborhood. Figure 3.7 shows two

placements of cell i and its adjacent cells in the left placement, assuming the left

placement is the original placement and the right one is after placement migration.

Suppose originally cell i is placed at (4,8) and the geometric center of its adjacent

cells is at (6,6). After placement migration, cell i is moved to (4,6) while all of its

original neighbors are shifted to upper right corner with a center at (18,20). The

relative positions of cell i to the center of its adjacent cells are shown as vectors

58

in Figure 3.7. Although the absolute location of cell i does not change much, the

relative distance actually changes a lot, Ri = [(4− 18)− (4− 6)]2 + [(6− 20)−
(8−6)]2 = 400 as given by Eqn. (3.9), which can not be captured by the absolute

cell movement between both placements. Note that we use squared distance to

emphasize the impact of larger moves, since wiring delay is a quadratic function of

wirelength. Larger moves will have higher possibility to degrade the overall timing

closure.

Naively one may sum up Ri for all cells to measure the total geometric

stability. However, it is the most disruptive changes of the relative order that have

the biggest impact on the placement migration quality. Therefore, we set some filter

and only count the top percent of cells in terms of Ri, e.g., top 1% cells. So, the

overall geometry stability metric SG can be written as

SG =
∑ j∈C1% R j

N
(3.10)

where C1% is the set of top 1% cells with the largest R j values and N is the number

of cells in C1%. Bigger SG value means placement B is less similar to the original

placement A, and more cells are placed away from their original affinity logics, thus

more vulnerable to performance degradation.

3.6 Experimental Results

We implemented the computational geometry placement migration algo-

rithms in C++ on a 3.4 GHZ Xeon Linux box, and use the modified ISPD02 bench-

mark [44] to test it. All the testcases of this benchmark place cells with equal den-

59

sity (95%) over the entire chip. To make it similar to the real industry placement

after physical synthesis, we first linearly scale down each cell such that the entire

chip density for each testcase is reduced to 80%. We then run a detailed placement

algorithm to reduce the wirelength. After that, the placement is no longer equally

distributed. To test the legalization algorithm, we generate the overlaps by expand-

ing cells in the center of the chip. We linearly expand 15% of cells in the center

by 67%. So after expansion, the overall chip density is increased to 90% and this

original placement is no longer legal.

We compare the computational geometry based legalizer (CGL and CGLB)

to an industry greedy legalizer (GRDY) which uses slide-and-spiral techniques to

place cells onto their nearest legal locations and to an industry network flow legal-

izer (FLW) which uses min-cost flow algorithm to direct cell movements. FLW

is an industrial strength legalizer similar to [13]: first, cells are roughly spread out

by the min-cost flow algorithm; then, they are moved to their final positions such

that all overlaps are removed. GRDY sorts all the cells and place them sequentially.

It first tries to place a cell at the original location. If that location is occupied, it

performs a spiral search starting from the original location. During a spiral search,

it could slide other placed cells a little bit in order to fit in.

The CGS and CGSB experiments in Table 3.1 were tested on a 3.4 GHZ

Xeon Linux box. Table 3.1 reports the TWL, stability and CPU time results of

these legalizers. The TWL numbers are scaled to the TWL of the original illegal

placement. Both CGSB and CGS get much better TWL than GRDY and FLW . The

improvement is over 10% on average. Both CGSB and CGS get order of magnitude

60

better scores than FLW and GRDY . And CGS can further reduce it by 16% than

CGSB due to the Delaunay triangle based overlap reduction. Also we can see CGS

is much faster than GRDY and FLW (over 10x speedup for bigger circuits).

Table 3.1: The wirelength, stability, and CPU time comparison with computation
geometry/Delaunay based migration, followed by the legalization engine in the
IBM environment (see details in [60]).

TWL Comparison SG Comparison CPU(s)
GRDY FLW CGSB CGS GRDY FLW CGSB CGS GRDY FLW CGS

ibm01 1.282 1.314 1.192 1.191 52199 37785 12685 11349 11 10 10
ibm02 1.056 1.064 1.013 1.013 44735 24126 5225 5172 23 25 23
ibm03 1.101 1.096 1.058 1.061 58375 52356 41099 26081 28 26 25
ibm04 1.165 1.195 1.096 1.100 119647 58967 52199 39039 62 29 30
ibm05 1.016 1.018 1.014 1.014 55040 65344 53387 49538 33 37 40
ibm06 1.111 1.123 1.036 1.035 60242 48890 4555 4750 69 53 35
ibm07 1.141 1.139 1.040 1.039 131024 119809 5232 5764 162 150 55
ibm08 1.154 1.153 1.043 1.042 153395 119758 3610 3750 307 242 65
ibm09 1.211 1.221 1.071 1.069 168791 154334 20743 16126 325 289 75
ibm10 1.180 1.181 1.032 1.030 302222 238185 5057 4740 806 575 89
ibm11 1.193 1.187 1.054 1.056 224925 190321 32519 50898 617 490 95
ibm12 1.162 1.167 1.051 1.050 361702 331289 5270 5088 1299 807 121
ibm13 1.229 1.233 1.064 1.059 370440 349016 177377 117833 939 734 134
ibm14 1.239 1.235 1.049 1.047 557898 456627 4581 4364 3654 2240 231
ibm15 1.274 1.273 1.067 1.065 698634 746372 130784 123811 5210 3643 430
ibm16 1.313 1.318 1.041 1.040 937453 746372 4435 4129 9927 6280 511
ibm17 1.267 1.285 1.043 1.040 1169281 1087672 14648 11019 11363 8280 558
ibm18 1.296 1.318 1.055 1.054 1116867 985042 3224 3267 12724 9160 661
Avg 1.188 1.197 1.057 1.056 365715 334406 31855 26858 2642 1837 177

To further understand the difference of geometric stability result of these ap-

proaches, Figure 3.8 and 3.9 show the relative distance histogram after legalization

on ibm01. Figure 3.9 is a zoom-in view of the top 1% cells in Figure 3.8 to make

it difference clear. CGL has less larger relative distances than FLW and GRDY ,

which means CGL would keep cells closer to their original neighbors, preserving

the relative order. On the other hand, GRDY and FLW have less number of smaller

relative distances than CGL, which means CGL tends to move more cells a smaller

distance to avoid bigger moves. For placement migration applications, one often

wants to limit the bigger moves but not care too much about the smaller moves,

61

Figure 3.8: Histogram of Ri from three legalizers on ibm01.

therefore CGL is well targeted for those applications. The runtime comparison of

is also reported in Table 3.1. We can see CGL is much faster than GRDY and FLW

(over 10x speedup for bigger circuits). Therefore, it is both effective and fast.

In Table 3.2, we show the complete migration and legalization results from

our tool. We use FastPlace1.0 [84] to generate an initial legal placement, then re-

place the cell size file with the 15% inflated version, as described earlier, to generate

overlaps. We compared the Delaunay based legalizer CGL with two publicly avail-

able legalizers, FPDP1.0, the FastPlace 1.0 detailed placer [84], and FSDP5.0, the

Fengshui 5.1 detailed placer [3]. Table 3.2 reports the wirelength, stability and CPU

time comparison. The second set of experiments were run on on a quad-core 64-bit

3.4 GHz Xeon Linux machine. From Table 3.2, we see legalizer performs with or

without considering placement stability.

We also implemented the diffusion-based legalization algorithm [75] for

62

0

50000

100000

150000

200000

250000

300000

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

i

R

GREEDY

FLOW

CGL

Figure 3.9: Histogram of top 1% Ri from three legalizers on ibm01.

the academic benchmarks. Our initial experience is that the diffusion algorithm

produces slightly better result while computational geometry based algorithm is

faster. However, it is not straightforward to make a fair comparison between them

at this stage, because the results depend on the tuning. In general both algorithms

share a common smooth spreading nature and generate comparable results.

3.7 Summary

The incremental nature of design optimization demands smooth and stable

placement mitigation techniques. They must be capable of spreading cells to satisfy

design constrains such as image space, routing congestion, signal integrity and heat

distribution, while keeping the original relative order. To address these challeng-

ing tasks, we propose a novel computational geometry based placement migration

framework. Our experimental results on legalization problem have demonstrated

63

Table 3.2: Wirelength, stability and CPU comparison of our Delaunay-based mi-
gration/legalization tool and the two publicly available detailed placement engines
from FastPlace and Fengshui.

TWL Comparison SG Comparison CPU (s)
FPDP1.0 FSDP 5.1 CGDP FPDP1.0 FSDP 5.1 CGDP FPDP1.0 FSDP 5.1 CGDP

ibm01 1.182 1.074 1.117 35523 3116 1147 2 12 3
ibm02 1.069 1.053 1.086 29612 4169 1727 2 19 4
ibm03 1.356 1.051 1.100 131172 10626 2529 5 20 5
ibm04 1.457 1.120 1.137 130771 73378 35760 5 26 6
ibm05 1.153 1.131 1.098 151385 72075 9623 6 36 6
ibm06 1.236 1.071 1.116 59274 5213 2061 5 39 7
ibm07 1.182 1.090 1.126 162805 9948 3269 7 59 11
ibm08 1.226 1.134 1.106 308106 18768 3084 16 75 14
ibm09 1.333 1.070 1.113 322633 20417 5905 15 66 14
ibm10 1.240 1.099 1.101 548402 25541 7261 20 96 20
ibm11 1.195 1.051 1.098 442739 22808 7902 13 92 21
ibm12 1.279 1.183 1.117 583444 97872 5774 30 102 21
ibm13 1.700 1.098 1.104 730804 69115 9984 37 130 25
ibm14 1.342 1.109 1.109 935023 97176 11153 65 296 69
ibm151 4.431 1.145 1.107 10994359 297548 18233 312 359 76
ibm16 1.508 1.107 1.104 1401502 66903 16335 130 452 91
ibm17 1.843 1.090 1.067 3228739 352799 19938 210 428 97
ibm18 1.249 1.101 1.102 1889705 47661 15011 107 515 99
Average 1.326 1.102 1.106 1227000 71952 9816 55 157 33

significant improvements on wire length and stability. To the best of our knowl-

edge, this is the first attempt using Delaunay triangulation to perform placement

spreading. We believe there is still a lot of room to improve and other effects such

as timing and wirelength to be incorporated.

64

Chapter 4

A New LP Based Incremental Timing Driven
Placement

In previous chapter, the computational geometry based placement migra-

tion algorithm implicitly preserves the timing while removing cell overlaps. In this

chapter, I present a LP based timing driven placement algorithm to reduce the delay

on critical paths explicitly.

4.1 Introduction

The main focus of this chapter is to address the critical path improvement

problem in high performance design. In a typical custom design flow for high

performance microprocessors, the chip is floorplaned into functional regions, then

hierarchically partitioned into basic design units. The size of the basic design unit is

usually small, ranging from a few hundred gates to tens of thousands of gates. Even

for these relatively small circuits, timing driven placement is very important since

the gate delay is very sensitive to wire capacitance load and input slew in deep sub-

micron technology. Therefore, cell placement in high performance designs often

involves extensive manual tuning iterations to meet stringent timing requirement.

It has been reported that significant performance gap exists between ASIC

65

and custom design methodologies [24] because the custom designers understand the

data flow of the circuit and take advantage of the inherent circuit regularity. On one

hand, the ASIC methodology has fast turn-around time, but inferior performance

for high-performance designs; on the other hand, the custom design methodology

has much better performance, but very time-consuming.

To close such a gap, it is crucial to have powerful incremental timing driven

placement which can iteratively improve the timing in custom designs. It helps to

close not only the performance gap, but also the time-to-market gap.

Existing timing driven placement can be roughly classified into path-based

and net-based approaches. The path-based algorithms try to minimize the critical

paths of the circuit directly and have the advantage of holding an accurate timing

view during the optimization. A common problem with them is their high com-

putational complexity due to excessive number of paths. Path based timing driven

placement includes [15, 31, 82, 46, 83, 51]. In [26], an accurate LP based differ-

ential timing analysis is proposed to improve the slack on critical paths that are

identified by a static timer. However, one of the limitations of this approach is that

if the static timer uses a sophisticated wireload model, such as a steiner routing tree

based models, it is very difficult to formulate it into linear constraints. Therefore,

any error arising from inaccurate wire models [26] in one stage of the path-based

method will be propagated and accumulated in downstream stages on the timing

path.

Net-based approaches usually transform timing to net budgets or weights,

and perform constrained or weighted wire length optimization [61, 32, 38, 19, 39,

66

56, 25]. More recently, [76] proposed a sensitivity guided net weighting method

that targets the net delay sensitivity. However, it did not consider slew propagation.

The net-based approaches, especially the net weighting, have low computational

complexity, high flexibility and is generally suitable for any wirelength minimiza-

tion frameworks. Therefore, net-based approaches have more advantages as the

circuit complexity continues to increase. However, net weighting often completely

ignores slew propagation. Since timing is inherently path based, an effective net

weighting algorithm should be based on path analysis and consider timing propa-

gation. Furthermore, net-based approaches are often done in an ad-hoc manner and

have problems with convergence [79, 51]. For instance, while the delay on critical

paths decrease, other paths become critical, and this leads to a convergence prob-

lem. A systematic way of explicit perturbation control is important for net-based

algorithms.

In this chapter, we present an LP-based incremental timing-driven place-

ment optimizer. Our key contributions include:

• Our LP framework is net-based, but it takes advantage of the path-based delay

sensitivity with limited-stage slew propagation. Thus it combines the advan-

tage of net-based approach (flexibility/lower computational complexity) and

path-based approach (more accurate timing view).

• Our LP formulation considers not only cells on the timing-critical paths, but

also cells that are logically adjacent to the critical paths in a unified manner,

through weighted LP objective function and net stretching bound constraints.

67

Therefore, our approach has precise control on timing perturbation during the

optimization.

• We propose a timing aware spreading/legalization method to preserve timing

for high performance custom designs. Our algorithm has been tested on a

set of 65nm industry circuits from a multi-GHz microprocessor. It achieves

much better timing even on carefully hand-tuned circuits (on average 20ps

worst slack reduction, which is significant as the clock period is only a few

hundred of pico-seconds)

The rest of the chapter is organized as follows: The problem formulation

is in section 4.2. We discuss how to generate the path-based delay sensitivity net

weights in section 4.3. In section 4.4, we show a method to construct the criticality

adjacency network. The overall LP program is presented in section 4.5. Section

4.6 presents the timing aware spreading algorithm. Experimental results are shown

in section 6.6. We summarize in section 6.7.

4.2 Problem Formulation

Table 4.1 lists the key notations used in the chapter.

4.2.1 LP formulation

In our algorithm, the timing optimizer selects a few critical paths from a

timing report generated by an accurate static timer. Then it computes the delay

propagation sensitivity on each net and inspects and classifies cells and nets into

different categories based on their “criticality”, which is logically how close they

68

Table 4.1: The key notations in this chapter.
c The unit capacitance
r The unit resistance

L j The wirelength of net j
Cap j Total output capacitive load on net e j
Cpin j The sum of gate capacitance driven on net e j
Slewi The input slew to cell i
Dgi The delay on cell i
Sgi The slew on cell i
KD Constant 0.69
KS Constant 2.2
ai The slew coefficient in cell i’s delay formula in (6.4)
bi The delay coefficient in cell i’s delay formula in (6.4)
ui The slew coefficient in cell i’s slew formula in (6.5)
vi The delay coefficient in cell i’s slew formula in (6.5)

De j The delay on net j
Se j The slew on net j
S j The delay propagation sensitivity of net j

relate to critical paths. As the linear program has a system of well developed the-

ories to solve, we formulate the timing optimization problem into an LP problem

and solve it optimally.

The half parameter bounding box wirelength (HPWL) model can be for-

mulated exactly into an LP framework. Our algorithm uses HPWL for wirelength

estimation and the linear gate delay and transition/slew models for delay computa-

tion. Although HPWL may not be well correlated with the final routed wire, it still

captures the fidelity of the problem with reasonable accuracy. A carefully designed

algorithm can take advantage of the accurate timing information generated by a

static timer to achieve the optimization objective for a certain level of accuracy.

69

The objective of our algorithm is to minimize the delay on timing critical

paths. We formulate the linear program to minimize the weighted wirelength on

selected critical timing paths,

minimize ∑p ∑ j Lp, jSp, j (4.1)

where Lp, j is the wirelength of net e j on timing path p, and Sp, j is the delay propa-

gation sensitivity of net e j. In the following sections, we formulate the models and

constraints of the LP problem.

4.2.2 The capacitive load and delay models

For cell ni, center coordinates xi, yi are the variables of the LP program. For

a net e j, To model HPWL, four variables l j, r j, t j and b j are used to represent left,

right, top, and bottom locations of the bounding box of net e j. Assuming k cells are

connected to net e j, we have

l j ≤ xi + pinx(i, j)

r j ≥ xi + pinx(i, j)

t j ≤ yi + piny(i, j)

b j ≥ yi + piny(i, j), i = 1,2, ..,k (4.2)

where pinx(i, j) and piny(i, j) are the pin offset of cell i that connected to net e j

in horizontal and vertical directions respectively. The wirelength of net e j is repre-

sented by L j. We have

L j = r j− l j + t j−b j (4.3)

70

We use Cap j to denote the total output capacitive load on net e j. It is the

sum of the wire capacitance of net e j and the total pin capacitance driven on net e j,

which is denoted by Cpin j, given by

Cap j = c ·L j +Cpin j (4.4)

where c is the unit capacitance constant. Assuming ni is the driver of net e j, the

maximum capacitive load driven by ni should not exceed the library specified max-

imum load CMaxi

Cap j < CMaxi (4.5)

To formulate the optimization problem into an LP program, we use the lin-

ear delay models for gates and the Elmore delays for wires [33]. The gate delay and

transition are linear functions of input slew, Slew, and total capacitive load, Cap.

We compute the fitting coefficients of the linear models based on a SPICE circuit

simulation generated library. Note that the delay models for each pin of a gate, and

for the falling or rising transition are different. We use different models for differ-

ent pins and different transitions in the implementation and show only one formula

here for simplicity. The gate delay Dgi is given by

Dgi = dI +ai ·Slewi +bi ·Capi (4.6)

The gate transition Sg is given by

Sgi = sI +ui ·Slewi + vi ·Capi (4.7)

71

where ai, bi, ui, and vi are the fitting coefficients. dI and sI denote the intrinsic delay

and slew of the corresponding pin of the cell.

The Elmore delay is used to estimate wire delay and slew on net e j, which

are given by

De j = KD · r ·L j · (c ·L j

2
+Cpin j) (4.8)

Se j = KS · r ·L j · (c ·L j

2
+Cpin j) (4.9)

In recent publications, it has been shown that interconnect delay starts to

dominate in deep submicron designs [37]. However, we should clarify that De j in

formula (4.8) is not the commonly referred interconnect delay, which is the part

of the gate delay resulting from driving the interconnect/wire capacitance. Instead,

De j is the incremental RC delay on the wire, which is still relatively small for local

nets under current technologies.

4.3 Path Based Delay Sensitivity

Any change on a net will affect the delay and slew of not only the driver

gate, but also all downstream receiver gates, because the change of slew on a net

will propagate. The delay propagation sensitivity of a net is a measurement of the

sensitivity of the path delay to a wire length change, i.e., to estimate the change in

path delay due to wire adjustments. An effective net weighting method should not

only consider the current stage, but it should also have a path or global timing view

embedded in the formulation.

72

Our limited-stage delay propagation sensitivity computation considers only

two stages. We have the following observation from extensive experiments.

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6bi

a i

a i =b i

0.5

(a) The coefficient ai and bi in gate delay formula (6.4)

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6vi

u
i

u i =v i

0.5

(b) The coefficient ui and vi in gate slew formula (6.5)

Figure 4.1: The normalized coefficient for Slew is much smaller than that for Cap
in both formulas

on delay of the current stage than its receiving gates for most cases, because

the gate delay and slew are more sensitive to the output capacitive load than to the

input slew for the majority types of gates.

Figure 4.1 plots the normalized coefficients in formula (6.4) and (6.5) for

all combinational gates in the library. In Figure 4.1(a), a point represents a pair

of coefficients ai and bi in formula (6.4) for one gate . We see that the coefficient

73

corresponding to Capi is much larger than that for Slewi in both gate delay and slew

formulas in most of cases. In other words, the delay and slew are more sensitive to

the output capacitive load than to the input slew. The impact of a wirelength change

on delay for the down stream gates is much smaller, and decreases quickly. Mean-

while, the inaccuracy of HPWL wire model still dominates; adding more stages

may not help but will increase the computation complexity. Therefore, we limit the

delay propagation sensitivity computation two stages.

We use the example in Figure 4.2 to show how to compute the delay prop-

agation sensitivity. In Figure 4.2, cell ni drives net e j on a timing path, and cell

ni+1 is the receiver gate connected to net e j. Let S j denotes the delay propagation

sensitivity for net e j. We have

S j =
∂D j

∂L j
(4.10)

where D j is the portion of delay associated with net e j. If the wirelength of net

e j changed by 4L j, 4D j changes due to three components, the delta delay on the

driving gate i, 4Dgi, on net j, 4De j, and on the receiving gate i+1, 4Dgi+1.

4D j = 4Dgi +4De j +4Dgi+1 (4.11)

From Equation (6.7), (6.4), (6.5), (4.8), and (4.9), we have

4Dgi = bi · c ·4L j

4Dei = KD · r ·4L j · (c ·4L j

2
+Cpin j)

4Dgi+1 = ai+1 · (4Sgi +4Se j)

74

where4Sgi denotes the slew change on cell ni, and4Se j is the slew change on net

e j. We have

4Sgi = vi · c ·4L j

4Se j = KS · r ·4L j · (c ·4L j

2
+Cpin j+1)

The formula (4.10) becomes

S j = bi · c+KD · rc ·4L j

2
+KD · r ·Cpin j

+ ai+1 · (vi · c+KS · r
c ·4L j

2
+KS · r ·Cpin j+1) (4.12)

4L j → 0 gives

S j = c · (bi +ai+1 · vi)+ r · (KD ·Cpin j +KS ·ai+1 ·Cpin j+1) (4.13)

In above formula, the value of the unit resistance r is in order of magnitude

smaller than that of the unit capacitance c, and the dominant term in formula (4.13)

is c · (bi + ai+1 · vi). Formula (4.13) is used to compute the delay propagation sen-

sitivity of the net and also helps to guide the timing aware spreading/legalization.

4.4 Criticality Adjacency Network

To optimize the delay on critical paths, we adjust the coordinates of all cells

associated with critical paths. If we do not control the timing perturbation on non-

critical paths during the optimization, non-critical paths may become critical. In

Figure 4.3(a), the path n1 → A→ B→ n2 is critical, and the path n3 →C→ B→ n4

75

ej
ej+1ni

A

B
A

B
ni+1

q

Dgi Dei Dgi+1

ej
ej+1ni

A

B
A

B
ni+1
A

B
ni+1

qq

Dgi Dei Dgi+1

Figure 4.2: A circuit example for delay propagation sensitivity computation

may become critical after the optimization, as shown in Figure 4.3(b). Previous LP

based approaches such as [39] [25] [26] set a fixed range to restrict every movable

cell, as shown in Figure 4.3(b).

However, the delay of some cells may be extremely sensitive to wirelength

changes, and other cells can be moved farther without significantly affecting the

timing on non-critical paths. Such a potential to move is determined by not only

the delay sensitivity of the net it drives, but also the “criticality” of the net and the

cell itself. In other words, how sensitive the timing is subject to the net change and

how logically “close” a cell is to the critical paths. In the following, we present the

criticality adjacency network to classify cells and nets into different categories

depending on their “criticality”. As shown in Figure 4.3(c), we set different maxi-

mum movable ranges for cell A and B depending on the sensitivities of all nets they

connected to. Furthermore, cell C in Figure 4.3 is not on critical path, but is also

movable for it is logically adjacent to critical path, i.e., cell C is critical adjacent, as

show in Figure 4.3(d).

76

A

xBxA

n2

n1 n3

n4

B

CA

xBxA

n2n2

n1 n3n3

n4n4

B

CC

(a) Path n1 → A→ B→ n2 is critical

xA-M xA+M xB-M xB+M

A

n2

n1 n3

n4

B

C������� ���	�

xA-M xA+M xB-M xB+M

AA

n2n2

n1n1 n3n3

n4n4

BB

CC������� ���	�

(b) Fixed movable ranges to avoid path
n3 →C → B→ n4 becoming critical

xA-MA xA+MA xB-MB xB+MB

A

n2

n1 n3

n4

B

C����������	�
 �� � ����������	�
 ��

xA-MA xA+MA xB-MB xB+MB

AA

n2n2

n1n1 n3n3

n4n4

BB

CC����������	�
 �� � ����������	�
 ��

(c) Variable movable ranges depend on the
sensitivity of the connected nets

xc-Mc xc+Mc

A

n2

n1 n3

n4

B

C� �� ������	
xc-Mc xc+Mc

AA

n2n2

n1n1 n3n3

n4n4

BB

CC� �� ������	
(d) Cell C becomes movable in the critical-
ity adjacency network

Figure 4.3: The advantages of the criticality adjacency network

4.4.1 Criticality adjacency network

Figure 4.4 is an example of a combinational netlist with one critical path.

Let G= (N, E) represents a netlist that has n cells, N = {n1,n2, ...nn}, and m nets,

E = {e1,e2, ...em}. The criteria to construct the criticality adjacency network is

essentially based on how close the non-critical branches relate to critical paths and

if they are helpful for reducing the delay on critical paths.

77

Let symbol → denotes the connection relationship. The construction of the

criticality adjacency network is through the following definitions.

Definition 1. N(0) represents the set of cells on critical paths, and E(0) is the set

of nets on critical paths.

N(0)= {n1, n2, n3, n4} and E(0) = {e4, e5, e6} in Figure 4.4. All non-critical

cells and nets in the circuit are classified by following definitions.

Definition 2. N(1) is the set of cells connected to nets in E(0), excluding all critical

nodes in N(0). Set N(2) contains all cells connected to cells in N(0), excluding cells

in N(0) and N(1). N(3) is the set contains all other cells in N.

Therefore,

N(1) = {c : c→ E(0),c ∈ N \N(0)}

N(2) = {c : c→ N(0),c ∈ N \ (N(0)∪N(1))}

N(3) = {c : c ∈ N \ (N(0)∪N(1)∪N(2))}

Hence, in Figure 4.4, N(1) = {n5, n6}, N(2) = {n7, n8, n9}, and N(3) =

{n10}.

Definition 3. E(1) is the set of nets connected to cells in N(0), excluding nets in

E(0). E(2) is the set for nets connected to cells in N(1) or N(2), excluding nets in

E(0) and E(1). All other nets are in set E(3).

78

Similarly,

E(1) = {e : e→ N(0),e ∈ E \E(0)}

E(2) = {e : e→ (N(1)∪N(2)),e ∈ E \ (E(0)∪E(1))}

E(3) = {e : e ∈ E \ (E(0)∪E(1)∪E(2))}

In the example in Figure 4.4, E(1) = {e8, e11}, E(2) = {e1, e2, e3, e7, e9,

e10, e12, e13}, and E(3) = {e14, e15}.

By classifying cells and nets based on “criticality”, our algorithm optimally

moves cells not only in N(0) and N(1), but also in N(2). All cells in N(3) and all

nets in E(3) are fixed. Therefore, the criticality adjacency network helps to obtain

more room for optimization, while explicitly controls the timing perturbation.

n1

n2 n3 n4

e1

e5

n5 n6

n7

n8 n9

e2 e3

e4 e6

e8

e11e9

e12

e7

e10

e13

n10

e14

e15

n1

n2 n3 n4

e1

e5

n5 n6

n7

n8 n9

e2 e3

e4 e6

e8

e11e9

e12

e7

e10

e13

n10

e14

e15

Figure 4.4: The criticality adjacency network

79

4.4.2 The timing perturbation constraints

With the help of the criticality adjacency network, instead of setting a fixed

maximum movement range for all cells, we set a sensitivity based stretching bound

for each net. The tightness of the stretching bound of a net is based on how sensitive

the path delay is subject to the net change.

For a net e in E(1) or E(2), nd is the driver cell and ni is one of the receiver

cells. From each pin of cell nd to the receiver cell ni, we compute a delay propa-

gation sensitivity score. We compute the inverse of the sensitivity score and use it

as the weight for net e. The sensitivity weights for all nets are scaled between zero

and Max. Max is an experimental setting parameter. Let We denotes the weight for

nets in E(2) and W
′
e denotes for nets in E(1). The cell movement is restricted by

the following net stretching bound constraints,

Le−We ·Le ≤ Le ≤ Le +We ·Le,∀e ∈ E(2)

Le−W
′
e ·Le ≤ Le ≤ Le +W

′
e ·Le,∀e ∈ E(1) (4.14)

The criticality adjacency network may be expanded to have more criticality

levels to include more movable cells. Our experience shows that current level of

critical adjacency network is sufficient.

4.5 The Overall Linear Program Algorithm

We formulate the optimization problem into an LP program and perform

weighted critical nets optimization. Powered with the criticality adjacency network,

80

the algorithm unifies the objective of timing optimization and perturbation control

into one LP framework.

Furthermore, the slack is also considered for weight adjustment. We adjust

the weight of nets on critical paths according to their slacks or original delays.

Assuming there are top P critical paths in a circuit, and the delay in the timing report

for a path p is tp. For a net e j, it is possible that the net e j belongs to Pj critical

paths. Let S
′
k,e j

denotes the delay propagation sensitivity of net e j corresponding to

the critical path p. Then, the adjusted delay propagation sensitivity weight of net

e j, which is denoted by S
′
e j

, becomes

S
′
e j

≥ S
′
p,e j

, p = 1,2, ...,Pj (4.15)

where,

S
′
p,e j

=
tp

Tmin
·Sp,e j

Tmin = min(tp), p = 1,2, ..,P (4.16)

Tmin is the shortest path delay among all P critical paths, which is used to

normalize the original delay of all paths. Formula (4.16) adds additional weight

for paths with larger negative slacks. Using the adjusted delay propagation sensi-

tivity as net weight, the objective of the LP program is to minimize the sum of the

weighted wirelength on critical paths. The following formulation is equivalent to

formula (4.1).

min ∑S
′
e j
·Le j

∀e j → E(0) (4.17)

81

The LP is formed under a set of constraints defined in previous sections. Such as

the wire length and capacitive load constraints (4.2), (4.3), and (6.7), the maximum

load constraint (4.5), and the timing perturbation constraints (4.14), etc.

4.6 Timing aware spreading for legalization

The timing optimizer will generate a solution with cell overlaps. To le-

galize the placement, timing improvements may decrease. It is important that the

legalization algorithm should avoid too much timing degeneration. According to

[75] and [60], to maintain the relative orders among cells during the legalization

helps preserve timing. We use the bin-stretching and Delaunay-triangulation based

spreading algorithms similar to [60] for cell spreading to reduce overlaps.

We modify the spreading process in [60] to become timing aware to help

cells with higher delay sensitivities move closer toward their “optimal” regions. The

BoxPlace heuristic [54] is an effective method to reduce the wirelength in detailed

placement. In brief, the BoxPlace moves a cell to the mean of its connected net

bounding boxes to reduce the wire length. We propose a weighted BoxPlace to

improve the cell spreading timing aware.

In Figure 4.5, e1, e2 and e3 are nets connected to cell A. Figure 4.5(a) shows

the optimal region for cell A, which is the medium of all cells connected to cell

A. Figure 4.5(b) shows that nets are shrunk or expanded depending on their delay

sensitivity weights. Conceptually, a net with higher delay propagation sensitivity

will be shrunk and a net with lower weight will be expanded. The new optimal

region for cell A shown in Figure 4.5(b) is better than that in Figure 4.5(a) from

82

the timing perspective. To pull cell A to its optimal region, a timing optimization

force is generated on cell A. The timing force is scaled and vector combined with

the spreading force to generate a timing aware cell spreading force to guide the

movement of a cell. The cell spreading stops once the cells density distribution

satisfies certain criteria, and we legalize the placement.

e1

e2

e3

A

Optimal region
for cell A

e1

e2

e3

A

Optimal region
for cell A

(a) The optimal region for cell A

e1

e2

e3

A

Optimal region
for cell A

e1

e2

e3

A

Optimal region
for cell A

(b) The weighted optimal region for cell A

Figure 4.5: Under the weighted nets e1, e2 and e3, the cell’s optimal region changed

4.7 Experimental Results

We implement the algorithm in C++ and use the commercial tool MOSEK

[64] as the LP solver. Seven circuits from a multi-GHz processor in 65nm process

technology are used for experiments. The circuits are manually placed and have

been optimized by designers to obtain the desired performance. The circuit sizes

range from 6k standard cells to 28k. We take the critical paths above a certain

threshold to optimize, then call the timing aware legalizer to remove overlaps. For

each circuit, different thresholds are tested, and the best result is kept. Although

83

those circuits have been manually optimized, our algorithm still achieved significant

improvements; the result is shown in Table 4.2.

In table 4.2, column Gates and Nets report the number of cells and nets of

the testcases. Column M is the number of movable cells in the LP formulation. Col-

umn Init report the initial worst slack of the circuit. Column Fin reports the worst

slack after the optimization. Column −SL summarizes the worst slack improve-

ment on each circuit. Column −T NS is the total negative slack improved. Column

Base is the timing baseline we used to measure how much slack improvement is

obtained. If Base equals 0, −T NS reports the total negative slack reduced. Because

the final worst slack in a few circuits is positive, we use a base larger than zero to

measure the total slack improvement for those circuits. Note that ckt1 has a positive

initial worst slack. We should point out that it is meaningful to improve a positive

worst slack design unit, because any slack improvement can be traded for power

reduction later, where designer downsizes gates on timing paths with large positive

slack to reduce the power consumption.

Column OrgWL and FinWL are the initial and final HPWL wirelength.

4WL is the wirelength change. We can see that most of wirelength changes are

within 0.1%, which implies that the disturbance to the circuits is very small. We

did not show the computation timing data because the computation is very fast for

all testcases. The algorithm only handles a small number of cells and because of

the efficient linear formulations, the algorithm runs very fast, within a few min-

utes for the largest circuit. By moving a small number of critical cells, slack can be

improved considerately. We observe a slack improvement of 20 picosecond on aver-

84

age, which is significant considering the circuits have already been hand-optimized.

Table 4.2: Experimental results
Gates Nets M Init Fin −SL −NS Base OrgWL FinWL 4WL

ckt1 6671 7261 340 22 32 10 297 40 193904 192962 -0.50%
ckt2 8249 9640 89 -15 5 20 412 10 240671 239693 -0.41%
ckt3 9541 12161 92 -33 -15 18 937 0 267661 268240 0.22%
ckt4 13220 14479 164 -54 -30 24 559 0 483479 483037 -0.09%
ckt5 15486 19515 587 -37 -12 25 331 0 432319 436170 0.89%
ckt6 27014 28961 60 -3 12 15 136 15 659269 659171 -0.01%
ckt7 28535 31893 62 -36 -22 14 1211 0 921118 921518 0.04%

4.8 Summary

We proposed a new LP-based incremental timing optimizer for timing op-

timization in placement for high performance custom designs and ASICs. Our LP

framework uses an accurate delay sensitivity based net-weighting method that com-

bines the advantage of the path-based approach. We further presented a novel criti-

cality adjacency network concept to formulate cells both on and adjacent to critical

paths into the optimization framework, which helps to precisely control the tim-

ing perturbation during the optimization. In addition, we developed a timing aware

spreading method to preserve timing during the legalization. Our experimental re-

sults showed that the proposed algorithm significantly improved timing on a set

of manually-optimized industry circuits from a 65nm multi-GHz high performance

custom processor.

85

Chapter 5

Pyramids: Computational Geometry-based Approach
for Timing-Driven Placement

The mathematical programming based timing driven placements normally

work on a set of critical paths and are expensive to run many iterations. From

the experience of wire length driven placement, efficient techniques dealing with

individual cell could be very effective. In chapter, I present a light-weight timing

optimization technique that is shown effective on incremental timing optimizations,

and potentially suitable for timing driven global placement.

5.1 Introduction

Global placement is a well-studied optimization that seeks to find a location

for every cell in the design, typically via a wire length objective. Of course, as

part of a physical synthesis flow, one also needs to satisfy the timing constraints.

Despite the best efforts, timing-driven global placement will never be a complete

solution, since one cannot glean an accurate picture of the current timing until the

placement has stabilized. Thus, there is a need for tools that can take an existing

placement and incrementally modify it to improve its timing characteristics.

This problem has been exacerbated by technology scaling, since the increase

86

in interconnect delay relative to gate delay means that cells placed far from their

ideal timing locations suffer a greater timing penalty than for previous technology

generations. It is made even worse by the emergence of multi-cycle which require

careful latch placement to ensure balance of slacks for paths on both sides of the

latch. Timing-driven global placement commonly uses net-weighting based meth-

ods to address timing [56, 76], but they are again inadequate to solve the problem

completely. Thus there is a body of work mostly using mathematical programming

to incrementally improve circuit timing [25, 26, 58]. Mathematical programming

based approach is normally expensive in computation.

This work presents a new physical optimization technique called Pyramids,

designed to incrementally improve the timing characteristics of a layout via cell

movement. The name Pyramids comes the fact that one can solve for the optimal

set of locations by finding the intersection of a set of pyramid shaped delay surfaces

emanating from the cells incident to the cell of interest. This technique is simpler

and faster than linear programming and runs in constant time. It can also be used

in several ways, two of which we describe in this chapter. We make the following

contributions.

• We show how the Pyramids solver can be used to perform timing-driven de-

tailed placement via a bounding box capacitance model. Once can iterate

over critical cells in the design and move them to better locations very effi-

ciently. This is very effective for early timing-improvement of a global placer

and could be embedded within a timing-driven placement algorithm.

87

• Later in a physical synthesis flow, one may require more accuracy and care

to improve path delay. In this context we show how Pyramids can be used as

critical path optimization under a linear delay model.

• Experiments show how effective these techniques are. The Pyramids based

timing-driven detailed placer improves slack by 30.4% on average after op-

timized by the timing driven placer in Cadence SOC encounter. For a large

commercial ASIC, our second critical path optimization technique improves

slack by more than 40% of the cycle time.

These approaches present two applications of this solving technique, though

it has other potential applications for modeling incremental timing optimization

techniques.

5.2 Preliminaries of Pyramids formulations

The Pyramids can be applied in different stages of the physical synthesis

flow. In earlier stages of the flow, such as the timing-driven global- and detailed-

placement, where nets have not been optimally buffered, Pyramids uses the bound-

ing box net model to estimate the capacitive load. In later stages of a physical syn-

thesis flow, many buffers are added to decouple high fan-out nets. The Pyramids

model decomposes the multi-terminal net into 2-pin timing arcs. We formulate

the boundingbox-model-based Pyramids timing-driven placement (Pyramids-DP)

in section 5.3, and timing arc model based Pyramids timing refinement algorithm

(Pyramids-CP) in section 5.4.

88

The Pyramids algorithm identifies the movable gate m and constructs a sub-

circuit. A subcircuit G is a graph with the movable gate m and its connected gates,

as wells all signal nets connecting the gates. The problem is to maximize the min-

imum slack of the subcircuit by moving m toward an optimal location. The static

timing analysis is the basis of Pyramids timing optimization.

For a gate gi in subcircuit G, let xi, yi denote the center coordinates of gi.

Let L j denote the Half Parameter Wire Length (HPWL) of net n j. In the rest of the

chapter, the pin offset is not discussed for simplicity, and the pin offset has to be

considered in implementation.

The unit capacitance constant is denoted by c, and the unit resistance con-

stant is denoted by r. Let Cap j denote the total output capacitive load on net n j. It

is the sum of the wire capacitance of net n j and the total pin capacitance driven by

net n j, which is denoted by Cpin j. Therefore, Cap j = cL j +Cpin j.

The Required Arrival Time (RAT) on the inputs of a combinational gate gi

is the minimum of the required arrival time propagated back from the gates driven

by gi.

RATi = min
0≤ j≤p

{RATj− rcL j−Dgi} (5.1)

The Actual Arrival Time (AAT) on the output of a combinational gate gi is

the maximum of the actual arrival time propagated from the drivers of gi.

AATi = max
0≤ j≤k

{AATi j + rcL j +Dgi} (5.2)

The slack of net n j is denoted by SL j, which is the difference between the

89

required arrival time and actual arrival time

SL j = RATj−AATj (5.3)

The required arrival time and actual arrival time on the gates are generated by a

static timer. The delay of a gate g is denoted by Dg. The gate delay is the linear

functions of the input slew, Slew, and total capacitive load, Cap. The coefficients

are computed by fitting the look-up table based standard cell timing library. Here

we show a simplified form of the delay equation that does reflect the difference

between pins. We use different models for different pins in the implementation and

the worst case model from the falling and rising transitions.

The gate delay Dgi is given by

Dgi = dI +ai ·Slewi +bi ·Capi (5.4)

where ai and bi are the fitting coefficients. dI denotes the intrinsic delay of the

corresponding pin of the gate. We use a static input slew for delay computation,

which is generated by a static timer.

 net 1

 net 2

 net 3

1

2

4

5

m

3

Figure 5.1: A subcircuit with one movable gate

90

1
3

x(m,1)

y(m,1)

AAT1

RAT3
 net 1

Figure 5.2: The definition of the net length on net 1

5.3 Pyramids algorithm for timing-driven detailed placement
(DP)

The ideal of Pyramids algorithm is to transform a timing optimization prob-

lem into a geometric optimization problem. We refer the Pyramids algorithm for

timing-driven detailed placement as Pyramids-DP in later sections.

Figure 5.1 is a simple subcircuit to illustrate the major steps in Pyramids-

DP. In Figure 5.1, m is a movable gate, the movable gate could be a combinational

or a sequential gate. All other gates connected with m are fixed. For all gates in

the subcircuit, the slew rate, required arrival time and actual arrival time have been

computed by a static timer. Assuming a net j is bounded by gate p and gate q on x

dimension. Let x(m, j) denote the horizontal distance between m and the geometric

center of net j, excluding m. We have

x(m, j) = |xm−0.5(xp + xq)| (5.5)

In Figure 5.1, net 1 and net 3 are the multi-pin nets and net 2 is a two-pin net. Figure

5.2 shows the bounding box of the net 1 with m detached. For net 1 in Figure 5.2,

x(m,1) = |xm−0.5(x1 + x2)| .

91

Let ym, j denote the vertical HPWL of net j. For net 1, y(m,1) is shown in

Figure 5.2. We assume that gate m moves on x dimension only. In other words,

y(m, j) is a constant in the formulation.

X coordinate

Delay

x1 x2

AAT1

Delay curve on the
timing ends of net 1

Minimum
delay

increment
on net1

Figure 5.3: Delay curve on net 1

5.3.1 Optimal cell location computation in Pyramids DP

The relationship between the gate m’s x location and the delay can be plotted

on a two-dimensional space. The delay curve on the timing end of net j, which is

also the arrival time on the input of gate m, is determined by the intersection of the

92

X coordinate

Delay

x1 x2 x3

AAT1

AAT2

Delay curve on timing
ends of net2

Delay curve on timing
ends of net 1

Figure 5.4: Delay curve on on inputs of gate m

following set of linear equations.

Dm = AATj +(a j + r ∗ c)(y(m, j) + xq− xp) (5.6)

Dm = AATj +(a j + r ∗ c)(y(m, j) +0.5(xq− xp)) (5.7)

+(a1 + rc)x(m, j) (5.8)

Let the vertical axis represent delay and the horizontal axis represent the x coordi-

nate. Figure 5.3 plots the delay on net 1 as a function of the x location of m. x1 and

x2 in Figure 5.3 denote the x coordinate of gate 1 and 2. AAT1 is the actual arrival

time on the output pin of gate 1, which is the driver of net 1. If gate m moves on the

x dimension, based on Equation (5.2) and (5.4), the delay on net 1 is the maximum

of the linear delay functions defined in Equation (5.3), which is plotted in Figure

5.3. Note that the slope of the delay lines are±(a1 + rc), where a1 is the coefficient

93

X coordinate

Delay

Ddelay curve
on timing ends

of net 3

x4 x5

Required arrival
time curve

Minimum arrival
time possible on
input of gate 4,5

Optimal x location of gate m

Figure 5.5: Delay curve on on net 3

in Equation (5.4).

According to Equation (5.2), the actual arrival time on the output of the

combinational gate m is the sum of the maximum of the arrival arrival times on

both inputs of m and the gate delay on m. The delay curve on the timing end of net

2 is the V-shape curve, as in Figure 5.4. Take the maximum of the V-shape curve

and the delay curve on net 1, we have the line segments that represent the actual

arrival time on the input of m, shown as the thick line segments in Figure 5.4.

Figure 5.3, 5.4, and 5.5 show the arrival time curve generation on the input

of gate 3 and gate 4. x4 and x5 are the x coordinates of gate 4 and 5. The arrival

time on the timing end of net 3 is the summation of the worst actual arrival time on

94

the inputs of gate m, the gate delay on m, and the net delay on net 3. Both the gate

delay and net delay are linear functions of xm. Therefore, we add up the delays on

gate and net to the worst input arrival time on gate m to generate the arrival time

curve on net 3, shown as the thick line segments in Figure 5.4. The horizontal line

in Figure 5.4, represents the worst case required arrival time on the corresponding

input of gate 3 and 4. The difference between the required arrival time and the

actual arrival time curve is the slack curve, and the top of the slack curve is the

best slack achievable by moving gate m. In this example, the optimal x location is

shown in Figure 5.5, given a specified y location.

5.3.2 Pyramids-DP algorithm

In the following we discuss the application of Pyramids algorithm in tim-

ing driven detailed placement. The input of Pyramids is a legal placement. The

placement is analyzed by a static timing analysis tool and the timing information

is annotated in the placement database. The Pyramids-DP collects a few critical

gates and sorts them by the worst slack on the pins. Pyramids starts with the worst

gate and works on each gate in the queue order. Once a gate is moved the timing

information is incrementally updated. Above process is repeated to a desired extent.

In each optimization iteration. Once a movable gate is selected, Pyramids

analyzes the subcircuit and reject the gate if the bounding box of the the subcircuit

is too small, which implies that it is no space for improvement. The bounding box

of the candidate subcircuit covers a set of rows. Starting from the middle row of the

subcircuit bounding box, the movable gate is assigned a row location, and Pyramids

95

computes the optimal x location, as shown in Figure 5.6. Then a row up and a row

down is selected to compute the optimal location, and all slack improvement score

is recorded. It is to be noted that the slack improvement score is concave on the row

location. Pyramids does not need to compute the score of all rows. And during the

experiments, the optimal x location is the same for each row on most of subcircuit.

m

Optimal location on each row for gate m

Figure 5.6: Compute optimal location for the movable gate on each row

Each row of the placement is divided into bins. The bin width is about 4

gate’s average width, and bin density is computed. The top row is selected and

if there is space, the movable cell is placed. Otherwise, the overlapped gate is

tentatively move to a neighboring bin with lowest density. If the worst slack of

that gate becomes negative, such a swapping is rejected and next row candidate

is considered. Otherwise the gate movement is accepted. An simplified internal

timer computes the slack changes during the swapping. The algorithm is shown

in Algorithm 5. All gate are within row when the timing optimization procedure

96

terminates. There will be a small amount of residual overlaps in the x dimension

that will be removed.

Algorithm 5 Pyramids-DP(Timing driven detailed placement flow)
1: PyramidsDP(critical gates Queue)
2: foreach gate in Queue
3: Build the subcircuit, check if the subcircuit can be improved
4: foreach row in candidate rows
5: slackScore = ComputeOptimalLocation(subcircuit, row)
6: end foreach
7: Sort rows on slack improvement score
8: foreach row in the sorted rows
9: Move the overlap gate to the low density neighbor bin

10: if Slack is negative, accept change break
11: end foreach
12: end foreach

13: ComputeOptimalLocation(subcircuit, row)
14: Compute the delay lines on inputs of the gate
15: if (movable is a latch) then
16: Compute the delay planes on all inputs
17: else
18: Intersect input delay lines to find the top line segments
19: Grow output delay lines on top of input delay line segments
20: end if
21: Compute all slack lines based on the RAT
22: Intersect all slack lines and find the bottom line segments
23: Mapping the top point of the line segments to x-axis
24: end if
25: return optimal x and min-slack

97

5.4 Pyramids algorithm for critical paths refinement (CP)

During later stages in a physical synthesis flow, Pyramids moves a few gates,

especially the imbalanced latches, to further improve timing. We refer the Pyramids

algorithm for critical paths refinement as Pyramids-CP in the following. Imbal-

anced latch is the latch with positive slack on one side and negative slack on the

other side. Obviously, the improvement of imbalanced latches has the potential to

improve timing. However, in later physical synthesis stages, many buffers are added

to decompose high fan-out nets and linearize the delay on long nets. The bounding

box net model for the multi-pin nets is no longer suitable.

Furthermore, the buffers inserted restrict the movement of gates. Whenever

a gate is moved, the connected buffers has to be treated properly to avoid timing

degradation. In the example shown in Figure 5.4. Assuming to move m closer to the

input drivers will reduce the negative slack. The ideal way is to move the latch and

buffer the nets simultaneously. However, multi-objective optimizations are often

computational prohibitive and non-trivial to realize. Pyramids-CP computes the

optimal location of the movable gate based on the timing estimation considering

buffers that will be inserted in the future. Once the gate is moved, all the nets

associated are buffered again. Such an approach has been proved effective and

efficient by experiments, and is easily to integrity into a typical physical synthesis

flow. To accommodate this approach, the following timing model os critical for

Pyramids based timing refinement.

98

Q

QSET

CLR

S

R

m

(a) Subcircuit with buffers

 arc 1

 arc 2

 arc 31

2

3

Q

QSET

CLR

S

R

m

(b) New timing model

Figure 5.7: The net model in Pyramids-CP

5.4.1 Linear Buffered-Path Delay Estimation

Buffering can not be ignored during the later physical synthesis stages for

interconnect delay estimation [29, 71, 7]. Therefore, supported with the buffering

technology, the interconnect delay model must be aware of the buffers, which is

going to be inserted in the future. We found that the linear delay model [70, 7] is

best suited. Therefore all multi-pin nets are break down into timing arcs. As shown

in Figure 5.7, on directly related timing arcs are included in the subcircuit. In this

model, the delay along an optimally buffered interconnect is

delay(L) = L(cRb + rCb +
√

2RbCbrc) (5.9)

99

where L is the length of a 2-pin buffered net, Rb and Cb is the intrinsic resistance

and input capacitance of buffers and gates while r and c are unit wire resistance and

capacitance respectively.

Empirical results in [7] indicate that Equation(5.9) is accurate up to 0.5%

when at least one buffer is inserted along the net. Furthermore, our own empirical

results suggests the model is reasonable enough to justify the latch location. The

details are described in section 5.5.2.

5.4.2 Pyramids-CP formulations

In this formulation, τ is a technology dependent parameter that is equal to

the ratio of the delay of an optimally-buffered, arbitrarily-long wire segment to its

length

τ = delay(wire)/length(wire) (5.10)

A timing arc is specified for a given net n driven by gate u and having sink v as nu,v.

In Pyramids-CP, the definition of the required arrival time on a combina-

tional gate gi is similar as that in equation (5.1), with a different format.

RAT
′

i = min
0≤ j≤p

{RATj− τL j−Dg
′} (5.11)

The actual arrival time on the output of a combinational gate gi is

AAT
′

i = max
0≤ j≤k

{AATi j + τL j +Dg
′} (5.12)

where Dg
′
is not dependent on the capacitive load here.

100

.

xi

x

y

yi

(a) Manhattan contours

x

Delay

y

AATi

(b) Delay surface: an upside down Pyramid

Figure 5.8: The shape of delay surface in 2d and 3d spaces

5.4.3 Compute the optimal location in Pyramids-CP

The required arrival time, actual arrival time and slacks are linear equa-

tions of the cell coordinate and can be plotted in a geometric space and solve by

an geometric based approach. Assuming a gate moves on x and y dimensions si-

multaneously. The arrival time, or delay on a timing arc is a linear equation of the

manhattan distance between driver gate and receiver gate of a timer arc, which are

the intersection of planes if plotted in a 3D space. Let (xi,yi) denotes the coordinate

of gate i. For a timing arc driving by gate i. The delay on the timing is determined

by following equations.

Delay = AATi + τ(|xm− xi|+ |ym− yi|) (5.13)

Above equation represents 4 planes in 3D space intersecting with each other. The 4

planes intersected into a shape of an upside-down pyramid in 3d space. We named

101

our algorithms Pyramids, which is after the shape of the delay surface. To visualize

the concept, the contours of the pyramid delay surface is shown in Figure 5.8(a),

and the shape of the delay surfaces are shown in Figure 5.8(b).

5.4.3.1 Optimize the sequential gate

If the movable is a sequential gate, as the case in Figure 5.7, the required

arrival time on timing arcs are a constant. In other words, the require arrival time is

a plane parallel to the surface of the x-y plane in 3d space. The difference between

the required arrival time and the arrival time surface is the slack surface, which is

in the shape of a pyramid. In this example in Figure 5.7, there will be totally 12

slack surfaces generated for timing arc 1, 2,and 3, as shown in Figure 5.9(a). There

are 4 planes for each slack pyramid, and all slack surfaces can be categorized into

4 groups. The slack surfaces in the same group are parallel to each other.

To find the best slack surface possible, two testing points, such as (0,0) and

(0,chip− y− dimension) are sufficient to find the orderings of all slacks surfaces.

The idea is illustrated in Figure 5.9(b), and there will be 4 bottom slack planes.

The intersection of 4 bottom planes form a “trough” shape polyhedron, which is the

best possible worst slack region of the subcircuit, which is shown in Figure 5.9(c).

Mapping of the top line segment of the trough to the placement region is the optimal

region for the movable. To move the latch to any point on the line segment achieves

the best possible worst slack.

102

slack of arc 3

slack of arc 2

(a) Slack Pyramids

4 bottom
slack planes

(x,y,z)

(x,y) - line

(b) Bottom 4 slack planes

Intersection of bottom
4 slack planes

Region of best possible min-slack

(c) The intersection of bottom slack planes (d) The delay surface on the output of
the movable gate

Figure 5.9: Computation of the optimal region in Pyramids-CP

5.4.3.2 Optimize the combinational gate

If the movable is a combinational gate, the actual arrival time of on the

output of the gate is the maximum of the actual arrival times on the inputs of the

movable with the increment of the gate delay. The max operation of the delay

surfaces can be computed in similar way as the method to compute the bottom

slack planes in section 5.4.3.1. Again, two testing points are sufficient to find the

top 4 delay planes, as shown in Figure 5.9(d).

103

Optimal region
for slack

Coordinate
of gate 3

Figure 5.10: Delay surface contour on the output net

The delay pyramid of each output of the movable gate “grows” on top of the

actual arrival time trough of the movable, which is a basin-type shape having nine

delay planes with the bottom plane parallel to the x-y plane. The contours of the

delay surfaces are shown in Figure 5.10. As the required arrival time on each output

timing arcs is a constant plane parallel to the x-y plane. The bottom slack planes

form a reverse basin similar as that formed by the delay planes. It is to be noted

that the 9 bottom planes are required only for finding the entire optimal region. The

implementation and computation is simplified if just one optimal point or a portion

of the optimal region are needed, as the the optimal region intersects with bottom

of the input delay trough.

104

5.4.4 Pyramids-CP algorithm

In this subsection, we discuss Pyramids-CP for critical path refinement,

which mainly focus on improving the poorly placed latches. Once an imbalanced

latch is selected, Pyramids select the subcircuit, and ripping off all buffers previ-

ous inserted. A snapshot of the previous is cached, which includes previous buffer

locations, signal polarities, and the latch location. The Pyramids-CP improves the

timing in the ”Do no harm” philosophy. In the Pyramids framework, nets are re-

buffered after the latches movement, and the actual impact of the latch movement

is evaluated by an incremental timer. If the timing is not improved due to due to

varies reasons, such as blockages, buffering issues, etc., the changes are rejected

and previous status of the subcircuit is restored.

The Pyramids-CP algorithm is shown in Algorithm 6.

5.5 Experiments

We have implemented Pyramids-DP and Pyramids-CP in C++. Pyramids-

DP is based on the OpenAccess (OA) [69, 89], which is an open source database

system for EDA applications. Pyramids-CP is implemented within an industrial

physical synthesis flow. For Pyramids-DP, We have adopted the industrial strength,

open source, static timing engine in the OA Gear package [68], as the timing analy-

sis tool. There is a hypothetical standard cell library provided in OAGear to resem-

ble a typical 180nm process. We have linearly scaled the 180nm library down to

130nm, 90nm, 65nm, and 45nm. For each technology node, the library parameters

105

Algorithm 6 The Pyramids-CP(For critical paths refinement
1: PyramidsAlgorithmII(movable gate)
2: Identify the subcircuit
3: Rip-up buffers and save buffers in cache
4: Compute the delay planes on inputs of the gate
5: if (movable is a latch) then
6: Compute the delay planes on all inputs
7: else
8: Find the top delay planes by ordering all input delay planes
9: Grow output delay planes on top of input delay trough

10: end if
11: Compute all slack planes based on the RAT and delay planes
12: Find the bottom slack planes by ordering all slack planes
13: Find the optimal region by intersecting the bottom slack planes
14: Move the gate a suitable optimal location
15: Re-buffer the subcircuit
16: Evaluate the subcircuit timing by incremental timing analysis
17: if Timing is improved
18: Keep the change, release the cache
19: else
20: Drop the change, restore the subcircuit from the cache
21: end if

are scaled by a 80% to its previous technology generation. We use the 45nm library

as the timing library for all OA based experiments. For benchmarks, we select the

largest circuits in the ISCAS89 sequential logic benchmarks, and convert the netlist

into OA format. The characteristics of the benchmarks are shown in Table 5.1.

5.5.1 Pyramids-DP experiments in OpenAccess environment

We tested Pyramids-DP on all circuits in Table 5.1. We use Cadence 2005

SOC encounter timing driven placer to generate the initial placements. The OAGear

Timer is used to measure the worst case delay of the placement generated by Ca-

106

design cells Regs Pins nets
s838 1 404 32 37 404
s1196 513 18 30 500
s1238 616 18 30 603
s1423 631 74 24 627
s1488 665 6 29 647
s1494 672 6 29 654

s15850 788 165 38 701
s9234 1 1051 145 67 1006
s13207 1373 333 76 1235

s5378 1380 163 83 1332
s38584 7016 1178 233 6741
s35932 7630 1728 69 7311
s38417 8414 1564 136 8309

Table 5.1: The characteristics of the ISCAS benchmarks

dence timing driven placer. For each circuit, the timing target is set to a value about

95% of initial worst case delay. Pyramids-DP reads the initial placement and im-

proves the timing further. Table 5.2 reports the further improvement accomplished

by Pyramids-DP. Column 8 shows the target timing for each circuit. Column 2-

4 report the worst negative slack (WNS), total negative slacks (TNS) and the wire

length (WL) of the initial placements. Column 5-6 report the same of the Pyramids-

DP improved results. Column 9-11 report the Pyramids-DP improvement by per-

centage. Compared with the inial placement optimized by Cadence timing driven

placer. The WNS and TNS are improved by 30.4% and 46.7% on average on the

pre-set timing target, with 2% wire length increase (WL).

In next set of experiments, we show why the latch placement is important

for timing. We fix the location of all sequential cells in the inial placements and

107

Pyramids -DP Experimental Results

Circuits Original (ps) Pyramids (ps) TAT Change (%) CPU
WNS FOM WL WNS FOM WL (ps) WNS FOM WL (s)

s838 1 -117 -5415 29.3 -56 -1117 29.4 2100 52.3 79.4 0.1 2.5
s1196 -206 -16691 42.0 -189 -13733 42.4 1856 8.2 17.7 1.0 1.6
s1238 -110 -5388 53.3 -28 -981 53.9 1975 74.8 81.8 1.2 3.6
s1423 -232 -44414 44.6 -96 -7481 45.3 4168 58.5 83.2 1.7 6.2
s1488 -110 -3732 58.7 -91 -2999 58.7 1985 17.8 19.6 -0.0 3.5
s1494 -118 -2526 61.0 -17 -162 61.1 2122 85.9 93.6 0.2 3.2

s15850 -252 -27234 43.2 -219 -21862 43.1 4532 13.0 19.7 -0.3 6.2
s9234 1 -287 -47904 79.4 -244 -31104 79.8 5174 15.2 35.1 0.5 9.3
s13207 -398 -154110 89.7 -370 -112690 90.6 7165 7.1 26.9 0.9 33.0

s5378 -291 -60104 121.7 -205 -27543 122.6 5234 29.4 54.2 0.7 11.8
s38584 -528 -30212 807.2 -473 -22912 809.2 25857 10.4 24.2 0.2 107.7
s35932 -678 -299320 947.4 -620 -164599 950.5 33207 8.5 45.0 0.3 137.7
s38417 -975 -355126 782.0 -834 -258295 783.1 33130 14.5 27.3 0.1 76.9

avg 30.4% 46.7% 0.5%

Table 5.2: Pyramids-DP Results on ISCAS benchmarks

run Pyramids-DP on combinational gate only. The results are report in Table 5.3.

Therefore, Table 5.3 report how much timing improvement the Pyramids-DP is able

to achieve by moving combinational cells only. Clearly, without moving the latches,

the amount of timing improvement achievable is much less.

5.5.2 Pyramids-CP experiments in an industrial flow

In the following, we show the experimental results for Pyramids-CP within

an industrial physical synthesis flow. First, we show how well our model resem-

bles the realistic timing. Table 5.4 compares the model slack predicted to values

measured by a commercial static timing analyzer. The latches are moved and nets

are buffered before the measurement. Columns 2-4 report the initial, final, and

improvement in worst slack, with the model presented in Section 5.4. The timing

measured by STA engine is reported in Columns 5-7. Our observation is that there is

a 97% correlation for the actual improvement compared with the model prediction,

which implies the model is reasonable enough for optimization.

108

Results with Fixed Sequential Cells

Circuits
Change (%) CPU

WNS FOM WL (s)
s838 1 17.3 35.9 -0.4 4.6
s1196 10.5 17.6 1.0 1.7
s1238 44.8 64.5 0.4 4.0
s1423 32.1 46.5 -0.0 10.7
s1488 24.4 44.1 0.6 5.5
s1494 28.7 56.1 0.5 3.3

s15850 8.2 20.3 -1.4 9.4
s9234 1 9.6 29.8 4.1 17.4
s13207 2.2 6.6 -0.5 26.3
s5378 11.1 20.4 1.2 11.5

s38584 4.3 4.7 -0.1 51.0
s35932 7.4 21.2 0.1 90.7
s38417 14.2 29.7 0.2 67.5

avg 16.5% 30.6% 0.4%

Table 5.3: Pyramids-DP results with fixed sequential cells

We use Pyramids-CP to improve the latch placement of an already opti-

mized 130nm commercial ASIC with clock period 2.2ns and 3 million objects. We

select the most critical latches that are not optimized, and we use the algorithm from

[4] to perform buffering afterwards. We compare Pyramids-CP with the Center Of

Gravity (COG) method, which is the current and intuitive solution in an industrial

physical synthesis flow to improve the latch placements. In COG, the latch is placed

to the center of gravity of adjacent pins. The “center” is weighted by the slack of

all connected pins. The COG is tested in the same framework as the Pyramids.

Table 5.5.2 shows a comparison between Pyramids and slack-weighted COG on

10 latches, which are the same latches are reported in Table 5.4. On average, the

Pyramids-CP improves slack more than 40%, while the COG improves about 16%.

109

Model timing vs. reference timing
Model slack (ps) Subcircuit slack (ps)

Subcircuit orig new imprv. orig new imprv.
latch A0 -1147 -527 620 -953 -390 563
latch A1 -1090 180 1269 -897 356 1253
latch A2 -958 -36 923 -706 123 828
latch A3 -920 320 1241 -690 395 1085
latch A4 -920 312 1232 -690 173 863
latch A5 -964 296 1260 -681 376 1058
latch A6 -924 405 1328 -679 351 1030
latch A7 -913 213 1126 -633 290 923
latch A8 -876 342 1218 -614 440 1054
latch A9 -800 397 1198 -610 262 872

avg -951 190 1142 -715 238 953

Table 5.4: The model used in Pyramids-CP is coherent with the actual timing model

5.6 Summary

We present Pyramids, an effective and efficient timing-driven placement al-

gorithm. We propose two Pyramids formulations for different wire models, which

are suitable for different stages in a physical synthesis flow. Pyramids-DP is based

on the bounding box net model and is suitable for timing driven detailed placement.

Pyramids-CP is based on the linear delay model, and is designed for critical paths

refinement in later stage of a physical synthesis flow. Experimental results validate

the effectiveness of both formulations. Pyramids-DP improved the timing of a set of

circuits, which have already been optimized by Cadence SOC encounter, by 30.4%

on average. The Pyramids algorithm-CP improved the slack by 40% of cycle time

on average for a large commercial ASIC design.

110

Pyramids vs. Center-of-gravity
Pyramids COG
Slack (ps) Slack (ps)

Subcircuit orig new imprv. orig new imprv.
latch A0 -953 -390 563 -953 -615 338
latch A1 -897 356 1253 -897 -78 819
latch A2 -706 123 828 -706 79 784
latch A3 -690 395 1085 -690 -690 0
latch A4 -690 173 863 -690 -690 0
latch A5 -681 376 1058 -681 -681 0
latch A6 -679 351 1030 -679 209 888
latch A7 -633 290 923 -633 -633 0
latch A8 -614 440 1054 -614 -614 0
latch A9 -610 262 872 -610 67 677

avg -715 238 953 -715 -365 351

Table 5.5: Comparison of Pyramids-CP with the COG

111

Chapter 6

Total Power Optimization Combining Placement,
Sizing and Multi-Vt Through Slack Distribution

Management

6.1 Introduction

Beside timing closure, for nanometer IC designs (90nm and below), power

dissipation has become one of the most important limiting factors since leakage

is increasing exponentially as CMOS technology scales down. Both process and

design technologies are being developed to conquer the leakage barriers. Among

various design techniques, multiple-Vt assignment is very popular and effective.

The idea is fairly straightforward. A design starts with all regular-Vt (RVt) cells.

Once the timing target is roughly met, one replaces non-critical cells with their high-

Vt (Hvt) counter parts, as the sub-threshold leakage current of a gate is exponentially

related to the threshold voltage. Meanwhile, one need to fix the remaining failing

paths by using a small number of low-Vt (Lvt) cells since they are faster (but leak

much more).

The effectiveness of Vt swapping relies on the slack distribution. The slack

distribution is heavily related with how timing closure is done during physical syn-

thesis, e.g., placement and gate sizing. As timing and power are often conflicting

objectives during optimization, traditionally, placement is mainly used for timing

112

optimization. And there is no existing work in placement that considers the leakage

power reduction.

Gate sizing is used for both timing optimization and power reduction. Con-

ventional gate sizing formulations either minimize the worst case delay or minimize

the power under delay constraints [35, 10, 34, 20, 22, 28, 78]. However, gate siz-

ing is never considered to help the Vt-swapping algorithm to maximize the power

reduction overall, although Vt-swapping is known to be much more effective on

leakage reduction.

To maximize the power reduction, the power saving opportunity in above

physical design stages should be considered and utilized in a systematic manner.

As we know the leakage current is exponentially related to the threshold voltage

(Table 6.1), but linear to the cell size, multi-Vt assignment shall be a much more

effective technique for leakage power reduction than gate sizing (i.e. by using high-

Vt cells as much as possible). In other words, to reduce total power where leakage

becomes prominent, it is more effective to use placement and gate sizing to promote

more e f f ective Vt swapping a f terwards than using them independently for local

power reduction. For example, we may size up some cells, which leads to less Lvt

cells used finally. In that case, the amount of leakage saved could be much more

than the power increased due to cells upsized.

In this chapter, we propose to use the slack distribution management to

“glue” placement and gate sizing algorithms together to boost the Vt-swapping

technique. The primary objective of our approach is to increase the sum of slacks

on critical and near critical paths, i.e. to push the slack distribution curve (not the

113

Table 6.1: Normalized delay and leakage current for a cell with different threshold
voltages in 65nm technology

Cell Lvt Rvt Hvt
Delay 1 1.1 1.3

Leakage current 17.3 2.4 1

worst slack) of the circuit away from critical, even at the cost of up-sizing some cells

slightly. Less total number of critical cells implies less Lvt cells and higher percent-

age of Hvt cells being used eventually. In other words, we trade small dynamic

power increase for large leakage power reduction. In addition, we reduce the power

directly by sizing down cells on non-critical paths when possible. Our method-

ology formulates a linear-programming (LP) based placement and two geometric

programming (GP) based gate sizing algorithms to change the slack distribution.

In the rest of the chapter, section 6.2 motivates our proposed approach. The

LP based placement stage is introduced in section 6.3. The GP formulations are in

6.4 and the Vt swapping algorithm is described in section 6.5. Experimental results

are shown in section 6.6, and we summarize in section 6.7.

6.2 Motivation & proposed approach

In a typical flow, a design starts with all regular Vt cells (Rvt). A few timing

violating paths that are very difficult to optimize in other ways can be fixed by

swapping in Lvt cells. All Rvt cells on non-critical paths with large slack will be

swapped into Hvt cells to save power. As shown in Table 6.1, the leakage of a Hvt

cell is significantly smaller, about 17 times compared with a Lvt version at 65-nm

114

technology.

The results of Vt swapping is highly dependent on the slack distributions.

If we can reduce the number of near critical cells, we may use fewer Lvt cells and

more Hvt cells. Figure 6.1 plots the cell slack histogram of a circuit before and

after placement plus gate sizing. The circuit is Rvt based. The slack histogram

after optimization is tightened around a specified mean with a reduced deviation.

Less near-critical cells implies less Lvt cells be used later, and less leakage power

subsequently.

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

nu
m

 g
at

es

slack

Slack distribution

Orignal
Optimized

Figure 6.1: Slack distribution before and after optimization

115

6.2.1 The proposed flow

Our strategy is to use the placement and gate sizing to optimize the slack

distribution to promote Vt swapping. We formulate a LP program for placement

and a GP program for gate sizing to maximize the sum of slacks on semi-critical

paths. In addition, cells on non-critical paths may be oversized even if they are

swapped to Hvt . We formulate a GP problem to reduce slack and power on non-

critical cells directly.

Algorithm 7 The Overall Algorithm
1: The slack distribution management algorithm
2: Input: initial design (all Rvt cells)
3: while (less than max. iter. & improved) do
4: Incremental placement optimization
5: TimingAnalysis
6: Cell sizing on critical path for slack
7: TimingAnalysis
8: Size down non-critical cells
9: TimingAnalysis

10: The Vt-swapping algorithm (Algorithm 2)
11: Functon: TimingAnalysis
12: Pre-routing, and timing analysis
13: if(improved) accept solution, annotate the database

We use placement and gate sizing iteratively to improve the slack distribu-

tion. Algorithm 7 shows our proposed flow. Starting from a design, we do the place-

ment and critical cell gate sizing iteratively until no further improvement. Finally,

we employee the Vt swapping to use a few Lvt cells to fix the remaining critical

paths, and replace as many Rvt with Hvt cells as possible. At the end of each stage

in the flow, we run a fairly accurate timing analyzer. The timing tool pre-routes the

116

circuit, extract the parasitics, and run the PrimeTime based timing analysis. The

timing change from the previous stage is accurately updated and annotated back

into the design databases, as the basis of the next stage.

6.2.2 Practical design constraints

In existing literature of power optimization, important practical design con-

straints, such as slew, noise, and short-circuit power, are often not considered, which

makes the optimization algorithm impractical for realistic designs. For example,

short circuit power is usually assumed small and ignored in most of existing power

reduction algorithms. However, short circuit power may rise significantly if not

explicitly controlled in the optimization framework.

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

nu
m

 g
at

es

slew

Slew distribution

Slew constrained
Without slew

Figure 6.2: Slew rate distribution with and without explicit control

117

6.2.2.1 The slew and noise related constraints

Without restricting the maximum slew rate, cells on short paths will be over-

downsized. Figure 6.2 plots the slew rate histogram of the gate sizing results with

and without restricting the slew rate. in Figure 6.2, a lot of instances violate the

50 pico-second slew limit if ignoring slew constraints. Our maximum slew rate

constraints set an upper bound for the slew rate. Furthermore, cells have different

sensitivities to slew for noise. Our model includes the effective fan-out constraints,

which is an effective way to reduce the noise related issues.

1 2 3 4 5
S1

S3

S5

S7

0

5

10

15

Input slew
Output cap

Power

1

2

3

4

5

6

7

S1 S S S S5
Delay

Input slew

10-15

5-10

0-5

Otput
cap

Figure 6.3: A simple yet effective short circuit power constraint model.

6.2.2.2 Short circuit power constraint

Short circuit power is difficult to model and ignored in most existing power

optimization algorithms. The inputs for internal power are the input slew and output

capacitance, as shown in Figure 6.3. Imaging a scenario that the input slew of a cell

is large and the load can be charged full quickly, the PMOS and NMOS will be both

on for a longer period. The V dd to ground current will consume a lot of power.

118

Short circuit power is often assumed very small. However, in our experiments, it

is comparable to leakage if not properly handled. Figure 6.3 is a SPICE simulation

based look-up table to interpolate the short circuit power. Note that short circuit

power could rise dramatically if the ratio of the input slew and output capacitive

load falls into a certain range, e.g. input slew is large while the cell is driving a

comparably small load.

In later sections, we will show how to handle above important design con-

straints in our proposed algorithm.

6.3 LP based placement for power

The objective of our LP placement formulation is to reduce the power in

Vt-swapping stage incrementally. Therefore, instead of reducing the worst case

delay, our LP based placement is formulated primarily to reduce the total number

of critical and semi-critical cells, i.e. to push the slack curve away from the critical

point, which helps the Vt-swapping tool on leakage reduction.

Linear programming is commonly used for incremental timing driven place-

ment [22, 39, 25, 26, 58]. In LP based incremental placement, a few critical paths

are selected by a sign off timer, and critical paths are optimized incrementally. Ex-

isting LP based timing driven placement algorithms use the half parameter wire

length for wire estimation, as HPWL can be formulated exactly in a LP framework.

Chen et.al. [22] proposed a simultaneous placement and gate sizing ap-

proach to optimize the delay. Because the unified placement and sizing GP formu-

119

lation is not convex, the problem was formulated into a generic geometric program

(GGP) and solve iteratively. However, the HPWL based wire load estimation is

much less accurate compared with that in a stand alone gate sizing problem, which

can be measured separately. A simultaneous formulation will make the wire load

estimation less accurate for gate sizing, which often results in a sub-optimal solu-

tion.

6.3.1 The LP formulations

We assume the following gate delay DPi and transition SPi models for cell i

DPi = d pI +a1i ·Slewi +a2i ·Capi (6.1)

SPi = spI +u1i ·Slewi +u2i ·Capi (6.2)

where a1i, a2i, u1i, and u2i are the fitting coefficients. d pI and spI denote the

intrinsic delay and slew of the corresponding pin of the cell. Slewi denotes the input

slew. Let HPWL j denotes the HPWL of net j, and Cap j represents the capacitive

load of the driver of net j. We have

Cap j = c ·HPWL j +Cpin j

which is the sum of the wire capacitance cHPWL j plus the total pin capacitance

driven by net j, and c is the unit capacitance.

The LP placement algorithm selects a few critical paths selected from the

timing report, which have slacks less than a threshold. The net delay sensitivity

is computed for each critical net, and a LP program is formulated to minimize the

120

sum of the weighted critical nets, which is an indirect method to increase the sum

of total slack on those critical paths. The net delay sensitivity Sn j is based on the

delay propagation sensitivity computation in [58]

Sn j = c · (a2i +a1i+1 ·u2i)

Elmore delay [33] is used for wire delay modeling and the symbols related with net

delay are omitted in the formulation for simplicity.

Similar to [56], the critical paths were counted to compute the criticality of

each selected critical net, the criticality score of net j is denoted by Sc j. Therefore,

the combined timing weight wtt = Sc jSn j. The dynamic power is a function of the

load capacitance of the net. If cell i drives net j, we have a power weight

wtp = 0.5αi ·F ·V 2 (6.3)

where αi denotes the switching rate, F is the frequency, and V is the voltage. A

control parameter β is used to adjust the ratio between the timing and power weight.

wt j = βwtp +(1−β)wtt

β is a value between 0 and 1. The primary objective of our LP placement is to

reduce the leakage power, thus, β is set to a relatively small value. A LP program

is formulated to minimize the sum of the weighted critical nets, which indirectly

increases the sum of pin slacks.

min ∑wt jL j

∀ j ∈ Selected critical nets

The residual overlap created in this stage is carefully removed.

121

6.4 GP based gate sizing for power

Placement has a limited impacton slack distribution improvement if the cell

sizes are not changed. To push the slack curve further, we use the effort based

delay model, and formulate a Geometric programming based gate sizing problem.

GP is a special type of the non-linear optimization problem that has been used for

gate sizing since the 80s [27, 11, 12]. The standard GP problem has a posynomial

objective and special format constraints. In last ten years, the solving efficiency of

GP is approaching that of Linear Programming. We refer the reader to a tutorial for

geometric programming [12].

Conventional gate sizing formulations minimize the worst case delay in a

circuit with power or area constraints [10, 12, 22], or minimize the power directly

under the delay constraints [78]. On the contrary, our first GP formulation increases

the sum of slack on critical and near critical outputs instead. Our second GP pro-

gram is related to the conventional formulation, which focuses on the non critical

part of the circuit to “absorb” large slacks. Therefore, we treat cells differently

depending on the criticality of the cell.

6.4.1 Cell classification

Cells are classified into two sets, the non-critical set NC and the critical set

CRIT , based on the output pin slack. If the pin slack is larger than a threshold, we

add the cell into NC. Similarly, if the slack is small enough, we add the cell into

CRIT .

For the first GP program, we start from all outputs with slack less than δ,

122

for example, δ = 70 ps. We traverse the circuit in a reversed breath first order, and

the reversed BFS traversal proceeds only on cell outputs with the slack smaller than

δ + γ and stops at signal inputs, which are the inputs of the circuit or the outputs

of sequential cells. Only cells with slack less than θ (θ < δ) are selected into the

CRIT . The size of cells in CRIT are variables for the GP program. As the arrival

time of all outputs with slack less than δ is controlled in the GP program, δ−θ acts

as a guard band to ensure that timing on other outputs are not disturbed too much.

For the second GP program for non-critical cells, all cells with a slack larger than a

threshold are sizable cells in NC, and all outputs are included into the GP problem.

In other words, all arrival times are controlled.

6.4.2 The GP models

We model the gate as a resistor and a switch that drives a RC network. The

gate delay and transition are the functions of the gate size W and the total capacitive

load, Cap. The equation for the cell equivalent impedance is different for delay and

transition equations, and the delay models for each pin of a gate and that for the

falling or rising transition are different. We use the worst case models for a cell.

The gate delay Dgi and slew Sgi are given by

Dgi = dgI +(hi/Wi) ·Capi (6.4)

Slew is not propagated. But slew is monitored and restricted by the following equa-

tion

Sgi = sgI +(vi/Wi) ·Capi (6.5)

123

Cap is the sum of the capacitive load and the gate capacitance a cell drives. The pin

capacitance of a cell i is a linear function of the cell size Wi.

Cpi = ei + fiWi (6.6)

In above equations, dgI , hi, sgI , vi, ei, and fi are all fitting coefficients to the cell

library.

Assuming a cell i drives a sizable cells and b non-sizable cells. The total

capacitance the cell i drives is

Capi =
a

∑
k=1

(ek + fkWk)+
b

∑
l=1

(Cpl)+Capwire (6.7)

We add the wire delay in our formulation. An accurate pre-routing tool is

used to estimate routs. The pin to pin wire delay is computed by a static timer and

treated as a constant in the gate sizing formulation.

Three major source of power consumption, including dynamic, short circuit,

and leakage power are considered in our approach. The dynamic power can be

written as

Pi = 0.5α ·F ·V 2 ·Capi (6.8)

where α, F , and V are defined in Equation (6.3). The leakage power is assumed

proportional to the gate size, and the parameter leak is extracted from the SPICE

simulation based power library. The following linear leakage model is sufficient for

the leakage estimation in the gate sizing stage.

Li = leaki ·Wi (6.9)

The short circuit power is modeled as constraints in the GP formulation.

124

6.4.3 Gate sizing effectiveness analysis

Slack and power optimization are often contradictory objectives. To re-

duce the delay by sizing up cells will increase the dynamic and the leakage power.

Whether or not and how to size a cell should be also determined by if such a chance

has negative overall effect potentially. We do the following gate sizing effectiveness

analysis to estimate a sizing range, i.e. we do not size a cell exceeding a limit that

may have a negative effect. In the following, we will derive the power and delay

i
… …

1

K

1

J

i
… …

1

K

1

J

Figure 6.4: Gate sizing effectiveness analysis

sensitivity to cell size. In Figure 6.4, the cell i has J inputs and drives K downstream

cells. If we change cell i from Rvt to Lvt , the associated power will change by ∆Pvi,

and delay will change by ∆Dvi. We have

∆Pvi = ∆Leaki +αiFV 2 ∑
j

f j∆Cpi, j = 1..J

∆Dvi = ((h
′
i−hi)/Wi)(∑

k
Cpk +Cw)+max(

h j

W j
∆Cpi),k = 1..K

Where ∆Cpi is the pin capacitance change. h
′
i is the corresponding coefficient for Lvt

cell, as in Equation (6.4). Similarly, if changing the cell size by ∆Wi, the associated

power change is denoted by ∆Pgi,

∆Pgi = Leaki∆Wi +αiFV 2 ∑
j

h j f j∆Wi

125

The associated delay change is denoted by Dgi

∆Dgi = (
hi

Wi +∆Wi
− hi

Wi
)∑

k
(Cpk +Cw)+max(

h j

Wj
∆Wi)

To solve the equation ∆Pvi/∆Dvi = ∆Pgi/∆Dgi, one zero and one non-zero ∆Wi

solutions are generated. If the non-zero solution is negative, sizing up cell i will

increase both power and delay, and the cell i is not allowed to be sized up. If one of

the solutions is positive, and Wi +∆Wi <Wmaxi, we set the maximum sizable range

of cell i as Wmaxi = Wi +∆Wi. Beyond this limit, gate sizing has a lower power and

delay benefit compared to Vt swapping.

6.4.4 GP for near-critical cells

In brief, our first GP program creates more slacks for near critical cells,

which maximizes the sum of slacks on critical outputs. The GP formulation is

given by

minimize∑
j

ATj

+∑
i

wtiWi(∆Pgi/∆Wi), j ∈ PO∩CRIT, i ∈CRIT (6.10)

s.t. Dgi = dI +
bi

Wi
Cpi

ATi ≥ Dgi +max(AT p
i−1), p ∈ input pins o f i

ATi = Tstart ,∀i ∈ PI

Wi ≥Wmini,Wi ≤Wmaxi

In above, ATi is the arrival time at the output of the celli. ∆Pgi/∆Wi is the

126

power sensitivity to cell sizes

∆Pgi/∆Wi = Leaki +αiFV 2 ∑
j

h j f j (6.11)

Tslack is a slack threshold. In the above GP formulation, we optimize the sum of the

arrival time of all critical and near critical outputs. Wmaxi and Wmini are the sizing

range for cell i. Wire delay is not shown for clarity, which is a constant computed

by a static timer conjuncted with a pre-routing tool.

Let wti denotes the power weight. Without the power objective ∑i wtiWi,

the cell could be overly unsized, which will cause unnecessary increase on power.

Before the optimizations, the sum of the arrival time on critical outputs and the sum

of dynamic and leakage power on cells in CRIT are evaluated. The power weight is

computed to normalize the arrival time and power objectives, and the power weight

is set to be associated with the power sensitivity of each cell. A 0 to 1 parameter is

set to adjust the ratio between the arrival time and power objects.

6.4.5 GP for non-critical cells

The GP for non-critical cells is to optimize the total power on high slack

cells, such that the arrival time does not violate timing constraints. The GP problem

for non-critical cells can be written as

min.∑
i
(∆Pgi/∆Wi), i ∈ NC

s.t. ATi ≤ max((Tcycle−Tthreshold),AT origi), i ∈ PO (6.12)

where ∆Pgi/∆Wi is from Equation (6.11). Tthreshold is the slack guard band. We

consider swapping non-critical cells with slack larger than Tthreshold to Hvt cells.

127

AT origi is the original arrival time of the output i. Constraint (6.12) implies that

for each output i, the arrival time after the optimization may not violate the larger

of a delay threshold and its original delay. The shared constraints in above GP

problems are not shown here for simplicity.

6.4.6 Modeling important constraints

Besides the delay and power, there are a few constraints that are critical for

industry practices, for example, the maximum slew constraint, the effective fan-

out constraint for noise, and the short circuit power constraints, which were often

ignored in previous studies. Our formulation considers those constraints and model

them as follows in the GP framework.

6.4.6.1 The max slew constraint

Although adding the slew constraints will significantly limit the amount of

power reducible, we should not ignore the slew constraints because slew rate vio-

lations are unacceptable for real world designs. The slew Equation (6.5) is used to

estimate the slew rate, and we use the following to transform the slew constraint

into sizing constraint in GP form.

Si = sI +
vi

Wi
Cpi

Si ≤ Slewmax (6.13)

where Slewmax is the maximum slew rate acceptable.

128

6.4.6.2 Effective fan-out constraint for noise tolerance

The concept of effective fan-out (E f o) is related to but different from the

conventional fan-out concept. Efo is the ratio of the effective capacitance a cell

drives divided by the effect impedance ratio of the driver compared to a standard

inverter. The effective impedance Ratio is the hold resistance of a cell divided by

that of a standard inverter at a certain voltage level. The Efo constraint is given by

E f oi =
Cpi

Ratioi×Cinv1
≤ E f olimit (6.14)

Applying an effective fan-out constraint on each cell will avoid introducing

large amount of noise issues during the optimization.

6.4.6.3 Short circuit power constraint

The short circuit power is non-trivial to handle, and mostly ignored in pre-

vious power optimization work. Since the short circuit power is not large unless the

ratio of the input slew and output capacitive load falls into a certain range, as shown

in Figure 6.3, we can specify a do-not-enter region by adding a linear constraint to

restrict the ratio between the input slew and output capacitance to avoid large short

circuit power consumption.

Capi ≥ pi +qiSi (6.15)

where Capi is the capacitive load driven by cell i. pi and qi are the parameter of the

linear function shown in Figure 6.3, which specify the boundary of the do-not-enter

zone. Above constraint ensures that the input slew of a cell should not be much

larger than its output slew.

129

The number of possible sizes for a gate varies depending on the gate type.

An inverter could have over 20 different sizes. Our algorithm assumes the sizes

are continuous. The solution of the GP solver are continuous gate sizes, which

will be mapped into the closest discrete ones. The discrete size mapping stage may

introduce less than 5 percent errors.

Algorithm 8 The Vt-swapping algorithm
1: Input The design after placement and sizing opt.
2: while (stopping criteria not meet) do
3: foreach (all cells)
4: if (slack > High) swap to Hvt
5: if (slack < Low) swap to Lvt
6: end
7: TimingAnalysis
8: Sort cells on Senstivity (critical and noncritical list)
9: foreach (Sorted cells)

10: Swap to Lvt or Rvt
11: Propagate timing and evaluate
12: end
13: end

6.5 Vt swapping algorithm

We use a multiple pass sensitivity based Vt swapping algorithm, as shown

in Algorithm 8 to swap cells. Cells with very large or small slacks are processed

first. The rest are sorted on their sensitivity score. In each swapping pass, two

hashes are created, one for Rvt cells and the other for Lvt cells. The sensitivity of

a cell is computed by the original slack of the cell, the up-cone impact and the

down cone impact of the cell. One top cell is selected at a time. The internal timer

130

Table 6.2: Total power comparison
65 nm Total power (mw) Improvement %
Gates Nets Base VT PV PGV V T |B PV |B PGV |B

ckt1 1765 2360 29.79 24.60 22.06 20.52 17.4 25.9 31.1
ckt2 2334 2881 30.26 22.41 21.93 19.69 25.9 27.5 34.9
ckt3 6640 8644 142.51 103.45 101.31 96.11 27.4 28.9 32.6
ckt4 9254 7928 110.86 93.57 93.57 86.38 15.6 15.6 22.1
ckt5 9541 9539 233.56 151.81 147.23 123.40 35.0 37.0 47.2
ckt6 12716 14042 241.27 155.89 154.14 140.43 35.4 36.1 41.8
ckt7 15486 18360 287.22 233.63 226.96 217.14 18.7 21.0 24.4
ckt8 27103 26991 499.15 377.34 372.51 354.58 24.4 25.4 29.0

25.0 27.2 32.9

propagates the timing changes down stream and upstream to update the required

times and the slacks. The process continues until the slack requirement is met. The

swapping process will be performed multiple times for different supply voltages

and performance corners. A solution that satisfies all corners will be adopted.

6.6 Experimental Results

The placement and gate sizing algorithm are implemented in C++ and the

Vt swapping algorithm is in perl. We use the commercial tool MOSEK [64] as the

GP solver. Several modules from a multi-GHz micro-processor in 65nm process

technology are used for experiments. The number of cells and nets are shown in

table 6.2, which are typical in micro-processor designs. The circuits have been

initially manually placed and timing optimized and taped out in a test chip. It

is to be noted that the high performance microprocessor circuits have a stringent

timing target and are very difficult for timing optimization. Therefore, the multi-Vt

swapping technique has to be used to repair the remaining failing paths, in most of

131

cases. All experiments are tested on a 2.4GHz 64-bit Opteron Linux server. We use

an internal power evaluation tool to estimate the power consumption.

Table 6.2 shows the total power comparisons. Table 6.3 and 6.4 report the

comparisons of leakage power and dynamic power respectively. In all tables, col-

umn Base shows the base-line optimization condition where cells are mostly Rvt

cells. Column V T shows the power after the Vt swapping, and BASE stands for the

baseline. PV shows the combined placement and Vt swapping, and column PGV

stands for the combined placement, gate sizing and Vt swapping flow. We can see

that the Vt swapping is very effective in reducing leakage power. The combined LP

based placement and GP based gate sizing algorithm provides additional improve-

ment and the flexibility to trade off on dynamic and static power through optimizing

the slack distribution. We observe an additional 7.9% total power reduction, which

is significant for manually optimized custom circuits. In current configurations, the

placement optimization is configured to mostly help leakage power. The combined

placement, gate sizing and Vt swapping gives the best results and helps to reduce

63.8% of leakage power and 32.9% of total power consumption.

The break down of runtime is shown in table 6.5. Column Timing reports the

runtime of the static timing analysis flow. Our sophisticated timing analysis flow

pre-routes the circuit, extracts parasitics and run a PrimeTime engine to generate

the timing report and annotates the timing information into the design database. We

run the timing analysis at the end of every optimization stage to update the timing

information. Therefore, multiple runs of the timing analysis flow took a lot of

runtime. The break down of dynamic and leakage power in circuits before and after

132

Table 6.3: Leakage power comparison
Base VT PGV V T |Base % PGV |Base %

ckt1 10.50 6.09 3.28 42.0 68.8
ckt2 11.49 4.79 3.67 58.3 68.1
ckt3 52.11 20.10 17.38 61.4 66.6
ckt4 45.76 30.42 28.06 33.5 38.7
ckt5 93.04 26.62 18.28 71.4 80.4
ckt6 99.29 24.78 19.64 75.0 80.2
ckt7 104.77 60.25 49.86 42.5 52.4
ckt8 215.24 108.46 96.28 49.6 55.3

54.2 63.8

Table 6.4: Dynamic power comparison
Base VT PGV V T |Base % PGV |Base%

ckt1 19.29 18.51 17.24 4.0 10.6
ckt2 18.77 17.62 16.02 6.1 14.7
ckt3 90.40 83.35 78.73 7.8 12.9
ckt4 65.10 63.15 58.32 3.0 10.4
ckt5 140.52 125.19 105.12 10.9 25.2
ckt6 141.98 131.11 120.79 7.7 14.9
ckt7 182.45 173.38 167.28 5.0 8.3
ckt8 283.91 268.88 258.30 5.3 9.0

6.2 13.3

optimization is reported in Figure 6.5. We observe significant leakage reduction

after applying our power optimization algorithm. The leakage reduction is due to

higher percentage of Hvt cell used after the power optimization. The percentage of

different Vt cells in all circuits are illustrated in figure 6.6. Originally a few circuits

have negative slacks, and all circuits meet the timing target after the optimization.

More Lvt cells is used in circuit 4 to close timing, and the percentage of Lvt cells

is relatively small for the rest of testcases. Therefore, leakage power is reduced

133

0%

20%

40%

60%

80%

100%

ckt1 ckt2 ckt3 ckt4 ckt5 ckt6 ckt7 ckt8

Dynamic LeakageOrignal

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ckt1 ckt2 ckt3 ckt4 ckt5 ckt6 ckt7 ckt8

Post optimization

Figure 6.5: The leakage and dynamic power break up before and after optimizations

significantly.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ckt1 ckt2 ckt3 ckt4 ckt5 ckt6 ckt7 ckt8

LVT

RVT

HVT

Figure 6.6: The percentage of different threshold voltage cells

6.7 Summary

In this chapter, we propose to combine placement, gate sizing, and multiple-

Vt cell swapping algorithm and methodology for leakage and total power optimiza-

tion. Our unified slack distribution management strategy makes it possible to com-

134

Table 6.5: Runtime breakup(s)
Testcases Place Size Swap Timing
ckt1 4 14 55 168
ckt2 3 12 69 90
ckt3 30 75 124 453
ckt4 25 42 137 217
ckt5 26 68 149 324
ckt6 32 228 171 262
ckt7 16 193 186 342
ckt8 43 384 245 538

bine different technique, the placement and gate sizing, to maximize the power

reduction, while satisfying timing constraints. Our placement and gate sizing prob-

lems are formulated to optimize the slack distribution, which in turn transformed

into power reduction through Vt-swapping. Our approach treats cells differently

depending on their timing criticality. On a set of timing-closed multi-gHz 65nm

custom microprocessor circuits, our approach reduced the leakage power by 63.8%

and the overall power by 32.9%. Various practical design constraints are incorpo-

rated in our approach which were not considered before. Since power is becoming

one of the most important design objectives, we believe there is a lot of room for

future research on the total power reduction.

135

Chapter 7

Conclusions

Major optimization objectives in physical synthesis include the wire length,

timing, power, etc. In this dissertation, we present several placement driven op-

timization algorithms to advance the state of art of multi-objectives VLSI design

closure.

The first work is DPlace, an analytical placement engine that scales well to

large scale circuit placement. DPlace employs a two-stages strategy that decouples

the cell spreading and wire length minimization tasks and reduces the complexity of

each placement iteration, which in turns brings the efficiency to DPlace. The flexi-

bility in DPlace framework makes it possible to explicitly control the cell movement

during the diffusion spreading stage in every DPlace iteration, which has the poten-

tial advantages for ECO and timing driven placement, where precise cell movement

control is desired. Furthermore, The DPlace framework makes it flexible to inte-

grate additional wire length and congestion optimization techniques.

The nature of design optimizations is often incremental. An incremental op-

timization tool normally starts from an existing placement solution and addresses a

few design violations in small steps. The cell overlaps introduced between incre-

mental optimization steps need to be smoothly resolved by placement migration. I

136

developed a novel computational geometry based placement migration framework

to address placement migration problem. Our experimental results on legalization

problem have demonstrated significant improvements on wire length and stability

for placement migration.

A smooth placement migration only implicitly preserves timing. I proposed

a LP based critical path optimization tool to explicitly improve the timing in high

performance custom designs and ASICs. The new framework uses an accurate

delay sensitivity based net-weighting method that combines the advantage of the

path-based approach. To avoid large disturbance to existing image of the design,

I introduced a novel criticality adjacency network concept to control the timing

perturbation precisely during the optimization.

The Pyramids algorithm presented is an effective and efficient timing-driven

placement algorithm, which has tow formulations, the Pyramids-DP and Pyramids-

CP. Pyramids-DP is based on the bounding box net model and is suitable for timing

driven detailed placement. Pyramids-CP is based on the linear delay model for

timing arcs. Pyramids-CP is designed for critical paths refinement in later stage of

a physical synthesis flow, where many buffers are inserted. The

To address the increasing concerns for power consumption, I propose to

combine placement, gate sizing, and multiple-Vt cell swapping algorithm and method-

ology for leakage and total power optimization. We use the slack distribution man-

agement as the centralized objective for incremental placement, gate sizing and

Vt-swapping, which leads to the maximized power reduction. The placement and

gate sizing problems are formulated to optimize the slack distribution, which in turn

137

transformed into power reduction through Vt-swapping. In addition, various prac-

tical design constraints are incorporated in our approach, which were often ignored

before. Furthermore, we believe that various optimization techniques, such as the

gate sizing and buffering need to be incorporated with placement to speed up the

process of multi-objective VLSI design closure.

138

Bibliography

[1] A. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur, S. Ono, and P. H. Mad-

den. Fractional cut: improved recursive bisection placement. In Proc. Int.

Conf. on Computer Aided Design, pages 307–310, 2003.

[2] Ameya R Agnihotri and Patrick H Madden. Fast analytic placement using

minimum cost flow. In Proc. Asia and South Pacific Design Automation

Conf., 2006.

[3] Ameya R. Agnihotri, Satoshi Ono, and Patrick H. Madden. Recursive bisec-

tion placement: feng shui 5.0 implementation details. In Proc. Int. Symp. on

Physical Design, 2005.

[4] C. J. Alpert and et al. Fast and flexible buffer trees that navigate the physical

layout environment. In Proc. Design Automation Conf., 2004.

[5] Charles J. Alpert, Chris Chu, and Paul G. Villarrubia. Physical synthesis

comes of age. In Proc. Int. Conf. on Computer Aided Design, 2007.

[6] Charles J. Alpert and et. al. Techniques for fast physical synthesis. In Proc.

IEEE, 2007.

[7] Charles J. Alpert and et.al. Accurate estimation of global buffer delay within

a floorplan. In IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, 2006.

139

[8] Charles J. Alpert, G.-J. Nam, P. Villarrubia, and M. C. Yildiz. Placement

stability metrics. In Proc. Asia and South Pacific Design Automation Conf.,

Jan, 2005.

[9] Semiconductor Industry Association. International Technology Roadmap for

Semiconductors, 2005.

[10] M. Berkelaar and J. Jess. Gate sizing in MOS digital circuits with linear

programming. In Proc. European Design Automation Conf., pages 217–221,

June 1990.

[11] Stephen P. Boyd and Seung Jean Kim. Geometric programming for circuit

optimization. In Proc. Int. Symp. on Physical Design, 2005.

[12] Stephen P. Boyd, Seung Jean Kim, Lieven Vandenberghe, and Arash Hassibi.

A totorial on geometric programming. Technical Report, ISL, Electrical En-

gineering Department, Stanford University, 2004.

[13] U. Brenner, A. Pauli, and J. Vygen. Almost optimum placement legalization

by minimum cost flow and dynamic programming. In Proc. Int. Symp. on

Physical Design, pages 2–9, 2004.

[14] U. Brenner and J. Vygen. Faster optimal single-row placement with fixed

ordering. In Proc. Design, Automation and Test in Eurpoe, pages 117–121,

2000.

[15] Michael Burstein and Mary N. Youssef. Timing influenced layout design. In

Proc. Design Automation Conf., pages 124–130, 1985.

140

[16] Andrew E. Caldwell, Andrew B. Kahng, and Igor L.Markov. Can recursive

bisection alone produce routable, placements? In Proc. Design Automation

Conf., pages 477–482, 2000.

[17] Tony Chan, Jason Cong, Joseph Shinnerl, Kenton Sze, and Min Xie. mpl6:

enhanced multilevel mixed-size placement. In Proc. Int. Symp. on Physical

Design, 2006.

[18] Tony Chan, Jason Cong, and Kenton Sze. Multilevel generalized force-

directed method for circuit placement. In Proc. Int. Symp. on Physical

Design, 2005.

[19] Chunhong Chen, Xiaojian Yang, and Majid Sarrafzadeh. Potential slack: an

effective metric of combinational circuit performance. In Proc. Int. Conf. on

Computer Aided Design, pages 198–201, 2000.

[20] G. Chen, H. Onodera, and K. Tamaru. An iterative gate sizing approach with

accurate delay evaluation. In Proc. Int. Conf. on Computer Aided Design,

pages 422–427, November 1995.

[21] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang. A high

quality analytical placer considering preplaced blocks and density constraint.

In Proc. Int. Conf. on Computer Aided Design, 2006.

[22] W. Chen, C. Hseih, and M. Pedram. Simultaneous gate sizing and place-

ment. In IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, pages 206–214, February 2000.

141

[23] Yongseok Cheon, Pei-Hsin Ho, Andrew B. Kahng, Sherief Reda, and Qinke

Wang. Power-aware placement. In Proc. Design Automation Conf., 2005.

[24] D. G. Chinnery and K. Keutzer. Closing the gap between asic and custom: an

asic perspective. In Proc. Design Automation Conf., pages 637–642, 2000.

[25] Wonjoon Choi and Kia Bazargan. Incremental placement for timing opti-

mization. In Proc. Int. Conf. on Computer Aided Design, page 463, 2003.

[26] Amit Chowdhary, K. Rajagopal, S. Venkatesa, T. Cao, V. Tiourin, Y. Para-

suram, and B. Halpin. How accurately can we model timing in a placement

engine? In Proc. Design Automation Conf., pages 801–806, 2005.

[27] C. Chu and D. Wong. Vlsi circuit performance optimization by geometric

programming. In Annals of Operations Research, pages 105:37–60, 2001.

[28] W. Chuang and S. S. Sapatnekar. Power vs. delay in gate sizing: Conflicting

objectives? In Proc. Int. Conf. on Computer Aided Design, pages 463–466,

November 1995.

[29] Jason Cong, Lei He, Cheng-Kok Koh, and Patrick H. Madden. Performance

optimization of VLSI interconnect layout. Integration, the VLSI Journal,

21:1–94, 1996.

[30] Jason Cong, Tim Kong, Joseph R. Shinnerl, Min Xie, and Xin Yuan. Large-

scale circuit placement: Gap and promise. In Proc. Int. Conf. on Computer

Aided Design, 2003.

142

[31] Wilm E. Donath, Reini J. Norman, Bhuwan K. Agrawal, Stephen E. Bello,

Sang Yong Han, Jerome M. Kurtzberg, Paul Lowy, and Roger I. McMillan.

Timing driven placement using complete path delays. In Proc. Design Au-

tomation Conf., pages 84–89, 1990.

[32] H. Eisenmann and F. M. Johannes. Generic global placement and floorplan-

ning. In Proc. Design Automation Conf., pages 269–274, 1998.

[33] W. C. Elmore. The transient response of damped linear networks with partic-

ular regard to wide-band amplifiers. Journal of Applied Physics, 19(1):55–63,

January 1948.

[34] S. S. Sapatnekar et.al. An exact solution to the transistor sizing problem for

CMOS circuits using convex optimization. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, 1993.

[35] J. P. Fishburn and A. E. Dunlop. TILOS: A posynomial programming ap-

proach to transistor sizing. In Proc. Int. Conf. on Computer Aided Design,

pages 326–328, November 1985.

[36] Fortune. Voronoi diagrams and delaunay triangulations. In Computing in

Euclidean Geometry, 2nd Edition, World Scientific, Lecture Notes Series on

Computing – Vol. 1. 1992.

[37] Padmini Gopalakrishnan, Altan Odabasioglu, Lawrence Pileggi, and Salil Raje.

Overcoming wireload model uncertainty during physical design. In Proc. Int.

Symp. on Physical Design, pages 182–189, 2001.

143

[38] Bill Halpin, C. Y. Roger Chen, and Naresh Sehgal. A sensitivity based placer

for standard cells. In Proc. of Great Lakes symp. on VLSI, pages 193–196,

2000.

[39] Bill Halpin, C. Y. Roger Chen, and Naresh Sehgal. Timing driven placement

using physical net constraints. In Proc. Design Automation Conf., pages

780–783, 2001.

[40] D Hill. Method and system for high speed detailed placement of cells within

an integrated circuit design. US patent 6,370,673, 2002.

[41] Bo Hu and Malgorzata Marek-Sadowska. Far: fixed-points addition & relax-

ation based placement. In Proc. Int. Symp. on Physical Design, 2002.

[42] S. W. Hur and J. Lilis. Mongrel: hybrid techniques for standard cell place-

ment. In Proc. Int. Conf. on Computer Aided Design, pages 165–170, 2000.

[43] ISPD 2002 Benchmark. http://vlsicad.eecs.umich.edu/bk/ispd02bench/.

[44] ISPD2002BenchmarkModified. http://gibbon.uwaterloo.ca/research.html. 2002.

[45] ISPD 2005 Placement Contest. http://www.sigda.org/ispd2005/ispd05/slides/10-

1-placement-contest-ispd05.ppt.

[46] Yun-Cheng Ju and Resve A. Saleh. Incremental techniques for the identifi-

cation of statically sensitizable critical paths. In Proc. Design Automation

Conf., pages 541–546, 1991.

144

[47] A. B. Kahng, S. Reda, and Q. Wang. Aplace: A general analytic placement

framework. In Proc. Int. Symp. on Physical Design, pages 233–235, April

2005.

[48] A. B. Kahng, S. Reda, and Q. Wang. Architecture and details of a high quality,

large-scale analytical placer. In Proc. Int. Conf. on Computer Aided Design,

November 2005.

[49] A. B. Kahng, P. Tucker, and A. Zelikovsky. Optimization of linear placements

for wirelength minimization with free sites. In Proc. Asia and South Pacific

Design Automation Conf., pages 18–21, 1999.

[50] A. B. Kahng and Q. Wang. An analytic placer for mixed-size placement and

timing-driven placement. In Proc. Int. Conf. on Computer Aided Design,

pages 565–572, November 2004.

[51] Andrew B. Kahng, Stefanus Mantik, and Igor L. Markov. Min-max placement

for large-scale timing optimization. In Proc. Int. Symp. on Physical Design,

pages 143–148, 2002.

[52] Andrew B. Kahng, Igor L. Markov, and Sherief Reda. On legalization of row-

based placements. In ACM Great Lakes Symposium on VLSI, pages 214–219,

2004.

[53] Andrew B. Kahng and Qinke Wang. Implementation and extensibility of an

analytic placer. In IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, 2005.

145

[54] Andrew A. Kennings and Igor L. Markov. Analytical minimization of half-

perimeter wirelength. In Proc. Asia and South Pacific Design Automation

Conf., pages 179–184, 2000.

[55] J. Kleinhans, G. Sigl, F. M. Johannes, and K. Antreich. GORDIAN: VLSI

placement by quadratic programming and slicing optimization. IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems, CAD-10:356–

365, March 1991.

[56] Tim (Tianming) Kong. A novel net weighting algorithm for timing-driven

placement. In Proc. Int. Conf. on Computer Aided Design, pages 172–176,

2002.

[57] Frank M. Johannes Konrad Doll and Kurt J. Antreich. Iterative placement

improvement by network flow methods. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, 13(10), 1994.

[58] Tao Luo, David Newmark, and David Z. Pan. A new LP based incremental

timing driven placement for high performance designs. In Proc. Design

Automation Conf., 2006.

[59] Tao Luo and David Z. Pan. Large scale placement with explicit cell movement

control. In Technical Report UT-CERC-06-01, April 2006.

[60] Tao Luo, Haoxing Ren, Charles J. Alpert, and David Z. Pan. Computational

geometry based placement migration. In Proc. Int. Conf. on Computer Aided

Design, 2005.

146

[61] M. Marek-Sadowska and S. Lin. Timing driven placement. pages 94–97,

1989.

[62] TimberWolf Systems, Inc.. Timberwolf placement & global routing software

package. In http://www2.twolf.com/benchmark.html.

[63] Fan Mo, Abdallah Tabbara, and Robert K. Brayton. A force-directed macro-

cell placer. In Proc. Int. Conf. on Computer Aided Design, 2000.

[64] MOSEK. http://www.mosek.com. 2005.

[65] Gi-Joon Nam. ISPD 2006 placement contest: Benchmark suite and results.

In Proc. Int. Symp. on Physical Design, 2006.

[66] Gi-Joon Nam, Charles J. Alpert, Paul Villarrubia, Bruce Winter, and Mehmet

Yildiz. The ISPD2005 placement contest and benchmark suite. In Proc. Int.

Symp. on Physical Design, 2005.

[67] W. C. Naylor, R. Donelly, and L. Sha”. Non-linear optimization system and

method for wire length and dealy optimization for an automatic electric circuit

placer. US patent 6,301,693, 2001.

[68] OAGear:. http://openedatools.si2.org/oagear/.

[69] OpenAccess. http://openeda.si2.org/.

[70] R.H.J.M. Otten. Global wires harmful? In Proc. Int. Symp. on Physical

Design, pages 104–109, Apr. 1998.

147

[71] P. Cocchini P. Saxena, N. Menezes and D. A. Kirkpatrick. Repeater scal-

ing and its impact on cad. In IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, 2004.

[72] Min Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed

placement algorithm. In Proc. Int. Conf. on Computer Aided Design, 2005.

[73] Haifeng Qian and Sachin S. Sapatnekar. A hybrid linear equation solver and

its application in quadratic placement. In Proc. Int. Conf. on Computer Aided

Design, 2005.

[74] H. Ren, D. Z. Pan, and P. Villarrubia. True crosstalk aware incremental place-

ment with noise map. In Proc. Int. Conf. on Computer Aided Design, pages

616–619, 2004.

[75] Haoxing Ren, David Z. Pan, Charles J. Alpert, and P. Villarrubia. Diffusion-

based placement migration. In Proc. Design Automation Conf., June, 2005.

[76] Haoxing Ren, David Zhigang Pan, and David S. Kung. Sensitivity guided net

weighting for placement driven synthesis. In Proc. Int. Symp. on Physical

Design, pages 10–17, 2004.

[77] Jarrod Roy, Saurabh Adya, David Papa, and Igor Markov. Min-cut floor-

placement. IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, 2006.

[78] Sachin S. Sapatnekar and Weitong Chuang. Power-delay optimizations in

gate sizing. ACM Trans. Des. Autom. Electron. Syst., 5(1):98–114, 2000.

148

[79] Majid Sarrafzadeh, David Knol, and Gustavo Tellez. Unification of budgeting

and placement. In Proc. Design Automation Conf., pages 758–761, 1997.

[80] G. Sigl, K. Doll, and F. M. Johannes. Analytical placement: A linear or

quadratic objective function? In Proc. Design Automation Conf., pages 427–

432, 1991.

[81] Peter Spindler and Frank M. Johannes. Fast and robust quadratic placement

combined with an exact linear net model. In Proc. Int. Conf. on Computer

Aided Design, 2006.

[82] A. Srinivasan, K. Chaudhary, and E. S. Kuh. Ritual: A performance driven

placement algorithm for small cell ICs. In Proc. Int. Conf. on Computer

Aided Design, pages 48–51, 1991.

[83] William Swartz and Carl Sechen. Timing driven placement for large standard

cell circuits. In Proc. Design Automation Conf., pages 211–215, 1995.

[84] N. Viswanathan and C. C. N. Chu. Fastplace: Efficient analytical placement

using cell shifting, iterative local refinement and a hybrid net model. In Proc.

Int. Symp. on Physical Design, pages 26–33, 2004.

[85] N. Viswanathan and C. C. N. Chu. Fastplace 3.0: A fast multilevel quadratic

placement algorithm with placement congestion control. In Proc. Asia and

South Pacific Design Automation Conf., 2007.

[86] K. Vorwerk, A. Kennings, and A. Vannelli. Engineering details of a stable

force-directed placer. In Proc. Int. Conf. on Computer Aided Design, 2004.

149

[87] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000: Standard-cell place-

ment tool for large industry circuits. In Proc. Int. Conf. on Computer Aided

Design, pages 260–263, 2000.

[88] Z. Xiu, J. D. Ma, S. M. Fowler, and R. A. Rutenbar. Large-scale placement

by grid-warping. In Proc. Design Automation Conf., pages 351–356, 2004.

[89] Zhong Xiu, David A. Papa, and et.al. Early research experience with Ope-

nAccess gear: an open source development environment for physical design.

In Proc. Int. Symp. on Physical Design, 2005.

[90] Bo Yao, Hongyu Chen, Chung-Kuan Cheng, Nan-Chi Chou, Lung-Tien Liu,

and Peter Suaris. Unified quadratic programming approach for mixed mode

placement. In Proc. Int. Symp. on Physical Design, 2005.

[91] Mehmet Can Yildiz and Patrick H. Madden. Improved cut sequences for

partitioning based placement. In Proc. Design Automation Conf., 2001.

150

Vita

Tao Luo was born in Lanzhou, Gansu province, China. He received a Bach-

elor’s degree in Electro-Mechanical Engineering from the University of Electronic

Science and Technology of China, Chengdu, China, in 1995, a Master’s degree

in Management Information System from TongJi University, Shanghai, China, in

1999, and a Master’s degree in Computer Engineering from the University of Texas

at Austin, Austin, Texas, in 2004. Tao Luo worked as a part-time software tools

engineer at StarCore, LLC. from May 2003 to May 2004. He worked as a co-op in

the design verification group at Analog Devices, Inc. from June to December 2004.

He worked as an intern for VLSI CAD research at AMD North Austin Design Cen-

ter, from May 2005 to October 2005 and May 2006 to December 2006. He worked

as an intern for VLSI CAD research at IBM Austin Research Laboratory during

the Summer of 2007. He received the Engineering Doctoral Fellowship from the

University of Texas at Austin in 2006 and 2007, and he received the best paper in

session award in SRC TECHON conference 2007.

Permanent address: 2501 Lake Austin Blvd. Apt. C101
Austin, Texas 78703

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

151

