29,821 research outputs found

    Dynamic dependence networks: Financial time series forecasting and portfolio decisions (with discussion)

    Full text link
    We discuss Bayesian forecasting of increasingly high-dimensional time series, a key area of application of stochastic dynamic models in the financial industry and allied areas of business. Novel state-space models characterizing sparse patterns of dependence among multiple time series extend existing multivariate volatility models to enable scaling to higher numbers of individual time series. The theory of these "dynamic dependence network" models shows how the individual series can be "decoupled" for sequential analysis, and then "recoupled" for applied forecasting and decision analysis. Decoupling allows fast, efficient analysis of each of the series in individual univariate models that are linked-- for later recoupling-- through a theoretical multivariate volatility structure defined by a sparse underlying graphical model. Computational advances are especially significant in connection with model uncertainty about the sparsity patterns among series that define this graphical model; Bayesian model averaging using discounting of historical information builds substantially on this computational advance. An extensive, detailed case study showcases the use of these models, and the improvements in forecasting and financial portfolio investment decisions that are achievable. Using a long series of daily international currency, stock indices and commodity prices, the case study includes evaluations of multi-day forecasts and Bayesian portfolio analysis with a variety of practical utility functions, as well as comparisons against commodity trading advisor benchmarks.Comment: 31 pages, 9 figures, 3 table

    Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data

    Get PDF
    A hierarchical framework for incorporating modes of climate variability into stochastic simulations of hydrological data is developed, termed the climate-informed multi-time scale stochastic (CIMSS) framework. A case study on two catchments in eastern Australia illustrates this framework. To develop an identifiable model characterizing long-term variability for the first level of the hierarchy, paleoclimate proxies, and instrumental indices describing the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO) are analyzed. A new paleo IPO-PDO time series dating back 440 yr is produced, combining seven IPO-PDO paleo sources using an objective smoothing procedure to fit low-pass filters to individual records. The paleo data analysis indicates that wet/dry IPO-PDO states have a broad range of run lengths, with 90% between 3 and 33 yr and a mean of 15 yr. The Markov chain model, previously used to simulate oscillating wet/dry climate states, is found to underestimate the probability of wet/dry periods >5 yr, and is rejected in favor of a gamma distribution for simulating the run lengths of the wet/dry IPO-PDO states. For the second level of the hierarchy, a seasonal rainfall model is conditioned on the simulated IPO-PDO state. The model is able to replicate observed statistics such as seasonal and multiyear accumulated rainfall distributions and interannual autocorrelations. Mean seasonal rainfall in the IPO-PDO dry states is found to be 15%-28% lower than the wet state at the case study sites. In comparison, an annual lag-one autoregressive model is unable to adequately capture the observed rainfall distribution within separate IPO-PDO states. Copyright © 2011 by the American Geophysical Union.Benjamin J. Henley, Mark A. Thyer, George Kuczera and Stewart W. Frank

    Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data

    Get PDF
    A hierarchical framework for incorporating modes of climate variability into stochastic simulations of hydrological data is developed, termed the climate-informed multi-time scale stochastic (CIMSS) framework. A case study on two catchments in eastern Australia illustrates this framework. To develop an identifiable model characterizing long-term variability for the first level of the hierarchy, paleoclimate proxies, and instrumental indices describing the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO) are analyzed. A new paleo IPO-PDO time series dating back 440 yr is produced, combining seven IPO-PDO paleo sources using an objective smoothing procedure to fit low-pass filters to individual records. The paleo data analysis indicates that wet/dry IPO-PDO states have a broad range of run lengths, with 90% between 3 and 33 yr and a mean of 15 yr. The Markov chain model, previously used to simulate oscillating wet/dry climate states, is found to underestimate the probability of wet/dry periods >5 yr, and is rejected in favor of a gamma distribution for simulating the run lengths of the wet/dry IPO-PDO states. For the second level of the hierarchy, a seasonal rainfall model is conditioned on the simulated IPO-PDO state. The model is able to replicate observed statistics such as seasonal and multiyear accumulated rainfall distributions and interannual autocorrelations. Mean seasonal rainfall in the IPO-PDO dry states is found to be 15%-28% lower than the wet state at the case study sites. In comparison, an annual lag-one autoregressive model is unable to adequately capture the observed rainfall distribution within separate IPO-PDO states. Copyright © 2011 by the American Geophysical Union.Benjamin J. Henley, Mark A. Thyer, George Kuczera and Stewart W. Frank

    Portfolio choice and estimation risk : a comparison of Bayesian approaches to resampled efficiency

    Get PDF
    Estimation risk is known to have a huge impact on mean/variance (MV) optimized portfolios, which is one of the primary reasons to make standard Markowitz optimization unfeasible in practice. Several approaches to incorporate estimation risk into portfolio selection are suggested in the earlier literature. These papers regularly discuss heuristic approaches (e.g., placing restrictions on portfolio weights) and Bayesian estimators. Among the Bayesian class of estimators, we will focus in this paper on the Bayes/Stein estimator developed by Jorion (1985, 1986), which is probably the most popular estimator. We will show that optimal portfolios based on the Bayes/Stein estimator correspond to portfolios on the original mean-variance efficient frontier with a higher risk aversion. We quantify this increase in risk aversion. Furthermore, we review a relatively new approach introduced by Michaud (1998), resampling efficiency. Michaud argues that the limitations of MV efficiency in practice generally derive from a lack of statistical understanding of MV optimization. He advocates a statistical view of MV optimization that leads to new procedures that can reduce estimation risk. Resampling efficiency has been contrasted to standard Markowitz portfolios until now, but not to other approaches which explicitly incorporate estimation risk. This paper attempts to fill this gap. Optimal portfolios based on the Bayes/Stein estimator and resampling efficiency are compared in an empirical out-of-sample study in terms of their Sharpe ratio and in terms of stochastic dominance

    Stochastic simulation framework for the Limit Order Book using liquidity motivated agents

    Full text link
    In this paper we develop a new form of agent-based model for limit order books based on heterogeneous trading agents, whose motivations are liquidity driven. These agents are abstractions of real market participants, expressed in a stochastic model framework. We develop an efficient way to perform statistical calibration of the model parameters on Level 2 limit order book data from Chi-X, based on a combination of indirect inference and multi-objective optimisation. We then demonstrate how such an agent-based modelling framework can be of use in testing exchange regulations, as well as informing brokerage decisions and other trading based scenarios
    corecore