116 research outputs found

    Novel Texture-based Probabilistic Object Recognition and Tracking Techniques for Food Intake Analysis and Traffic Monitoring

    Get PDF
    More complex image understanding algorithms are increasingly practical in a host of emerging applications. Object tracking has value in surveillance and data farming; and object recognition has applications in surveillance, data management, and industrial automation. In this work we introduce an object recognition application in automated nutritional intake analysis and a tracking application intended for surveillance in low quality videos. Automated food recognition is useful for personal health applications as well as nutritional studies used to improve public health or inform lawmakers. We introduce a complete, end-to-end system for automated food intake measurement. Images taken by a digital camera are analyzed, plates and food are located, food type is determined by neural network, distance and angle of food is determined and 3D volume estimated, the results are cross referenced with a nutritional database, and before and after meal photos are compared to determine nutritional intake. We compare against contemporary systems and provide detailed experimental results of our system\u27s performance. Our tracking systems consider the problem of car and human tracking on potentially very low quality surveillance videos, from fixed camera or high flying \acrfull{uav}. Our agile framework switches among different simple trackers to find the most applicable tracker based on the object and video properties. Our MAPTrack is an evolution of the agile tracker that uses soft switching to optimize between multiple pertinent trackers, and tracks objects based on motion, appearance, and positional data. In both cases we provide comparisons against trackers intended for similar applications i.e., trackers that stress robustness in bad conditions, with competitive results

    Automatic facial recognition based on facial feature analysis

    Get PDF

    Prognostics and health management for an overhead contact line system - A review

    Get PDF
    The railway industry in European countries is standing a significant competition from other modes of transportation, particularly in the field of freight transport. In this competitive context, railway stakeholders need to modernize their products and develop innovative solutions to manage their asset and reduce operational expenditures. As a result, activities such as condition-based and predictive maintenance became a major concern. Under those circumstances, there is a pressing need to implement prognostics and health management (PHM) solutions such as remote monitoring, fault diagnostics techniques, and prognostics technologies. Many studies in the PHM area for railway applications are focused on infrastructure systems such as railway track or turnouts. However, one of the key systems to ensure an efficient operability of the infrastructure is the overhead contact line (OCL). A defect or a failure of an OCL component may cause considerable delays, lead to important financial losses, or affect passengers safety. In addition maintaining this kind of geographically distributed systems is costly and difficult to forecast. This article reviews the state of practice and the state of the art of PHM for overhead contact line system. Key sensors, monitoring parameters, state detection algorithms, diagnostics approaches and prognostics models are reviewed. Also, research challenges and technical needs are highlighted

    Centralized learning and planning : for cognitive robots operating in human domains

    Get PDF

    Advanced machine learning models for online travel-time prediction on freeways

    Get PDF
    The objective of the research described in this dissertation is to improve the travel-time prediction process using machine learning methods for the Advanced Traffic In-formation Systems (ATIS). Travel-time prediction has gained significance over the years especially in urban areas due to increasing traffic congestion. The increased demand of the traffic flow has motivated the need for development of improved applications and frameworks, which could alleviate the problems arising due to traffic flow, without the need of addition to the roadway infrastructure. In this thesis, the basic building blocks of the travel-time prediction models are discussed, with a review of the significant prior art. The problem of travel-time prediction was addressed by different perspectives in the past. Mainly the data-driven approach and the traffic flow modeling approach are the two main paths adopted viz. a viz. travel-time prediction from the methodology perspective. This dissertation, works towards the im-provement of the data-driven method. The data-driven model, presented in this dissertation, for the travel-time predic-tion on freeways was based on wavelet packet decomposition and support vector regres-sion (WPSVR), which uses the multi-resolution and equivalent frequency distribution ability of the wavelet transform to train the support vector machines. The results are compared against the classical support vector regression (SVR) method. Our results indi-cate that the wavelet reconstructed coefficients when used as an input to the support vec-tor machine for regression (WPSVR) give better performance (with selected wavelets on-ly), when compared against the support vector regression (without wavelet decomposi-tion). The data used in the model is downloaded from California Department of Trans-portation (Caltrans) of District 12 with a detector density of 2.73, experiencing daily peak hours except most weekends. The data was stored for a period of 214 days accumulated over 5 minute intervals over a distance of 9.13 miles. The results indicate an improvement in accuracy when compared against the classical SVR method. The basic criteria for selection of wavelet basis for preprocessing the inputs of support vector machines are also explored to filter the set of wavelet families for the WDSVR model. Finally, a configuration of travel-time prediction on freeways is present-ed with interchangeable prediction methods along with the details of the Matlab applica-tion used to implement the WPSVR algorithm. The initial results are computed over the set of 42 wavelets. To reduce the compu-tational cost involved in transforming the travel-time data into the set of wavelet packets using all possible mother wavelets available, a methodology of filtering the wavelets is devised, which measures the cross-correlation and redundancy properties of consecutive wavelet transformed values of same frequency band. An alternate configuration of travel-time prediction on freeways using the con-cepts of cloud computation is also presented, which has the ability to interchange the pre-diction modules with an alternate method using the same time-series data. Finally, a graphical user interface is described to connect the Matlab environment with the Caltrans data server for online travel-time prediction using both SVR and WPSVR modules and display the errors and plots of predicted values for both methods. The GUI also has the ability to compute forecast of custom travel-time data in the offline mode.Ph.D

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore