1,270 research outputs found

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    Autonomously Reconfigurable Artificial Neural Network on a Chip

    Get PDF
    Artificial neural network (ANN), an established bio-inspired computing paradigm, has proved very effective in a variety of real-world problems and particularly useful for various emerging biomedical applications using specialized ANN hardware. Unfortunately, these ANN-based systems are increasingly vulnerable to both transient and permanent faults due to unrelenting advances in CMOS technology scaling, which sometimes can be catastrophic. The considerable resource and energy consumption and the lack of dynamic adaptability make conventional fault-tolerant techniques unsuitable for future portable medical solutions. Inspired by the self-healing and self-recovery mechanisms of human nervous system, this research seeks to address reliability issues of ANN-based hardware by proposing an Autonomously Reconfigurable Artificial Neural Network (ARANN) architectural framework. Leveraging the homogeneous structural characteristics of neural networks, ARANN is capable of adapting its structures and operations, both algorithmically and microarchitecturally, to react to unexpected neuron failures. Specifically, we propose three key techniques --- Distributed ANN, Decoupled Virtual-to-Physical Neuron Mapping, and Dual-Layer Synchronization --- to achieve cost-effective structural adaptation and ensure accurate system recovery. Moreover, an ARANN-enabled self-optimizing workflow is presented to adaptively explore a "Pareto-optimal" neural network structure for a given application, on the fly. Implemented and demonstrated on a Virtex-5 FPGA, ARANN can cover and adapt 93% chip area (neurons) with less than 1% chip overhead and O(n) reconfiguration latency. A detailed performance analysis has been completed based on various recovery scenarios

    Probabilistic Principle Component Analysis based Feature Extraction of Embedded System Applications with Deep Neural Network based Implementation in FPGA

    Get PDF
    The study of hardware and software systems is of major are very important advent in new devices for communication and progress in system of security. In fast pace mobile and embedded devices application in every day’s life leads some new emerging area for research in data mining field. In this we have some technologies which have demand and error free using the principle of component of PPCA. For Embedded system the applications of PCA is basically applied initially for the lessen the having different qualities especially being to simple of the data. PPCA which have the updated version of PCA which is surveyed by similarity measure. In this work, experiments are extensively carried out, using a FPGA based light weight cryptographic data set having benchmark set to check and illustrate the viability, competence, litheness which are reconfigurable embedded system which are having data mining . Which have FPGA are reconfigurable for the computing architectures for hardware and in neural network. FPGA using the multilayer Cascaded for neural network which are forward in nature (CFFNN) and Deep Neural Network also called as DNN with a huge neuron is still a thought-provoking task. This shortcoming leads to elect the FPGA capacity for a particular application we have used the method of implementation which has two neural network have been implemented and compared , namely, CFFNN and DNN. It can be shown that for reconfigurable embedded system, PPCA based data mining and Machine learning based realization can give more speed up less iteration and more space savings when we have compared it with the static conventional version

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    Cognitive Communications and Networking Technology Infusion Study Report

    Get PDF
    As the envisioned next-generation SCaN Network transitions into an end-to-end system of systems with new enabling capabilities, it is anticipated that the introduction of machine learning, artificial intelligence, and other cognitive strategies into the network infrastructure will result in increased mission science return, improved resource efficiencies, and increased autonomy and reliability. This enhanced set of cognitive capabilities will be implemented via a space cloud concept to achieve a service-oriented architecture with distributed cognition, de-centralized routing, and shared, on-orbit data processing. The enabling cognitive communications and networking capabilities that may facilitate the desired network enhancements are identified in this document, and the associated enablers of these capabilities, such as technologies and standards, are described in detail

    A Model for Virtual Reconfigurable Modular Robots

    Get PDF
    This paper presents a model for virtual reconfigurable modular robots in order to evolve artificial creatures, able of self-adaptation to the environment as well as good adjustment to various given tasks. For this purpose, a simulator has been entirely developed with the assistance of a physics engine to represent force activities. One of the most crucial points in modular robot construction is the choice of module type, complexity and diversity. We took interest on existing elements to obtain realistic results but assume simplifications to focus on our main goal that is algorithmic
    • …
    corecore