21 research outputs found

    A Dynamical Systems Model for Combinatorial Cancer Therapy Enhances Oncolytic Adenovirus Efficacy by MEK-Inhibition

    Get PDF
    Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions, are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to dramatically improve non-surgical cancer treatment, especially in locally advanced or metastatic cases where treatment options remain limited.National Institutes of Health (U.S.) (Grant R01 CA118545)National Institutes of Health (U.S.) (Grant R01 CA095701)National Institutes of Health (U.S.) (Grant U54 CA11297)National Institutes of Health (U.S.) (Grant U54-CA112967

    Optimal Control Model of Tumor Treatment with Oncolytic Virus and MEK Inhibitor

    Get PDF

    Complex Spatial Dynamics of Oncolytic Viruses In Vitro: Mathematical and Experimental Approaches

    Get PDF
    Oncolytic viruses replicate selectively in tumor cells and can serve as targeted treatment agents. While promising results have been observed in clinical trials, consistent success of therapy remains elusive. The dynamics of virus spread through tumor cell populations has been studied both experimentally and computationally. However, a basic understanding of the principles underlying virus spread in spatially structured target cell populations has yet to be obtained. This paper studies such dynamics, using a newly constructed recombinant adenovirus type-5 (Ad5) that expresses enhanced jellyfish green fluorescent protein (EGFP), AdEGFPuci, and grows on human 293 embryonic kidney epithelial cells, allowing us to track cell numbers and spatial patterns over time. The cells are arranged in a two-dimensional setting and allow virus spread to occur only to target cells within the local neighborhood. Despite the simplicity of the setup, complex dynamics are observed. Experiments gave rise to three spatial patterns that we call “hollow ring structure”, “filled ring structure”, and “disperse pattern”. An agent-based, stochastic computational model is used to simulate and interpret the experiments. The model can reproduce the experimentally observed patterns, and identifies key parameters that determine which pattern of virus growth arises. The model is further used to study the long-term outcome of the dynamics for the different growth patterns, and to investigate conditions under which the virus population eliminates the target cells. We find that both the filled ring structure and disperse pattern of initial expansion are indicative of treatment failure, where target cells persist in the long run. The hollow ring structure is associated with either target cell extinction or low-level persistence, both of which can be viewed as treatment success. Interestingly, it is found that equilibrium properties of ordinary differential equations describing the dynamics in local neighborhoods in the agent-based model can predict the outcome of the spatial virus-cell dynamics, which has important practical implications. This analysis provides a first step towards understanding spatial oncolytic virus dynamics, upon which more detailed investigations and further complexity can be built

    Drug Repurposing

    Get PDF
    This book focuses on various aspects and applications of drug repurposing, the understanding of which is important for treating diseases. Due to the high costs and time associated with the new drug discovery process, the inclination toward drug repurposing is increasing for common as well as rare diseases. A major focus of this book is understanding the role of drug repurposing to develop drugs for infectious diseases, including antivirals, antibacterial and anticancer drugs, as well as immunotherapeutics

    Molecular Targets of CNS Tumors

    Get PDF
    Molecular Targets of CNS Tumors is a selected review of Central Nervous System (CNS) tumors with particular emphasis on signaling pathway of the most common CNS tumor types. To develop drugs which specifically attack the cancer cells requires an understanding of the distinct characteristics of those cells. Additional detailed information is provided on selected signal pathways in CNS tumors

    Neuroprotection: Rescue from Neuronal Death in the Brain

    Get PDF
    Dear Colleagues, The brain is vulnerable to injury. Following injury in the brain, apoptosis or necrosis may occur easily, leading to various functional disabilities. Neuronal death is associated with a number of neurological disorders including hypoxic ischemia, epileptic seizures, and neurodegenerative diseases. The brain subjected to injury is regarded to be responsible for the alterations in neurotransmission processes, resulting in functional changes. Oxidative stress produced by reactive oxygen species has been shown to be related to the death of neurons in traumatic injury, stroke, and neurodegenerative diseases. Therefore, scavenging or decreasing free radicals may be crucial for preventing neural tissues from harmful adversities in the brain. Neurotrophic factors, bioactive compounds, dietary nutrients, or cell engineering may ameliorate the pathological processes related to neuronal death or neurodegeneration and appear beneficial for improving neuroprotection. As a result of neuronal death or neuroprotection, the brain undergoes activity-dependent long-lasting changes in synaptic transmission, which is also known as functional plasticity. Neuroprotection implying the rescue from neuronal death is now becoming one of global health concerns. This Special Issue attempts to explore the recent advances in neuroprotection related to the brain. This Special Issue welcomes original research or review papers demonstrating the mechanisms of neuroprotection against brain injury using in vivo or in vitro models of animals as well as in clinical settings. The issues in a paper should be supported by sufficient data or evidence. Prof. Bae Hwan Lee Guest Edito
    corecore