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Preface

This book provides a comprehensive overview of drug repurposing as well as its 
role in developing drugs for infectious diseases. These drugs include antivirals and 
antibacterial and anticancer drugs, and several immunotherapeutics. It highlights 
recent advancements as well as future directions for effective utilization of drug 
repurposing. Due to the high costs and time associated with the new drug discovery 
process, the inclination towards drug repurposing is increasing for common as well 
as rare diseases. The book covers various aspects and features of drug repurposing, 
which is crucial for promptly identifying drugs of choice for communicable and 
non-communicable diseases.

Drug repurposing (also known as drug repositioning, reprofiling, or re-tasking) 
is a drug discovery strategy for identifying new uses for already approved or 
investigational drugs that are not envisaged by the original medical indication. 
The drug repurposing approach has numerous advantages over new drug discovery. 
The most important is the reduction of risk of failure due to the available safety 
data of the repurposed drugs. Another important aspect of drug repurposing is 
that the time frame required for the development of drugs can be reduced due to 
available preclinical safety assessments. Moreover, the investment is less in the case 
of repurposed drugs. However, the regulatory and phase 3 trial costs may be similar 
to those of new drugs. Importantly, the cost for repurposed drugs to come to the 
market is estimated to be US$300 million in comparison with the estimated cost 
of US$2-3 billion for new drug discovery.

This book discusses research methodologies, resources, and technologies for 
identifying molecular aspects and therapeutic applications of drug repurposing 
for various communicable and non-communicable diseases. Within the frame 
of drug discovery, the book includes seven chapters, each of which focuses on a 
specific aspect of drug repurposing. This book is a self-contained collection of 
 scholarly contributions targeting an audience of practicing researchers, academics, 
Ph.D. students, and other scientists.

I am overwhelmed in all humbleness and gratefulness to acknowledge all the 
contributors who trusted me and supported me in this work. I am especially 
thankful to Dr. Raymond Chang (Institute of East-West Medicine, New York, USA)  
and Dr. Angus Dalgleish (St. Georges, University of London, London, UK) for 
providing excellent assistance in editing Chapters 9–11 on drug repurposing for 
anticancer drug discovery. My research fellows and students are central to all 
my research and academic work. They are the motivating force behind anything 
constructive I do. They are truly brilliant and have a bright future. I would like 
to express our special thanks to our mentors, teachers, and students who gave 
me the strength to see this project to fruition. Also, I would like to thank the 



Preface

This book provides a comprehensive overview of drug repurposing as well as its 
role in developing drugs for infectious diseases. These drugs include antivirals and 
antibacterial and anticancer drugs, and several immunotherapeutics. It highlights 
recent advancements as well as future directions for effective utilization of drug 
repurposing. Due to the high costs and time associated with the new drug discovery 
process, the inclination towards drug repurposing is increasing for common as well 
as rare diseases. The book covers various aspects and features of drug repurposing, 
which is crucial for promptly identifying drugs of choice for communicable and 
non-communicable diseases.

Drug repurposing (also known as drug repositioning, reprofiling, or re-tasking) 
is a drug discovery strategy for identifying new uses for already approved or 
investigational drugs that are not envisaged by the original medical indication. 
The drug repurposing approach has numerous advantages over new drug discovery. 
The most important is the reduction of risk of failure due to the available safety 
data of the repurposed drugs. Another important aspect of drug repurposing is 
that the time frame required for the development of drugs can be reduced due to 
available preclinical safety assessments. Moreover, the investment is less in the case 
of repurposed drugs. However, the regulatory and phase 3 trial costs may be similar 
to those of new drugs. Importantly, the cost for repurposed drugs to come to the 
market is estimated to be US$300 million in comparison with the estimated cost 
of US$2-3 billion for new drug discovery.

This book discusses research methodologies, resources, and technologies for 
identifying molecular aspects and therapeutic applications of drug repurposing 
for various communicable and non-communicable diseases. Within the frame 
of drug discovery, the book includes seven chapters, each of which focuses on a 
specific aspect of drug repurposing. This book is a self-contained collection of 
 scholarly contributions targeting an audience of practicing researchers, academics, 
Ph.D. students, and other scientists.

I am overwhelmed in all humbleness and gratefulness to acknowledge all the 
contributors who trusted me and supported me in this work. I am especially 
thankful to Dr. Raymond Chang (Institute of East-West Medicine, New York, USA)  
and Dr. Angus Dalgleish (St. Georges, University of London, London, UK) for 
providing excellent assistance in editing Chapters 9–11 on drug repurposing for 
anticancer drug discovery. My research fellows and students are central to all 
my research and academic work. They are the motivating force behind anything 
constructive I do. They are truly brilliant and have a bright future. I would like 
to express our special thanks to our mentors, teachers, and students who gave 
me the strength to see this project to fruition. Also, I would like to thank the 



VIII

colleagues, family, and friends who provided encouragement and support. A happy 
environment at home is essential for any kind of growth, and I thank my family, 
especially my talented wife and children, for the same.

Dr. Shailendra K. Saxena
Professor,

Center for Advanced Research (CFAR),
Faculty of Medicine,

King George’s Medical University (KGMU),
Lucknow, India

1

Section 1

Drug Repurposing  
for Infectious Diseases



1

Section 1

Drug Repurposing  
for Infectious Diseases





3

Chapter 1

Trends in Molecular Aspects 
and Therapeutic Applications of 
Drug Repurposing for Infectious 
Diseases
Ankur Gupta, Angila Theengh, Swatantra Kumar, 
Vimal K. Maurya, Santosh Kumar, Bipin Puri  
and Shailendra K. Saxena

Abstract

The pharmaceutical industry has undergone a severe economic crunch in  
antibiotic discovery research due to evolving bacterial resistance along with enor-
mous time and money that gets consumed in de novo drug design and discovery 
strategies. Nevertheless, drug repurposing has evolved as an economically safer 
and excellent alternative strategy to identify approved drugs for new therapeutic 
indications. Virtual high throughput screening (vHTS) and phenotype-based high 
throughput screening (HTS) of approved molecules play a crucial role in identify-
ing, developing, and repurposing old drug molecules into anti-infective agents 
either alone or in synergistic combination with antibiotic therapy. This chapter 
briefly explains the process of drug repurposing/repositioning in comparison to 
de novo methods utilizing vHTS and HTS technologies along with ‘omics- and 
poly-pharmacology-based drug repurposing strategies in the identification and 
development of anti-microbial agents. This chapter also gives an insightful survey 
of the intellectual property landscape on drug repurposing. Further, the challenges 
and applications of drug repurposing strategies in the discovery of anti-infective 
drugs are exemplified. The future perspectives of drug repurposing in the context 
of anti-infective agents are also discussed.

Keywords: drug repurposing, repositioning, poly-pharmacology, anti-infectives, HTS

1. Introduction

Antibiotic resistance is a major threat that may lead to approximately 10 mil-
lion deaths per year by 2050 [1]. Nevertheless, pharmaceutical companies’ entire 
economic model for antibiotic drug discovery has clashed with the low profitability 
index. An estimated cost of developing an antibiotic in 2017 was nearly US $1.5 bil-
lion, whereas the average revenue generated per year is nearly US $46 million, which 
cannot be justified in any way [2]. Therefore, in an attempt to accelerate the identifi-
cation of potential and safe anti-infective drugs, reduce discovery research expenses, 
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and minimize drug development timeline, “drug repurposing” and/or “drug reposi-
tioning” has arisen as an excellent alternative approach because the developer already 
has the complete pharmacological and toxicological data of the drug candidate from 
preclinical and clinical trials. Drug repurposing and/or repositioning simply mean 
new treatment indication or pharmacological use of an old drug [3]. For example, 
Aspirin, the first-ever drug repurposed, was originally indicated as an analgesic but 
later repurposed for various pharmacological effects such as anti-platelet in cardiovas-
cular events [4].

“Drug repurposing,” “drug repositioning,” and “drug rescuing” are the terms 
generally used interchangeably; however, these terms may slightly differ from 
each other. Drug repurposing means, “approved drug for one disease is identified 
potentially useful and repurposed in another disease” such as aspirin, whereas drug 
repositioning explains a situation when “an approved drug for one disease is used 
as a template and derivatized to a different form for use in another disease” [5, 6]. 
Nevertheless, drug rescuing is the term given to the concept where “the clinically 
failed or market abandoned drugs for one clinical indication is rescued or used for 
another clinical indication” such as thalidomide which was banned initially but later 
rescued to multiple myeloma [5]. However, the ultimate goal remains the same and 
that is “repurposing of old drugs for new diseases.”

2. Need for drug repurposing

Nobel Laureate Sir James Whyte Black (1924–2010) had once said that “the 
most fruitful basis for the discovery of a new drug is to start with an old drug” [7]. 
However, the systematic screening approach introduced by Paul Ehrlich became the 
cornerstone of antibiotic search strategies for pharmaceutical industries and along 
with further advancement in de novo drug design methods, various potential novel 
classes of antibiotics were discovered. Nevertheless, the rate of discovery of a novel 

Figure 1. 
Traditional de novo drug discovery process versus drug repurposing process.
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class of drugs suddenly dropped by 1970 with the increasing rate of resistance [8]. 
Even with all the scientific tools of traditional methods of drug discovery such as 
‘omics (genomics, proteomics, and metabolomics), virtual high throughput screen-
ing (vHTS), phenotypic, and whole cell-based high throughput screening (HTS), 
no new class of antibiotics are getting discovered [8]. On the contrary, there is 
an overall increase in the expenses leading to a collapse in the economic model of 
antibiotic drug discovery research [2]. Therefore, a change in the financial models is 
required to translate scientific advances into clinically approved antibiotics [9]. Drug 
repurposing is the best possible way to escape from this dilemma and reposition the 
drug candidates from the approved pharmacopeia. Drug repurposing offers great 
advantages over traditional drug discovery methods such as no chemical optimiza-
tion and reduced developmental risk because the drug candidates have often been 
through several stages of preclinical and clinical trials and therefore have well-known 
toxicological safety and pharmacokinetics profile. Even formulation stages and bulk 
manufacturing are also bypassed, enabling a shorter route to the market [3]. A com-
parison of traditional de novo drug discovery versus drug repurposing is summarized 
in Figure 1.

3. Intellectual property landscape in drug repurposing

The drugs may either be on-market (ONM) or off-market (OFM) drugs. 
Further, the ONM drugs may be on-patent (ONP) or off-patent (OFP) drugs. As per 
the latest version of the United States Food and Drug Administration-Orange Book 
(US FDA-OB), 1577 drugs are ONM drugs and 1543 drugs are OFM drugs. Out of 
1577 ONM drugs, 1142 drugs lack patent/exclusivity claims and could be utilized 
for drug repositioning projects [10]. Nevertheless, obtaining patent protection for 
known drugs can be a challenging task. The repurposed drug can be patented in 
the United States if the drug constitutes patentable subject matter under 35 U.S.C. 
§ 101. According to 35 U.S.C. §, 101 repurposed drugs may be patented provided its 
new indication or use has not been published before. Nevertheless, the eligibility 
of patentability of “therapeutic use” varies between jurisdictions from country to 
country [11]. While the patent based on “therapeutic use” is possible in the United 
States and some other countries, it is not permitted in India. Therefore, another 
approach to obtain a patent for previously known drugs in India is to draft claims 
for novel pharmaceutical formulations. On the contrary, if a drug to be repurposed 
is still under patent protection, then that drug can either be acquired or in-licensed 
from the patentee. Hence, patent protection of repurposed drugs for new indica-
tions is possible. However, initial experimentation should establish the usefulness 
of the drugs along with robust invention disclosures and detailed formulation 
applications may be directed to the patent office [12].

4. Strategies involved in drug repurposing

Drug repurposing in infectious diseases involves different strategies by integrat-
ing both vHTS and HTS methodologies to identify a drug molecule, a microbial 
target, and an immunopathological pathway to fight against an infectious pathogen. 
The various strategies involved are (i) computer-aided (structure-based [13] and 
ligand-based pharmacophoric [14]) repurposing, (ii) phenotype-based HTS aided 
repurposing [15], (iii) ‘omics-based drug repurposing [16], (iv) drug-disease 
biological pathway analysis [17, 18], (v) poly-pharmacology-based drug repurpos-
ing [19, 20], and (vi) serendipity [21], which are summarized in Figure 2.
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However, the plausible drugs for anti-microbial repurposing may fall into three 
different evaluating scenarios and two different approaches, namely, “on-target 
repurposing” and “off-target repurposing” [22] as shown in Figure 3.

4.1 Computer-aided drug repurposing

vHTS is an efficient approach to identify compounds for drug repurposing. Where 
vHTS is a generalized term for different screening filters, it is categorized under two 
broad classes of virtual screening for drug repurposing, that is, (i) structure-based 
drug repurposing and (ii) ligand-based pharmacophoric repurposing.

4.1.1 Structure-based drug repurposing

Protein data bank (PDB) is the largest compilation of structural data on microbial 
target proteins. Presently, there are 62,402 structural deposits related to bacterial 
target proteins and 9653 structural deposits related to viral target proteins in PDB.

Further, nearly 60% of these proteins are complexed with a biologically relevant 
ligand, which provides information about the shared binding sites and amino acids 
of the target site involved in intramolecular interactions with the ligand. These 
proteins are utilized for structure-based drug repurposing by virtual screening 
(docking studies) the drugs for repurposing in comparison to the ligand. The ligand 
in comparison could either be the one that is already complexed at the target site 
or any other approved drugs available as a particular modulator of the target site. 
The selection of screened drugs for repurposing is completely based on scoring 
and drug interactions. To complement the structures available in the PDB, another 
method used for structure-based screening is called homology modeling. Homology 

Figure 2. 
Strategies involved in drug repurposing.
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modeling can generate 3D structures of even those proteins whose structures are 
difficult to obtain through X-ray crystallography. Apart from these sources, there 
are other databases of high-quality 3D protein models, such as SWISS-MODEL 
Repository (SMR) to support structure-based drug repositioning pipelines [13].

4.1.2 Ligand-based drug repurposing

In the absence of structural information about the microbial target protein 
from source, structural databases, or homology modeling, the structure-based 
repositioning and discovery efforts are hampered. Nevertheless, there are other 
virtual screening methods such as ligand-based screening methods, which can 
be employed for drug repurposing. The process involves the generation of a 
ligand-based mathematical “QSAR (quantitative structure–activity relationship) 
model” and ligand-based 3-dimensional (3D) “pharmacophore fingerprint” 
using in-house or approved microbial target site inhibitors as the active set I. 
The drugs sought to be repurposed are arranged in set II and screened using the 
derivatized models for their optimum physicochemical descriptors and/or con-
formational search for active pharmacophore. The potential molecules through 
ligand-based screening approach will be shortlisted for phenotype-based HTS 
studies [14].

4.2 Phenotype-based HTS-aided repurposing

There are various unexplored targets and pathways within the complexity of the 
microbial intracellular mechanisms along with the identified targets. The drugs for 
repurposing may be screened for known off-target, on-target, and unknown targets 
using HTS (Figure 3). Mechanism-based biochemical assays may be carried out for 
known off-target and on-target screening of drugs employing specific proteins such 
as enzymes in the assay. However, the unknown off-target screening can be carried 
out through phenotype cell-based HTS assays, so that the multiple targets can be 
screened to conclude the efficacy of repurposed drug related to its pharmacodynamic 
status, heterogeneity, biomarker readout, membrane permeability, and cytotoxic-
ity. Further, the phenotype-based assays may be carried out using two-dimension 
(2D) and three-dimension (3D) approaches. The 2D approach is a traditional cell-
based HTS that is carried out on cultured cells propagated in 2D on plastic surfaces 

Figure 3. 
Various scenarios and approaches in drug repurposing.
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optimized for cell culture. Anti-infective screening for drug repurposing tradition-
ally utilizes a 2D cell-based HTS approach. However, this approach is not suitable for 
accessing the drug resistance status in antimicrobials. Thus, for drug repurposing or 
discovery, bioengineered 3D cell culture technology that closely resembles the in vivo 
cell environment is now being pursued [15].

4.3 ‘Omics-based drug repurposing

Omics technology comprises various approaches such as genomics, transcrip-
tomic, proteomics, and metabolomics. The genomics and transcriptomic approaches 
analyze the gene pattern and mRNA sequence of a pathogen before and after expo-
sure to a drug under consideration for repurposing. The study of the gene expression 
at the transcription level helps researchers to predict possible metabolic pathways 
of microorganisms, genomic mutation leading to drug resistance, and potential 
targets. Further, large-scale microbial gene expression studies may be carried out 
using advanced microchip technology. The proteomic approach evaluates the overall 
protein expression profile of the entire organism pre- and post-exposure to an 
antimicrobial agent under various environmental conditions. It helps identify drugs 
that may be repurposed for plausible new targets with the least chances of resistance 
and novel mechanism of action. In contrast, metabolomics involves the analyses of 
metabolites, and biological/molecular substrates present in a pathogen at a particu-
lar time interval. Further, exometabolomics, also known as “metabolic footprint” 
measures charged or polar molecules being consumed or released by an organism as a 
secondary metabolite. Sound knowledge of metabolomics can predict the alternative 
mechanism or pathway during drug resistance, and synergy in combination therapy. 
Hence, ‘omics technologies have transformed the anti-infective drug discovery by 
generating an unparallel amount of data on potential antimicrobial targets and their 
resistance from the array of biological libraries. The unique signature (characteris-
tics) of a disease and its co-relationship with a drug can be derivatized using ‘omics 
technologies and drug databases, respectively, such as CARD (Comprehensive 
Antibiotic Research Database), ARDB (Antibiotic Resistance Genes Database), and 
NDARO (National Database of Antibiotic-Resistant Organisms) [16].

4.4 Drug-disease biological pathway analysis

Traditionally, computer-aided approaches were mainly aimed toward target and 
drug molecules involving structure-based drug design. However, it has also been 
employed toward the assessment of biological pathways, and mechanisms of drugs 
through network systems to formulate the correlation between drugs and disease 
pathways for possible drug repositioning. The scientific data over the drug-disease 
pathways network may be designed using various databases such as NCBI, MMDB, 
GEO, and PubChem. Using this approach, Yang et al. generated three network-
based systems between cardiovascular diseases, diabetes mellitus, and neoplasms 
to establish the drug-disease biological pathway correlation and to predict possible 
drugs for repositioning. Similarly, Pan et al. studied 16 FDA-approved drugs for 
possible drug repurposing by using a drug-disease pathway-based approach. Their 
approach involved the analysis of the drug, protein, and corresponding gene target 
with affected gene expression level after drug treatment [17, 18].

4.5 Poly-pharmacology-based drug repurposing

The “single drug, single target” approach is an oversimplified disease 
mechanism which is in fact, a complex sub-network of the underlying distorted 
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physiological pathway within the interactome. In contrast, network pharmacol-
ogy considers disease a casual mechanism within the “diseasome cluster” and 
treats by identifying the synergistic co-targets leading to reduced dose and side 
effects of the drug. Similarly, “polypharmacology” is the concept of designing or 
utilizing pharmaceutical agents that can synergistically act on multiple targets 
or disease pathways. Thus, the drugs which are poly targeting allow a broader 
impact not only in the early stages of drug discovery but in drug repositioning 
as well. Various polypharmacology- and network pharmacology-based databases 
have been published which are employed to develop polypharmacology-based 
drug repurposing predictions. Polypharmacology apart from the concept also 
incorporates the use of computational fingerprinting such as structure-based 
polypharmacology and ligand-based polypharmacology similar to SBDD and 
LBDD [19, 20].

4.6 Serendipity

“Serendipity,” a term used by medical writers for almost 50 years, was originally 
coined in 1754 by Horace Walpole in an allusion to an ancient oriental legend of the 
“Three Princes of Serendip.” Today serendipity means, “discoveries not purposely 
searched for” [21]. However, this term has become one of the methods for discover-
ies. A thorough survey (via social media platforms) based on medical questions 
and answers can form a database for the serendipity approach in drug repurposing. 
This approach can be best understood by various examples where patients taking 
medication “A” for a specific ailment but suffering from comorbidities have claimed 
to have found relief from the comorbid disease as well. For example, a patient 
taking hydrochlorothiazide prescribed for hypertension found relief in kidney 
stones. However, there is a logical scientific connection between the two conditions. 
Hydrochlorothiazide is an antihypertensive drug that functions through its diuretic 
properties (increased urine production and flow) leading to either dissolution or 
removal of small kidney stones. Similarly, a second example is of a 41-year-old 
woman with depression and psoriasis and was under treatment for depression with 
sertraline. She noticed that with sertraline her psoriatic lesions started disappear-
ing. However, scientifically these two conditions are also correlated as psoriasis 
being an autoimmune disorder having a direct impact on psychosocial factors lead-
ing to depression and periodical inflammatory lesions. The main limitations of this 
method can be questioned in terms of its credibility as these databases are just an 
output of a questionnaire where other factors such as lifestyle change and environ-
mental factors too might have played an important role. However, the conclusions 
may be evaluated using drug-disease pathway analysis and other drug repurposing 
strategies [22].

5. Challenges in drug repurposing

Traditional drug discovery is a time-consuming (10–17 years) process that 
bears failure risk and huge investment. In this regard, drug repurposing strategy 
has a lower rate of failure and is found to be safe in early preclinical and clinical 
trials, thus reducing the cost and time spent during formulation development, 
safety, and efficacy studies. However, the major challenges in drug repurpos-
ing could be (i) untoward side effects due to higher dose of the nonantibiotic 
drug repurposed for infectious diseases to show the required therapeutic effect 
and (ii) variation in the pharmacokinetic profile of the drug after off-target 
repurposing.
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6. Therapeutic applications of drug repurposing in infectious diseases

Drug repurposing strategy recently identified that the anthelmintic drug 
niclosamide (NCL) is a strong inhibitor of the 3OC12 − HSL-dependent QS system 
in Pseudomonas aeruginosa by inhibiting the LasR-dependent signaling leading 
to reduced virulence, and attenuated P. aeruginosa. Pulmonary administration is 
an ideal route to treat respiratory infections but the major obstacle in pulmonary 
administration of NCL was the achievement of appropriate particle size and its poor 
dissolution properties in alveolar fluids due to hydrophobicity. Hence, therapeutic 
applications of nanotechnology were employed to formulate NCL nano dry powders 
using high-pressure homogenization and spray drying technologies. Thus, repur-
posed drugs based on their pharmacokinetic profile may be modified in the form 
of nano-suspensions enhancing the drug’s potential for the treatment of infectious 
diseases [23]. Similarly, synergistic drug combination along with antibiotics is a 
useful therapeutic option for various repurposed nonantibiotic drugs showing 
less potential against infections leading to reduced chances of attaining antibiotic 
resistance [24, 25].

7. Repurposed drugs for infectious diseases

Few examples of directed repurposed drugs for bacterial, viral, and fungal  
diseases are summarized in Table 1. Drugs such as Auranofin, Celecoxib, 
Clomiphene, and Finasteride have been repurposed for several bacterial infections. 
Similarly, Remdesivir, Favipiravir, Lopinavir-Ritonavir, Ivermectin, Ribavirin, 
Interferon, and Hydroxychloroquine have been repurposed for COVID-19. 
Haloperidol, Aripiprazole, Alexidine dihydrochloride, Pentamidine, bifonazole, and 
Sulfonamide drugs have been repurposed for fungal infections.

8. Conclusion

The growing number of resistant infectious agents is a threat to the world. 
Various screening strategies such as vHTS, HTS (phenotypic cell-based 2D/3D 
screening), and therapeutic approaches (nanotechnology, synergistic combina-
tions) for drug repurposing may be employed for rapid identification and formula-
tion of new therapeutics against infections. These approaches are especially useful 
during emerging outbreaks and pandemics of infectious diseases such as MERS, 
SARS, SARS-CoV-2, and Ebola viruses because it is highly impractical to develop 
vaccines and therapeutic agents in a short period. Nevertheless, there is an impor-
tant question that needs to be addressed by the scientist working toward a drug 
repurposing approach. What if the existing pharmacopoeia for repurposing will get 
exhausted one day?

9. Future perspectives

The boom in drug repurposing strategies may occupy the existing drugs 
from pharmacopoeia and the drug bank may get exhausted for further repur-
posing. Therefore, pharmaceutical companies with advanced biological and 
technological expertise should invest in biodiversity-oriented drug discovery 
programs to discover and develop early-stage new pharmacophoric compounds 



11

Trends in Molecular Aspects and Therapeutic Applications of Drug Repurposing for Infectious…
DOI: http://dx.doi.org/10.5772/intechopen.100858

and fill their anti-infective pipelines while still taking the advantage of drug 
repurposing. Further, the advancement in nanotechnology may lead us to 
design better therapeutic formulations of repurposed drugs targeting pulmo-
nary infections such as multidrug-resistant tuberculosis. Drug repurposing 
raises several concerns in terms of quality and ethical integrity of preclinical 
and clinical research specially during emergency pandemic situations such as 
COVID-19 involving accelerated drug approval based on statistical explora-
tion of small, scientific data with the real-world population. This issue may 
not only increase the chances of adverse events; also, if the drug is withdrawn, 
the pharmaceutical industry may lose public confidence over healthcare needs. 
According to patent regulations, there are no safeguards for Intellectual prop-
erty (IP) protection of drug development through the repositioning method. IP 
protection for repositioned drugs is limited. If the current evidence is not suf-
ficient and does not meet the standards of according to regulatory guidelines, 
regulatory agencies such as the FDA or EMA, further preclinical and/or clinical 
studies may be necessary.

Sr. No. Drug repurposed Clinical indication Target pathogen and mechanism of 
action

Repurposed drugs for bacterial infections

1. Auranofin Rheumatoid arthritis Staphylococcus aureus: inhibition of DNA/
protein synthesis, and downregulation 
of toxin production.

2. Celecoxib Inflammation S. aureus, Bacillus anthracis, B. subtilis, 
and Mycobacterium smegmatis: inhibition 
of bacterial DNA, RNA, protein 
synthesis, and cell wall.

3. Clomiphene Fertility S. aureus: inhibition of 
undecaprenyldiphosphate synthase 
involved in the synthesis of a teichoic 
acid wall.

4. Finasteride Prostate hyperplasia Candida albicans: inhibition of 
filamentation.

5. Clotrimazole and 
Miconazole

Fungal infection P. aeruginosa: inhibition of the pqs 
activity through the possible inactivation 
of 2-alkyl-4-quinolones (AQ ) 
production or reception.

Repurposed drugs for viral infections

6. Ivermectin Anthelmintic SARS-CoV-2: acts blocking the nuclear 
transport of viral proteins

7. Nitazoxanide Parasitic and viral 
infection

Influenza virus: inhibition 
of the pyruvate: ferredoxin/
flavodoxinoxidoreductase cycle.

Repurposed drugs for fungal infections

8. Haloperidol Antipsychotic agent C. albicans: inhibition of filamentation, 
melanin production, and biofilm 
formation.

9. Aripiprazole Antipsychotic agent Inhibition of biofilm formation and 
hyphal filamentation.

Table 1. 
Directed repurposed drugs for infections [26–28].
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Abstract

Unfortunately, to date, there is no approved specific antiviral drug treatment 
against COVID-19. Due to the costly and time-consuming nature of the de novo 
drug discovery and development process, in recent days, the computational drug 
repositioning method has been highly regarded for accelerating the drug-discovery 
process. The selection of drug target molecule(s), preparation of an approved 
therapeutics agent library, and in silico evaluation of their affinity to the subjected 
target(s) are the main steps of a molecular docking-based drug repositioning 
process, which is the most common computational drug re-tasking process. In this 
chapter, after a review on origin, pathophysiology, molecular biology, and drug 
development strategies against COVID-19, recent advances, challenges as well as 
the future perspective of molecular docking-based drug repositioning for COVID-
19 are discussed. Furthermore, as a case study, the molecular docking-based drug 
repurposing process was planned to screen the 3CLpro inhibitor(s) among the nine 
Food and Drug Administration (FDA)-approved antiviral protease inhibitors. The 
results demonstrated that Fosamprenavir had the highest binding affinity to 3CLpro 
and can be considered for more in silico, in vitro, and in vivo evaluations as an 
effective repurposed anti-COVID-19 drug.

Keywords: bioinformatics, protein–peptide interactions, biological targets,  
drug development, 3CLpro inhibitor, biological computation, drug design

1. Introduction

The Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), signifies a pandemic threat to interna-
tional health, with so far nearly 5 million deaths worldwide [1]. Notwithstanding 
mass vaccination worldwide by emergency approved vaccines such as Pfizer-
BioNTech, Janssen, and Moderna, COVID-19 still poses a threat to human health. 
Furthermore, with the emergence of new mutant strains of SARA-CoV-2 as well as 
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a significant decrease in the vaccine’s efficacies, introducing of new treatment strat-
egies is urgently needed. Therefore, recently many international efforts have been 
planned for introducing suitable vaccines as well as effective therapeutics [2, 3].

Generally, time is a vital factor in the pandemic condition, so that, rapid detec-
tion, vaccination, and treatment methods can significantly reduce mortality. De 
novo drug discovery and development for lesser-known diseases such as COVID-19 
is costly and tedious. Consequently, alternative methods such as the computational 
drug repurposing approach can accelerate the discovery of new drugs. In this regard, 
several pipelines have been introduced for in silico drug repositioning against 
COVID-19. Lately, molecular docking as a popular bioinformatics method has been 
highly regarded as the core of the most drug repositioning process to achieve effec-
tive drug candidates to combat COVID-19 [4–6]. In this chapter, we discussed new 
advancements and challenges in drug repositioning by molecular docking of phar-
maceutical resources to the identification of potential SARS-CoV-2 viral inhibitors.

2. Origin and pathophysiology aspects of COVID-19

SARS-CoV-2 was firstly discovered in the Huanan Seafood Wholesale market 
in Wuhan, China on 12 December 2019 [7]. Subsequent to the extensive outbreak 
of the virus infection, on March 11, 2020, the World Health Organization (WHO) 
announced the COVID-19 pandemic. As of 27 August 2021, the total number of cases 
of SARS-CoV-2 confirmed globally by WHO are 214,468,601 with 4,470,969 reported 
deaths (https://covid19.who.int/). As per the reports of WHO, the mortality rate of 
COVID-19 is around 3.7% [8]. Although the host of SARS-CoV-2 is still indistinct, it 
is assumed the virus has bats or pangolins origin. However, the main theory suggests 
that the virus was transmitted to humans from an intermediate host. The virus is 
mainly transmitted among the individuals through droplet infection, contact routes, 
and rarely through the feces of the infected patients and mother to child post-
childbirth. Fever, cough, fatigue, diarrhea, headache, hemoptysis, dyspnea, acute 
respiratory distress syndrome, cardiac injury, and lymphopenia are known clinical 
manifestations of COVID-19. COVID-19 infection can be divided into three phases 
including the virus replication and appearance of mild signs, the emergence of 
respiratory symptoms and simulation of the adaptive immune system responses, and 
the third phase causing hyper-inflammation. Expression of the ACE2 (angiotensin-
converting enzyme 2) protein (as the major receptor molecule for the virus) by renal 
tubular cells, liver cells and testicular cells may the kidney, liver, and testicular tissue 
damages also observed in the COVID-19 patients [1, 9, 10].

3. Molecular biology of SARS-CoV-2

SARS-CoV-2 belongs to beta coronaviruses and has a round or elliptic form, with 
an approximate diameter of 60–140 nm. The virus genome is an around 30 Kb pos-
itive-sense, single-stranded RNA, which encodes four structural proteins including 
S protein (Spike), E protein (Envelope), M protein (Membrane), and N protein 
(Nucleocapsid), and several accessory proteins or nonstructural proteins, namely, 
NSP1 to NSP16 [11]. S protein is 150 kDa, acts as an anchor on the virus envelope, 
and consists of three domains including the outer N-terminal domain having unit 
S1 and S2, a cytoplasmic C-terminal domain, and a transmembrane domain. M 
protein is 25–35 kDa, a transmembrane glycoprotein type III and the most abun-
dant protein on the surface of the virus. Based on the bioinformatics analysis, the 
protein can play a role in the virus entry into the host cell and its RNA maturation. 
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N protein is a 43–50 kDa nucleocapsid structural protein and has a vital role in 
attaching and assembling the virus genome to the matrix of the ribonucleoprotein. 
The E protein is 8.4–109 kDa and is recognized as a small hydrophobic protein. The 
protein contributes to viroporin activity, virus assembling, and the virus budding 
process. Based on the results of several studies, the nonstructural proteins encoded 
by genes positioned within the 5′-region of the virus genome, have a wide range of 
roles from host translation inhibition by NS1 to viral replication-transcription NS4 
[12, 13]. The main roles of the known nonstructural proteins of SARS-CoV-2 are 
summarized in Table 1.

4.  Antiviral molecular targets and drug development strategies against 
COVID-19

Generally, a probable antiviral drug target is a molecule (often a protein) with 
a vital role in the life cycle of the planned virus [14, 15]. Accordingly, to date, 
several structural and accessory proteins from SARS-CoV-2 have been subjected 
to the drug-discovery process. Consistent with the approved information about 
the SARS-CoV-2 life cycle, eight steps including virus binding, fusion to host cell, 
RNA release, translation, proteolysis, replication and translation, viral assembly, 
and release could be planned to investigate potential anti-COVID-19 drugs. Among 
the mentioned steps, virus attachment and entry, proteolysis, and replication have 
received more attention due to more available data about the key proteins in the 
steps as well as the high similarity of these steps between coronaviruses [16, 17]. 

Protein name Length 
(amino acid)

Role References

NSP1 180 Host translation inhibitor and also degrade host 
mRNAs

[1]

NSP2 638 Binds to prohibitin 1 and prohibitin 2 [2]

NSP3 1945 Responsible for release of NSP1, NSP2, and NSP3 [3]

NSP4 500 Viral replication-transcription [4]

NSP5 306 Cleaves at multiple distinct sites to yield mature [5]

NSP6 290 Induces formation of ER-derived 
autophagosomes

[6]

NSP7 83 Forms complex with NSP8 and NSP12 to yield the 
RNA polymerase activity of NSP8

[7]

NSP8 198 Makes heterodimer with NSP8 [8]

NSP9 198 bind to helicase [5]

NSP10 139 Unknown [5]

NSP11 13 Unknown [5]

NSP12 932 Replication and methylation [9]

NSP13 932 A helicase core domain [10]

NSP14 527 Exoribonuclease activity a [5]

NSP15 346 Mn(2 +)-dependent endoribonuclease activity [5]

NSP16 298 Methyltransferase [11]

The role(s) of NSP10 and NSP11 is(are) still not well understood.

Table 1. 
Description of various roles of non-structural proteins from SARS-CoV-2.
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In the following sections, the key steps in SARS-CoV-2 life cycle are discussed in the 
light of drug development against COVID-19.

4.1 Virus attachment and entry

The trimeric SARS-CoV-2 spike glycoprotein has a crucial role in the virus 
attachment and entry. The glycoprotein constituent monomer comprises two 
subunits, S1 and S2. The S1 encompasses the N-terminal domain (NTD) and the 
RBD, which is accountable for interacting with ACE2. Therefore, RDB is considered 
an effective drug target for discovering therapeutic agents such as neutralizing 
antibodies [18]. In Table 2, some anti-RBD antibodies are listed. The results of some 
studies demonstrated potent therapeutic and prophylactic abilities of anti-RDB 
antibodies in cell culture or animal model systems. In this regard, Gao et al. dem-
onstrated that a potent COVID-19 antibody, BD-368-2 has significant prophylactic 
effectiveness in SARS-CoV-2-infected hACE2 mice at a dose of 20 mg/kg [24]. 
Similarly, another study confirmed both prophylactic and treatment activities of 
CB6 antibody in a dose of 50 mg/kg [25]. The ability of COV2-2130 to reduce the 
viral burden and levels of inflammation has also been approved [26]. Furthermore, 
besides the introduced antibodies, several small molecules such as salvianolic acid, 
arbidol, dri-c23041, cepharanthine, abemaciclib, osimertinib, trimipramine, colfor-
sin, ingenol, and clofazimine have also been considered for in vitro evaluation of 
their SARS-CoV-2 entry inhibition activities [27].

4.2 Virus genome replication

Generally, the virus replication directly affects the viral burden and symptom 
severity in viral infections. Therefore, targeting the key molecules in the  
SARS-CoV-2 replication has been highly regarded for drug discovery against  
COVID-19. Previous studies confirmed that 3-chymotrypsin-like cysteine prote-
ase (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase 
(RdRp), and NSPs involved in the formation of double-membrane vesicles 
(DMVs) are vital for the replication of SARS-CoV-2 [28]. Among the mentioned 
proteins, the 3CLpro is highly regarded as an attractive target for drug develop-
ment against SARS-CoV-2 because of its key role in the viral life cycle alongside 
the absence of closely related homologs in humans. Subsequently, to date, several 

Name EC50 (ng/ml) References

BD-368-2 15 [12]

CB6 36 [13]

H4 896 [19]

P2B-2F6 410 [20]

B38 177 [19]

COV2-2196 15 [21]

COV2-2130 107 [21]

COV2-2165 332 [21]

CC12.1 22 [22]

C121 1.64 [23]

Table 2. 
List of some neutralizing monoclonal antibodies against SARS-CoV-2 S1.
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efforts have been made to identify the effective SARS-CoV-2 3CLpro inhibitors. 
The 3CLpro inhibitors are mostly categorized into peptidic and small molecules. 
Up to now, the efficacies of several 3CLpro peptide inhibitors such as N3, 13b, 
GC373, and GC376 have been validated. Moreover, some small molecules such as 
disulfiram, carmofur, ebselen, and tideglusib are known to inhibit 3CLpro from 
SARS-CoV-2 [27, 29].

5. Current in use anti-COVID-19 treatments

Unfortunately, to date, there is no specific anti-COVID-19 drug. However, 
the results of some studies suggested that other anti-viral medicines could be 
repurposed as effective anti-COVID-19 drugs. Remdesivir, an FDA-approved 
repurposed antiviral drug, is only in used approved anti-viral therapy against 
COVID-19 [30]. However, other anti-viral and non-antiviral drugs have also 
been used for studying their anti-COVID-19 activities. Hydroxychloroquine, an 
anti-malaria drug with polymerase inhibitory activity, was the first repurposed 
drug against COVID-19, which was supported by some in vitro effectiveness 
evidence. However, further clinical trials indicate that there is no association 
between hydroxychloroquine administration and reduction in the death rate due to 
COVID-19. Kaletra (a brand name of lopinavir/ritonavir complex) is an approved 
anti-human immunodeficiency virus (HIV) protease inhibitor, which empirically 
evaluated for 3CLpro inhibitory activities. Despite, promising in vitro results, 
clinical trials have not confirmed the significant efficacy of Kaletra in individuals 
hospitalized with COVID-19. Favipiravir, a purine nucleic acid analog, is another 
anti-viral drug that is repurposed against mild to moderate COVID-19. The results 
of clinical trials suggest that Favipiravir has no significant beneficial effect on the 
mortality rate in patients with COVID-19. Additionally, some other drugs such as 
colchicine, oseltamivir, ivermectin, tocilizumab, nafamostat, camostat, famoti-
dine, umifenovir nitazoxanide are under evaluation for investigating their prob-
able anti-COVID-19 activities [31–33].

6. Computational drug repositioning

Because of the costly, time-consuming, and complexity of De novo drug discov-
ery, until now all proposed anti-COVID-19 drug candidates are repurposed drugs. 
Drug repurposing also known as drug re-tasking is a procedure of recognizing new 
therapeutic application(s) for previously approved, failed, investigational, and or 
already marketed drugs. Naturally, the drug-repurposing process is based on two 
fundamental principles including interdependence between different diseases and 
the confounding nature of drugs. Therefore, drug-repositioning approaches could 
be categorized into drug-based and disease-based strategies.

The drug-based strategies are vastly based on drug-related data and are used 
for better understanding the role of pharmacological properties and defining the 
possibility of defining new pharmaceutical capabilities. Despite the advantages of 
experimental drug repositioning, the fact that it was time consuming still remained 
as the main limitation for drug discovery, especially in a pandemic condition. 
Furthermore, conventional methods use small datasets and biological networks, 
which may lead to unreliable discoveries.

Nowadays, different computational methods have been introduced that can 
accelerate the drug-repositioning process [27]. In the next sections, the most com-
mon computational approaches for drug repositioning are propounded.
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6.1  Molecular target identification and validation in the drug-repositioning 
process

In a drug discovery project, target identification and validation are key steps that 
directly affect drug efficacy, as well as probable side effect(s). Theoretically, a drug 
target molecule can be selected among a wide range of biological entities including 
proteins, genes, and RNAs. However, an ideal drug target molecule should be drug 
accessible, efficacious, safe, and meet clinical and commercial requirements [4]. 
Target identification can be performed by different tools such as analysis of gene 
modifications, protein overexpression, signaling pathways, protein interactions, 
and recent bioinformatics evaluations. Regarding antiviral drug discovery, different 
targets such as envelop proteins, S-adenosyl-L-homocysteine hydrolase, orotidine 
5′-phosphate decarboxylase, cytidine triphosphate synthetase, inosine monophos-
phate dehydrogenase, and DNA/RNA polymerase have been investigated for discover-
ing effective antiviral drugs [34–37]. The identified target molecules can be validated 
by knocking in/down/out the genes, monoclonal antibodies, and chemical genomics 
[4, 38]. As mentioned, recently bioinformatics methods, such as ligand-based interac-
tion fingerprint (LIFt), protein-ligand interaction fingerprints (PLIF), and network-
based drug discovery, have successfully been used for drug target identification [39].

6.2 Data mining

There are now a large number of diseases- and drugs-linked information such as 
gene sequences, protein–protein interactions, and drug–protein interactions with 
increasing rapid growth, which needs effective approaches to quick access and analy-
sis of hidden information. Commonly, text mining is the most applicable method 
in the majority of data mining–related studies. In the field of computational drug 
repurposing, text mining has been used to find the gene, drug, and diseases-related 
data and then categorize the relevant entities. Regarding drug repurposing, text min-
ing has successfully been used in several studies [40, 41]. Brown et al. suggested an 
online text-mining server with the ability to drug clustering based on the similarity 
of their physicochemical properties [42]. A text mining-based tool was also intro-
duced by Leaman et al. for identifying disease-related information mentioned in the 
literature [43]. In another study, Papanikolaou et al. used text mining to recognize 
biological entities in the Drug Bank database. The retrieved data were then clustered 
by different algorithms and used for obtaining novel drug–drug relations [44].

6.3 Machine learning (ML)

Machine learning, a crucial subset of artificial intelligence (AI), has been 
combined into many fields, such as data generation and analytics. Related to drug 
discovery, ML algorithms may participate in target and lead discovery as well as 
develop quantitative structure–activity relationships. Briefly, in machine learning-
based drug repositioning, different algorithms, such as artificial neural networks 
(ANNs), support vector machines (SVMs), and random forest (RF), were trained 
by numerical forms of different features of drugs, diseases, genes, and so on. The 
trained algorithms can then predict the drug ability of unknown compounds [45]. 
In this regard, Gottlieb et al. used drug–drug and disease–disease similarity events 
as grouping features for training a logistic regression classifier and prediction of 
drug-disease associations [46]. Similarly, Napolitano et al. introduced a SVM model 
trained by drug-related similarities with the ability to forecast the therapeutic class 
of United States Food and Drug Administration (FDA)-approved compounds [47]. 
Aliper et al. introduced a fully connected deep neural network algorithm trained 
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by gene expression signatures for predicting therapeutic potentials and new drug 
suggestions [48].

6.4 Network analysis

Biological networks, an outstanding way of modeling biological entities and their 
interactions, can supply significant insight into the mechanism action of drugs and 
drug targets and symptoms of diseases. The models can be used to determine infor-
mative associations between genes, chemicals, proteins, phenotypes, and any other 
biological entities by statistical analysis, computational models, and leveraging graph 
theory concepts. Based on the data sources, network analysis can be classified into 
metabolic networks, protein–protein interaction networks, drug–drug interaction 
networks, drug-side effect association networks, disease–disease interaction net-
works, and gene regulatory networks. Consequently, bionetworks and their analysis 
can be used to identify potential therapeutic agents and drug repositioning [49–51].

6.5 Molecular docking

Studying the ligand-protein interactions at the molecular level has a crucial role in 
pharmaceutical research. Therefore, the scientific community focused on the explo-
ration of the binding phenomenon over the years. Accordingly, some theories, such 
as lock and key hypothesis, induced-fit theory, and conformational selection were 
introduced for the interpretation of ligand–protein interactions [52]. Historically, 
the refinement of a complex structure by optimization of the separation between the 
partners was the first description of the docking term in 1970. Molecular docking 
was first being developed in 1980 to predict the best matching binding mode and the 
molecular interactions of a ligand to a macromolecular partner through the genera-
tion of a number of probable orientations of the ligand inside the protein cavity. The 
method comprises two interrelated steps including orientations sampling and a scor-
ing function, which are responsible for reproducing experimental binding mode and 
ranking of prepared complexes [52, 53]. Molecular docking can classify into rigid, 
semi-flexible, and flexible types, according to the degrees of flexibility of the ligand 
and receptor. In the rigid docking-like to lock-key theory, both ligand and protein 
are considered rigid entities and hence, there is no internal degree of freedom. 
Semi-flexible docking is a molecular docking simulation with flexible ligand and 
rigid receptors. Thus, all degrees of freedom of ligand are explored. Recently, several 
online and standalone software such as AutoDock, AutoDock Vina, Molegro Virtual 
Docker, Gold, Surflex-Dock, GLIDE, FlexX, DOCK, FRED, and so on, have been 
developed for computing different types of molecular docking. Most available soft-
ware for molecular docking uses flexible ligands and several are trying to model flex-
ible receptor proteins. In recent years, with promising advancements in optimization 
and the development of new molecular docking algorithms, numerous publications 
have been planned for comparing the performance of different molecular docking 
tools. However, it should be stressed that comparison between molecular docking 
methods is problematic, due to the dependance on docking performance with classes 
of the subjected targets. The ability of molecular docking methods to reveal the pos-
sibility of enzymatic reactions is a compelling reason for various applications related 
to computational drug design and repurposing, hit identification, lead optimization, 
binding site prediction, mechanisms of enzymatic reactions, and protein engineering 
[54–56]. Since the emergence of COVID-19, several molecular docking-based studies 
[57–62] have been planned to introduce effective anti-COVID-19 drugs by means of 
drug repositioning. In Figure 1, the main steps of a molecular docking-based drug 
repurposing study are represented.
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6.5.1  Recent projects, challenges, and future prospects in molecular docking-based 
drug repositioning against COVID-19

As a popular bioinformatics method, recently several types of research have 
been conducted to reposition approved drugs against COVID-19 by means of 
molecular docking. Despite similar aspects and methodology, the used software, 
subjected target and ligands can affect the outputs of molecular docking-based 
drug repositioning [54, 63]. In Table 3, some recently published works associ-
ated with molecular docking-based drug repurposing are presented. Based on our 
best knowledge, SARS-CoV-2 main protease is the most popular target for drug 
discovery research due to the absence of closely related homologs in humans. 
Additionally, some host cell proteins such as Angiotensin-converting enzyme 
2 (ACE2), Transmembrane Serine Protease 2 (TMPRSS2), Furin, Cathepsin L, 
Adaptor-Associated Kinase 1 (AAK1), and Two-Pore Channel (TPC2) have also 
been regarded for drug discovery against COVID-19. However, due to probable 
side effects, drug repurposing based on host cell targets received less attention. 

Figure 1. 
Schematic representation of the main steps of a molecular docking-based drug repositioning process. Target 
identification, ligand preparation, and results interpretation are the three main steps.
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Regarding the subjected ligands evaluation of their anti-COVID-19 potentials, there 
are several choices, including approved standard drugs, approved natural products, 
plant secondary metabolites, and under investigation drugs. Due to the time-con-
suming approval drug process as well as unexpected side effects, drug repurposing 
based on the approved drugs database is highly recommended [69, 70]. Despite 
the advantages of in silico drug repositioning against COVID-19, due to differences 
between natural drug-target micro-environments and drug-target simulations, the 
discrepancy between the laboratory results and the simulation outputs is expected. 
Therefore, a recently mixed approach, which is the combination of computational 
and empirical methods is proposed to fast and accurate drug repositioning [5].

6.5.2  A case study: repurposing FDA-approved antiviral protease inhibitors as 
SARS-CoV-2 3CLpro inhibitors

As mentioned in Section 3.2, due to the important role in the viral life cycle 
alongside the absence of closely related homologs in humans, the 3CLpro is consid-
ered a proper target for discovering effective antiviral drugs against SARS-CoV-2. 
Therefore, here a molecular docking-based drug-repurposing process was planned 
to screen the 3CLpro inhibitor(s) among the standard antiviral protease blockers.

Subjected target ligands Proposed drug or ligand References

Mpro FDA-approved drugs binifibrate and bamifylline [64]

Mpro 4384-approved drugs Daunorubicin and eight other 
compounds

[65]

Mpro 6218-approved drugs Emodin and blonanserin [66]

RBD, NSP 10, NSP 16, 
Mpro, and RdRp

Brazilian Public Health 
System-approved drugs

penciclovir, ribavirin, and 
zanamivir

[67]

Mpro Drug Bank database levothyroxine, amobarbital and 
ABP-700

[68]

spike glycoprotein FDA-approved drugs Conivaptan and Trosec [14]

spike glycoprotein Plant secondary 
metabolites

Dicaffeoylquinic acid [15]

Mpro FDA-approved antiviral 
drugs

Lopinavir-Ritonavir, Tipranavir, 
and Raltegravir

[16]

papain like protease Plant secondary 
metabolites

I-Asarinin [17]

Mpro superDRUG2 database Binifibrate and Bamifylline [18]

Mpro Plant secondary 
metabolites

ursolic acid, carvacrol and 
oleanolic acid

[24]

RdRp FDA-approved anti-
viral drugs

remdesivir, ribavirin, sofosbuvir 
and galidesivir

[25]

Mpro FDA approved drugs remdesivir and glycyrrhizin [26]

Mpro and RdRp Plant secondary 
metabolites

cryptomisrine, 
cryptospirolepine, 
cryptoquindoline, and 
biscryptolepine

[27]

The SARS-CoV-2 main protease is the most considered target for drug discovery.

Table 3. 
Recently published molecular docking-based drug repositioning research for introducing novel drugs against 
COVID-19.
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6.5.2.1 Retrieval and preparation of ligands and receptor

A small molecule–protein molecular docking study is based on the prediction 
of probable interactions between the ligand and its receptor. Obtaining the three-
dimensional structures of both the ligand and receptor is the first vital step for 
performing a molecular docking process. Therefore, the raw three structures of a set 
of FDA-approved antiviral protease inhibitors, as well as 3CLpro from SARS-CoV-2, 
were retrieved from the drug bank database (https://go.drugbank.com/) and protein 
data bank (https://go.drugbank.com/) respectively. The subjected drugs (Table 4) 
were obtained in the sdf format, and their raw structures were further prepared 
by adding polar hydrogens, computing Gastieger charge, detecting the root atom, 
setting the torsion, and the number of torsions. Furthermore, the structure of the 
3CLpro was also optimized by deleting water molecules and bound ligands, adding 
polar hydrogens and Kollman charge using the Python molecule viewer software.

6.5.2.2 Primary screening by blind docking method

Despite primary screening done by the blind docking method, several studies have 
been conducted to introduce effective 3CLpro inhibitors. However, to date, binding 
pockets and key amino acids in the enzyme catalytic activity are not well known. 
Therefore, as primary screening, the blind docking processes through Molegro Virtual 
Docker 6.0 software were performed between the standard drugs and the 3CLpro to 
determine the key amino acid(s). In blind molecular docking, the whole surface of a 
subjected receptor is considered for evaluation of probable interactions with the ligand.

6.5.2.3 Targeted molecular docking

After determining the total affinities of the standard drugs to the 3CLpro as well 
as more reactive amino acids, targeted molecular docking studies were conducted 
between the receptor the three top-scoring docked ligands in a grid box, which 
covers the key amino acid(s) by Autodock 4.2.6 software.

6.5.2.4 Results

The results of the primary screening are presented in Table 5. The results 
demonstrated that Amprenavir, Tipranavir, and Fosamprenavir had a higher 

Approved drug Chemical formula Accession number

Darunavir C27H37N3O7S DB01264

Tipranavir C31H33F3N2O5S DB00932

Atazanavir C38H52N6O7 DB01072

Amprenavir C25H35N3O6S DB00701

Fosamprenavir C25H36N3O9PS DB01319

Nelfinavir C32H45N3O4S DB00220

Ritonavir C37H48N6O5S2 DB00503

Indinavir C36H47N5O4 DB00224

Saquinavir C38H50N6O5 DB01232

Table 4. 
Chemical formula and drug bank accession number of nine FDA-approved antiviral protease inhibitors 
subjected for repurposing against SARS-CoV-2.
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Figure 2. 
Graphical representation of the targeted molecular docking between the 3CLpro from SARS-CoV-2 and (a) 
Fosamprenavir, (b) Amprenavir, and (c) Tipranavir. Fosamprenavir showed the most binding affinity in the 
subjected docking grid box followed by Amprenavir and Tipranavir respectively.

binding affinity to the 3CLpro than the other tested viral protease inhibitors with 
Moldock scores of −160.384, −158.307, and −146.601 respectively. Furthermore, it 
was clear that GLN 189 is a key amino acid in the 3CLpro interactions with different 
proteases. Therefore, a targeted molecular docking between the three top-scoring 
standard protease inhibitors (Amprenavir, Tipranavir, and Fosamprenavir) were 
also performed in a grid box with the center of GLN189. As depicted in Figure 2, 
the subjected standard drugs also showed high affinity to the 3CLpro with binding 
energies of −5.3, −5.1, and −6.2 kcal/mol respectively. Subsequently, due to the 
high affinity of Fosamprenavir to the 3CLpro, this antiviral protease inhibitor could 
be considered for further in silico, in vitro, and in vivo evaluation to develop as a 
repurposed anti SARS-CoV-2 treatment.

7. Conclusion

To date, the only approved anti-COVID-19 treatment is a repurposed antiviral 
drug (Remdesivir). Hence, drug repurposing might be an effective approach for 
accelerating drug discovery against COVID-19. Computational drug reposition-
ing offers a noteworthy reduction in time and costs of new drug development 
and increases success rates in comparison to traditional methods. Therefore, to 
date, different computational methods such as data mining, machine learning, 
network analysis, and molecular docking have successfully been used for drug 
repurposing.

Molecular docking is a popular bioinformatics method that recently has 
been highly regarded for studying the drug ability of biological entities, 
protein-ligand interactions, mechanism action of drug candidates, and drug 
repositioning. Retrieval drug candidates from standard databases or previous 
reports, lead and target optimization, running the molecular docking pro-
cess, and results analysis are the main steps in molecular docking-based drug 
repositioning. The binding affinity of a drug candidate to key amino acid(s) of 
the identified target molecule can be considered a decision factor in the drug 
repositioning process.

Despite the advantages of computational drug repositioning, studying  
drug-target interactions by in silico methods is still far from reality.



29

Evaluation of Drug Repositioning by Molecular Docking of Pharmaceutical Resources…
DOI: http://dx.doi.org/10.5772/intechopen.101395

Author details

Fatemeh Hosseini1*, Mehrdad Azin1, Hamideh Ofoghi1 and Tahereh Alinejad2

1 Department of Biotechnology, Iranian Research Organization for Science and 
Technology, Tehran, Iran

2 Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical 
University, Wenzhou, China

*Address all correspondence to: fatemeh.hosseini.ap1984@gmail.com

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



30

Drug Repurposing - Molecular Aspects and Therapeutic Applications

[1] Arora G, Joshi J, Mandal RS, 
Shrivastava N, Virmani R, Sethi T. 
Artificial intelligence in surveillance, 
diagnosis, drug discovery and vaccine 
development against COVID-19. 
Pathogens. 2021;10:1048

[2] Yang J, Marziano V, Deng X, 
Guzzetta G, Zhang J, Trentini F, et al. 
Despite vaccination, China needs 
non-pharmaceutical interventions to 
prevent widespread outbreaks of  
COVID-19 in 2021. Nature Human 
Behaviour. 2021;5:1-12

[3] Forni G, Mantovani A. COVID-19 
vaccines: Where we stand and 
challenges ahead. Cell Death and 
Differentiation. 2021;28:626-639

[4] Hughes JP, Rees S, Kalindjian SB, 
Philpott KL. Principles of early drug 
discovery. British Journal of 
Pharmacology. 2011;162:1239-1249

[5] Rudrapal M, Khairnar J, Jadhav G. 
Drug repurposing (DR): An emerging 
approach in drug discovery. Drug 
Repurposing Hypothesis Molecular 
Aspects and Therapeutic Applications.  
2020. pp. 93193

[6] Shende P, Khanolkar B, Gaud R. 
Drug repurposing: New strategies for 
addressing COVID-19 outbreak. Expert 
Review of Anti-Infective Therapy. 
2021;19:689-706

[7] Ronco C, Navalesi P, Vincent JL. 
Coronavirus epidemic: Preparing for 
extracorporeal organ support in 
intensive care. The Lancet Respiratory 
Medicine. 2020;8:240-241

[8] Khachfe HH, Chahrour M, 
Sammouri J, Salhab H, Makki BE, 
Fares M. An epidemiological study on 
COVID-19: A rapidly spreading disease. 
Cureus. 2020;12:e7313

[9] Guo Y-R, Cao Q-D, Hong Z-S, Tan 
Y-Y, Chen S-D, Jin H-J, et al. The origin, 

transmission and clinical therapies on 
coronavirus disease 2019 (COVID-19) 
outbreak—An update on the status. 
Military Medical Research. 2020;7:1-10

[10] Greenhalgh T, Jimenez JL, 
Prather KA, Tufekci Z, Fisman D, 
Schooley R. Ten scientific reasons in 
support of airborne transmission of 
SARS-CoV-2. The Lancet. 2021;397: 
1603-1605

[11] Alsobaie S. Understanding the 
molecular biology of SARS-CoV-2 and 
the COVID-19 pandemic: A review. 
Infection and Drug Resistance. 
2021;14:2259

[12] Das A, Ahmed R, Akhtar S, 
Begum K, Banu S. An overview of basic 
molecular biology of SARS-CoV-2 and 
current COVID-19 prevention 
strategies. Gene Reports. 2021;23:101122

[13] Yadav R, Chaudhary JK, Jain N, 
Chaudhary PK, Khanra S, Dhamija P,  
et al. Role of structural and non-
structural proteins and therapeutic 
targets of SARS-CoV-2 for COVID-19. 
Cell. 2021;10:821

[14] De Clercq E. Specific targets for 
antiviral drugs. Biochemical Journal. 
1982;205:1-13

[15] Dinesh DC, Tamilarasan S, 
Rajaram K, Bouřa E. Antiviral drug 
targets of single-stranded RNA viruses 
causing chronic human diseases. 
Current Drug Targets. 2020;21:105-124

[16] Mummed Y. Molecular targets for 
COVID-19 drug development: 
Enlightening Nigerians about the 
pandemic and future treatment. 
Biosafety and Health. 2020;2(4):185-187

[17] Tian D, Liu Y, Liang C, Xin L, Xie X, 
Zhang D, et al. An update review of 
emerging small-molecule therapeutic 
options for COVID-19. Biomedicine and 
Pharmacotherapy. 2021;137:111313

References



31

Evaluation of Drug Repositioning by Molecular Docking of Pharmaceutical Resources…
DOI: http://dx.doi.org/10.5772/intechopen.101395

[18] Su H, Xu Y, Jiang H. Drug discovery 
and development targeting the life cycle 
of SARS-CoV-2. Fundamental Research. 
2021;1(2):151-165

[19] Huang C, Lokugamage KG, 
Rozovics JM, Narayanan K, Semler BL, 
Makino S. SARS coronavirus nsp1 
protein induces template-dependent 
endonucleolytic cleavage of mRNAs: 
Viral mRNAs are resistant to nsp1-
induced RNA cleavage. PLoS Pathogens. 
2011;7:e1002433

[20] Cornillez-Ty CT, Liao L, Yates JR III, 
Kuhn P, Buchmeier MJ. Severe acute 
respiratory syndrome coronavirus 
nonstructural protein 2 interacts with a 
host protein complex involved in 
mitochondrial biogenesis and intra-
cellular signaling. Journal of Virology. 
2009;83:10314-10318

[21] Lei J, Kusov Y, Hilgenfeld R. Nsp3 of 
coronaviruses: Structures and functions 
of a large multi-domain protein. 
Antiviral Research. 2018;149:58-74

[22] Sakai Y, Kawachi K, Terada Y, 
Omori H, Matsuura Y, Kamitani W. 
Two-amino acids change in the nsp4 of 
SARS coronavirus abolishes viral 
replication. Virology. 2017;510:165-174

[23] Cottam EM, Whelband MC, 
Wileman T. Coronavirus NSP6 restricts 
autophagosome expansion. Autophagy. 
2014;10:1426-1441

[24] Cao Y, Su B, Guo X, Sun W, Deng Y, 
Bao L, et al. Potent neutralizing 
antibodies against SARS-CoV-2 
identified by high-throughput single-
cell sequencing of convalescent patients’ 
B cells. Cell. 2020;182:73-84

[25] Shi R, Shan C, Duan X, Chen Z, 
Liu P, Song J, et al. A human 
neutralizing antibody targets the 
receptor-binding site of SARS-CoV-2. 
Nature. 2020;584:120-124

[26] Zost SJ, Gilchuk P, Case JB, 
Binshtein E, Chen RE, Nkolola JP, et al. 

Potently neutralizing and protective 
human antibodies against SARS-CoV-2. 
Nature. 2020;584:443-449

[27] Xiang R, Yu Z, Wang Y, Wang L, 
Huo S, Li Y, et al. Recent advances in 
developing small-molecule inhibitors 
against SARS-CoV-2. Acta 
Pharmaceutica Sinica B. 
2021;11(11):100-110

[28] Cheung NN, Lai KK, Dai J, Kok KH, 
Chen H, Chan K-H, et al. Broad-
spectrum inhibition of common 
respiratory RNA viruses by a pyrimidine 
synthesis inhibitor with involvement of 
the host antiviral response. Journal of 
General Virology. 2017;98:946-954

[29] Jin Z, Du X, Xu Y, Deng Y, Liu M, 
Zhao Y, et al. Structure of M pro from 
SARS-CoV-2 and discovery of its 
inhibitors. Nature. 2020;582:289-293

[30] Beigel J, Tomashek K, Dodd L. 
Remdesivir for the Treatment of 
Covid-19—Final Report. 2020

[31] Idda ML, Soru D, Floris M. 
Overview of the first 6 months of 
clinical trials for COVID-19 
pharmacotherapy: The most studied 
drugs. Frontiers in Public Health. 
2020;8(Aug):1-7

[32] Hassanipour S, Arab-Zozani M, 
Amani B, Heidarzad F, Fathalipour M, 
Martinez-de-Hoyo R. The efficacy and 
safety of Favipiravir in treatment of 
COVID-19: A systematic review and 
meta-analysis of clinical trials. Scientific 
Reports. 2021;11:1-11

[33] Serafin MB, Bottega A, Foletto VS, 
da Rosa TF, Hörner A, Hörner R. Drug 
repositioning is an alternative for the 
treatment of coronavirus COVID-19. 
International Journal of Antimicrobial 
Agents. 2020;55:105969

[34] Gashaw I, Ellinghaus P, Sommer A, 
Asadullah K. What makes a good drug 
target? Drug Discovery Today. 2011;16: 
1037-1043



Drug Repurposing - Molecular Aspects and Therapeutic Applications

32

[35] Zdrazil B, Richter L, Brown N, 
Guha R. Moving targets in drug 
discovery. Scientific Reports. 
2020;10:1-15

[36] Saxena SK, Mishra N, Saxena R. 
Advances in Antiviral Drug Discovery 
and Development. Part I: Advancements 
in Antiviral Drug Discovery. London: 
Future Medicine Ltd.; 2009

[37] Saxena SK, Mishra N, Saxena R. 
Advances in Antiviral Drug Discovery 
and Development: Part II: 
Advancements in Antiviral Drug 
Development. London: Future Medicine 
Ltd.; 2009

[38] Smith C. Drug target validation: 
Hitting the target. Nature. 2003;422: 
342-345

[39] Katsila T, Spyroulias GA, 
Patrinos GP, Matsoukas M-T. 
Computational approaches in target 
identification and drug discovery. 
Computational and Structural 
Biotechnology Journal. 2016;14:177-184

[40] Lu Z. PubMed and beyond: A 
survey of web tools for searching 
biomedical literature. Database. 
2011;2011:36

[41] Tusher VG, Tibshirani R, Chu G. 
Significance analysis of microarrays 
applied to the ionizing radiation 
response. Proceedings of the National 
Academy of Sciences. 2001;98:5116-5121

[42] Brown AS, Patel CJ. MeSHDD: 
Literature-based drug-drug similarity 
for drug repositioning. Journal of the 
American Medical Informatics 
Association. 2017;24:614-618

[43] Leaman R, Islamaj Doğan R, Lu Z. 
DNorm: Disease name normalization 
with pairwise learning to rank. 
Bioinformatics. 2013;29:2909-2917

[44] Papanikolaou N, Pavlopoulos GA, 
Theodosiou T, Vizirianakis IS, 

Iliopoulos I. DrugQuest-a text mining 
workflow for drug association discovery. 
BMC Bioinformatics. 2016;17:333-341

[45] Patel L, Shukla T, Huang X, 
Ussery DW, Wang S. Machine learning 
methods in drug discovery. Molecules. 
2020;25:5277

[46] Gottlieb A, Stein GY, Ruppin E, 
Sharan R. PREDICT: A method for 
inferring novel drug indications with 
application to personalized medicine. 
Molecular Systems Biology. 2011;7:496

[47] Napolitano F, Zhao Y, Moreira VM, 
Tagliaferri R, Kere J, D’Amato M, et al. 
Drug repositioning: A machine-learning 
approach through data integration. 
Journal of Cheminformatics. 2013;5:1-9

[48] Aliper A, Plis S, Artemov A, 
Ulloa A, Mamoshina P, Zhavoronkov A. 
Deep learning applications for 
predicting pharmacological properties 
of drugs and drug repurposing using 
transcriptomic data. Molecular 
Pharmaceutics. 2016;13:2524-2530

[49] Lotfi Shahreza M, Ghadiri N, 
Mousavi SR, Varshosaz J, Green JR. A 
review of network-based approaches to 
drug repositioning. Briefings in 
Bioinformatics. 2018;19:878-892

[50] Somolinos FJ, León C, 
Guerrero-Aspizua S. Drug repurposing 
using biological networks. Processes. 
2021;9:1057

[51] Jarada TN, Rokne JG, Alhajj R. A 
review of computational drug 
repositioning: Strategies, approaches, 
opportunities, challenges, and 
directions. Journal of Cheminformatics. 
2020;12:1-23

[52] Salmaso V, Moro S. Bridging 
molecular docking to molecular 
dynamics in exploring ligand-protein 
recognition process: An overview. 
Frontiers in Pharmacology. 2018;9:923



33

Evaluation of Drug Repositioning by Molecular Docking of Pharmaceutical Resources…
DOI: http://dx.doi.org/10.5772/intechopen.101395

[53] Salmaso V, Sturlese M, Cuzzolin A, 
Moro S. Combining self-and cross-
docking as benchmark tools: The 
performance of DockBench in the D3R 
Grand Challenge 2. Journal of 
Computer-Aided Molecular Design. 
2018;32:251-264

[54] Kumar S, Kumar S. Molecular 
docking: A structure-based approach for 
drug repurposing. In: Silico Drug 
Design. Amsterdam, Netherlands: 
Elsevier; 2019. pp. 161-189

[55] Agarwal S, Mehrotra R. An 
overview of molecular docking. JSM 
Chem. 2016;4:1024-1028

[56] Chaudhary KK, Mishra N. A review 
on molecular docking: Novel tool for 
drug discovery. Database. 2016;3:1029

[57] Shawky E, Nada AA, Ibrahim RS. 
Potential role of medicinal plants and 
their constituents in the mitigation of 
SARS-CoV-2: Identifying related 
therapeutic targets using network 
pharmacology and molecular docking 
analyses. RSC Advances. 2020;10: 
27961-27983

[58] Dutta M, Nezam M, Chowdhury S, 
Rakib A, Paul A, Sami SA, et al. 
Appraisals of the Bangladeshi medicinal 
plant calotropis gigantea used by folk 
medicine practitioners in the 
management of COVID-19: A 
biochemical and computational 
approach. Frontiers in Molecular 
Biosciences. 2021;8:481

[59] Azim KF, Ahmed SR, Banik A, 
Khan MMR, Deb A, Somana SR. 
Screening and druggability analysis of 
some plant metabolites against SARS-
CoV-2: An integrative computational 
approach. Informatics in Medicine 
Unlocked. 2020;20:100367

[60] Rahman MR, Banik A, 
Chowdhury IM, Sajib EH, Sarkar S. 
Identification of potential antivirals 
against SARS-CoV-2 using virtual 

screening method. Informatics in 
Medicine Unlocked. 2021;23:100531

[61] Patil R, Chikhale R, Khanal P, 
Gurav N, Ayyanar M, Sinha S, et al. 
Computational and network 
pharmacology analysis of bioflavonoids 
as possible natural antiviral compounds 
in COVID-19. Informatics in Medicine 
Unlocked. 2021;22:100504

[62] Parida PK, Paul D, Chakravorty D. 
Nature’s therapy for COVID-19: 
Targeting the vital non-structural 
proteins (NSP) from SARS-CoV-2 with 
phytochemicals from Indian medicinal 
plants. Phytomedicine Plus. 2021;1: 
100002

[63] Luo H, Mattes W, Mendrick DL, 
Hong H. Molecular docking for 
identification of potential targets for 
drug repurposing. Current Topics in 
Medicinal Chemistry. 2016;16: 
3636-3645

[64] Te Velthuis AJ, Van Den Worm SH, 
Snijder EJ. The SARS-coronavirus nsp7+ 
nsp8 complex is a unique multimeric 
RNA polymerase capable of both de 
novo initiation and primer extension. 
Nucleic Acids Research. 
2012;40:1737-1747

[65] Shi Z, Gao H, Bai X-c, Yu H. 
Cryo-EM structure of the human 
cohesin-NIPBL-DNA complex. Science. 
2020;368:1454-1459

[66] Subissi L, Posthuma CC, Collet A, 
Zevenhoven-Dobbe JC, Gorbalenya AE, 
Decroly E, et al. One severe acute 
respiratory syndrome coronavirus 
protein complex integrates processive 
RNA polymerase and exonuclease 
activities. Proceedings of the National 
Academy of Sciences. 2014;111: 
E3900-E3909

[67] Jang K-J, Jeong S, Kang DY, Sp N, 
Yang YM, Kim D-E. A high ATP 
concentration enhances the cooperative 
translocation of the SARS coronavirus 



Drug Repurposing - Molecular Aspects and Therapeutic Applications

34

helicase nsP13 in the unwinding of 
duplex RNA. Scientific Reports. 
2020;10:1-13

[68] Decroly E, Debarnot C, Ferron F, 
Bouvet M, Coutard B, Imbert I, et al. 
Crystal structure and functional 
analysis of the SARS-coronavirus RNA 
cap 2′-O-methyltransferase nsp10/nsp16 
complex. PLoS Pathogens. 2011;7: 
e1002059

[69] Gil C, Ginex T, Maestro I, Nozal V, 
Barrado-Gil L, Cuesta-Geijo MÁ, et al. 
COVID-19: Drug targets and potential 
treatments. Journal of Medicinal 
Chemistry. 2020;63:12359-12386

[70] Hassanzadeganroudsari M, 
Ahmadi AH, Rashidi N, Hossain MK, 
Habib A, Apostolopoulos V. 
Computational chemistry to 
repurposing drugs for the control of 
COVID-19. Biologics. 2021;1:111-128



35

Chapter 3

Drug Repurposing Techniques  
in Viral Diseases
Ran Zhang, Rick Oerlemans, Chao Wang, Lili Zhang  
and Matthew R. Groves

Abstract

Since the advent of the twentieth century, several severe virus outbreaks have 
occurred—H1N1 (1918), H2N2 (1957), H3N2 (1968), H1N1 (2009) and recently 
COVID-19 (2019)—all of which have posed serious challenges to public health. 
Therefore, rapid identification of efficacious antiviral medications is of ongoing 
paramount importance in combating such outbreaks. Due to the long cycle of drug 
development, not only in the development of a “safe” medication but also in man-
dated and extensive (pre)clinical trials before a drug can be safely licensed for use, it 
is difficult to access effective and safe novel antivirals. This is of particular importance 
in addressing infectious disease in appropriately short period of time to limit stress to 
ever more interlinked societal infrastructures; including interruptions to economic 
activity, supply routes as well as the immediate impact on health care. Screening 
approved drugs or drug candidates for antiviral activity to address emergent diseases 
(i.e. repurposing) provides an elegant and effective strategy to circumvent this 
problem. As such treatments (in the main) have already received approval for their 
use in humans, many of their limitations and contraindications are well known, 
although efficacy against new diseases must be shown in appropriate laboratory trials 
and clinical studies. A clear in this approach in the case of antivirals is the “relative” 
simplicity and a high degree of conservation of the molecular mechanisms that 
support viral replication—which improves the chances for a functional antiviral to 
inhibit replication in a related viral species. However, recent experiences have shown 
that while repurposing has the potential to identify such cases, great care must be 
taken to ensure a rigourous scientific underpinning for repurposing proposals. Here, 
we present a brief explanation of drug repurposing and its approaches, followed by 
an overview of recent viral outbreaks and associated drug development. We show 
how drug repurposing and combination approaches have been used in viral infectious 
diseases, highlighting successful cases. Special emphasis has been placed on the recent 
COVID-19 outbreak, and its molecular mechanisms and the role repurposing can/has 
play(ed) in the discovery of a treatment.

Keywords: viral infectious disease, COVID-19, drug development, drug repurposing, 
drug repurposing strategies, applications

1. Introduction

The development of a new drug is an extensive, intricate, highly risky and 
expensive process. According to the study of 12,728 transitions over the last decade 
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(2011–2020), the success rates of clinical drug development were 52.0% (Phase I), 
28.9% (Phase II) and 57.8% (Phase III) separately [1]. Most of the candidates failed 
in the early drug development process for reasons of efficacy and safety concerns 
[2]. This causes a huge cost in drug development, ranging from tens of millions to 
billions. In addition, it typically takes at least 10 years from initial laboratory evalu-
ation for a new drug to be approved. All these factors lead to low output dispropor-
tionately to the high input and make it challenging for the pharmaceutical industry 
to respond to emergent infectious diseases within a time frame that is able to impact 
the course of an outbreak. As a result, the development of vaccine candidates will 
likely remain to be the optimal mechanism to address outbreaks in the immediate 
future. Notwithstanding the extraordinary developments in vaccine technology—
exemplified by recent events [3, 4]—there still remains a need for therapeutics as a 
sufficiently successful virus will rapidly become pan/endemic, creating a constant 
need for treatment of those unfortunate enough to not have access to a vaccine due 
to socioeconomic, age or immunostatus issues. Indeed, in the case of a pandemic, 
there is likely to be constant strain on health systems to treat patients, which will 
significantly enhanced in the absence of an effective therapy as it will instead rely 
heavily on patient support technologies such as ventilation or oxygen therapy.

A potential solution to this conundrum is the examination of already proposed 
(ideally approved) medications—repurposing—to assess their potential in the treat-
ment of an emergent diseases. Drug repurposing as a strategy to identify potential new 
indication areas of approved/old drugs has many advantages. Firstly, low risk. Most 
repurposed drugs have at least been tested in early clinical trials. Hence, the failure rate 
of repurposing candidates caused by safety is very low. Secondly, low cost. Most old 
or approved drugs have clear safety, pharmacokinetics and pharmacodynamics data, 
which reduces the studies that need to be performed before the drugs extension to a 
novel indication. Thirdly, a higher success rate. The drugs used for repurposing are 
enriched from previous studies. This means less promising compounds are filtered out, 
allowing for a higher success rate [5]. Finally, while the molecular complexity of the 
protein targets of diseases is extremely broad, areas of essential molecular function can 
be identified as conserved in many diseases. For example, tyrosine kinase activity is a 
frequent target for the development of cancers from highly diverse tissues. A common 
feature of all kinases is the presence of an ATP-binding site, which has resulted in a 
large number of targeted cancer therapies (tyrosine kinase inhibitors, TKIs) which 
have a strong resemblance to ATP on the molecular level. This has further resulted in 
the clinical testing of TKIs for cancers distinct to those for which they were developed, 
as the evolutionary pressure to retain a function ATP-binding site provides a precondi-
tion for potential TKI cross-reactivity [6].

In the past decades, the successful application of drug repurposing shows a 
promising direction for drug development. For example, Thalidomide was firstly 
synthesized by Ciba in 1953 and came on to the market to relieve morning sickness 
in 1957. In 1961, Thalidomide was taken off the market due to the severe teratogenic 
effect on the developing fetus. In the following years, an Israeli researcher found 
that thalidomide could be used as a treatment against autoimmune diseases. In 1998 
it was approved by FDA for the repurposed use in the treatment of ENL [7–9]. In 
this chapter, we present an overview of the benefits and drawbacks of drug repur-
posing in viral disease, including approaches, applications and outlook.

2. Drug repurposing

Drug repurposing is the process of identifying new indications and uses for 
approved/existing drugs [10]. It mostly involves approved drugs or compounds 
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under study, which have clear pharmacokinetics and pharmacodynamics that 
provide data on metabolic stability, tissue distribution and clearance rates. In the 
past decades, a large quantity of new molecular entity drugs was approved or stud-
ied, meaning that not only the ~2000 FDA approved compounds can be screened 
[11, 12], but also a much larger potential library of compounds that have been 
developed to have appropriate physico-chemical properties for their use as drugs, 
but that may have failed clinical trials due to lack of action in their original disease 
class. This, perhaps, is the key benefit of repurposing—as all potential repurposing 
candidates possess “drug-like” properties. However, these properties should be 
borne in mind by the researcher as they strongly impact the potential of repurposed 
compounds in clinical use.

The classic description of “drug-like” properties has grown significantly since 
the original introduction of the “Rule of 5” by Lipinski (Ro5) [13]. This initial 
classification arose from the observation that successful drugs shared common 
properties: low molecular weight (Mw), a relative scarcity of potential electrostatic 
interactions (H-bond donors and acceptors) and a partition coefficient (logP) that 
indicated the molecules would be able to passively diffuse across cell membranes. 
While, the most important descriptors remain unchanged a summary of Lipinski’s 
and others rules is provided in Table 1 [13–17]. As repurposing candidates will 
be drawn from compounds that are likely to be enriched for these properties and 
therefore the potential route of administration for the repurposed disease should be 
compatible with these. For instance, compounds that are a good fit to Ro5 would be 
relatively poorly applied to diseases for which administration would be via inhala-
tion [18]. Thus, the availability of this pharmacological information and likely route 
of administration is of key importance in deciding on which compounds should be 
assessed for repurposing.

In summary, these studies provide a wealth of information about the clinical 
application and mechanism of action, aiding the rapid development of the drug 
repurposing. When compared with de novo drug discovery, drug repurposing accel-
erates the development process and significantly reduces development risk [19].

2.1 Drug repurposing approaches

At its broadest level drug repurposing approaches can be divided into two geneal 
types: computer-based and experimental techniques [20, 21]. Within both these 
approaches there are three main angles of attack, drug-centric, target-centric and 
disease-centric methods [22]. As indicated by its name, drug-centric approaches 
start from the point of view of a drug, with the aim to find efficacy against dis-
eases other than the initial indication. In the case of a disease-centric approach 
the disease is the focus, with the purpose being to identify and repurpose a drug 

RO5 RO3 Ghose rules Veber’s Rules MDDR-like rules

MW ≤ 500
HBD ≤ 5
HBA ≤ 10
LogP ≤ 5

MW < 300 Da
HBD ≤ 3
HBA ≤ 3
cLogP ≤3
NRTB ≤3

160 ≤ MW ≤ 480
−0.4 ≤ logP ≤5.6
30 ≤ AMR ≤ 130

20 ≤ NA ≤ 70

NRTB < 10
PSA < 140 Å

RNG ≥ 3
RGB ≥ 18
NRTB ≥6

Abbreviations: MW, molecular weight; HBD, H-bond donor; HBA, H-bond acceptor; logP, octanol-water partition 
coefficient; clogP, calculated octanol-water partition coefficient; AMR, molar refractivity; PSA, total polar surface 
area; RGB, the number of rigid bond; HB, hydrogen bond; NAT, the number of atoms; NRTB, number of rotatable 
bonds; RNG, number of rings.

Table 1. 
Summary of ‘druglikeness’ rules applied in drug development.
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specifically against that disease. Target-centric methods utilize drugs that bind to 
well-characterized targets that are known to be, or at least suspected to be, involved 
in other diseases besides the drugs’ original indication. What they have in common 
is that at the core these strategies often employ similarity assessment to identify 
drugs that can potentially be repurposed.

2.1.1 Computer-based approaches

Traditional drug repurposing often relies on the in vitro/in vivo identification 
of active drugs or alternative targets. Whilst this can provide promising compounds 
with reliable, desired activity, it can be expensive, involves physical access to the 
drug libraries and requires setup and optimization of the assays [23]. With the rapid 
development of bioinformatics and the accumulation of vast amounts of experi-
mental data, the development of drug repurposing, especially the initial stage, has 
moved from traditional biological experiments towards an increasing diversity 
of computational screening approaches, partially due to the lower cost and lower 
barrier to entry [24].

2.1.1.1 Virtual screening

Virtual screening is an essential computational approach in drug discovery, 
and particularly in drug repurposing. It involves the use of computer programs to 
evaluate compound libraries on a specified criterion, usually similarity or calculated 
binding energy. Virtual screening can be classified into two categories: ligand-based 
and structure-based virtual screening [25, 26].

Ligand-based screening focuses on analyzing the structure-activity information 
of known active ligands against a certain indication to identify other potentially 
effective drugs. This analysis relies on similarity in the form of pharmacophores 
and geometric shape which can be informed by structural knowledge of the ligand-
target complex to identify key pharmacophores or without structural information, 
relying on the structure-activity relationship information from experimental 
approaches to identify the pharmacophores [27]. Pharmacophores are the chemi-
cal moieties of drugs that play essential roles in the interaction with their targets. 
Pharmacophore features—including features such as hydrogen bond donors, hydro-
gen bonds acceptors, charge groups, aromatic rings and hydrophobic centroids are 
then identified together with their spatial characteristics and mapped into a string 
[28]. This string can serve as a fingerprint, which can be used for easy similarity 
matching between different drugs, potentially identifying drugs that are also active 
against the disease.

This approach can be successful for small molecules as they are relatively 
simple molecules from a chemical perspective. Their pharmacophoric features 
are limited and usually rely on a few strong, deeply buried interactions with the 
target, making it easy to map and identify drugs with similar characteristics [29]. 
In contrast, biologics, such as peptides and antibodies, are far less suitable to these 
techniques as their method of actions typically dependent on mimicking protein-
protein interactions, which are characterized by large, flat interaction surfaces 
[30, 31]. This makes them highly specific for their target, allowing for targeted 
therapies with typically less side-effects, but that specificity also prevents them 
from being repurposed for a different target.

In contrast, structure-based virtual screening uses the three-dimensional 
structure of a target of therapeutic interest [32, 33], which is screened against a 
virtual library of approved drugs in order to identify those that show interactions 
with this novel target. Drugs are docked against the target and interaction analysis 
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is performed based on binding energy and binding geometry. Many different 
docking software packages have been developed with the key differences being in 
the docking methodologies and the scoring functions used to rank the drugs [34]. 
Classical scoring functions usually rely on experimental data or prior information 
to rank the drugs. However, these have been consistently getting outperformed by 
machine learning based scoring functions, especially when specific target data is 
available to train on [35, 36].

Developments in computational power have made virtual screening approaches 
highly accessible to labs all over the world as they do not require nearly the amount 
of financial resources compared to wet-lab experiments. In addition, due to the 
speed at which the screenings can be performed nowadays, huge libraries con-
taining 100’s of millions of compounds can be screened against a target rapidly 
massively increasing the chemical space explored [37]. Though these advances are 
very useful in early drug discovery, where it can be used to screen fragment and 
compound libraries that cover a diversity in chemical space, they are less impactful 
when it comes to drug repurposing since the amount of approved drugs is limited 
and does not comprise wide chemical space. A downside of structure-based screen-
ing is the need for the actual structural information, which can be difficult to obtain 
for novel targets. Fortunately the number of entries available in the PDB has been 
growing at an exceptional rate, more than doubling in the last decade [38], meaning 
more and more targets have structural information available. In addition, the recent 
achievements of AlphaFold [39], including the prediction of the 3-dimensional 
structures of the entire human proteome, might alleviate this issue [40]. Overall 
this still has a positive impact on drug repurposing strategies as the more struc-
tural information is available the better scoring functions can be become, aiding 
both ligand-based and structure-based methods in identifying drugs that can be 
repurposed.

2.1.1.2 Machine learning approaches

Machine learning is an overarching term used to describe diverse algorithms 
that use data sets to perform intelligent predictions [41]. The algorithms can 
be trained on large datasets to identify patterns and interactions. The trained 
algorithm can then be applied to novel data to identify or predict outcomes or 
interactions.

Computer based drug repurposing techniques utilizing machine learning 
have been gaining a lot of traction due to a large increase in available omics 
data in a variety of databases and the development of sophisticated algorithms 
that can utilize this data [42–44]. It is carried out using computational biol-
ogy, bioinformatics and database tools, which allows for economical and high 
efficiency drug discovery [45]. Machine learning techniques used for drug 
repurposing include: k-nearest neighbor algorithms, decision tree, random 
forest, artificial neural networks, k-means clustering and principal component 
analysis [20, 46, 47].

In recent years researchers have not been able to keep up with the amount of 
information being generated by omics experiments, creating a need for different 
data analysis methods. Where previously they would manually comb through the 
data looking for patterns and connections, there has been a shift towards big data 
analysis utilizing machine learning approaches, which have shown several specific 
applications in drug repurposing [48].

Signature matching is an approach where complex patterns and profiles— 
signatures—are generated for diseases and drugs by machine learning algorithms 
from large omics datasets. By looking for negative correlations between differential 
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signatures resulting from diseases and from drug treatments, drugs can be 
identified that can serve as treatments for those diseases outside of their original 
indication [5, 20]. Simultaneously, drug signatures can also be compared with the 
signatures of structurally dissimilar drugs, with the idea being that if drugs show a 
similar signature they can share a therapeutic application irrespective of chemical 
similarity. For both these applications there is an alternative signature that can be 
compared, the clinical phenotype signature. Even though some diseases or drugs 
might show little to no similarities in direct transcriptomic, metabolomics or pro-
teomic patterns, they could still have similar clinical phenotypic outcomes, which 
can also allow for the identification of repurposing uses of drugs [49].

Another use of signature matching is in finding similar chemical features of 
drugs and mapping a network based on shared features. This allows for the identi-
fication of drugs that may potentially be repurposed—as similarity in pharmacoph-
ores tends to correlate with a similarity in biological activity.

Related to signature-based methods, application of genome-wide association 
studies (GWAS) have also shown to be valuable within the field of drug repurpos-
ing [50]. GWAS data can be analyzed using machine learning approaches to identify 
interaction and association patterns of genes linked to diseases [51]. Genes identi-
fied by GWAS to associate with a disease tend to be enriched with druggable targets. 
By cross-referencing the disease enriched genes with databases containing drug-
target information drugs can be found that inhibit specific genes that are involved 
in other indications but also seemingly play a role in the GWAS investigated disease, 
potentially being able to reuse that drug. In addition if a gene is shown to be associ-
ated with a disease it could become a novel drug target, which can be screened 
against using approved drug libraries.

Even though GWAS identified genes can be associated with a disease that does 
not mean that the target is druggable. Pathway mapping could be a potential tool to 
leverage the information gained with GWAS and expand upon it [52]. By analyzing 
the pathways or protein interaction networks up and/or downstream of the GWAS 
identified genes, other, previously elusive, proteins can be identified that could play 
a role in disease progression. This can either yield new drug targets or repurpos-
ing opportunities of drugs that already inhibit the elucidated target. For example, 
pathway analysis was performed on data sets containing gene expression data from 
human hosts infected with many different respiratory viruses. This identified 67 
conserved biological pathways that could play an important role in respiratory viral 
infections. Comparing these pathways to a drug-target database resulted in drugs 
like pranlukast and amrinone, drugs with a different indication, that could poten-
tial be used in treating viral infections [53].

2.1.2 Experiment-based approaches

Empirical evidence is still highest order of evidence and remains the golden 
standard for drug screening, including drug repurposing. Since experimental assays 
provide the most immediate evidence of drug activity [51] they are not only used to 
discover potential repurposing candidates from libraries but they are also essential 
in validating hits from computational approaches.

Inhibition assays can serve to identify target-specific drug efficacy, including 
inhibition constants. Binding assays are very powerful as they can also provide binding 
constant information [54]. Immediate use can be made of the identified binding drug 
that might not be highly specific or effective but it could serve as a temporary stop gap 
in emergency situations (like pandemics). Whilst the repurposed drug is being used as a 
sort of band aid, drug development can be undertaken in parallel, using the drug as the 
starting point. Rapid SAR approaches can then be utilized to improve the drug binding 
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and efficacy [55]. The fact that the resulting drug would ideally be quite similar to the 
approved drug could lead to accelerated approval processes.

2.1.2.1 Binding assays

Binding assays aim to detect the interaction(s) between two (bio)molecules, 
such as protein-protein, peptide-protein, nucleic acid-protein, small molecule-
protein, or small molecule-nucleic acid and ideally also evaluate the degree of the 
interaction [56]. These assays can be used in two ways, in screening approaches to 
qualitatively identify hits that interact with the target and in a quantitative way to 
characterize the binding affinity.

There are many examples of different types of qualitative assays that have been 
used in drug repurposing approaches. Among the most common are immobilization 
or affinity chromatography, where either the target or the drug are immobilized 
on a matrix or column followed by exposure to a drug library or potential binding 
targets [57]. The complexes that have formed can then be eluted and identified 
using analytic methods. DNA-encoded libraries encompassing wide chemical space 
have been used in such approaches. After eluting complexes binding compounds are 
identified by sequencing the DNA-barcode attached to the binding compound. This 
technique can also be applied to approved drug libraries [58].

The aforementioned assays are aimed at screening large libraries for hits. However, 
obtaining detailed binding information such as dissociation constants (KD), is crucial 
in the identification and development of potent drugs. Several biophysical techniques 
are available to quantify these interactions. Microscale Thermophoresis (MST) can be 
used to measure binding affinity by detecting changes in molecular motion in a tem-
perature gradient in the presence and absence of different compound concentrations 
[59]. Differential scanning fluorimetry (DSF) can be used to measure protein unfold-
ing temperature by monitoring in fluorescence of a probe that binds to hydrophobic 
moieties in a denaturing temperature gradient. Upon binding of drugs to the protein 
it can stabilize the complex, leading to a shift in unfolding temperature. By using a 
range of drug concentrations and measuring the effect on the thermal shift the KD 
can be calculated [60]. Surface plasmon resonance (SPR) is a technique in which the 
target or drug of interest is immobilized on a thin metal film. A light source is aimed 
at the other side of the film and the surface Plasmon resonance angle is detected. 
When a drug or target binds to the immobilized partner the local mass at the sensor 
surface changes, causing a shift in the angle of reflection proportional to the mass. By 
measuring these changes in the presence and absence of drug or target, association 
and dissociation constants can be determined [61]. Isothermal titration calorimetry 
(ITC), one of the golden standards in KD determination, can directly measure all 
binding parameters by measuring heat transfer. When binding of drug to target 
occurs, enthalpy changes (heat absorbed or released) of the system can be measured 
by a highly sensitive calorimeter. By titrating ligand against the target of interest the 
Kd, stoichiometry, enthalpy and entropy can be directly measured in the native states 
of the binding partners since no modifications are required [62].

2.1.2.2 Phenotypic screening

Where binding assays are typically focused on identifying target-drug interactions, 
phenotypic screening takes a more disease-centric approach. Phenotypic assays aim 
to identify compounds that show effects on disease-relevant outcomes [63]. These are 
usually performed on cell lines or organelles engineered to function as disease mod-
els. Since the assay is target agnostic less, or no, information about specific targets is 
obtained. However, the fact that it is agnostic also means that there are more potential 
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targets available within this complex environment, which could lead to the discovery 
of new targets that would otherwise be left unexplored [63]. There are also additional 
benefits to this approach in the context of drug repurposing. Since the assays are disease 
based and compounds are approved drugs or clinical candidates it means that if positive 
outcomes are obtained the drug already has positive properties and shown efficacy in 
more complex systems, which is beneficial to real world applications [64].

2.1.3 Side effect based or “serendipitous” drug repurposing

One of the most frequent reasons for drugs failing in (pre)clinical trials is the 
determination of a side effect that cannot be ignored. Most commonly this is deter-
mined to be a dangerous side effect that argues against further clinical investigation 
of the compound. However, one man’s meat is another man’s poison. These drugs 
with unwanted side effects can be given new indications through a drug repurpos-
ing strategy. Side effects-based drug repurposing links indications with clinical 
effect and is one of the common strategies employed for drug repurposing [65, 66]. 
A key example in this area is Sildenafil, which was originally entered into clinical 
trials as a drug to treat hypertension and angina [65, 67–70]. Unfortunately, Phase I 
clinical trials suggested that it had little effect on angina. However, use of Sildenafil 
causes a significant side effect: marked penile erections. This lead to the discovery 
that Sildenafil could be used as a treatment for erectile dysfunction (ED) [71]. In 
1988, Sildenafil was approved by the FDA for the treatment of ED. Such repurpos-
ing approaches could be termed serendipitous repurposing, as the new indication 
area is revealed during clinical trials. As a result, such repurposing is relatively rare.

3. Drug repurposing in viral diseases

Over the last decades the world has seen multiple severe viral outbreaks result-
ing in millions of deaths. Among the deadliest were the Influenza pandemics such 
as H1N1 (1918), H2N2 (1957), H3N2 (1968) and H1N1 (2009). The HIV/AIDS 
epidemic that was first recognized in the 1980s and went global has also caused up 
to an estimated amount of 36 million deaths and is still ongoing. Besides the large, 
deadly pandemics there have been smaller but very impactful localized epidem-
ics such as Dengue virus (DENV), Zika virus (ZIKV), Ebola virus (EBOV) and 
Middle East respiratory-syndrome corona virus (MERS-CoV) which pose serious 
challenges to public health. Most recently in 2019 there was an outbreak of Severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused the COVID-
19 pandemic, affecting nearly every country in the world with over 226 million 
reported cases to date [72]. Despite the advances in controlling viral pathogens that 
come with the widespread mass vaccination, there are no approved specific (effec-
tive) therapies for the treatment of most viral infections.

By exploring new targets and mechanisms, drug repurposing provides new indi-
cations for old drugs. The major time advantage of repurposing is that this approach 
allows repurposed drugs to quickly enter clinical trials, which is of significant impor-
tance in reacting to disease outbreaks, especially in the case of worldwide pandemics.

3.1 Drug repurposing for COVID-19

The outbreak of COVID-19, caused by SARS-CoV-2, has spread across the world. 
There is, as yet, no specific treatment for COVID-19 approved. Drug repurposing 
provides a fast and economical option for the identification of medications target-
ing SARS-CoV-2.
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SARS-CoV-2 is a member of of the betacoronaviruses family. It is a single-
stranded RNA virus, characterized by large crown-like spikes protruding on 
the viral surface and an unusually large RNA genome which encodes four main 
structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N) 
[62, 73, 74]. Like other coronaviruses, SARS-CoV-2 cell entry is mediated by the 
spike glycoprotein. The spike glycoprotein is composed of two subunits, S1 and 
S2, which mediate viral-host attachment and viral-host membrane fusion cascade, 
respectively [75]. SARS-CoV-2 spike recognizes and binds to the human ACE2 
(hACE2) receptor through its receptor-binding domain (RBD) and is primed and 
activated by proteolytic cleavage by enzymes such as Furin and transmembrane 
serine protease 2 (TMPRSS2) [76, 77]. Spike, ACE2, Furin and TMPRSS2 have been 
shown to play a key role in mediating viral-host fusion attachment and fusion, 
and the Furin cleavage site on the Spike protein has been indicated as one of major 
reasons SARS-CoV-2 is so infectious [78, 79]. This makes these potentially promis-
ing drug targets for COVID-19 treatment [80, 81].

3.1.1 Drug repurposing targeting viral fusion

Inhibition of the Spike-Ace2 interaction is a primary target for drug repurposing 
as it is crucial to viral entry. In silico approaches have been performed and identified 
Simeprevir, an HCV NSP3A/4 protease inhibitor, as a potential blocker of Spike-
Ace2 interaction by binding the RBD [82]. However, other in vitro studies showed 
that Simeprevir is not necessarily active against the RBD but is targeting the viral 
replication [83].

Another promising target is TMPRSS2, a serine protease. TMPRSS2 is associ-
ated to the host endothelial cell surface and cleaves the viral spike glycoprotein 
after binding to ACE2, activating it. The activation of spike protein then facili-
tates viral entry [84]. Camostat mesilate (a serine protease inhibitor) has been 
approved for the treatment of chronic pancreatitis, postoperative reflux esopha-
gitis and kidney or liver disease fibrosis [81, 84, 85]. Since it is an established ser-
ine protease inhibitor it is a prime candidate to inhibit the TMPRSS2. An in vitro 
study indeed showed that camostat mesilate can suppress viral replication by 
halting the fusion of virus-cell membranes through the inhibition of TMPRSS2 
[84]. Clinical trials using this drug are currently ongoing [86]. However, recently 
the results of a small double-blind randomized clinical trial using camostat mesi-
late performed in patients hospitalized with COVID-19. The trial determined 
no adverse effects of treatment with camostat but also no increase in positive 
clinical outcomes [87].

3.1.2 Drug repurposing targeting endocytosis of SARS-CoV-2

Besides direct membrane fusion, SARS-CoV-2 can also invade cells via endo-
cytosis [88, 89]. This route involves several proteins that play an important role in 
endosome formation, such as two-pore channel 2 (TPC2), Cathepsin L (CTSL) and 
Vacuolar-type ATPase (V-ATPase) [90]. These proteins are indicated to be poten-
tially interesting therapeutic targets for COVID-19 treatment.

Tetrandrine is a bisbenzylisoquinoline and calcium channel blocker, known 
for its anti-inflammatory, immunosuppressive, oncological, and cardiovascular 
bioactivity [48–49]. The compound has been shown to be effective in the treatment 
of silicosis [90–92]. According to an in vitro study, tetrandrine is a low micromolar 
inhibitor of viral replication that functions by blocking the two-pore channel 2 
(TPC2), which impedes Ca2+ release which in turn prevents acidification of the 
endosome [92].
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The now infamous anti-malarial drugs chloroquine (CQ ) and hydroxychlo-
roquine (HCQ ) were also posited to inhibit endocytosis of SARS-CoV-2 [93, 94]. 
CQ and HCQ are potentially involved in blocking cleavage of spike by raising the 
pH of the endosomes, preventing cathepsin L-mediated proteolysis, which is a key 
element in membrane fusion after binding ACE2. Whilst many potential mecha-
nisms of action have been suggested, none have been rigorously demonstrated. In 
addition, a recent large meta-data analysis has shown that there is no evidence that 
treatment with CQ or HCQ reduces COVID-19 mortality in patients [95]. To the 
contrary, evidence is available that shows HCQ is responsible for a small increase in 
mortality outcomes. These compounds garnered lots of attention when the presi-
dents of prominent countries started promoting CQ and HCQ as wonder drugs that 
could combat COVID-19 [96]. However, as mentioned before most evidence points 
towards the contrary and the WHO recommends against the treatment with these 
drugs [97]. These cases have shown an important risk in the use of drug repurpos-
ing: in the age of hyper connectivity and social media echo chambers dangerous, 
unfounded ideas can avoid scrutiny and rigorous investigation, leading to large 
groups of people self-medicating with alternative treatments that have no scientific 
basis. This poses a problem in general drug development but even more so in drug 
repurposing cases where these compounds tend to be far more easily obtainable 
by the general public as they are approved and often available for purchase in 
pharmacies.

3.1.3 Drug repurposing targeting viral replication

After invading host cells, the coronavirus comes into the next stage of its life 
cycle: translation, replication, transcription and Assembly. This process mainly 
involves five different proteins: Mpro, RdRp, nsp14, MTHFD1 and Plpro, which 
have different functions [74, 98]. Mpro is also known as 3C-likeprotease (3CLpro) 
and proteolytically processes the majority of the polyprotein into functional 
polypeptides [99]. Similar to 3CLpro, Plpro is a viral protease that is responsible 
for cleaving polyproteins to generate a function replicase complex [100]. RNA 
synthesis, critical for viral replication, is performed by RdRP and its cofactors nsp7 
and nsp8. Nsp14 has an exonuclease activity that supports RNA synthesis with an 
unusual RNA proofreading function. A study performed by Tinghua University 
showed that knockdown of MTHFD1, a key enzyme in cellular production of 
purine, dTMP and methyl groups, significantly inhibits viral replication [101]. As 
a result of their key functions in the viral life cycle these proteins are promising 
potential targets for antiviral drugs development. Clofazimine is an anti multi-
bacillary leprosy drug which was approved for medical use in 1986. A recent study 
performed by The University of Hong Kong showed that clofazimine inhibits both 
viral spike glycoprotein mediated cell fusion and replication of SARS-CoV-2 in 
vitro [102].

Genome analysis has demonstrated that SARS-CoV-2 and SARS-CoV genes 
globally share >80% nucleotide identity and >89% similarity [73, 103, 104]. As a 
result, the key steps in the CoV family viral life cycle within the host cell are likely 
to be highly conserved. A key feature of this process is the expression of non-struc-
tural proteins (nsps). Subsequent to cell entry, two extended polypeptides (pp1a 
and pp1ab) from the CoV viral genome are generated by the host cell translation 
machinery [105, 106]. These two polypeptides then self-cleave into 37 distinct non-
structural (nsp) proteins [107] and anaylsis has demonstrated that the CoV family 
possesses several proteases involved in this essential self-cleavage process: the 
papain-like protease (PLpro), and the 3C-like proteinases (3CLpro or Mpro) [108]. 
CoV generally encode two PLpros within nsp3, with the exception of gamma-CoV, 



45

Drug Repurposing Techniques in Viral Diseases
DOI: http://dx.doi.org/10.5772/intechopen.101443

SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-
CoV-2 [100]. Thus, 3d unlike structural/accessory protein-encoding genes, which 
can show significant sequence variation in order to select between different poten-
tial host cell receptors, CLpro plays a central and critical role in CoV replication in 
host cells and the similarity in essential function leads to a high sequence similarity 
between the proteases of the CoV family, in particular beta-CoV [105, 106]. This 
increased similarity in the structure of the 3CLpro has the consequence of high 
structural between 3CLpro of different CoV family members—and the concomi-
tant increased likelihood of cross-species function of CoV 3CLpro inhibitors and 
the potential to repurpose these inhibitors. The high sequence homology within Cov 
3CLpros also provided high quality model templates—subsequently supported by 
the availability of high-resolution diffracting crystals—to perform both computa-
tional docking experiments, as well as molecular validation by X-ray crystallogra-
phy [109]. There also exists the potential for the discovery and the development of a 
pan-anti-CoV inhibitor [110, 111].

This potential has been partially realized in not only the discovery of entirely 
novel SARS-CoV2 3CLpro inhibitors [99, 112, 113] (refs), but also in a number 
of reports describing successful identification of potential repurposing candi-
dates [109].

For example, we and others have previously reported the results of a molecular 
docking experiment that indicated a class of well tolerated compounds (gliptins) 
as potential SARS-CoV2 inhibitors. For example, Anagliptin, a DPP4 inhibitor, is 
a well-established treatment for diabetes that is used by millions of patients. It has 
an excellent safety profile [114]. Computational docking demonstrated an efficient 
binding, with predicted H-bonds made to the backbone atoms of Gly163, Gly271, 
and Tyr268 and the side chain of Tyr273. Docking experiments also proposed that 
α-ketoamide inhibitors of hepatitis C virus (HCV) protease would be potential 
inhibitors of SARS-CoV-2 3CLpro. Efforts were concentrated on broceprevir and 
telaprevir as the docking poses were supported by experimental structure analyses 
(Figure 1). Subsequent biochemical assays demonstrated that broceprivir indeed 
displays strong binding to isolated 3CLpro of SARS-CoV2 and inhibits viral replica-
tion in cellular assays.

Similarly to CQ and HCQ, ivermectin, originally an anthelmintic, also gained 
widespread attention as a potential treatment for COVID-19 and some in vitro 
evidence of SARS-CoV-2 replication inhibition in cell cultures has been provided 
[115]. The suggested mechanism of action is the inhibition of importin alpha/
beta-1 nuclear transport proteins which the virus uses to enter the nucleus and is 
an important part of the replication cycle as it suppresses host-immune response 
[116]. Despite the in vitro effect no clinical data has supported the therapeutic use 
of ivermectin at concentrations approved for use in humans. However, it gained 
attention in the media and people started buying ivermectin meant for use in large 
animals to self-medicate against the virus [117]. Even though ivermectin is approved 
for human use and is generally safe, the doses used in the treatment of animals 
are several times larger than recommended for humans and can cause side-effects 
ranging from mild diarrhea to seizures and coma. This once again shows the care 
that needs to be taken when repurposing drugs in how scientific results are commu-
nicated to the general public, as it can lead to potential dangerous situations [118].

3.1.4  Drug repurposing targeting immune response modulators to treat 
SARS-CoV-2

Clinical symptoms resulting from SARS-CoV-2 infection are heterogeneous. 
Recent reports have shown that the cytokine storm effect may play a significant 
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role in disease progression, potentially leading to multiple organ failure and death 
[119]. Immune response-related proteins have been proposed as potential targets 
for treatment options [120, 121]. Even though effectively suppressing cytokine 
storm does not directly combat the viral infection itself, it can be a crucial treatment 
option against COVID-19. It has previously been demonstrated that melatonin has 
beneficial effects on infection induced models of respiratory disease and associated 
complications [122]. Recently evidence also surfaced that it can inhibit COVID-19 
induced cytokine storm [123]. Tocilizumab, an interleukin antagonist used for 
rheumatoid arthritis, is an immunosuppressor and was thus posited to be effective 
at reducing inflammation caused by SARS-CoV-2 [124]. It has recently become one 
of the first drugs to be recommended by the WHO as an effective treatment against 
COVID-19 [125]. Even though this is very promising there is an issue with the avail-
ability and affordability of this drug [126].

Researchers at Johns Hopkins found that the drug prazosin, an alpha-1 blocker 
used to treat high blood pressure, can prevent cytokine storms and that it signifi-
cantly strengthened survival following inflammatory stimuli in preclinical models. 
This study is now in clinical trials [127].

3.1.5 Drug repurposing targeting pyroptosis

Sepsis is a systemic inflammatory response syndrome reulsting from dys-
regulation of host immunity. It is one of the deadliest clinical symptoms of severe 
SARS-CoV-2-infected patients [128]. Sepsis treatment normally mainly relies on the 
administration of intravenous antibiotics. However, since SARS-CoV-2 viral sepsis 
is not bacterial in nature the efficacy is low. Treatment is difficult, typically consist-
ing of supplying oxygen and assisted breathing using a ventilator. Cocktails of anti-
virals and immune suppressors are also given but usually only have limited effect 
[129]. Approximately one-third of the discharged patients will die and one-sixth 
will suffer severe persistent impairments in the following year [130]. These facts 
taken together demonstrate the urgency and significance to find new treatments.

Sepsis is associated with pyroptosis (inflammatory programmed cell death) 
that is triggered by proinflammatory signals [131]. When viruses invade the host 
cell, inflammasomes are activated which in turn triggers an inflammatory response 
[132]. Pore-forming protein gasdermin D (GSDMD) is cleaved by activated 
Caspase-1, releasing its N-terminal domain [133]. The GSDMD N-terminal domain 

Figure 1. 
Boceprevir (green), a HCV NS3/4A protease inhibitor, bound to SARS-CoV-2 3C-like protease (gray surface 
representation) with several key drug-protein interactions shown. Hydrogen bonds are shown as yellow dotted 
lines. PDB accession code: 6zru.
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induces the formation of a large plasma membrane pore, resulting in pyroptosis 
[134]. Under normal circumstances pyropthosis can be good response, being able to 
trigger cell death of infected cells, releasing the pathogens and stimulating subse-
quent phagocytosis, protecting against infections [135]. However, excessive activa-
tion of pyroptosis will exacerbate sepsis or excessive cell death, causing immunity 
dysregulation [136, 137].

Disulfiram is approved for the treatment of chronic alcoholism. In a study conducted 
by Boston Children’s Hospital, researchers found that disulfiram posesses inhibiting 
potential towards GSDMD both in in vitro cell assays and in in vivo mouse experiments. 
The experiment results showed that disulfiram inhibit the formation of the GSDMD 
pore by covalently modifying Cys191 of human GSDMD [138]. These results indicate 
that disulfiram could potentially be used to combat the pyroptotic effects induced by 
sars-cov-2 infection, hopefully reducing the negative clinical outcomes.

3.2 Drug repurposing for other viral diseases

Not only large global pandemic diseases are worth investigating for drug repur-
posing opportunities. Smaller, localized viral epidemics still plague many countries 
to this date. These diseases tend to fly under the radar since they typically occur in 
poorer regions of the world, meaning less research money is being spent on novel 
drug development. Drug repurposing could be the solution for these diseases due to 
the far faster and cheaper development pipeline.

3.2.1 Dengue virus

Dengue virus (DENV) is a single-stranded RNA virus, enveloped by a bilayer 
lipid membrane. The premembrane (prM) protein and envelope glycoprotein 
adhere to the membrane. Dengue virus can infect humans through mosquito bites. 
Symptoms, that include high fever, severe headache, muscle and joint pain, nausea, 
vomiting, swollen lymph nodes and rash, usually appear 3–14 days post-infection 
[139]. Most patients will recover in 2–7 days, while a small number of patients’ 
conditions may worsen accompanied by bleeding, thrombocytopenia and plasma 
protein effusion. Up to 22,000 people die from Dengue annually and currently 
there are no therapies to treat this infection [140].

Ulipristal, a FDA approved small molecule, is an elective progesterone receptor 
modulator (SPRM), that has been demonstrated to be a potent inhibitor of DENV, 
most likely by blocking viral entry [141]. The antiviral activity was evaluated by 
in vitro DENV infection assay using Vero E6 cells. The results show that ulipristal 
has an antiviral effect against DENV in Vero E6 cells with an EC50 of 8.3 ± 0.1 μM. 
The anti-DENV effect of ulipristal was further confirmed using a murine infection 
model. The ulipristal-treated group presented less weight loss and disease symp-
toms compared the control group. A significant drop was also detected in the degree 
of viremia in the blood of the ulipristal-treated group. This study showed that 
ulipristal has desirable anti-DENV effects in vitro and in vivo [141].

3.2.2 Zika virus

Zika virus (ZIKV) is another virus that is propagated by mosquitoes and belongs 
to the genus of flaviviruses. ZIKV infection generally causes only mild symptoms, 
including fever, rash, conjunctivitis, muscle and joint pain, and headache. However, 
it has shown severe tetatogenic impacts, being able to cause a range of neurological 
complications, such as Guillain-Barre syndrome and microcephaly, in the fetuses of 
infected pregnant women [142].
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There are no currently approved specific therapies for ZIKV infection [143]. 
However, a screening study utilizing 774 approved drugs has shown promising 
results. In vitro studies showed that ivermectin (anthelmintic), mycophenolic acid 
(an immunosuppressant), and daptomycin (a lipopeptide antibiotic) can inhibit 
ZIKV, resulting in reduced infection rates [144].

3.2.3 Ebola virus

Ebola virus is one of numerous hemorrhagic fever viruses, which was first 
discovered in 1976. It can cause severe viral haemorrhagic fever with case fatality 
rates vary from 25 to 90% [145]. It is characterized as a non-specific febrile illness 
(symptoms may include anorexia, arthralgia, headache, malaise, myalgia and 
rash) in the early infection and progresses to severe gastrointestinal symptoms 
(nausea, vomiting and high-volume diarrhea) in the first week [146]. To date, a 
monoclonal antibody (mAb114) and a cocktail of three antibodies (REGN-EB3) 
have been approved for the treatment of Ebola [147, 148]. Besides these biologics 
there has also been attempts at drug repurposing for this disease. Several drugs 
such as Amiodarone (anti-arrhythmia), bepridil (anti-angina pectoris), teicoplanin 
(antibiotic), amiodarone (ventricular fibrillation/tachycardia) and favipiravir 
(RNA polymerase inhibitor) have shown therapeutic potential for Ebola, but their 
efficacy requires further confirmation [149–151].

3.2.4 MERS-CoV

A warning of the potential for a coronavirus pandemic was provided by the 
Middle East respiratory syndrome coronavirus (MERS-CoV). While the impact 
of this outbreak was significantly less than that of the current SARS-CoV2 out-
break the urgent need for MERS-CoV treatments was recognized, also including 
a focus on repurposing approaches and a call for the development of pan-corona 
virus inhibitors [152]. Suggested repurposing agents included GS-5734, which 
has previously demonstrated antiviral against multiple viral families, including 
Coronaviridae. GS-5734 activity in vitro was supported by reduced disease effects 
in mouse models and, while resistance mechanisms emerged, they were associated 
with a loss in viral fitness in vitro and in vivo—supporting the further analysis of 
GS-5734 as a pan-corona inhibitor [153, 154].

Similarly, lopinavir-ritonavir (a molecule designed as an inhibitor of the 
HIV-1 protease inhibitor) was proposed as a repurposing target of the 3CLpro 
of both SARS-CoV and MERS-CoV during their respective outbreaks [155, 156]. 
Combination therapy approaches in both cases resulted in improved patient 
outcomes, thereby offsetting the lacking of designed affinity that is a hallmark 
of repurposed compounds. In the example of SARS-CoV, a study on a combined 
therapy with ribarivin (a guanosine analog with activity against multiple viral 
families that inhibits viral RNA synthesis by RdRp) demonstrated both reduced 
viral load and improved clinical outcomes [157]. Whereas, a clinical trial of 
lopinavir-rotonavir in combination with IFN-β1b targeted therapies was proposed 
for MERS-CoV patients in Saudi Arabia [158]. Ribarivin itself was also a focus for 
repurposing during the SARS-CoV and MERS-CoV outbreaks. However, while 
efficacy of ribarivin alone could be demonstrated in vitro the doses required for a 
clinical response could not be supported by patients [159, 160].

Screening of an FDA-approved compound subset against viral replication in cul-
ture identified lopinavir and an additional 3 compounds with IC50 values in the low 
micromolar range (chloroquine, chlorpromazine, and loperamide) [156]. This again 
demonstrates not only the potential for experimentally based repurposing screens 
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to identify potential agents, but also suggests that the relatively limited potency 
of the agents identified may require the assessment of combination therapies to 
provoke a clinical response. This additional limitation of identifying appropriate 
combination therapies may well represent a common theme as a complicating factor 
in repurposing strategies.

4. Conclusions

In summary, the relatively conserved elements of the viral life cycle offer many 
opportunities to reexamine compounds developed to address previous outbreaks 
for efficacy against novel outbreaks. Clear examples are shown in the results 
against non-structural proteins above, which often maintain significantly higher 
sequence homology across species due to a conserved mechanism than structural 
proteins. However, while this sequence conservation indeed leads to a degree of 
“cross-talk” between nsp inhibitors, the required exquisite and intricate nature 
of the interaction between a successful drug and its target will almost inevitably 
reduce the efficacy of a monotherapy. As a result, it is likely that while repurpos-
ing can identify promising candidates, care must be taken not to hope for a single 
effective solution in existing drugs (e.g. Ivermectin, hydroxychloroquinine, etc.). 
Rather, functional (clinical) solutions are much more likely be found in careful 
clinical trials of combination therapies of drugs identified through repurposing 
screens.

The current combination of virtual, in vitro and in vivo screening is well posi-
tioned to perform rapid repurposing experiments on the relatively small number 
of clinically approved candidate molecules. However, significant research effort 
should be expended globally to continue to identify potential viral inhibitors and 
further populate the potential repurposing list.

Response speed is a key factor facing outbreaks. Drug repurposing is a practical 
solution that provides multiple benefits beyond classical drug discovery. Perhaps 
the greatest advancement in this area has been the improvements in computational 
techniques, that has developed in parallel with advances in structural biology—both 
of which continue to improve. These structural views of the proteins driving disease 
expand the number of experiments that can be performed in silico, providing both 
an increase in speed of hypothesis generation, as well as an important pre-filter 
stage to select out candidate molecules for screening. In our opinion a key aspect 
that should not be overlooked is the in vitro validation of a molecular effect on a 
proposed target. Certain recent experiences have shown that attempts to bypass this 
stage and short-cut the process by directly jumping into clinical trials can produce 
conflicting results, leading to confusion and loss of confidence of the public. 
However, despite successful application of drug repurposing, no single golden 
standard as yet exists to give relatively predictable results.
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Chapter 4

Antituberculosis Drug 
Repurposing: A New Hope for 
Tackling Multi-Challenging TB 
in Timely Manner
Shahnawaz Majeed, Safiya Mehraj and Zahoor Ahmad

Abstract

Tuberculosis still stands as the world’s leading infectious disease as 1/4th of the 
world’s population harbors Latent TB infection (LTBI) > 10 million develops active 
TB and ~ 1.5 million people die per year. Approximately 4,65,000 people fell ill with 
multidrug or rifampicin-resistant tuberculosis (MDR/RR-TB)/year. This deadly 
TB scenario demands new TB drug regimens to tackle global infection reservoir, 
and worldwide spread of drug resistance and DS TB. Successful entry of single 
new drug into market is much complicated mission owing to time, cost, efficacy, 
and safety issues. Therefore, drug repurposing seems one reliable hope to meet the 
challenges of modern TB drug discovery timely, as it starts with examining market 
acclaimed drugs against other diseases for their efficacies against tuberculosis 
avoiding several lengthy and costly steps required for new molecules. Several drugs 
have been identified, which show potential for TB treatment. There is need for 
careful consideration of various trial designs to ensure that TB phase III trials are 
initiated for fruitful development of new TB treatment regimens. TB drug repur-
posing will not only give fast track novel drugs but will also serve to identify new 
targets for future development in cost-effective manner.

Keywords: extensively drug-resistant TB, drug repurposing, clinical trials, 
computational strategies, antibacterial, antifungal, antiprotozoal, immunomodulators

1. Introduction

Drug repurposing, synonymically, known as drug reprofiling, drug repositioning, 
drug re-tasking, drug redirection, drug recycling, drug rescuing, and therapeutic 
switching, is a strategy of identifying new pharmacological applications for an 
approved or investigational drug that are beyond the original scope of its medical 
indication. It can also be defined as use of the new drugs for the additional diseases 
other than its already intended use. It establishes new therapeutic uses for already 
known drugs, which are approved, abandoned, discontinued, or experimental 
drugs [1, 2]. Need for drug repurposing surfaced due to multifold challenges faced 
by global pharmaceutical industry [3]. Bringing new drugs into the market with 
changing regulatory requirements costs huge economy and time. Return benefits are 
lesser than the expenditure needs on research and development (R&D) [4], and this 
demoralized the investors from investing in pharmaceutical industry. Repurposing 
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a drug, on other hand, has lesser possibility of failure from a safety point of view 
because the repurposed drug has already been found to be adequately safe in pre-
clinical models provided early-stage trials have been completed. Secondly, the time 
duration for development of drug can be reduced, as most of the safety assessment, 
preclinical testing, and, in some cases, formulation development are already com-
pleted. Thirdly, less expenditure is needed, though varies with the stage and process 
of development of the repurposing candidate. On average, on traditional drug 
discovery takes 5–7 years, and failure rate of 45% associated with only toxicity issues 
keeps the effort and cost of almost one decade at stake [5, 6]. Repurposed drug, in 
contrast, saves time and effort for preclinical, and phase I and II trials, although 
phase III and regulatory costs may remain more or less the same (Figure 1).

It is estimated that it takes on average 13.5 years to bring a new molecular entity 
to market, Drug repurposing is based on previous research & development, allowing 
compounds to progress through the drug development process more quickly as well 
as saving on the substantial costs associated with previous attrition [7]. It is well 
known that de novo drug discovery and development is a 10–17-year process from 
idea to marketed drug [8]. The probability of success is lower than 10% [9]. Drug 
repositioning offers the likelihood of abridged time and risk as several phases com-
mon to de novo drug discovery and development can be bypassed because reposition-
ing candidates have frequently been through several phases of development for their 
original indication. ADMET, absorption, distribution, metabolism, excretion and 
toxicity; EMEA, European Medicines Agency; FDA, Food and Drug Administration; 
IP, intellectual property; MHLW, Ministry of Health Labour and Welfare.

Repurposing cost of a drug from lab to market is estimated to be US$300 million 
on average, compared with an estimated ~$2–3 billion for a new chemical entity 
[10]. The cost of developing a new drug has soared to $2.6 billion [11], which has 
given drug repurposing strategy a substantial momentum to cover one-third of the 
total approvals given for new drugs and generate around 25% of the annual revenue 
for the pharmaceutical industry (Figure 2) [12].

Moreover, 30% of the US Food and Drug Administration (FDA) approved drugs 
and biologics (vaccines) constitute repurposed candidates. The global market for 

Figure 1. 
Traditional drug discovery versus drug repurposing/A comparison of traditional de novo drug discovery and 
development versus drug repositioning.
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drug repurposing is valued at 18 million US$ in 2018 is expected to reach 35 million 
US$ by the end of 2025, growing at a CAGR of 30% during 2019–2025.

2. Scope of drug repurposing

Biggest interest of drug repurposing is the reduction of time and cost for achieving 
new drugs for disease. It also can be a source of treatment options for lesser known 
and rare diseases. Novel methods based on databases have been proposed to tackle 
diseases by repurposing of drugs. A suitable data organization can provide a web tool 
to facilitate the repurposing drugs to treat old and new; common; or rare diseases. But 
still use of such data is not widespread, though the benefits are well established and 
calculated. However, drug repurposing might turn out to be expensive, time consum-
ing, and risky. Moreover, certain legal bumps make the road to drug repurposing 
tougher. Despite all these limitations, drug repurposing still promises of great scope 
if given better incentives, structured guidelines, and support. Currently, statistical 
screening of the approved drug can help find repurposing goal of the drug via in silico 
techniques to screen wide library of compounds and target data for successful repur-
posing technology. But influence of target is not much explored as is expected. The 
original and repurposed target exploration can yield information about similarities 
and dissimilarities, which can help to know about binding affinity of the drug. This 
aspect further needs molecular level study to strength the drug repurposing process. 
Globally, there are numerous diseases without suitable therapeutic options. Rapidly 
advancing understanding of human biology, increasing pool of actively studied moi-
eties, and the need to produce cost-effective therapies are driving the need to study 
the existing set of molecules for relevance across multiple diseases. The promise of 
cost effectively realizing the full potential of existing drugs vis à vis new therapeutic 
purposes is too attractive for all stakeholders in the healthcare value chain—patients, 
providers, pharma, and payers, to pass (Figure 3).

Drug repurposing began serendipitously; however, with increasing interest 
from pharmaceutical companies and the identification of various bioinformatics 

Figure 2. 
Bar chart representing year-on-year trends on funds granted for drug repurposing projects in the recent 
past (2012–2018), with the advent of time the drug repurposing projects are increasing with the increase of 
expenditure of funds granted for various repurposing projects. Funds raised for drug repurposing projects 
increased consistently from 2012 (US$1 million) to 2015 (US$100 million). In 2016, although the funds raised 
were comparatively low, there were more drug-repurposing projects initiated (47 projects). This emphasizes the 
fact that drug repurposing has gained traction in the recent past [13].
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and cheminformatics methodologies, it has evolved into an innovative, data-driven, 
cutting edge strategy. To understand the recent impact of drug repurposing on drug 
discovery and development, data on repurposed drugs were collated from Excelra’s 
proprietary drug repurposing portal, news bodies, and social networking sites, and 
then analyzed to reveal any drug repurposing trends. From 2012 to 2017, almost 170 
repurposed drugs entered the drug development pipeline. Currently, these drugs 
are at different stages of development. Most (72%) are in clinical development, 
especially Phase II, 7% are in PoC clinical studies, 8% in preclinical stages, 3% in 
research and development, and 10% have been approved [13].

2.1 Challenges in drug repurposing

Despite being an attractive drug option with multiple benefits, drug repurposing is 
a complex technology met with many challenges. The biggest challenge is to choose 
the approach to make full use of massive amounts of medical data. The issue of 
limited intellectual property (IP) protection for repurposed drugs is another chal-
lenge as IP protection to repurposed drugs is much limited [14]. On the other hand, 
IP protection of the old drugs prevents them from entering market as repositioned 
drugs. Moreover, forced closure of some repositioning projects happens due to risk 
for wastage of time and money [15]. An important principle in drug repurposing 
process is market exclusivity, which is defined as “method of use” patents valid for 
a period of 20 years. Conventional drug development process is characterized by 
“composition of matter” patents while the repurposing process is considered more 
contestable. “Composition of matter” is protected by the strongest patent protec-
tion [16] and is more easily attainable from de novo drug development, while as 
“Method of use” patents that cover repurposed drug can be challenged as merely 
incremental advances. However, under the right circumstances, a “method of use” 
patent can be as effective as a “composition of matter” patent in protecting a reposi-
tioned drug product depending on the availability of generic products to be substi-
tuted through off-label use to achieve expected results with the repurposed drug. 
The FDA allows physicians off-label prescription of drugs, but prohibits offline 
marketing of drugs by pharmaceutical companies [17]. IP issues act as barrier for 
marketing of certain repurposed drugs [18]. There are bleak chances for physicians 
to prescribe drugs without clinical trial evidence to support the new use; however, 
“composition of matter” protection may be available for repurposed drugs. Hence, 
from a legal perspective, a careful consideration of intellectual property rights and 

Figure 3. 
The developmental status of repurposed drugs from 2012 to 2018.
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acts is imperative. For antimicrobial reuse of agents, more limitations are added to 
the already described list. A big limitation of dosage, toxicity, and resistance devel-
opment for re-purposed drug is a challenge in itself [19, 20]. If non-antibiotic drug 
is repurposed for infectious disease, efficacy is usually achieved at much higher 
doses than of those specified in the original registration, toxicity, and adverse 
events raise a concern. Another limitation is pharmacokinetic profiles of drugs, 
which upon repurposing might not serve the benefits which it served for the origi-
nal use. This limitation affects antibacterial use of drugs as, plasma protein binding 
plays a major role and also impairs antimicrobial activity as it might narrow the 
therapeutic index for the antimicrobial indication. Thus, suitable pharmacokinetic 
profile is a big challenge effecting credibility of drug candidate for repurposing. 
A major limitation in the drug repurposing is the expenditure needed for clinical 
trials. Pharmaceutical companies show lesser interest in investment for clinical 
trials of repurposed drugs as these are usually generics or start with expiry of 
patent lifetime, there is little scope of turn over for companies. Solutions to address 
this problem have included raising economic support from public sources, as such 
sources prioritize health outcomes over commercial motives. Smaller clinical trial 
set can also be a set for repurposed drugs and such trials are designated as Phase II 
trials. But clinicians do not consider them much valid, even if high-quality data are 
generated. However, drug repurposing can be a practical approach, but the issues of 
funding and feeble interest of pharmaceutical industry hamper the prospects of its 
clinical usage.

3. Tuberculosis (TB)

TB continues to be threat to public health enlisted among top 10 causes of death 
worldwide. The causative agent, bacillus M.tb, singly kills more people than HIV/
AIDS pathogen does. It is one of the momentous disquietude since two decades 
when the World Health Organization declared it a global health emergency. With 
the rise of antibiotic resistance in M.tb, the causative agent of TB has made it 
immensely difficult to control the disease with the already existing anti-TB chemo-
therapy. The need of hour is to develop effective drugs with novel mechanism(s) of 
action so as to curb the drug resistance. The development of novel chemical entities 
requires >10 years of research, with high-risk investment to become available com-
mercially. TB spreads are easier as it is contracted by inhaling droplets of infection 
expelled in air from TB patient. TB mostly affects lungs (pulmonary TB) but can 
also affect all other sites (extrapulmonary TB) sparing only nail and hair. About a 
quarter of the world’s population is infected with M. TB. TB continues to be a major 
cause of morbidity and mortality, primarily in low-income and middle-income 
countries [21]. In 2019, an estimated 10.0 million (range, 8.9–11.0 million) people 
fell ill with TB—in HIV-negative people, 1.2 million (range; 1.1–1.3 million) TB 
deaths, and 208,000 deaths (range; 177,000–242,000) among HIV-positive people. 
Men (aged ≥15 years) accounted for 56% of the people who developed TB in 2019; 
women accounted for 32%; and children (aged <15 years) for 12%. Among all those 
affected, 8.2% were people living with HIV (World Tb report 2020). Eight countries 
accounted for two-thirds of the global total: India is a leading country, which covers 
(26%) of TB burden, Indonesia (8.5%), China (8.4%), the Philippines (6.0%), 
Pakistan (5.7%), Nigeria (4.4%), Bangladesh (3.6%), and South Africa (3.6%). 
In 2020, we have lost count of TB-affected people and deaths due to COVID-19 
pandemic and the previous efforts against TB as well. More DOTS centers got 
malfunctional due to medical emergency, and many children missed the BCG vac-
cination. Till emergence of drug-resistant strains, TB was successfully treated using 
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chemotherapy which comprised of four first-line anti-TB drugs: isoniazid (INH), 
rifampicin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Then, second-line 
drug regimens were developed, which consisted of aminoglycosides (Kanamycin, 
amikacin), capreomycin, cycloserin, para-aminosalicylic acid, thioamides  
(ethionamide (ETH), prothionamide), and fluoroquinolones (ciprofloxacin, 
ofloxacin, levofloxacin) [22]. But multidrug-resistant, extremely drug-resistant, 
and total drug-resistant strains emerged and the conventional drug regimens 
started to lose their efficacy. Incomplete, inadequate, and wrong prescription of the 
standard therapy are responsible for the emergence of drug-resistant strains of M. 
TB [23]. Multidrug-resistant TB (MDR-TB) is defined as resistance to at least iso-
niazid and rifampicin. Extensively drug-resistant TB (XDR-TB), which causes more 
severe disease manifestations, is not only resistant to isoniazid and rifampicin but 
also resistant to any fluoroquinolone and injectable second-line aminoglycosides. 
When the pathogen becomes resistant to all first- and second-line anti-TB drugs, 
totally drug-resistant (TDR) is said to have developed. TB existing drugs are slow 
to eradicate the pathogen in patients and the intrinsic resistance systems of M.tb 
have evolved to make the present antibiotics ineffective [24]. Moreover, long-term 
chemotherapy with frequent dosage arises chances of drug toxicity; therefore, urge 
for new drugs is on rise to shorten the TB treatment. The birth of drug repurposing 
in TB treatment was marked upon global resurgence of TB, especially in New York 
City during the late 1980s where the infection had almost quadrupled and more 
than one-half of cases were resistant to INH and RIF (i.e., MDR). Like cancers or 
other diseases, drug repurposing approach for TB is based on various approaches 
such as host-directed targets, structure-based drug targets, in silico-based approach, 
and combinatorial drug therapy approach. In this book chapter, we provide an 
overview of various approaches that aid drug repurposing for TB. We also discuss 
the targets and clinical trials carried out for the repurposing strategy.

3.1 Tb drug development

Mid-twentieth century is engraved as golden era in history of antibiotic discovery 
when streptomycin got discovered and discovery of major classes of antibiotics was 
initiated using actinomycetes [25, 26]. Decades later, use of semisynthetic compounds 
as antimicrobials was focused upon as the bugs developed resistance against previous 
antibiotics [27]. However, Bedaquiline (TMC207), the first FDA approved TB drug for 
40 years, was discovered with Mycobacterium smegmatis as surrogate but many other 
good leads are supposed might have been missed in the past [28]. In modern times, the 
drug development strategy has been updated and two basic approaches are followed via 
phenotypic screening or empirical approach, which involves evaluating the molecule 
of interest by studying the phenotypic changes it induces in cells, tissues, or whole 
organisms [29]. The other approach is target-based screening wherein the molecule 
of interest is screened alongside a precise enzyme in vitro [30]. Result of phenotypic 
screening was small molecule-based drugs that were accepted and approved by FDA 
between 1999 and 2008 [31]. Consequently, various companies (e.g., Novartis AG and 
GlaxoSmithKline) and research centers pay attention on phenotypic screening as a con-
siderable device for the process of drug discovery [32]. This approach has been used to 
screen the inhibition of cell growth [31] and turn out to be successful with clinical-stage 
anti-TB drugs, such as nitroimidazoles (delamanid and pretomanid) [33], 1,2-diamine 
SQ-109 [34], and bedaquiline [28]. Two years before, in 2019, this drug discovering 
approach was approved by FDA for pretomanid for the cure of adults with pulmonary 
multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) that 
were non-responsive or treatment-intolerant (www.tballiance.org). Combination of 
drug Pretomanid along with three-drug linezolid and bedaquiline was approved for 6 
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months, in oral dosage (cooperatively referred to as the BPaL regimen) [35]. But there 
are certain drawbacks associated with this approach. For example, the high expenditure 
and ambiguity that is related to phenotypic screening in the process of drug discovery 
limits its progress in drug development [36]. Target-based approaches are based on the 
finding effect of drug on certain specific target and are more focused in the preclinical 
phase of drug development toward the chemical lead optimization and toxicology 
studies. In 1998, with sequencing of whole M.tb genome revealing 4.4 million base pairs 
and 4000 genes, knowledge about potential M.tb targets got broadened and target-
based approach was expected to yield successful results [37]. Target-based screenings 
have not yielded promising outcomes due to a few reasons such as: (i) permeability of 
purified enzyme or target to enter screens; (ii) non-specific nature of the molecule to 
inhibit the target; and (iii) compounds are not constantly effectively bioavailable orally 
[38]. Likewise, obtaining compounds with cell permeability and without cytotoxicity 
through medicinal chemistry may be a very time-consuming and intricate process 
[39]. Target-based approaches need evaluation of target features that include target 
essentiality, vulnerability, and novelty. A potential target ought to be essential part of 
fundamental survival or virulence of the pathogen both in active and in latency modes. 
It shall not be part of human host to avoid toxicity. To evaluate the targets, the essential-
ity of a target gene is established by mutant generation [40]. To recognize hypothetical 
proteins as druggable targets in XDR-TB strains, computational subtractive genom-
ics approach has recently been employed [41]. As pointed out by [37], inhibition of 
ATP Synthase in particular and the energy metabolism are highly druggable targets 
as confirmed by these findings. To conclude, it is enviable that a three-dimensional 
structure of a protein target be accessible to help guide medicinal chemistry efforts [42]. 
By explanation, drug discovery implies exploration of unknown. Though the process 
of drug discovery might be predisposed by target, all knowledge about the target, a 
phenotypic product, or precise profile of chemical compound must be screened while 
selecting molecule for the first time. These, in turn, correspond to biases, which might 
exert influence on the outcome of choices that are measured as successes, as The “rule of 
five” put forth by Lipinski [43] that is based on the physicochemical profiles of drugs in 
phase II and the set of rules put forth by Veber [44]. In the process of lead optimization 
and/or in the process of drug development, improved oral bioavailability in rats serves 
as guiding principle. ADMET characteristics are enhanced when CLogP <4 and MW 
<400 Da as recommended by Gleeson [45]. Antimycobacterial drugs/agents do con-
front rules that are already reputable because they are more lipophilic as recently being 
reported [46]. The overall drug development process based on phenotypic screening 
or target specific seems very cumbersome process, and still, successful drug regimen is 
yet to be achieved. Therefore, approaches of drug repurposing for Tb are essential to be 
focused upon.

3.2 Approaches of drug repurposing in TB

Host-directed approaches/therapy: host-directed therapy (HDT) is used to target 
pathogen-exploited pathways in the host. This therapy makes use of repurposed 
drugs, antibodies, vitamins, small molecules, as adjuvants to support the conven-
tional treatment. Pulmonary diseases, involving uncontrolled healing mediated 
by profibrotic cytokines, are considered as autoimmune diseases. Such pulmonary 
pathologies usually do not respond to the standard anti-inflammatory agents. TB 
also represents this kind of pathophysiology. Interferon-γ, an adjunct, is delivered 
subcutaneously for chronic granulomatous disease and osteopetrosis. Interferon-γ 
stimulates macrophage function and inhibits fibrotic pathways. Interferon-γ 
has been repurposed as an inhaled aerosol, targeting directly to the lung so, to 
treat many diseases exaggerated by dysregulated immunity like TB. Inhalation of 
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interferon-γ has been studied as potent antitubercular adjuvant in a clinical trial 
against MDR-TB by Condos et al and has been found effective [47]. Elevated levels 
of IRF-1, IRF-9, and STAT1, from lung segments in BAL cells, were visualized 
when in other trial co-administration of anti-TB drugs and IFN-γ were given to TB 
patients. IFN-γ provided potential to be used as an adjuvant therapy as it energeti-
cally stimulated gene expression and signal transduction in alveolar macrophages of 
TB patients. In addition to a chemotherapeutic cocktail, IFN-γ has been evaluated as 
an adjuvant therapy via other approaches. An intramuscular injection of IFN-γ as an 
adjuvant chemotherapy for a time period of 6 months led to the reduction of lesion 
sizes, cultures, negative sputum smears, and increased body mass index [48].

3.2.1 Pathogen-directed approaches

Growth of heterogeneous M.tb populations during infection is an important factor 
for antibiotic tolerance. Inside phagolysomes, acidification alters the redox physiology 
of M.tb, which alters the bug to replicate into population of drug-tolerant strains. The 
mechanism behind this tolerance has been elucidated with RNA sequencing of redox-
altered M.tb population; and involvement of iron-sulfur (Fe-S) cluster biogenesis, 
hydrogen sulfide (H2S) gas, and drug efflux pumps. Chloroquine (CQ ), an antima-
larial drug inhibited phagosomal acidification, improved lung pathology and reduced 
post-chemotherapeutic relapse in experimental animal models. The pharmacological 
parameters of CQ did not show any significant drug-drug interaction with first-line 
anti-TB drugs upon co-administration in mice. A link between phagosomal pH, redox 
metabolism, and drug tolerance in replicating M.tb is suggestive of repositioning 
potential of CQ against TB and a relapse-free cure [49]. One of the determinants of 
M.tb virulence is protein phosphorylation. Unique tyrosine-specific kinase, protein 
tyrosine kinase A (PtkA), present in the M.tb genome phosphorylates protein tyrosine 
phosphatase A (MptpA) and increases PtpA activity and pathogenicity. Several pro-
teins including the cyclophilins are essential for biofilm generation. M.tb cyclophilin 
peptidyl-prolyl isomerase (PpiB), interaction cyclosporine-A, and acarbose (US FDA-
approved drugs) were predicted by in silico docking studies. Further surface plasmon 
resonance (SPR) spectroscopy was used to confirm the inhibition in growth of M.tb. 
Gallium nanoparticle (GaNP) reported to have bactericidal effect, when used with 
Cyclosporine—additionally disrupted M.tb H37Rv biofilm formation. Co-culturing 
M.tb in their presence resulted in significant (2–4-fold) decrease in dosage of anti-
tubercular drugs such as isoniazid and ethambutol [50]. Targeting MurB and MurE 
enzymes involved in the muramic acid synthesis pathway (Mur Pathway) in M.tb 
has been studied and FDA-approved drugs from two repositories, that is, Drug Bank 
(1932 drugs) and e-LEA3D (1852 drugs), have been screened against these proteins. 
Binding-free energy and hydrogen bonding interactions have been seen to effect the 
stability of interactions among drugs and drug sites. Sulfadoxine (−7.3 kcal/mol) and 
pyrimethamine (−7.8 kcal/mol) showed stable interaction with MurB. Lifitegrast 
(−10.5 kcal/mol) and sildenafil (−9.1 kcal/mol) showed most reliable interaction 
with MurE. Hence, these characteristics of drugs for repurposing are supposed to be 
further explored to achieve efficient repurposing of the drugs [51].

3.2.2 In silico approach

Several computational approaches have been developed to discover new 
repurposing opportunities and integration of these approaches can help redis-
covering drugs with more chances of success as prediction of new drug-target 
interaction, target-disease, and drug-disease associations can be done more 
rationally. Based on systemic data analysis of host, pathogen, or drug which 
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include signature matching gene expression, chemical structure, genotype, or 
proteomic data or Electronic health records (EHRs) can help to formulate repur-
posing hypotheses for various drugs [52].

3.3 Signature matching

It is defined as the unique characteristics or “signature” of a drug which upon 
comparison with another drug, disease or clinical phenotype can yield another purpose 
of the drug [53]. Uniqueness of a signature owes to its chemical structure or changes 
transcriptomic, proteome, metabolome, or adverse event profiles that are generated 
upon its administration. Matching the signatures can be used to make drug-disease 
comparisons (estimating drug-disease similarity) [54] and drug-drug comparisons 
(drug-drug similarity) [55] and the correlation between the two defines the potential 
effect of drug on the disease [56]. Publicly accessible gene expression data of drugs and 
diseases have been mapped for easier drug repurposing predictions. Such an application 
is Connectivity Map (cMap), established in 2006 by the Broad Institute, and has been a 
success to predict drug-disease interactions. Other repositories such as Gene Expression 
Omnibus and Array Express that contain raw gene expression data from hundreds of 
disease conditions based on chemical structures with that of another drug to see whether 
there are chemical similarities could suggest shared biological activity. Upon selecting 
a set of chemical features for each drug a network is constructed based on the shared 
chemical features and is called the statistics-based cheminformatics. This approach was 
undertaken by Keiser and colleagues [2] to predict new targets for 878 FDA-approved 
small-molecule drugs and 2787 pharmaceutical compounds. Another such approach 
called similarity ensemble approach (SEA) evaluated the structural similarity of drug 
to target’s ligand set, which led them to identify 23 new drug-target associations. But 
this approach has its limitations of errors in chemical structures and their physiological 
effects [54]. The signature-based approach has limitation of difficulty in mining adverse 
effect information from drug package inserts and the lack of well-defined adverse effect 
profiles and causality assessments for a number of drugs. However, artificial intelligence 
technologies that can undertake text mining and natural language processing represent 
potential future opportunities to overcome these limitations.

3.4 Molecular docking

It is a structure-based computational strategy to predict binding site  
complementarily between the drug and the target [57]. It might involve conven-
tional way wherein in [19] multiple molecules are tested against that particular 
target which is been already identified. Conversely, drug libraries could be explored 
against an array of target receptors (inverse docking: several targets, and one 
ligand) to identify novel interactions that can be taken forward for repurposing. 
This approach was used by Dakshanamurthy and colleagues [58] on 3671 FDA-
approved drugs across 2335 human protein crystal structures to repurpose meben-
dazole, an antiparasitic drug, to inhibit vascular endothelial growth factor receptor 
2 (VEGFR2), a mediator of angiogenesis. This approach has certain pitfalls, like 
unavailability of protein 3D structures [59].

4. Genome-wide association studies (GWAS)

This is a computational approach aimed to identify genetic variants associated 
with common diseases to unveil disease mechanism, novel targets, between diseases, 
to be treated by repurposed drugs [60]. This approach has been used to find 
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Figure 4. 
Approaches (experimental and computational) used in drug repurposing.

matching gene targets already identified for coronary artery disease with informa-
tion three different drug-target databases (DrugBank, Therapeutic Target Database, 
and PharmGKB) to select potential repositioning candidates [61]. However, this 
approach is having certain limitations its utility at present is not much clear [60].

5. Pathway or network mapping

These approaches have been widely used to identify drugs or drug targets for 
repurposing strategy [62]. This approach gives information about upstream or 
downstream genes of the GWAS-associated target, which can be thought of having 
repurposing potential [63]. This involves constructing drug or disease networks 
based on gene expression patterns, disease pathology, protein interactions, or 
GWAS or signature matching data to identify the repurposing candidates [64]. This 
approach helped in identification of 67 common biological pathways having com-
mon role in respiratory viral infections [62]. When analyzed against the DrugBank 
database, these pathways were found with a potential effect against host-viral 
targets. Pranlukast, a leukotriene receptor 1 antagonist, is one such drug used in 
asthma and Amrinone, a phosphodiesterase inhibitor, used in the treatment of 
congestive heart failure that has also been found for repurposing strategy.

6. Predicting drug-target interactions

When a drug binds to protein, it might impact the activity of proteins existing 
downstream of the target protein. Any side effects, therapeutic mechanisms, or any 
other novel indications arising upon drugs might help in repurposing it.

6.1 De novo structure-based prediction

Based only on drug structure, this approach is useful for virtual screening 
of large compound libraries. This approach has advantage to provide structural 
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insights about the interaction and further guide the optimization the structure to 
improve the binding affinity for its target. The approach is computationally much 
demanding, limiting its large-scale use, many-to-many DTI prediction tasks. In 
a ligand-based approach, constructing a “pseudo-drug” representation called a 
pharmacophore model is used for elucidating the interaction with the chosen target 
[65]. Pharmacophore models can be constructed from analysis of the target’s bind-
ing pocket, or derived using a set of positive and negative examples of compounds 
interacting with the target. Compared with molecular docking, this approach is 
more computationally efficient and has better accuracy [66]. Figure 4 summarizes 
various approaches for drug repurposing.

Different computational approaches can be used independently or in amalgamation 
to systematically analyze different types of large-scale data to obtain significant inter-
pretations for repurposing hypothesis. Experimental approaches can also be used to 
recognize repurposing opportunities [67]. Computational approaches are mainly data-
driven; they involve systematic analysis of data of any type (such as gene expression, 
chemical structure, genotype or proteomic data, or electronic health records (EHRs)), 
which can then lead to the formulation of repurposing hypo-theses.

7. In silico approach to prioritize drugs for repurposing against TB

FDA-approved drugs are pharmacists’ choice pharmacist for repurposing 
against TB. Bioinformatic approach is economic, time efficient with better chances 
of success. About 1554 FDA-approved drugs obtained from DrugBank have been 
approached for TB therapy using in silico method. Serine/threonine-protein kinase, 
pknB (Rv0014c) of M.tb was selected as the drug target and all of the 1554 drugs 
were subjected to molecular docking with pknB. Rigid docking followed by induced 
fit docking protocol was employed for prioritization of drugs. Fourteen drugs 
were prioritized, out of which six are suggested as high-confident drugs toward 
repurposing for TB. These drugs strongly bound in the active site of the pknB. 
Atorvastatin was one of the high-confident drugs [68]. It has been reported that 
a gene ontology-based network containing 26,404 edges, 6630 drug, and 4083 
target nodes analyzed using network-based inference (NBI) are used to identify 
novel drug-target interactions that are further evaluated on basis of a combined 
evidence approach for identification of potential drug repurposing candidates. 
Targets are prioritized on basis of known variation in clinical isolates and human 
homologs, essentiality for M.tb’s survival and virulence. DTIs were used to identify 
target pairs against which the predicted drugs could have synergistic bactericidal 
effect. Enlisted DTIs from RepTB, four TB targets, namely, FolP1 (Dihydropteroate 
synthase), Tmk (Thymidylate kinase), Dut (Deoxyuridine 5′-triphosphate nucleo-
tidohydrolase), and MenB (1,4-dihydroxy-2-naphthoyl-CoA synthase) have the 
potential for future drug candidature.

7.1 Potential targets for drug repurposing

Information about the structure of drug-binding site reveals novel connections 
between drugs and targets. A correlation between drug-promiscuity and shared 
binding sites across the drug’s multiple targets demonstrates the potential role of 
structural analyses of shared binding sites in drug repositioning [69]. A docking-
based approach has been employed to screen new novel targets for existing drugs 
by computationally screening the whole druggable proteome [70]. Target-based 
screening has revealed potential of anti-Parkinson drugs entacapone and tolcapone 
against drug-resistant (MDR) and extensively drug-resistant (XDR) TB. The logic 
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for this activity is based on similarity between the original target COMT and the 
new target InhA [71]. M.Tb phosphoserine phosphatase SerB2 is a promising drug 
target, being a key essential metabolic enzyme of the pathogen’s serine pathway. 
About one hundred and twenty two compounds from an internal chemolibrary 
were screened using malachite green-based phosphatase assay and Tri-substituted 
derivatives were found among the best hits that inhibited SerB2 activity. Their 
interaction with the enzyme was studied through induced fit docking experiments. 
Cellular assays showed that the selected compounds also inhibit M.tb growth in 
vitro. Those promising results may provide a basis for the development of new anti-
mycobacterial agents targeting SerB2 [24]. Drug efflux is an important resistance 
mechanism in M.tb. Different medications used to treat unrelated human condi-
tions such as psychoses and angina serve to inhibit the multidrug efflux pumps in 
M. TB; this increases the pathogen’s susceptibility to other drugs. Thiazolidinedione 
enhances (a) killing of intracellular pathogen by non-killing macrophages and (b) 
inhibits the expression of efflux pumps that extrude antibiotics prior to their action. 
The other targets are based on overexpressed efflux pumps, to make otherwise 
inefficient antibiotics again effective. Molecules 4-OH-OPB depleted flavins-
formed covalent adducts with N-acetyl-cysteine and mycothiol. This molecule 
killed M.tb synergistically with oxidants and other anti-TB drugs. The conditions 
that block M.tb’s replication modify OPB and enhance its killing action. Modified 
OPB kills both replicating and non-replicating M.tb and sensitizes to both host-
derived and medicinal antimycobacterial agents [72]. Several phosphodiesterase 
inhibitors have also shown promise as adjuvants for host-directed therapy. All 
phenothiazines are known to have common function to inhibit the binding of 
calcium to calcium-dependent proteins of eukaryotic cells [73]. Calcium binding is 
important for the bacterial phagocytosis [74]. Consequently, inhibition of calcium 
signaling processes, by phenothiazines, ought to affect processes of phagocytosis 
[75]. Moreover, the killing activity of neutrophils is dependent upon the retention 
of calcium [76] and potassium within the phagolysosome [77]. Thus, verapamil, an 
inhibitor of calcium transport, and ouabain, an inhibitor of potassium transport, 
promotes the killing of intracellular M. Tb by non-killing human macrophages [78]. 
Thiazolidinediones, otherwise an antidiabetic drug, acts as inhibitor of calcium and 
potassium transport, hence has repurposing potential to promote bug killing [79]. 
In a study, TDZ treatment to M. Tb infected mouse was successful by inhibiting 
efflux of calcium and potassium from the phagolysosome as potassium is requisite 
for the phagolysosomal acidification and degradation of the entrapped pathogen. 
Thiazolidinediones can be sought as future drugs in TB drug repurposing [77]. 
Increasing resistance to isoniazid due to prolonged exposure of INH-susceptible 
M. Tb strains to increasing concentrations of INH can be reduced to wild-type 
INH susceptibility by using inhibitors of efflux pump CPZ and reserpine [80]. 
RIF-resistant M. Tb-infected mice have over expression of an efflux pump upon 
treatment with RIF, rendering the strain resistant to oxacillin as well [81]. Though 
phenothiazine inhibits the efflux pump systems of mycobacteria [82], only recently 
has TDZ been shown to inhibit the expression of genes that code for efflux pumps 
[83]. Specifically, efflux pumps coded by mmpL7, p55, efpA, mmr, Rv1258c, and 
Rv2459 [84] have direct effects on the efflux pumps of M. Tb. An agent that inhibits 
an efflux pump system, responsible for its resistance to antibiotics renders that 
organism again susceptible to the otherwise resistant antibiotics [85]. Consequently, 
when TDZ inhibits the activity of efflux pumps of MDR mycobacteria, it renders 
the organism susceptible to the antibiotics to which it was initially resistant as a 
consequence of their extrusion from the cell [86]. However, with time, accumula-
tion of mutations takes place and, commensurate with this accumulation, the level 
of expression of the efflux pump decreases to almost that of the wild-type parent [86]. 
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Repurposed drugs with synergistic effects: Synergistic effects of repurposed drugs 
with other anti-TB drugs for treatment of MDR-TB, XDR-TB, and TDR-TB have 
been proposed for the future WHO regimen. Clofazimine (CZM) in a combina-
tion with moxifloxacin (MOX) and ethambutol (EMB) might be a promising 
drug regimen for the treatment of MDR-TB [87]. Similarly, in vitro, synergistic 
effect of sulfamethoxazole (SMX) has been reported with rifampin [88]. For the 
treatment of MDR-TB, pyrazinamide and bedaquiline in combination with CZM 
have been reported as a best example of synergistic effect [89]. The combinatorial 
therapy of capreomycin and linezolid showed partial synergistic effect suggestive 
of increased efficacy against M.tb [89]. Synergistic therapy of linezolid and beda-
quiline has been suggested for rescuing female XDR-TB patients during pregnancy 
[90]. Synergistic effect of carbapenems is also known with rifampicin against M. 
tb [91]. Thioridazine (TDZ), a neuroleptic drug in combination with antibiotics, 
kills extremely drug-resistant M.tb (XDR-TB). This combination is not prone to 
mutations as it does not affect the pathogen directly. With proper precautions and 
cardiac monitoring prior to and during therapy, TDZ will be essentially safe. Given 
the serious prognoses associated with MDR/XDR-TB and TDR-TB infections, TDZ 
provides a suitable alternative to current ineffective therapy. Numerous cephalo-
sporins were synergistic with rifampicin, the cornerstone drug for TB therapy and 
ethambutol, a first-line anti-TB drug. When used in combination, cephalosporins 
and rifampicin had 4- to 64-fold more activity than used alone. Clavulanate has 
also shown key synergistic partner role in triple combinations. Cephalosporins (and 
other beta-lactams) together with clavulanate reversed the inefficacy of rifampicin 
in a rifampicin-resistant strain. Cephalosporins also showed synergism with new 
anti-TB drugs such as bedaquiline and delamanid. More studies will be needed to 
validate their in vivo activities. Additional features like oral bioavailability with 
good safety profiles and antimycobacterial effects of cephalosporins suggest that 
they could be promising repurposing agents [92]. The newly synthesized and pat-
ented SILA compounds were tested for in vitro and ex vivo activity against XDR-TB. 
These compounds had in vitro activity against XDR-TB (MIC<3.5 mg/L) could 
transform non-killing macrophages into effective killers of phagocytosed bacteria, 
without any cytotoxic activity. Among them, SILA 421 revealed good in vitro and 
ex vivo activities without exhibiting any cytotoxic activity; thus, it seems to be a 
potential candidate to be anti-MDR/XDR-TB drug [93].

7.2 Hurdles in TB drug repurposing

Development of in vitro models for non-replicating and replicating M.tb Bacilli 
has not been successfully achieved and presents a big challenge in drug discovery. A 
multi-stress model of non-replication has been put forward [94]. But interpretation 
of results using this model is difficult due to involvement of outgrowth period [95]. 
A rapid method not requiring the outgrowth period has been developed to measure 
bactericidal activity against non-replicating Mycobacterium tuberculosis, induced 
at low pH (citrate buffer at pH 4.5). It can easily detect viable M. tuberculosis strain 
constitutively expressing luciferase [95]. To establish models that represent real 
metabolic state in various host niches, and the related effects of micro-biome status, 
nutritional state, and other underlying health issue like diabetes, a significant 
success is still a dream. So, no screening model can be sufficient enough to bypass 
extensive follow-on experiments in the human host to ascertain efficacy, pharma-
cokinetics, pharmacodynamics, toxicity (e.g., specificity), and the mechanism of 
action to yield better results with more optimization of molecules using medicinal 
chemistry. In addition to safety concern of the drug, its interaction with other 
antimicrobial agents is the critical issue to be addressed as the treatment duration 
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of the disease is long. Ideally, the new drugs are expected to decrease required 
treatment durations hence improving patient compliance and treatment outcomes. 
The co-existence of HIV and TB emphasizes that new lead must be compatible with 
antiretroviral therapy as well as active against resistant forms of TB [96]. Targeting 
the drug to the site of infection is very long and eventful process, which often makes 
the compound unable to reach its target in active state at the requisite MIC value  
for the pathogen [97]. Orally administered drugs are bound to have certain charac-
teristics features for rendering good efficiency. Stability and solubility at the acidic 
pH, withstanding the first-pass metabolism, adequate lung permeability, uptake by 
M. tuberculosis to reach the intracellular target(s) and chemical stability and activity 
under pathophysiological conditions some of the features are required for any drug 
to be repurposed against TB [97–99]. Common challenges of drug repurposing also 
affect drug reuse against TB. Optimizing selection criteria of target population to 
evaluate the expected outcome of the drug are one of major challenges. Any error in 
subject selection can give unexpected adverse results of drug. For example, thalido-
mide when prescribed for pregnant women in first trimester for managing morning 
sickness resulted in amelia and phocomelia [100]. Dosing regimen and route of 
administration are the two important considerations for repurposing of old drug 
for new indication. The stability of drug formulation is a challenge while optimiz-
ing the drug for a new indication [101]. Different physiologies and multiple drug 
requirements of different patients arise the threat of unexpected adverse events, 
which mandate the careful investigation of every response upon drug administra-
tion. It becomes essential to have data on drug-drug interactions, pharmacodynam-
ics, and pharmacokinetics of the drug prior to its repurposing.

8. Success stories so far

There are many instances where repurposed drugs have shown successful results 
in subclinical, preclinical, and clinical levels. Mice could be cured of both drug 
susceptible and MDR infection mice were given TDZ [79, 102] alone [103] and in 
combination with INH [104]. This study was extrapolated to non-responsive MDR-TB 
patients in a Buenos Aires hospital (Argentina) [105] and weeks later, patients got 
cured of TB. The protocol was then modified and included nonresponsive antibiotics, 
and out of 12 XDR-TB patients, 10 were pronounced cured of the infection [106]. 
TDZ was also used by Udwadia et al. for the therapy of XDR-TB patients in Mumbai 
(India) and it was found to improve significantly their quality of life. The subclinical 
and preclinical success of the drug TDZ, against MDR TB and XDR TB, led to a public 
call to consider TDZ for therapy of non-responsive MDR/XDR-TB under compas-
sionate basis [107]. Meropenem, in combination with clavulanate, was adjusted with 
the drug regimen and approved by the European Medicines Agency and the US Food 
and Drug Administration (FDA) for curing TB in 8 months. FDA-approved anti-
diabetic drug metformin, was shown to enhance the efficacy of other anti-TB drugs 
against the drug-resistant tuberculosis [47]. Reports from Microbiology and Infectious 
Diseases at the National Institute of Allergy & Infectious Diseases (NIAID) and Stop 
TB Partnership new drug working group state that drug resistance has arisen against 
every currently available tuberculosis drug. Successful treatment for extensively 
drug-resistant (XDR) cases is less than half of that for drug-susceptible tuberculosis; 
this makes situation grave and urges for new antibiotics against the global killer. 
Many compounds in TB-advanced clinical trials were formerly used to treat other 
infectious diseases/TB, and now, they have been repurposed for the treatment of TB 
[108–110]. Revival of sulfamethoxazole (SMX) in TB occurred when it was first used 
to prevent the Pneumocystis jirovecii like infections in HIV/TB patients [111]. In a 
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Nigerian trial study on patients of HIV-MDR-TB co-infection, efficiency of MDR-TB 
treatment by TMP/SMX confirmed a significantly shorter time to sputum conver-
sion in these patients [112]. Sulfadiazine, an antileprosy drug, was repurposed in 
the treatment of MDR-TB and XDR-TB [113] suggesting that sulfadiazine regimen 
is safe and effective against MDR-TB and TDR-TB treatment [113, 114]. Clofazimine 
(CZM), an old antileprosy drug, was repurposed for managing the treatment of 
MDR-TB [110]. CZM is now recommended as a second-line anti-TB drug and used in 
combination with other anti-TB drugs for the treatment of drug-resistant tuberculosis 
in 9–12 months. Previous published studies have reported that CZM has good qual-
ity efficacy and little toxicity against drug-resistant mycobacterial strains in animal 
models, which suggested, CZM as a promising anti-TB drug for the management of 
MDR-TB [111]. Linezolid, an oxazolidinone antibiotic used for the treatment of gram-
positive bacterial infections [115], is being potentially repurposed for the treatment 
of drug resistant TB (MDR-TB and XDR-TB) [116]. But it has been limited by various 
side effects such as neurotoxicity and hematologic toxicity [90]. Safety of bedaquiline 
and linezolid drug combination has been evaluated by a case study for XDR-TB and 
found to be safe in even the late third trimester of pregnancy or pregnant woman. 
Post-treatment, pregnant woman gave birth to a normal child who grew without 
fatalities [90]. Minocycline is another anti-leprotic drug [117], which was repurposed 
in 2008 for managing the treatment of XDR-TB patient in Japan [118]. In vitro activity 
of meropenem combined with clavulanate against XDR strains calls for repurposing 
the beta-lactams as new anti-TB drugs [119]. Carbapenems have been used success-
fully as part of salvage therapies for XDR patients, which have to be administered 
intravenously [120]. Recently, an early bactericidal activity-Phase II (EBA Phase II) 
clinical trial has validated the promising potential of a carbapenem combined with 
amoxicillin and clavulanic acid for TB treatment [121]. In a controlled clinical trial in 
tuberculosis, inhaled IFN-γ was effective. These experiences warrant the continued 
evaluation of inhaled IFN-γ in human clinical trials [47]. Certain clinical studies 
are exploring the potential of NSAIDs in TB treatment. NCT02060006 is a Phase 3 
trial to identify meloxicam in preventing TB immune reconstitution inflammatory 
syndrome (IRIS), a serious clinical issue in HIV co-infected TB patients. Phase 2 
clinical study (NCT02237365) of aspirin and ibuprofen is an adjunctive treatment 
for TB meningitis for the treatment of XDR-TB in addition to the standard therapy 
(NCT02781909). The immune-modulatory function of NSAIDs (etoricoxib) in 
increasing the protection offered when administered alongside a TB vaccine is being 
investigated in the trial NCT02503839. Other drug-screening study revealed carpro-
fen, an NSAID, to selectively inhibit the growth of replicating, non-replicating, and 
MDR clinical isolates of M. tuberculosis at 40 mg/L [122, 123].

Hurdles in TB drug repurposing: Upon entering and infecting the host, M.tb 
spreads to different micro-niches and evolves as heterogeneous population. To 
eliminate each physiological state of the bug, any new anti-TB needs to be active 
under these conditions [124]. Development of in vitro models for non-replicating 
and replicating Bacilli has not been successfully achieved. Subpopulations of non-
replicating bacilli have present inside host arise need for the lengthy anti TB drug 
therapy and turn out to be reservoir from which drug-resistant bacteria emerge 
[125]. A multi-stress model of non-replication has been put forward [94]. But a 
disadvantage of this type of model is the need for a recovery or outgrowth phase 
that implies bacilli being replicated, which makes interpretation more difficult [33]. 
A rapid method has been developed to measure bactericidal activity against non-
replicating M. tuberculosis, without requirement of the outgrowth period, and easily 
detecting luminescence of viable M. tuberculosis strain constitutively expressing 
luciferase [95]. Compounds with bactericidal activity against non-replicating bac-
teria were identified employing a pH-sensitive green fluorescence protein screening 
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approach devised to identify compounds that disrupt the ability of M. tuberculosis 
to maintain its internal pH in an acidic environment [126]. Since TB is a complex 
disease, no in vitro model has been till date established to predict in vivo efficacy 
[127]. Tuberculosis is the leading cause of death from infectious disease. Current 
drug therapy requires a combination of antibiotics taken over >6 months. An urgent 
need for new agents that can shorten therapy is required. To develop new drugs, 
simple in vitro assays are required that can identify efficacious compounds rapidly 
and predict in vivo activity in the human. Areas covered: This review focusses on the 
most relevant in vitro assays that can be utilized in a drug discovery program, which 
mimics different aspects of infection or disease. The focus is largely on assays used 
to test >1000s of compounds reliably and robustly. However, some assays used for 
10s to 100 s of compounds are included where the utility outweighs the low capac-
ity. Literature searches for high-throughput screening, models, and in vitro assays 
were undertaken. Expert opinion: drug discovery and development in tuberculosis 
is extremely challenging due to the requirement for predicting drug efficacy in a 
disease with complex pathology in which bacteria exist in heterogeneous states in 
inaccessible locations. A combination of assays can be used to determine profiles 
against replicating, non-replicating, intracellular, and tolerant bacteria [127]. To 
establish best representative model of the real metabolic state, either replicating 
or non-replicating bug in various environments inside human host is a challenge. 
Screening models fail to fulfill requirements of extensive follow-on experiments in 
the human host to ascertain efficacy, pharmacokinetics, pharmacodynamics, and 
toxicity, and thus hamper the optimization for improvement of repurposed drug 
efficacy using medicinal chemistry approach. In addition, safety concern of the 
drug and its interaction with other antimicrobial agents are the critical issues to be 
addressed as the treatment duration of the disease is long. Ideally, the new drugs are 
expected to decrease required treatment durations hence improving patient compli-
ance and treatment outcomes. The co-existence of HIV and TB emphasizes that 
new lead must be compatible with antiretroviral therapy as well as active against 
resistant forms of TB [96]. Targeting the drug to the site of infection is very long 
and eventful process, which often makes the compound unable to reach its target 
in active state. A drug molecule has to travel from the blood circulation to non-
vascularized pulmonary lesions wherefrom it shall diffuse into necrotic foci and the 
caseum of granuloma and then permeate the lipid-rich cell envelope of bacilli at the 
requisite MIC value for the pathogen [97]. Common challenges of drug repurposing 
also affect drug reuse against TB. Optimizing selection criteria of target popula-
tion to evaluate the expected outcome of the drug is one of major challenges. Any 
error in subject selection can give unexpected adverse results of drug. For example, 
Thalidomide when prescribed for pregnant women in first trimester for managing 
morning sickness resulted in amelia and phocomelia [100]. Repurposing of old 
drug for new indication needs addressing the dosing regimen and route of admin-
istration to yield the considerable benefits against new target. Patient-specific 
repurposing of drug shall be aimed to evade the adverse events, which might occur 
due to differential response of different patients to the repurposed drug. Moreover, 
prerequisite data on drug-drug interactions, pharmacodynamics, and pharmacoki-
netics of the drug shall be keenly studied prior to further studies of the drug.

9. Status of TB drug repurposing and its future perspective

Drug repurposing is undoubtedly an alluring strategy to develop a new treatment 
regimen for tuberculosis within a short span of time and also to treat and curb drug-
resistant pathogens [128]. Few of the repurposed drugs have shown great potential 
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for future treatment of TB and have been extensively studied. Nevertheless, the 
incidence of resistance in the M.tb population is occurring at a very fast rate and 
therefore, we urgently need a new improved treatment regime via repurposing 
many drugs using various approaches such as experimental and computational 
biology [129, 130] to scrutinize the potential of already existing thousands of drugs 
to minimize the time required for novel drug discovery. Organization of such 
studies is on the human cohorts, as the influence of the host-protective immune 
system continues to gain attention in the advancement of host-directed therapies, 
so effect of repurposed drugs on the balance of the host immune system, infection, 
and inflammation shall be explored. This will update concepts to design combina-
tional therapies to shorten the treatment regime and preventing drug resistance 
while being cost effective and safe for general masses [131]. Repurposing drugs 
assuredly provide an appealing strategy in the process of modern drug development 
and exceptionally/especially against tuberculosis, which already have numerous 
engrossing old drugs with in vitro growth inhibitory activities. Using different 
methods for whole-cell evaluations such as HT-SPOTi [132, 133] and micro-plate 
Alamar blue assays (MABA) [134] has turn out to be crucial for the expeditious 
detection of various old drugs that have promising potential in drug repurposing. 
Many of the potential anti-TB drugs were identified through serendipity, and amal-
gamating the various assays with systems biology will in turn provide a reasonable 
approach in the identification of these drugs [135]. TB drug discovery paradigm 
converses from the conventional one-target one-drug to a multi-target multidrug 
scheme, and various potential drugs for repurposing are being recognized and put 
forth into the advanced phases of clinical trials. As an alternative in the treatment of 
drug-resistance, repurposed drugs have already proven their potential and effec-
tiveness. Endeavor to repurpose inexpensive, safe and universally available drugs 
should continue to deliver the anti-TB therapies required by many who would not 
otherwise have access to a cure [128]. On one side, it becomes imperious to find new 
candidate drugs to control TB, and on the other side, it is also important to continu-
ously redefine, revise, reclassify, and perhaps, repurpose drugs that are already 
in use. The drug repurposing offers manifold advantages. It is therefore pivotal to 
understand their secondary targets and various endogenous molecular mechanisms 
of action and its translation into a multidrug combinatorial treatment regimen. 
Identification of mechanism of action of these repurposed drugs will definitely 
strengthen their inclusion in clinical trials and gravel the way for designing more 
targeted drugs. As antimicrobial resistance deepens, the search to find novel drugs 
and to evaluate the mechanism of resistance would widen our search to novel con-
cepts as well to find a better cure to curb TB than what already exists. Repositioning 
of pre-existing drugs seems to be a strategy to avoid enormous investment in funds 
and time. Drugs with already known toxicity and safety profiles have been screened 
against the TB pathogen and found to be effective against various physiological 
states of pathogen. The endogenous targets of these drugs against M.tb are likely to 
be novel; thus, minimal chances of resistance arise. Moreover, few of these drugs 
may have multiple targets, which indicate minimal development of resistance. 
Thus, repurposing the pre-existing molecules offers colossal/enormous potential to 
tackle extensively drug-resistant TB infections. Fluoroquinolones prevent DNA rep-
lication by inhibiting topoisomerase II and IV; two examples viz. gatifloxacin and 
moxifloxacin are active against M. tuberculosis both in vitro and in vivo conditions 
[136, 137] and thus used as second-line drugs against TB [138]. Moxifloxacin was 
advanced to phase III clinical trials to evaluate its potential to shorten the duration 
of conventional TB therapy (Figure 5) [139, 140].

Schematic illustration of the Mycobacterium tuberculosis cell membrane includes 
the electron transport chain (ETC), efflux pumps (EPs) and the site of action of 
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several antituberculosis drugs. By damaging the cell membrane, the lipophilic drugs 
will affect the activity of several membrane enzymes such as those involved in the 
ETC and efflux pumps responsible for the extrusion of several compounds from 
the cell. The inhibition of any component of the ETC reduces energy production 
and disrupts membrane potential. Consequently, the disruption of the PMF reduces 
the activity of the efflux pumps. SQ-109 has been reported to act by inhibiting the 
mycobacterial trehalose monomycolate transporter MmpL3, involved in cell wall 
biosynthesis [141]. PA-824 is effective not only toward the actively replicating but 
also against the non-replicating bacteria. They inhibit the synthesis of mycolic acids 
and induce respiratory poisoning [142] Q-203 targets the Cytochrome b subunit 
(QcrB) of the cytochrome bc1 complex (complex III), which is an essential compo-
nent of the M. tuberculosis respiratory electron transport chain, forcing M. tubercu-
losis to use the cytochrome bd, a terminal oxidase energetically less efficient [143]. 
Q-203 causes a rapid depletion of the intracellular ATP levels at 1.1 nM and is able to 
interfere with ATP homeostasis in nonreplicating M. tuberculosis at concentrations 
of <10 nM, suggesting the inhibition of cytochrome bc1 activity as its primary mode 
of action [144]. Diarylquinolines target subunit c of mycobacterial ATP synthase 
[145]. Mycobacterial membrane protein large (MmpL) proteins, which belong to 
the resistance, nodulation and cell division (RND) superfamily of transporters, 
play a central role in shuttling lipid components to the cell wall. These transporters 
work with accessory proteins to translocate virulence-associated envelope lipids 
and siderophores across the inner membrane [146]. Capuramycin and its analogs 
are strong translocase I (MurX/MraY) inhibitors [147]. Oxazolidinones inhibit the 
initiation of protein synthesis by preventing the formation of the tRNAfMet-mRNA-
70S (or 30S) subunit ternary complex [148].

It is under evaluation in a TB Alliance phase III clinical trial with pretomanid and 
pyrazinamide (PaMZ). Mycobacterial resistance to fluoroquinolones is evident [149] 
caused by stepwise mutations in the target genes such as gyrA and gyrB [150]. There 
is no visible cross-resistance observed with the other first-line drugs [151], but there 
is cross-resistance within this group of molecules. Indeed, this cross-resistance is not 
universal [152], and newer fluoroquinolones such as TBK613 will still be effective 

Figure 5. 
Mechanism of action of new anti-TB agents in different stages of clinical drug development pipeline for 
tuberculosis.
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against fluoroquinolone-resistant strains. This demonstrates the coherent nature 
of the development of novel drug and drug repositioning, and structure-activity 
relationship of a repurposed drug enables the design of novel molecules with higher 
potency. Nitroimidazopyrans, resembling the antibiotic metronidazole, is active 
against actively growing and dormant M. tuberculosis [33, 153]. The novel chemi-
cal entities (NCEs) OPC-67683 and PA-824 are currently in clinical trials [154]. 
Metronidazole is also highly active against M. tuberculosis [33] and has been reported 
to prevent the reactivation of dormant bacilli in macaque infection models [155]. 
Clavulanate, a β-lactamase inhibitor, in concurrence with carbapenems showed 
killing of M. tuberculosis in vitro [156] and in a murine TB model [157]. β-lactam 
tebipenem, originally developed to tackle respiratory and otolaryngological infec-
tions in pediatric patients [158], is to be the most potent anti-TB oral carbapenem in 
combination with clavulanic acid, and clinical trials may start soon. Clofazimine, 
the antileprosy drug with promising candidate to get repurposed in treating inci-
dences of multidrug-resistant (MDR)- and XDR-TB, is listed as a World Health 
Organization recommended second-line drug. Members of the avermectin family, 
traditionally used as antihelminthic agents, have been found to inhibit the growth 
of even MDR strains of M. tuberculosis in vitro [159]. Nitazoxanide has been found 
to inhibit both replicating and non-replicating forms of M. tuberculosis [160, 161]. 
Disulfiram inhibited M. tuberculosis H37Rv growth at a concentration of 5.26 mM 
[162]. Disulfarim showed the same level of inhibition against clinical isolates and 
MDR and XDR strains, and an in vivo experiment on guinea pigs demonstrated 
astonishing bactericidal activity [162]. Non-steroidal anti-inflammatory drugs 
(NSAIDs), oxyphenbutazone [72], and carprofen [163] inhibited the growth of M. 
tuberculosis H37Rv at micromolar concentrations. To develop novel TB treatments, 
drug repurposing has procured acceptance and has gained pace, with various drugs 
that are already at different phases of preclinical and clinical trials (Table 1)  
(Figure 6) [123].

The drugs and their targets are highlighted in lighter and darker shaded boxes, 
respectively. The anagram MAGP is used to indicate the “mycolic acid–arabinoga-
lactan–peptidoglycan” layer of the mycobacterial cell wall and PBP refers to the 
penicillin-binding proteins responsible for the maturation of the cell wall peptido-
glycan [177] inhibition of efflux pumps by Thioridazine [178] Fluoroquinolones 
(moxifloxacin, gatifloxacin), with target of gyrase, are among the drugs used to 
treat tuberculosis [179]. Oxazolidinones: (Linezolid) kills Mycobacterium tuber-
culosis by binding and blocking tRNA in the peptidyltransferase center (PTC) 
on the 50Sribosomal subunit, which includes the 5SrRNA and 23S rRNA [180]. 
Nitroimidazole derivatives: (Metronidazole) with lower reduction potential can 
selectively tap into the redox system of the microbe (as opposed to mammals) and 
produce bactericidal activity specific to the microbe [154]. The combination of 
clavulanate with β-lactams, especially meropenem, was also tested for the ability to 
inhibit the growth of extensively drug-resistant (XDR) clinical strains of M. tuber-
culosis [119]. Ibuprofen (IBF) and carprofen, two non-steroidal anti-inflammatory 
drugs currently used as pain relievers in humans and animals, respectively, displayed 
specific growth inhibitory properties against the M. tuberculosis complex. IBP showed 
antitubercular properties, while carprofen was the most potent among the 2-aryl-
propanoic class. On the basis of the human targets of the 2-arylpropanoic analge-
sics, the protein initiation factor infB (Rv2839c) of M tuberculosis was proposed as a 
potential molecular target [163].

Entacapone and tolcapone inhibit enoyl-acyl carrier protein reductase (InhA) 
[71], which is important component in the synthesis of long-chain mycolic acids. 
Entacapone and tolcapone are not prodrugs like isoniazid and do not require 
enzymatic activation. Thus, the primary mutations in enzyme causing resistance 
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could be avoided as the resistant mutation in the activating catalase KatG, which is 
being exhibited by many MDR strains. Chlorpromazine and thioridazine are the 
members of the phenothiazine class of neuroleptics, and both have been found to 
inhibit the growth of mycobacteria [79, 166]. Non-steroidal anti-inflammatory 
drugs (NSAIDs) have been already acclaimed for their anti-inflammatory effects 
but their antibiotic potential needs further exploration. Structural modifications to 
improve the antimicrobial activities of NSAIDs such as ibuprofen and carprofen are 
already ongoing [181]. On the basis of active pharmacophore of celecoxib, analogs 
that show potent inhibitory activity against M. tuberculosis and S. aureus have been 
synthesized and further efforts to optimize these compounds are in progress [182]. 
The role of aspirin in combination with corticosteroids against TB meningitis has 
shown to decrease the incidence of strokes and mortality [183]. In a TB treatment, 
NSAIDs are principally used to mitigate the symptoms that arise from the effects 
of this prolonged disease and its therapy. In basic animal models, these compounds 
have already proven pharmacokinetic/dynamic and toxicity profiles, as such there 
is rational evidence to justify their admittance into early clinical trials. However, 
the stage of disease and route of administration needs critical consideration for 
further setting a clinical trial [177]. Compounds with ability to activate or suppress 
immune system are called immuno-modulators and may be natural or synthesized 
in origin. These compounds either release pro-inflammatory or anti-inflammatory 
cytokines to improve the immune response for the efficient killing of the pathogen 
[184]. To initiate this cascade of events, the pro-inflammatory cytokines are respon-
sible. The immune-modulators act on different immune cells such as lymphocytes, 
neutrophils, macrophages, natural killer (NK) cells to exert their effector responses 
aimed at clearing the bacteria from the host. Upon being administered together 
with the DOTS, immuno-modulators help in the early clearance of the infection 
and in the prevention of drug-resistance [131]. Some immune-modulators also help 
in preventing the side effects of the harsh anti-TB antibiotic therapy. WHO has 

Figure 6. 
The possible endogenous mechanisms of action of repurposed drugs, and many anti-infectives previously used 
for other disease indications are being considered for, or are already in various phases of in vitro/in vivo, as well 
as advanced clinical trial studies [175, 176].
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recommended the inclusion of repurposed drugs such as clofazimine, carbapenems, 
fluoroquinolones, and linezolid, among many others, for the treatment of drug-
resistant TB. Among these, clofazimine, being used as part of anti MDR-regimen, 
is inexpensive and carries a promising ability to be a future TB drug [185]. The 
pravastatin and statin are still in Phase 2b clinical trials after more than two decades 
of research on their use as anti-TB agent [186]. But the promising results in mice 
models motivate to go for further clinical trials. Diclofenac, mainly used to treat 
arthritis and gout, has recently been used as an antimicrobial drug by Dutta et al. 
and showed its treatment reduced bacterial burden and disease pathogenesis in 
mice as compared with the control group [187]. Diclofenac also exhibits synergy 
with streptomycin in mice model of TB [188]. Ibuprofen, like indomethacin, is an 
undiscriminating –COX inhibitor. Ibuprofen has been reported to promote survival 
of M.tb infected mice while decreasing the number and size of lung lesions because 
of the low bacterial burden [189]. Byrne et al. have further confirmed that both 
aspirin and ibuprofen help to shorten the Tb treatment course when used along 
with the first-line anti-TB drugs [190]. Fluoroquinolones, though well known to 
exert anti-inflammatory functions, have not been much explored for their immune-
modulatory properties in TB. Verampil has shown promising results against TB but 
there is not sufficient literature study on the effect of verapamil on the immune 
system. Thus further study is to establish the role of verapamil as an immune-
modulator in TB. Significant reduction in the mortality rate in patients receiving 
both metformin and DOTs treatment has been reported [191, 192]. Metformin 
affects the number of total white blood cells and neutrophils and with an increase 
in the ratio of monocytes to lymphocytes in the circulation [193]. Diacon et al. have 
reported the combinatorial use of amoxicillin/clavulanic acid with carbapenems 
reduces the M.tb burden [194]. But there are scarce reports on the immunological 
aspects related to the compounds. Therefore, further research is needed for success-
ful repurposing of the drug as antitubercular drug. Sulfadiazine, a leprosy-drug, 
has been repurposed to treat DR-TB and found to be more efficacious and safe than 
other anti-TB sulfa drugs [113, 195]. To include such drugs in TB treatment, more 
trials shall be conducted using random human cohorts as subjects. Table 1 enlists 
the drugs in progress for repositioning against TB.

On the basis of reported literature based on bioinformatics, proteomics, and 
repurposing/repositioning/revival of drugs, it is estimated that bioinformatics  
and proteomics play a pivotal role in the exploration of diagnostics, therapeutics, 
and mechanism of resistance against drug resistance tuberculosis. Repurposing is 
a strategy to handle the grave situation of drug resistance tuberculosis in this era of 
growing antibiotic resistance. Synergistic effect of repurposed drugs along with the 
newer anti-TB drugs (bedaquiline and delamanid) is a rising hope for the treatment 
of MDR-TB, XDR-TB, and TDR-TB.
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Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a major global health 
concern given the increase in multiple forms of drug-resistant TB. This underscores 
the importance of a continuous pipeline of new anti-TB agents. From recent studies, 
it is evident that the increase in drug efficacy is being achieved through re-engi-
neering old TB-drug families and repurposing known drugs. This approach has led 
to producing a newer class of compounds which not only saves time and investment 
in developing newer drugs but is also effective in identifying drug candidates with 
novel mechanisms to treat multi-drug resistant strains. The repurposed drugs moxi-
floxacin, linezolid, and clofazimine are used to treat extensively drug-resistant TB 
when first- and/or second-line drugs fail. The chapter covers a detailed background 
on the current status of the repurposed drugs in the TB drug-discovery pipeline and 
discusses a potential way forward.

Keywords: tuberculosis, repurposed drugs, drug discovery pipe-line, Mycobacterium 
tuberculosis

1. Introduction

Highlights

• Within TB drug discovery, drug repurposing is a growing field and has estab-
lished several viable  candidates from ‘old’ drugs for further investigation.

• Drug repurposing for TB could improve therapeutic interventions in low to 
middle income countries and is an ideal approach due to the saving of time, 
effort, and most importantly, money.

• The use of computational techniques, including virtual screening of known 
drugs, have been shown to accelerate the process.

• This approach has the potential to lead to the identification of novel drug targets 
in M. tuberculosis, which could initiate new target-based discovery programs.

Tuberculosis (TB) has been, and continues to be a global health threat, and 
remains the leading cause of death due to a single infectious agent (M. tuberculosis), 
having claimed ~1.4 million lives in 2019 alone [1]. In the past 2 years, the Covid-19 
pandemic has further exacerbated the threat of TB mainly due to a decrease in TB 
case detection, with trajectories predicting an increase of ~1 million additional 
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new cases per year from 2020 to 2025 [1]. Furthermore, considering the increasing 
prevalence of drug resistant (DR) (Rif resistant-RR, multidrug resistant-MDR, and 
extensively drug resistant- XDR) forms of TB infections, the need for more effective 
treatment strategies has not been direr. The current standard treatment regimen for 
drug-susceptible (DS) TB has been in use for decades and includes a combination of 
four drugs: isoniazid (Inh), rifampicin (Rif), ethambutol (Emb) and pyrazinamide 
(Pza) for 2 months and a further 4 months of only Inh and Rif (Figure 1 [2, 3]). The 
treatment of DR-TB is more complicated and can take up to 18 months, depending 
on the resistance profile of the infection. Although available, several challenges are 
faced during the treatment of TB disease. Most notable is the duration and complex-
ity of treatment, toxicity and in the case of HIV-TB coinfection, the possible adverse 
interactions between anti-TB drugs and antiretrovirals. Despite these challenges, 
treatment success rates of 85% and 57% have been reported for DS- and DR-TB 
respectively in 2019 [1]; however, these will not be sufficient to meet the milestones 
setup as part of the End TB Strategy which include a 90% reduction in incidence 
rates and 95% reduction in mortality by 2035 compared to 2015 [4]. Optimization 
and implementation of innovative tools including new drug and treatment regimens 
are predicted to significantly improve this outlook.

The past 20 years have seen considerable progress in the TB drug discovery 
arena, with 13 new compounds currently in clinical trials (https://www.newtbdrugs.
org/pipeline/clinical). The highlights of TB drug discovery include Bedaquiline 
(Bdq), Delamanid and, most recently, Pretomanid (PA-824). Within the last 9 years, 
these were the first three new drugs to be approved for the treatment of TB since the 
discovery of Rif in the 1960’s. Although currently only approved for the treatment of 

Figure 1. 
Current drugs used for the treatment of TB. Adapted from [2, 3] (CC BY 2.0).
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DR-TB, both Bdq and PA-824 are being tested as part of novel combination regi-
mens for the treatment of DS-TB. Further highlighting the progress of the TB drug 
discovery field, the pre-clinical pipeline is also rich in new compounds.

The current scope of the drug discovery and development pipeline is promising; 
however, the development of a novel drug is a complicated, laborious, and expen-
sive endeavour. From initial screening to clinical usage, the development of a new 
compound can take up to 15 years and cost more than $1 billion (Figure 2) [5, 6]. 
In addition, there is a high attrition rate of hit compounds during the discovery 
cascade and clinical trials, further adding to the difficulty of getting novel anti-
microbials into the clinic [5–7]. To overcome some of the challenges faced during 
conventional drug discovery programs, a strategy that has been gaining more 
interest in recent years is “Drug Repurposing”.

Drug repurposing is the process of identifying novel uses of existing drugs for the 
treatment of disease outside of the scope of the original medical indication. It is also 
referred to as drug repositioning, redirecting, re-tasking, reprofiling or recycling [8, 9]. 
This strategy offers several advantages over a conventional drug discovery approach, 
including (i) reduced risk of failure, (ii) quicker development times, (iii) less invest-
ment and lower average costs, and (iv) the possibility of identifying new targets and/or 
pathways for further investigation (Figure 2) [8–10]. Drug repurposing has been suc-
cessfully applied to several diseases and conditions including HIV, cancer and arthritis 
[9]. While offering notable advantages over a conventional approach, candidate com-
pounds discovered via drug repurposing are still subject to regulatory requirements 
prior to therapeutic implementation. These requirements include compound acquisi-
tion and licencing, development/optimization for the new application via clinical trials 
and registration with the relevant regulatory bodies (Figure 2).

Repurposing is not new to the treatment of TB. The backbone of the  current 
regimen, Rif, belongs to the rifamycin group of antibiotics [11]. Rifamycins were 
originally developed for broad-spectrum antibacterial activity and through struc-
ture–activity relationship studies, was shown to have the greatest growth inhibitory 
effect against mycobacteria [11, 12]. The mechanism of action (MoA) of rifamycins 
involves the inhibition of DNA-dependent RNA polymerase, thus interfering with 

Figure 2. 
A comparison of the time taken to get into the clinic when using a traditional drug discovery approach versus a 
drug repurposing approach. ADMET: Absorption, distribution, metabolism, excretion and toxicity. Adapted 
from [5].



Drug Repurposing - Molecular Aspects and Therapeutic Applications

106

transcription. While the main application is for DS-TB, Rif has also been used for 
other bacterial infections e.g. treatment of staphylococcal endocarditis, eradica-
tion of group A beta-hemolytic streptococci from pharyngeal carriages and as 
prophylaxis for close contacts of paediatric patients with Haemophilus influenzae 
or Neisseria meningitidis infections [13]. In recent years, drug repurposing has once 
again gained traction for novel TB treatments, evidenced by 6 different repurposed 
drugs currently being evaluated in Phase II or III clinical trials [1]. Following an 
analysis of the published literature related to drug repurposing for TB, the repur-
posed drugs that are currently in the pre-clinical and clinical pipeline, their molecu-
lar mechanisms and therapeutic applications will be discussed further.

2. State of the art

In order to assess what the current scientific field entails, a network analysis 
was conducted from the Web of Science database (All Databases) using the search 
terms: repurpose* (repurposed, repurposing), tuberculosis and drug* (drugs). A 
total of 424 publications were identified within the search criteria and it is evident 
from Figure 3 that there has been an increase in research involved with the repur-
posing of old drugs in the fight against TB. In 2020, 77 manuscripts were published 
related to this topic, and this is expected to further increase in 2021. Additionally, 
VOS viewer, was used to assess specific keywords within the total number of 
publications (https://www.vosviewer.com/). The co-occurrences of all keywords 
were counted using a full counting method. The minimum keyword occurrence was 
set to three and out of the 416 identified keywords, 35 met the selection criteria. 
The third most occurring keyword, after “M. tuberculosis” and “Tuberculosis”, 
was “in vitro”, which indicates that this field of enquiry is still at an early stage 
(Figure 4). This is reiterated by the increase in publications on repurposing in 
recent years (Figure 3) as well as the identification of “drug repositioning” in 
Figure 5. Interestingly, the only drug that satisfied the selection criteria was thio-
ridazine, an antipsychotic drug. It would be expected that additional repurposed 
drugs will occupy this space as more data becomes available and clinical trials are 
completed.

Figure 3. 
A steady incline in recent years of the number of scientific articles, related to the search topic “repurposing drugs 
for tuberculosis”. The bars represent the number of published articles according to year. The year 2020 accounts 
for 18.2% of the published articles related to this topic. (web of science (https://www.webofknowledge.com)).
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Figure 4. 
Bibliographic network analysis of the keywords in published scientific articles, using the search terms 
“repurposing drugs for tuberculosis” (web of science – All databases). The circles indicate 35 of the most 
re-occurring keywords, while the size of the circles represents the importance of the keyword. The lines represent 
the interconnectivity of the keywords (www.vosviewer.com).

Figure 5. 
A time-correlation analysis of the published material related to the search terms. An increase in articles 
mentioning “drug repurposing”, “host-directed therapies” and “adjunctive therapy” can be seen. A trend 
towards computational approaches, including “docking” is also evident (www.vosviewer.com).
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3. Repurposed drugs in the clinical development pipeline

There are approximately thirty chemical compounds currently being investi-
gated in the global TB drug pipeline, of which 15 are classified as repurposed and 
will be discussed further.

3.1 Linezolid, Sutezolid, Delpazolid and TBI-223

Linezolid, also known as Zyvox, is a first-generation oxazolidinones which 
are a class of antibiotics that inhibits bacterial protein synthesis. Linezolid works 
by binding to a site on the bacterial ribosome thereby preventing the forma-
tion of a functional 70S ribosomal unit which is an essential component of the 
bacterial translation process [14–17]. Linezolid was initially approved for the 
treatment of infections originating from Gram-positive bacteria and used primar-
ily in the treatment of complicated skin infections such as methicillin-resistant 
Staphylococcus aureus (MRSA). Although linezolid exhibits good  antimycobacterial 
properties, its use is limited to DR-TB as its long term toxicity profile have been 
associated with neurological disorders resulting from nerve damage as well as 
immunosuppression resulting from decreased production of vital immune cells 
required for host defence [16, 17]. Analogues of Linezolid namely Sutezolid, 
Delpazolid, Posizolid, Contezolid and TBI-223 are second-generation oxazolidi-
nones that are showing promising potential as antimycobacterial agents. This is 
due to enhanced safety profiles and reduced toxicity compared to Linezolid as well 
as more potent activity against mycobacteria in vitro. Studies and clinical trials 
for these analogues are ongoing with the hopes that they may also be effective in 
shortening current TB treatment regimens [16, 18, 19].

3.2 Moxifloxacin, Gatifloxacin, levofloxacin and DC-159a

Moxifloxacin and Gatifloxacin are fourth-generation broad-spectrum anti-
biotics belonging to the family of fluoroquinolone drugs. The main function of 
this class of antimicrobials is to inhibit the bacterial enzymes DNA gyrase and 
topoisomerase IV which are crucial for DNA duplication events such as transcrip-
tion, recombination and cell replication [16, 18, 19]. They were initially approved 
for the treatment of a number of bacterial infections of the skin, stomach and 
lungs and along with levofloxacin has also shown promise as an effective and 
safe candidate for inclusion in the current TB treatment regimen [16, 20]. This is 
mainly because of their potent antimycobacterial activity as studies have shown 
that they can significantly improve sputum culture conversion rate and clinical 
outcome of TB treatment as well as reduce TB resurgence after treatment [17, 21]. 
These antimicrobials are currently being evaluated as a possible replacement for 
Isoniazid or Ethambutol in patients with poor tolerability as they were shown to 
exhibit potent antimycobacterial activity in vitro [16]. Moxifloxacin, Gatifloxacin 
and Levofloxacin are the most commonly prescribed fluoroquinolone drugs used 
to treat patients with MDR-TB. Despite these analogues displaying enhanced 
antimycobacterial activity in vitro and in vivo, levofloxacin was shown to be more 
cost-effective, and therefore more accessible in resource-limited high burden set-
tings [18]. In comparison to moxifloxacin, gatifloxacin and levofloxacin, DC-159a, 
a relatively new fluoroquinolone analogue was shown to exhibit enhanced bacte-
ricidal activity against MDR-TB both in vitro and in vivo and may therefore be a 
promising new therapeutic candidate for reducing treatment time for both  
MDR- and drug-sensitive (DS)-TB [22, 23].
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3.3 Clofazimine and TBI-166

Clofazimine is an antibiotic belonging to the class of Riminophenazines that 
is currently approved for the treatment of leprosy [19, 24]. Clofazimine possesses 
both antimicrobial and anti-inflammatory properties and although its mechanism 
of action is still unclear, the outer membrane of bacteria appears to be the primary 
target of this inhibitor [19]. Although Clofazimine has shown good activity against 
MDR- and XDR-TB, its efficacy in humans is still under investigation specifically 
concerning long term use and its major adverse effect of causing skin discolor-
ation [25]. Clofazimine is mainly utilised in combination with other drugs in the 
second-line treatment of drug-resistant TB and has been classified as a Group 5 
medicine by the WHO [24]. TBI-166 a new generation analogue of Clofazimine 
was demonstrated to exhibit superior antimycobacterial activity in comparison to 
its predecessor as well as reduced skin discoloration and is currently in a Phase 1 
clinical trial [25, 26].

3.4 Sanfetrinem (Trinem beta-lactam)

Sanfetrinem cilexetil is an orally available tricyclic beta-lactam developed by 
Glaxo Smith Kline (GSK) in the early 1990’s with broad antibacterial activity on 
both Gram-negative and Gram-positive bacteria. The development of this drug 
was halted after phase 2 clinical trials. However, it has recently been identified as 
a potential beta-lactam against M. tuberculosis, with an MIC of 1.5 μg/mL against 
H37Rv and an intracellular MIC of 0.5 μg/mL in THP1 monocytes. Furthermore, 
it has been reported that the drug showed potent activity against a range of sus-
ceptible and resistant clinical isolates with an MIC90 of 1–4 μg/mL. In an in vivo 
investigation, sanfetrinem cilexetil was comparable to meropenem and amoxicillin/
clavulanate [27]. Similar to other carbapenems, it targets the cell wall by inhibit-
ing the formation of peptidoglycan [28]. This drug is currently under pre-clinical 
investigation with a planned phase 1 clinical trial.

3.5 Spectinamide 1810 (Spectinamide)

Spectinamides are semisynthetic derivatives of spectinomycin with a narrow 
spectrum activity against M. tuberculosis and present its activity through selective 
inhibition of the bacterial S16 ribosomal subunit. One factor that contributes to 
their potent antitubercular activity is the evasion of efflux through the Rv1258c 
efflux pump. This feature makes spectinamides promising candidates against MDR 
TB, which have been shown to upregulate efflux pumps [29]. Two derivatives, 1599 
and 1810 were investigated for their combinational effect in an infected mice model 
co-currently administering different combinations of the derivatives with Bdq, 
Emb, Inh, levofloxacin, linezolid, moxifloxacin, PA-824, Pza, and Rif. The research-
ers showed that spectinamide 1599 showed synergistic activity in combination with 
rifampicin and pyrazinamide [30]. Spectinamide 1810 is currently in pre-clinical 
investigation and being developed by Microbiotix, Inc.

3.6 Meropenem, Faropenem (Carbapenem Beta-lactam)

Meropenem is a carbapenem-type beta-lactam antibiotic which has shown 
bactericidal activity against susceptible and resistant M. tuberculosis strains. In 
combination with clavulanate, it was able to sterilise cultures within 14 days [31]. 
Meropenem is used in the treatment of a variety of bacterial infections. One phase 
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2 clinical trial on newly diagnosed TB has been completed, and an additional two 
trials are currently recruiting suitable candidates.

3.7 Thioridazine (phenothiazine)

Thioridazine was a drug used in the treatment of anxiety disorders and schizo-
phrenia. Manufactured by Novartis, it was removed from the market in 2005 due to 
associated cardiac arrhythmias and other adverse effects. The removal of this drug 
had a devastating effect on patients being treated for schizophrenia, and a study in 
Finland indicated a doubling of hospital admitted relapsed patients after the with-
drawal of the drug [32]. Thioridazine was coincidentally the only drug that appeared 
in the network analysis on the topic of repurposing drugs for TB (Figures 2 and 3). 
It has shown in vitro bactericidal activity against susceptible and resistant strains of 
M. tuberculosis as well as intracellular activity on human macrophages with limited 
cellular toxicity [33, 34]. A retrospective study on a trial conducted in Argentina on 
17 XDR-TB patients revealed the potential use of this drug in a last-resort treatment. 
Thioridazine was combined with linezolid and moxifloxacin. Although clinically 
relevant adverse effects (neurotoxicity and haematological disorders) were observed, 
and two patients had to have the treatment halted, the combination was able to 
achieve negative cultures in 15 patients and status of “cured” in 11 patients. The 
authors have recommended the use of this combination for compassionate use [35].

4. Repurposed drugs in discovery

Numerous ongoing projects are in pre-clinical development across the globe, 
with collaborative research groups spanning across both industry and academia. 
Many of these groups form part of the Tuberculosis Drug Accelerator (TBDA) 
program. Selected repurposed drugs that are currently in pre-clinical development, 
and which have been assessed in vitro or in vivo will be discussed further. It is worth 
noting that several computational screening programs of approved drugs are also 
ongoing against known targets in M. tuberculosis.

4.1 Carprofen and Oxyphenbutazone

Nonsteroidal anti-inflammatory drugs (NSAIDs) are a class of drugs that are 
generally used to relieve pain and reduce inflammation, mainly functioning by 
inhibiting the activity of cyclooxygenase enzymes involved in the regulation of 
inflammation and blood clotting [19]. In mouse models of TB, the common NSAIDs 
namely aspirin and ibuprofen were shown to decrease both the size and number of 
lung lesions and bacillary load as well as improve survival rates [36]. Studies have 
revealed that analogues in this family namely Carprofen and Oxyphenbutazone 
were found to exhibit bactericidal activity against mycobacteria through inhibition 
of mycobacterial drug efflux mechanisms and biofilm growth [19, 36]. Both their 
antimicrobial and anti-inflammatory properties combined with their low likelihood 
of adverse effects following administration make them very strong candidates for 
repurposing as TB treatment.

4.2 Disulfiram

Disulfiram is a nontoxic drug belonging to the family of Carbamates. It is 
primarily used to treat chronic alcohol addiction, but has demonstrated potent 
antimycobacterial activity against clinical isolates, MDR and XDR strains [19, 37]. 



111

Drug Repurposing for Tuberculosis
DOI: http://dx.doi.org/10.5772/intechopen.101393

Moreover, it was demonstrated that the bactericidal activity of Disulfiram is syner-
gistically enhanced in the presence of the metal ion copper, with the mechanism of 
action of this compound still under investigation [37].

4.3 Metformin (Biguanides)

Metformin, a biguanide drug approved for glycaemic control in patients suffer-
ing from Type II diabetes mellitus, falls within the group of host-directed therapies 
against TB. Multiple adjunctive activities have been investigated. In vitro studies 
have shown a potentiation of the standard TB drugs, an increased immune response 
and mediation of phagosome-lysosome fusion. The phagolysosome fusion leading 
to the inhibition of bacterial growth is due to the expression of AMP-activated 
protein kinase, which in turn increases the production of mitochondrial reactive 
oxygen species (mROS) [38, 39]. The adjunctive properties and potential in TB 
treatment have been captured in two reviews [40, 41]. A phase II clinical trial 
investigating the safety and tolerability of metformin in TB/HIV patients is yet to 
start, and the investigation is planned to be completed in 2024.

4.4 Metronidazole (Nitroimidazole)

Metronidazole is a broad-spectrum antibiotic used in the treatment of gastro-
intestinal infections. Some parasitic infections including amebiasis, giardiasis and 
trichomoniasis are also treated by this drug [42]. The exact mechanism of this drug 
has not been fully elucidated, but it has been hypothesised that the drug renders its 
action through the blocking of nucleic acid synthesis via an intermediate of met-
ronidazole and through the production of a toxic metabolite in anaerobic bacteria 
through the reduction of the nitro group by the redox potential of the electron 
transport chain [43]. It has been shown that metronidazole was able to inhibit the 
growth of mycobacterial bacilli under anaerobic non-replicating conditions but 
showed no activity under aerobic conditions [44]. In vivo studies in macaques (a 
non-human primate model), showed similar efficacy of inhibiting reactivation of 
latent TB, as compared to a combination of isoniazid and rifampicin [45]. In a phase 
2 clinical trial investigating the effect of metronidazole vs. placebo on pulmonary 
MDR-TB, some efficacy was observed in sputum smears after 1 month of treat-
ment, but the benefit was not sustained past 2 months of treatment. The study 
was ultimately halted due to the occurrence of peripheral neuropathies within the 
test subject group [46]. Although metronidazole is associated with several adverse 
effects, other and newer nitroimidazoles are extremely important within the clini-
cal pipeline against TB. These include pretomanid and delamanid which are both 
part of multiple phase 2 and 3 clinical trials.

4.5 Tolcapone, Entacapone (catechol-O-methyltransferase (COMT) inhibitor)

Entacapone and tolcapone are two catechol-O-methyltransferase inhibitors used 
as an adjunct in the treatment of Parkinson’s disease. Both have shown some activity 
against M. tuberculosis with a relatively high minimum inhibitory concentration 
(MIC) of 260 μM observed for entacapone, which was significantly lower than the 
cytotoxic concentration [47]. Their proposed mechanism against TB is what makes 
these molecules an interesting class to investigate. The mechanism is similar to 
isoniazid; however, they do not need enzymatic activation to bind to the enoyl–acyl 
carrier protein reductase (InhA) target. Furthermore, it has been proposed that 
it might be a possible treatment in MDR-TB, as it could evade the KatG activation 
associated with isoniazid resistance in many resistant strains [19, 47].
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5. Target-based repurposing

An additional benefit of drug repurposing is the potential to identify or validate 
vulnerable targets and/or pathways that can be exploited for further drug develop-
ment [8–10]. Bortezomib is the first human proteasome inhibitor approved for 
the treatment of multiple myeloma and mantle cell lymphoma [48]. Using a target 
mechanism-based whole-cell screen, bortezomib was identified as an inhibitor of 
the mycobacterial caseinolytic protease (ClpP1P2), with growth inhibitory activity, 
thus validating it as a druggable target [49]. Further investigations have focused on 
structural modifications of bortezomib to increase selectivity for the mycobacterial 
ClpP1P2 complex over the human proteasome while maintaining antimycobacterial 
activity [49–51]. The M. tuberculosis DosRST two-component regulatory system 
is important for survival under non-replicating conditions which is thought to 
contribute to the required prolonged therapy for TB, and is therefore considered a 
promising target for drug development [52]. Artemisinin is used for the treatment 
of Malaria and was identified as an inhibitor of M. tuberculosis DosRST during a 
whole-cell phenotypic high throughput screen and is currently in the hit-to-lead 
phase of drug development [52, 53]. In addition to the identification of promising 
repurposed drugs by whole-cell screening, recent efforts have focused on compu-
tational modelling and virtual screening of known drugs against targets of inter-
est. Using this approach two drugs were identified as inhibitors of M. tuberculosis 
DNA gyrase (GyrB): echinacoside which has been investigated for the treatment 
of Parkinsons and Alzheimers, and epirubicin which is a treatment for breast 
cancer [54–56]. Virtual screening has also identified Sulfadoxine, Pyrimethamine, 
Lifitegrast and Silfenadil as inhibitors of M. tuberculosis MurB or MurE, enzymes 
involved in peptidoglycan synthesis [57].

6. Conclusion and future prospects

The need for novel treatment strategies for TB is becoming more urgent if the 
goal of a TB-free world is to be realised. While the current treatment regimens 
have a success rate of 85% for DS-TB, there is, unfortunately, an increase in the 
incidence of DR-TB, which only has a treatment success rate of 57% and harsh 
side-effects for patients [1]. The drug discovery pipeline is relatively rich with new 
material; however, the conventional screening and development strategies have led 
to the identification of multiple chemical scaffolds that inhibit the same targets, 
referred to as promiscuous targets e.g. DprE1, MmpL3 and QcrB [58]. Furthermore, 
the global economic climate has significantly reduced the available funding for 
scientific research and due to the low return on investment, several pharmaceuti-
cal companies no longer support in-house drug discovery programs for infectious 
diseases [6], further hampering the quest for new drugs with novel targets. To this 
end, drug repurposing provides an appealing strategy with several advantages as 
outlined above. The success of Rif, Linezolid and the fluoroquinolones provides 
strong support for drug repurposing for the treatment of TB. The high number 
of repurposed drugs in the discovery phase of compound development and in 
advanced clinical trials suggests that this strategy is becoming more widely accepted 
in the TB research community and has good potential for success. Furthermore, 
with the continual advances in computational biology and open sharing of com-
pound data across disease areas, it is not unreasonable to expect a boost in drug 
repurposing research in the future. This could possibly further reduce the time and 
cost to develop repurposed TB drugs, and aid in trying to meet the global goals of 
eradicating TB.
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Abstract

Drug repurposing is one of the best strategy for drug discovery. There are several 
examples where drug repurposing has revolutionized the drug development process, 
such as metformin developed for diabetes and is now employed in polycystic ovarian 
syndrome. Drug repurposing against breast cancer is currently a hot topic to look 
upon. With the continued rise in breast cancer cases, there is a dire need for new 
therapies that can tackle it in a better way. There is a rise of resistance to current 
therapies, so drug repurposing might produce some lead candidates that may be 
promising to treat breast cancer. We will highlight the breast cancer molecular tar-
gets, currently available drugs, problems with current therapy, and some examples 
that might be promising to treat it.

Keywords: drug repurposing, breast cancer, mechanism, non-oncology drugs, 
resistance

1. Introduction

Drug discovery is a multifaceted process that aims at identifying a therapeutic 
agent that can be useful in treating and managing certain medical conditions. This 
process includes identification of candidates, characterization, validation, optimi-
zation, screening, and assays for therapeutic effectiveness. If a molecule achieves 
acceptable results in these studies, then the molecule has to go through drug devel-
opment processes and be recruited to clinical trials [1]. Several drug candidates 
(about 90%) have collapsed in early clinical trials due to unexpected results such 
as adverse effects or inadequate effectiveness [2, 3]. Drug development is probably 
among the most complicated and challenging processes in biomedical research. 
Apart from the already enormous complexities underlying pharmacological drug 
designs, additional significant challenges arise from clinical, regulatory, intellectual 
property, and commercial constraints. Such as challenging atmosphere has made 
the drug development process very sluggish and unpredictable [4]. The process of 
discovering and developing a new drug is a lengthy and expensive process taking 
somewhere from 10 to 15 years and costs about US$2–3 billion [1]. Despite massive 
sums of money being spent on drug development, no substantial rise in the new 
therapeutic drug agents in a clinical setting has been observed over several decades. 
Although overall global R&D spending for drug discovery has risen 10-fold from 
1975 (the US $4 billion) to 2009 ($40 billion), the number of novel molecular 
entities (NMEs) approved has stayed essentially constant since 1975 (26 new drugs 
approved in 1976 and 27 new drugs approved in 2013) [5].
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Figure 1. 
Outline of developing new drug versus repurposing.

The essential step in discovering new drugs involves the evaluation of the safety 
and effectiveness of new drug candidates in human subjects, and it consists of four 
phases. In Phase I clinical trial, the candidate drug’s safety is assessed in a small 
population (20–80 individuals) to establish safe dose range and uncover adverse 
effects. Phase II involves the examination of intervention for its effectiveness and 
safety in large populations (a few hundred people). Phase III further involves the 
assessment of drug efficacy in a large population (several thousand) and compares 
new drug candidates with standard or experimental treatments. Phase IV is con-
ducted when the intervention is marketed. This study aims to track how well the 
approved treatment is performing in the general population and gather data on 
side effects that may arise from broad usage over time. Phase III studies determine 
whether or not a medication is effective, and if so, FDA clearance is granted. The 
FDA approves one anticancer treatment out of every 5000–10,000 applicants, and 
just 5% of oncology medicines entering Phase I clinical trials are approved in the 
end. Because of the increased cost and time frame for new medication develop-
ment in recent years, patients with severe illness may die until alternative therapies 
are available if they develop resistance to current therapy [6]. In searching for an 
alternative treatment option for managing various diseases, including cancer, the 
researchers have shifted their focus to drug repurposing strategies.

The drug purposing or drug reprofiling or drug redesigning process explores the 
therapeutic use of existing clinically approved, off patent drugs with known targets 
for another indication to minimize the cost of therapy, time, and risk [7]. The huge 
benefit of drug repurposing is that the efficacy, pharmacokinetics, pharmacody-
namics, and toxicity characteristics have previously been explored in preclinical 
and Phase I investigation. These drug moieties may thus be quickly made to proceed 
to Phase II and Phase III clinical trials, and hence related developmental costs 
might be substantially lowered [6, 8]. The failure risk in drug development is low 
because in vitro screening, in vivo screening, toxicity profile, chemical optimization, 
and formulation development have already been accomplished. Therefore, drug 
repurposing has made the pharmaceutical industry a desirable choice for investors. 
So the pharmaceutical companies and researchers have begun to make significant 
investments in drug repurposing, which offers a tremendous benefit over de novo 
drug design and development [9]. Therefore this new approach of drug purposing 
has reduced the timeline and cost of the drug development, notably in the case 
of FDA-approved repurposed pharmaceuticals, which will undergo faster clinical 
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trials because of already well-known safety and toxicological profile [10]. Outline of 
developing new drug verses repurposing is represented in Figure 1.

The development of new drugs for breast cancer like any other cancer is a mul-
tistep process that includes drug designing, synthesis, characterization, safety and 
efficacy assessment, and finally, regulatory approval (Figure 2). The overall process 
is very lengthy and involves significant financial expenditure [11]. Further, the 
sky-high cost of the therapies and associated side effects make it desirable to look 
for other approaches to manage cancer effectively. Therefore, concurrently with 
the synthesis and design of new therapeutic modalities, various strategies should 
be considered for repurposing various already approved drugs that may target this 
deadly disease.

2. Non-oncology drugs repurposed for breast cancer (preclinical data)

2.1 Aspirin

Aspirin was originally discovered in 1897 and was first commercialized as an 
analgesic. It has been utilized as an anti-inflammatory medication and for manag-
ing arterial and venous thrombosis [12]. Recent research has sparked interest in 
the usage of Aspirin for the prevention of various cancers. There are compelling 
evidences authenticating that regular use of low doses of aspirin results in a sig-
nificant reduction in the occurrences and mortality of various cancers [13–17]. The 

Figure 2. 
The time taken by the conventional of process of drug development with respect to drug repurposing. 
Conventional drug development process takes around 5 years and the same can be minimized to 5 years.
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possibility that Aspirin has an anticancer benefit has received considerable interest 
nowadays, with a lot of research being done to figure out how successful it is in the 
prevention of colorectal cancer [18], lung cancer [19], gastric cancer [20], prostate 
cancer [21], and many other cancers including breast cancer. Because of the effect 
of Aspirin in several biological processes such as inhibitory effect on angiogenesis 
[22], cancer cell metastasis [23], causing cell apoptosis [24], etc., it is reasonable to 
predict that Aspirin will be beneficial when employed as an additional alternative 
treatment option for cancer patients. Aspirin directly inhibits the activity of the 
enzyme cyclooxygenase (COX-2) and thereby impedes the synthesis of prostaglan-
din E2 (PGE-2), which leads to cancer cell death [25]. Recent research also suggests 
that Aspirin may mediate anticancer potential through COX-independent pathways 
such as inhibition of NFκB [26], downregulation of survivin [20], targeting AMPK-
mTOR signaling [27], Wnt signaling cascade [28], etc.

A study was conducted by Dai et al. reported that Aspirin possesses antiangio-
genic and anti-metastatic potential in MDA MB 23 cell line by directly binding to 
the enzyme heparinase. The results were further confirmed in vivo experimentation 
[23]. Heparinase is an endo-β-D glucuronidase that is specific to heparin sulfate. It 
dissolves heparin sulfate chains of proteoglycans on the cell surface and extracel-
lular matrix (ECM) that consequently contributes to the degradation of the extra-
cellular matrix that further assists tumor invasion and metastasis [29]. Further, 
heparin also facilitated the release of angiogenic factor, vascular endothelial growth 
factor (VEGF) blocked by aspirin-mediated heparin inhibition [23]. Breast cancer 
cell lines (MDA MB 231 and MCF-7) showed a dose-dependent inhibitory effect on 
growth after treatment with Aspirin. The Aspirin further restricts the migration of 
these cells by preventing epithelial to mesenchymal transition through suppression 
of various mesenchymal markers such as vimentin and increasing expression of 
various epithelial markers such as Keratin-19 and E-cadherin.

Further inhibitory effect of TGF-β/SMAD4 signaling, as evident from decreas-
ing the production of SMAD proteins, also contributes to the anti-metastatic poten-
tial of Aspirin [30]. In another study, Choi et al. demonstrated the effect of Aspirin 
in the MCF-7 cell line. It was observed that Aspirin alters the complex formation 
between Bcl-2 and FKBP38 and leads to the nuclear translocation of Bcl-2 and phos-
phorylation that causes its activation, contributing to its inhibitory effect on MCF-7 
cell proliferation and also triggers apoptosis in cell lines [31]. In combination with 
exemestane, Aspirin showed synergy in inhibition of cell proliferation. Significant 
arrest in the G0/G1 phase was observed along with a more detrimental effect on 
COX-1 and Bcl-2 expression than individual therapy [32]. In addition, when com-
bined with tamoxifen (which is used as a drug of choice for the estrogen receptor 
positive BC), it downregulates the level of cyclinD1. Subsequently, it arrests the cell 
cycle in phase G0/G1. In the same study, authors also reported that Aspirin inhibits 
the ER + ve BC cells growth and overcomes the resistance to tamoxifen in MCF-7/
TAM cell line. Study demonstrated a new way to treat ER + ve BC in combination 
therapy of Aspirin and tamoxifen [33].

2.2 Metformin

Metformin (1,1-dimethyl biguanide hydrochloride) is a well-recognized bigu-
anide derivative and has a long history of usage in managing type 2 diabetes (T2D). 
Because of the outstanding ability to lower plasma glucose levels, metformin has 
become the primary drug for managing T2D [34]. The drug was firstly approved 
in 1958 in the United Kingdom, and this decade-old drug is in the WHO’s list 
of essential medicines [35]. Metformin belongs to the category of successful 
repurposed drugs and advanced into the clinical trials Phase 3/4 for its use in the 
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prostate, oral, breast, pancreatic, and endometrial cancers [6]. Various preclinical 
and clinical examinations have demonstrated the effectiveness of metformin in the 
treatment of various malignancies such as pancreatic cancer [36], gastric cancer 
[37], blood cancer [38], etc. A meta-analysis study on diabetic patients with breast 
cancer concluded that patients who were treated with metformin and neoadjuvant 
therapy had a higher pathological complete response rate (24%) compared with 
patients not undergoing metformin treatment (8%) [39]. Another meta-analysis 
study demonstrated 65% survival improvement when compared with control 
[40]. Metformin has increased the survival opportunity in type 2 diabetic patients 
suffering from invasive breast cancer [41]. Study also suggested that patients on 
metformin demonstrate improved in the survival and response to treatment [40]. 
The metformin uptake is mediated by the OCT1 in BC cells [42], which is reported 
to play important role in the BC cells as an anticancer activity [43]. Upon entry into 
the cells, it leads to increase apoptosis, anti-proliferative, anti-angiogenic, which 
seems to be mediated by the mTOR, Akt/MAPK pathway [44]. Study conducted by 
Shi et al., established that metformin can also inhibit the expression of the COX-2, 
suggested the potential of metformin in combination with others COX-2 inhibitor 
[45]. Low cost and stability of metformin make it a good candidate for the treat-
ment of cancers when compared with available treatment options [46].

2.3 Itraconazole (ITC)

Itraconazole, a triazole antifungal drug, is a well-tolerable agent that is 
extremely effective against a wide range of fungal infections. Itraconazole is a 
highly potent and effective antifungal agent due to its active metabolite, hydroxy-
itraconazole, which also has significant antifungal action [47]. Itraconazole 
blocks ergosterol synthesis in the fungal cell membrane by inhibiting the enzyme 
14α-demethylase and suppressing their growth [48]. It has emerged as a potent 
anticancer agent because of its ability to overcome chemoresistance prompted by P 
glycoproteins, altering various signaling pathways such as hedgehog (Hh) signaling 
cascade, Wnt/β-catenin pathway in cancer cells, and also preventing angiogenesis 
and lymphangiogenesis [49]. Itraconazole has been shown to have the ability to 
eliminate cancer cells by disrupting Hh signaling [50]. In invertebrates, the Hh 
signaling cascade is responsible for the regulation of complicated developmental 
processes. However, aberrant activation of this pathway plays a crucial role in 
carcinogenesis and cancer maintenance and contributes to chemoresistance, thus, 
targeting this pathway offers the potential therapeutic possibility [51]. Itraconazole 
was able to exhibit cytotoxicity in breast cancer cell lines by influencing mitochon-
drial membrane potential through induction of apoptosis, decreasing expression of 
Bcl-2, and enhancing the caspase activity. Itraconazole also promoted autophagic 
cell death via elevation of LC3-II expression, degradation of P62/SQSTM1, forma-
tion of autophagosomes. Hedgehog signaling is an important regulator of apoptosis 
and autophagy. Hence, inhibition of this signaling by Itraconazole results in cyto-
toxicity, tumor shrinkage, apoptosis, and autophagy in breast cancer both in in vitro 
and in vivo investigations [50, 52]. Anticancer activity is also reported in esophageal 
cancer, mediated by downregulating the HERK/AKT pathway [53]. A pilot study 
with 13 participants demonstrated that increased levels of Itraconazole in plasma 
were associated with the increased level of thrombospondin-1, angiogenesis 
inhibitor.

Additionally, the level of other growth factors such as fibroblast growth fac-
tor (FGF) and placenta-derived growth factor also decreased without any direct 
association with the Itraconazole [54]. When administered in combination with 
other cytotoxic agents, Itraconazole increased the response rate [55]. Researchers 
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are trying various ways to enhance the anti-neoplastic activity of itraconazole. 
One such example is the development of the modified lipid nanoparticles having 
Miltefosine (subtherapeutic dose), called M-ITC-LNC (Membrane additive itracon-
azole with lipid nanoparticles (Miltefosine). The results from the cytotoxicity stud-
ies demonstrated that the anticancer activity and selectivity significantly increased 
in MCF-7 BC cells compared with the ITC-solution and ITC-LNC without modifi-
cation [56]. In another study, itraconazole was co-delivered with the doxorubicin by 
liposome (coated with the Pluronic P123), resulting in the increased anti-neoplastic 
activity in BC [57]. The combination of the verapamil and ITC with 5-FU decreased 
cell survival and proliferation.

Moreover, ITC and 5-FU are more effective in the treatment of BC [58]. 
Administration of the Itraconazole with erlotinib (tyrosine kinase inhibitor) 
increased the AUC and Cmax by 10.8 and 2.78-fold, respectively, without any SAE 
[59]. Abovementioned all the studies reveal the potential of Itraconazole alone or in 
combination with other anticancer agents to treat BC.

2.4 Simvastatin

Simvastatin belongs to the class of statins and is a well-explored hydroxy-meth-
ylglutaryl coenzyme A (HMG-CoA) reductase inhibitor that reduces cholesterol 
biosynthesis initially used to reduce cholesterol biosynthesis marketed in 1988 
[60]. Clinical data suggest that statins are effective in BC management. Statins 
amplify tumor cell death and radiosensitivity in various cell lines, inhibit invasion 
and proliferation, and show anti-metastatic activity. Clinical trials conducted on 
breast cancer (inflammatory and TNBC) patients also favored these observations 
by representing improved mortality benefits for patients on statins [61, 62]. In the 
same context, Simvastatin is the most explored statin to explore the role of statins in 
cancer. Simvastatin targets the transcription factor NFκB that reduces the expres-
sion level of anti-apoptotic protein Bcl-xL, concomitantly inhibits the expression of 
anti-proliferative and proapoptotic tumor suppressor PTEN and hence inhibiting 
the growth of breast cancer cells. The elevation of PTEN expression results in the 
suppression of Akt phosphorylation. Akt activity is upregulated in many cancers by 
increasing cancer cell survival, inhibiting apoptosis, and increasing proliferation. 
Therefore, Simvastatin substantially decreased Akt phosphorylation concurrently 
with the reduction in expression of anti-apoptotic protein by dysregulation of 
NFκB, thus showing the anticancer activity against BC [63]. On administration of 
Simvastatin, the expression of PTTG1 (pituitary tumor-transforming gene 1) was 
also reduced in a dose-dependent manner in the MDA-MB-231 cell line. PTTG1 
is the important gene involved in the invasion and metastasis of BC [64]. In the 
same cell line (MDA-MB-231), Simvastatin leads to fragmentation of the cell’s 
nuclei, subsequently inducing apoptosis. It also enhanced the level of ROS in a 
dose-dependent manner, which causes oxidative stress and further DNA damage 
[65]. Apoptotic effects were due to the increased expression of miR-140-5p in a 
dose-dependent manner mediated by the activating transcription factor NRF1 [65]. 
Apart from the MDA-MB-231 cell line, Simvastatin effects were also explored in 
other breast cancer cell lines such as T47D, BT-549, and MCF-7, showing apoptotic 
inducer anti-proliferative activity [66, 67]. In in vivo studies with DMBA (dimethyl-
Benz(a)anthracene) induced breast cancer rat model, Simvastatin reduced the 
tumor volume by around 80% [68]. Karimi et al. also explored its activity in breast 
cancer mice model and reported improved mortality and tumor volume compared 
with control [69]. Although Simvastatin’s lipophilic nature makes it a good can-
didate for the BC treatment, the researcher tried to develop nano formulations to 
improve the delivery in a targeted specific manner and reduce the non-target side 
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effects. Detailed mechanism of cell growth inhibition, division, survival, migra-
tion, and proliferation by Simvastatin is presented in Figure 3.

In the same series, Sed et al. used nanoparticles made of superparamagnetic iron 
oxide to Simvastatin delivery with enhanced anticancer activity in the PC-3 cell 
line. This action is mediated by inducing apoptosis and cell cycle arrest in the G2 
phase [70]. Researchers from another lab developed poly D, L-lactide-co-glycolide 
(PLGA) with cholic-acid-based nanoparticles for Simvastatin release in a sustained 
and controlled manner for breast adenocarcinoma treatment. These nanoparticles 
showed maintainable and more efficiently inhibit tumor growth than normal 
Simvastatin [71]. Other formulations such as nanocapsule [72], nanoemulsions 
[73], liposomes [74], and immunoliposome [75] for Simvastatin were developed 
with increased anticancer activity in breast cancer cells. In a randomized placebo-
controlled study, Simvastatin shows a better anticancer profile with the carboplatin 
and vinorelbine in metastatic breast cancer [76]. Consistency in the results from 
both clinical and preclinical studies suggests the vast potential of Simvastatin in 
treating breast cancer either alone or in combination. Moreover, the development 
of nanoformulations also provided advantages such as enhanced cytotoxicity, 
lower side effects, targeted delivery over the conventional available treatment 
options for BC.

2.5 Niclosamide

Niclosamide, an FDA-approved anthelminthic drug used to manage tapeworm 
infection, has been used almost from the last half of the century and included in the 
WHO’s list of essential medicines. Recent research suggests that niclosamide has a 
wide range of therapeutic uses other than treating parasitic infection. Niclosamide’s 

Figure 3. 
Simvastatin acts via blocking p50–65 leading to activation of PTEN, which inhibits PI3K-Akt axis leading to 
inhibition of cell growth, division, survival, migration, and proliferation.
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clinical application diseases include type 2 diabetes, endometriosis, neuropathic 
pain, bacterial and viral infections, including cancer [77]. The anticancer benefits 
of niclosamide have been shown in many malignancies such as colon cancer, lung 
cancer, prostate cancer in humans, as well as breast cancer by suppressing various 
cancer related pathways such as Wnt Notch, mTOR, STAT, and NFκB [78, 79]. The 
combinational treatment of niclosamide with cisplatin overcomes the resistance 
to cisplatin and induces an inhibitory effect on proliferation in vitro and reduced 
tumor size in vivo.

Further, niclosamide prevented the epithelial-mesenchymal transition (EMT) 
by suppressing mesenchymal markers such as snail and vimentin. The inhibitory 
effect on EMT and prevention of stem-like phenotype of TNBC by Niclosamide 
operate by disabling various abnormal signaling pathways such as Akt, ERK, 
and Src [80]. The niclosamide acts as a potent inhibitor of STAT signaling by 
preventing cancer cell proliferation, invasion, and metastasis by decreasing the 
phosphorylation of STAT3 that otherwise was found in 35% of breast cancer tissues. 
Furthermore, STAT3 promotes the expression of several key downstream genes 
involved in proliferation, cell survival, and angiogenesis in breast cancer  
[81]. Human monocyte cells were reduced to HUVECs in the presence of 
niclosamide. Niclosamide also inhibited VCAM-1 and ICAM1 protein expres-
sion in HUVECs. Niclosamide decreased HUVEC proliferation, migration, and 
development of cord-like structures. In vivo, niclosamide inhibits VEGF-mediated 
angiogenesis [77]. Niclosamide inhibited Wnt/Frizzled 1 signaling, mediated by 
the increased degradation of the Wnt co-receptor LRP-6 (low-density lipoprotein 
receptor-related protein 6) [82–84]. Osada et al. determined that on the admin-
istration of niclosamide, there was a decrease in Dvl2 expression, which further 
impeded the downstream signaling (β-catenin) [85]. Londoño-Joshi et al. reported 
that niclosamide administration also reduced levels of LRP6 and β-catenin in breast 
cancers [86]. In combination with doxorubicin, niclosamide induces apoptosis and 
synergistically increases breast cancer cell death. This action is mediated by Wnt/β-
catenin pathway downregulation and arrest of the cell cycle by Niclosamide in G0/
G1 while both doxorubicin and niclosamide increased ROS production, thus show-
ing cytotoxicity [87, 88]. Niclosamide also showed synergistic anticancer activity 
with 8-quinolinol [89]. When niclosamide is administered with cisplatin, it could 
inhibit the invasion and cell stemness of breast cancer cells, mediated by downregu-
lation of anti-apoptotic protein Bcl2 [90]. In a recently published study, albumin-
bound niclosamide (nab-Niclo) (Albumin-based nanoparticle transport systems) 
was found to inhibit cell growth, induce cell death, mitochondrial dysfunction, and 
increase oxidative stress with DNA damage. This nab-Nicolo was appeared more 
effective than normal Niclosamide for BC treatment [91]. Taken together, all the 
data suggest that niclosamide alone and in combination with other drugs could be 
used for the normal BC and resistance BC all repurposed drugs for BC discussed in 
this chapter summarized in Table 1.

3. Conclusion

Drug discovery is a multifaceted process that aims at identifying a therapeutic 
agent that can be useful in treating and managing various ailments. This process 
includes identification of candidates, characterization, validation, optimization, 
screening, and assays for therapeutic effectiveness. As the mortality due to cancer 
is progressively increasing, we need effective therapy to treat breast cancer patients 
or improve survival. When any pharmaceutical organization starts developing a 
novel chemical entity for the BC, its cost and attrition rate are very high. Drugs 
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repurposing is how we can minimize the cost and attrition rate by using the already 
marketed drugs for a new use. Drug repurposing against breast cancer is one of 
the best alternatives to treat progressive ailments. In the above discussion, we have 
discussed various drugs that can be repurposed against breast cancer. It will be 
a game-changing scenario in the treatment of breast cancer. Certain challenges 
need to be rectified. However, there is a need for optimization of models and more 
screening of drugs at preclinical stages.

4. Future prospective

To tackle all the challenges associated with the drug development process for 
breast cancer, scientists need to shift their interest to the alternative drug develop-
ment, that is, drug repurposing. All the BC repurposed drugs discussed in the book 
chapter show impressive results that suggest exploring more new non-cancerous 
drugs for cancerous use [92]. Using the drugs repurposing approaches alone and 
in combination with other drugs will also reduce the side effects associated with 
high doses. It will also reduce the cost of the drug development process, ultimately 
patient compliances and burden. Patients who could not afford the treatment due 
to the high cost can take treatment and improve survival. As the safety is already 
studied of drugs that seem a novel interest in the repurposing for BC, the chances 
of failure at the clinical level will also be less. With the advancement in drug 
repurposing, there is still a need to develop a valuable model of different types of 
cancers that mimic cancer. The development of such a model provides the actual 
clue for drug repurposing. So far, the advantages we discussed, there are some 
challenges associated with the drugs repurposing such as patent issue, regulatory 
consideration, inequitable prescription that need to be overcome so, more and 
more pharma companies show their interest in drug repurposing. It is expected 
that drug repurposing will achieve the milestone that is currently not possible with 
the conventional available treatment for cancers in the future. Furthermore, new 
nanoformulations need to be developed for the targeted and specific delivery of 
repurposed anticancer drug to avoid the off-target side effects.
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Abstract

Breast cancer is a major health concern as it is the second leading cause of death 
from cancer. There are several well-known risk factors that contribute to breast can-
cer. Despite the various treatment options available, complete cure is still difficult 
due to heterogenicity of BC subtypes. As a result, identifying BC subtypes is critical 
for determining the optimal treatment approach. Over the last several years, new 
drugs targeting particular therapeutic targets have resulted in significant advances 
in the treatment of breast cancer. Nonetheless, resistance to treatment is the “major” 
issue, and a significant increase in survival rates has been the main focus for 
researchers. The purpose of this review article is to provide a broad overview of the 
molecular basis of drug resistance in breast cancer, as well as a detailed assessment 
of current treatment options, potential new treatment methods for drug-resistant 
breast cancer and repurposed drugs used for treatment. The possibility of non-can-
cer drugs being studied for breast cancer in the future, as well as the obstacles and 
bottlenecks of drug repurposing, is also highlighted. Finally, we go through present 
problems and future prospects in drug-resistant breast cancer therapy.

Keywords: Breast Cancer, Endocrine Resistance, Oestrogen Receptor Modulation, 
Drug Repurposing

1. Introduction

Breast cancer is the most frequent disease among women, according to the 
World Health Organisation (WHO), and it is the second leading cause of death 
from cancer, after lung cancer. It is considered a severe health concern that affects 
patients’ quality of life as well as their psychological well-being, It is the main cause 
of death among women aged 45 to 55 years old. The incidence of breast cancer is 
expected to grow by 85 per 100.000 women by 2021 [1]. Experts estimate that by 
2050, there will be approximately 3.2 million new BC cases each year worldwide, 
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based on population increase. Although there is no single risk factor for the majority 
of breast cancer patients, there are a number of well-known risk factors, including 
obesity, lack of physical activity, consumption of alcohol, hormone replacement 
therapy, increased breast density, and inherited genetic susceptibility due to muta-
tions in autosomal dominant genes, which contribute for 5–10% of all breast cancer 
cases in the United States [2]. Treatment for BC is difficult since it is a heteroge-
neous illness with various subtypes that have different but distinct clinical and 
biochemical characteristics. As a result, identifying BC subtypes is critical for deter-
mining the optimal treatment approach [3]. Breast cancer may be in situ or invasive, 
with in situ tumours being the easiest to cure. Invasive breast cancers, especially 
invasive ductal carcinoma (which accounts for 80% of all invasive breast cancers), 
are a major source of concern. While receptor-specific therapy is used to treat the 
first two types of breast cancer, chemotherapy remains the mainstay of TNBC 
treatment [4]. BC is characterised as basal-like or non-basal-like according on the 
cell type of origin (luminal or basal/myoepithelial cell compartment). The afore-
mentioned, also referred to as “triple-negative,” contributes approximately 10% of 
all BCs. Understanding the etiological heterogeneity of BC subgroups will aid in 
directing therapy, predicting survival, and impacting preventive measures due to 
the complexity of biology [5]. With the standardisation of systemic chemotherapy 
as the gold-standard method for most cancer types and the moderate increase 
in both survival rates and toxicity reduction, targeted therapy has undoubtedly 
garnered the greatest scholarly attention and financing from the pharmaceutical 
sector. Nonetheless, resistance to treatment is the “major” issue, and a significant 
increase in survival rates is still a pipe dream for researchers. It is important to note 
that tremendous progress has been achieved in the area of breast cancer research 
during the last decade. The ‘battle’ against this mysterious and aggressive form of 
cancer, however, is still ongoing [6]. The purpose of this review article is to provide 
a broad overview of the molecular basis of drug resistance in breast cancer, as well 
as a detailed assessment of current treatment options and potential new treatment 
methods for drug-resistant breast cancer. Finally, we go through present problems 
and future prospects in drug-resistant breast cancer therapy.

2. Breast cancer risk factors

BC is associated with the following epidemiological risk factors: (a) a younger 
age at the first menstrual cycle and during the first birth, (b) pre-menopause is 
the prime factor in most BC patients, (c) civilization is an unavoidable outcome 
of increased risk for BC fatalities, (d) socio - economic background is an unbiased 
predictor of sophisticated extent at assessment in breast cancers, and (e) obesity 
and higher BMI are epidemiological risk factors for BC (Figure 1).

3. Pathogenesis

Breast cancers typically begin as ductal hyperproliferation and progress to 
benign tumours or even metastatic carcinomas as a result of continuous stimulation 
by carcinogenic agents. Breast cancer initiation and progression are influenced by 
tumour microenvironments such as stromal effects and macrophages. When only 
the stroma, not the extracellular matrix or the epithelium, was exposed to carcino-
gens, the mammary gland of rats may be driven to neoplasms. Macrophages may 
create a mutagenic inflammatory microenvironment, allowing cancer cells to avoid 
immune rejection and increase angiogenesis. The normal and tumour-associated 
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microenvironments exhibit different DNA methylation patterns, suggesting that 
epigenetic changes in the tumour tissue may promote tumorigenesis. Cancer stem 
cells (CSCs), a new type of malignant cell seen in tumours, have been linked to 
tumour genesis, migration, and relapse. This minor group of cells can auto renew 
and is resistant to chemotherapy and radiation. They may be produced from stem 

Figure 1. 
The risk factors of breast cancer.

Figure 2. 
The possible hypothesis for onset and development of breast cancer.
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cells or progenitor cells in normal tissues. Ai Hajj was the first to identify breast 
cancer stem cells (bCSCs), demonstrating that as few as 100 bCSCs can create new 
tumours in infected mice. Luminal epithelial progenitors are more likely than basal 
stem cells to give rise to bCSCs. Wnt, Notch, Hedgehog, p53, PI3K, and HIF are all 
signalling pathways involved in the auto-renewal, multiplication, and migration of 
bCSCs. However, more research is needed to fully comprehend bCSCs and create 
ingenious ways for their eradication. The cancer stem cell theory and the stochastic 
theory are two distinct hypotheses for breast cancer initiation and progression. 
All tumour subtypes, according to the cancer stem cell theory, are derived from 
the same stem cells or transit-amplifying cells (progenitor cells). Various tumour 
features will result from acquired genetic and epigenetic alterations in stem cells 
or progenitor cells (Figure 2). According to the stochastic theory, each tumour 
subtype begins from a single type of cell (stem cell, progenitor cell, or differenti-
ated cell) (Figure 2). Any breast cell can acquire random mutations over time, 
eventually transforming it into a tumour cell if enough mutations are accumu-
lated. Despite the fact that both theories are backed up by evidence, neither can 
adequately explain the origins of human breast cancer [7].

4. Types of breast cancer

According to a review, breast cancer is divided into invasive and noninvasive 
breast cancers Figure 3.

4.1 Non-invasive breast cancer

It’s a malignancy that has not spread beyond the lobule or ducts in which it’s 
found [8]. Ductal carcinoma in situ is an example of a kind of non-invasive breast 
cancer. Ductal carcinoma in situ develops when abnormal cells form inside the milk 
ducts but do not spread to nearby tissue or to the outside. The term “in situ” means 
“in place.” Atypical cells may develop and mature into invasive breast cancer even if 
they have not spread beyond the lobules or ducts.

4.2 Lobular carcinoma in situ (LCIS)

Breast lobules form as a result of this kind of breast cancer. Outside of the 
lobules, the breast cancer has not spread into the breast tissue. Non-invasive breast 
cancer is typically diagnosed as lobular carcinoma in situ.

Figure 3. 
Types of breast cancer.
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4.3 Ductal carcinoma in situ

It is the most common type of non-invasive breast cancer, because it only affects 
the breast duct. Ductal comedocarcinoma is an example of ductal carcinoma in situ.

4.4 Invasive breast cancer

When abnormal cells from the lobules or milk ducts break off and come into 
contact with breast tissue, this condition occurs. Through the immune system or the 
systemic circulation, cancer cells may spread from the breast to other areas of the 
body. They may migrate early in the formation of the tumour, when it is small, or 
later, when it is large. Invasive breast cancer is the most common kind of cancer in 
women. Metastatic breast cancer is defined as invasive breast cancer that has spread 
to other parts of the body. The brain, bones, lungs, and liver are the most frequent 
organs to which these cells travel. These cells separate and grow irregularly once 
again, resulting in new tumours. Although new forming cells are appearing in many 
parts of the body,but still remains to be breast cancer cells [9, 10].

4.5 Infiltrating lobular carcinoma (ILC)

Invasive lobular carcinoma is another name for infiltrating lobular carcinoma. 
ILC begins in the breast milk glands (lobules), but it may spread to other parts of 
the body.

4.6 Infiltrating ductal carcinoma

Invasive ductal carcinoma is also known as infiltrating ductal carcinoma. IDC 
begins in the breast milk ducts and spreads to the duct wall, infecting the fatty 
tissues of the breast and perhaps other areas of the body.

4.7 Medullary carcinoma

Invasive breast cancer with a distinct normal and medullary tissue border is 
known as medullary carcinoma.

4.8 Mucinous carcinoma

Mutinous carcinoma, sometimes called colloid carcinoma, is an uncommon kind 
of breast cancer characterised by cancer cells that produce mucus. Females who 
have mutinous carcinoma have a better prognosis than those who have other kinds 
of invasive carcinoma.

4.9 Tubular carcinoma

Tubular invasive breast carcinomas are a form of invasive breast carcinoma. 
Tubular carcinoma had a better prognosis than other forms of invasive carcinoma.

4.10 Inflammatory breast cancer

Inflammatory breast cancer causes swollen (red and heated) breasts with 
bulges and/or broad ridges, which happens when cancer cells block lymph arter-
ies or channels in the skin surrounding the breast. Inflammatory breast cancer 
is an uncommon kind of cancer that rapidly spreads. Throughout treatment, 
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all multidisciplinary techniques, including as radiation therapy, surgery, chemo-
therapy, and imaging, must be carefully integrated. Since the first publication on 
this subject, neoadjuvant chemotherapy has resulted in a substantial increase in 
overall survival and has taken the place of locoregional treatments like radiation 
and surgery, resulting in long-term improvements in this disease [11, 12].

4.11 Paget’s disease of the breast

It’s an uncommon kind of breast cancer that produces visible changes to the 
breast’s nipple. Red itchy rashes around the nipple, which may occasionally spread 
to the rest of the body, are among the symptoms. Paget’s disease of the breast 
differs from other skin problems like eczema and psoriasis in that the other skin 
problems usually affect both breasts and can start at the areola rather than the 
nipple of the breast, whereas Paget’s disease of the breast usually affects only one 
breast and starts at the nipple of the breast rather than the areola. Men and women 
are equally affected by Paget’s disease, which contributes for 1–3% of all breast 
malignancies.

4.12 Phyllodes tumour

Tumours caused by Phyllodes may be benign or malignant. Phyllodes tumours 
grow in the breast’s connective tissues and may be surgically removed. Phylloides 
tumours are very rare; in the United States, less than 10 women die of this kind of 
breast cancer each year [13–15].

4.13 Triple-negative breast cancer

Breast cancer is now well understood to be a diverse disease with several sub-
forms characterised by their distinct clinico-pathological features, prognosis, and 
treatment responses. The absence of progesterone receptor, human epidermal 
growth factor receptor 2, and oestrogen receptor expression characterises triple-
negative breast cancer. This kind is primarily destructive, and it is more frequent 
in premenopausal females. It accounts for 10–15 percent of cases in white females, 
with a higher frequency.

5. Stages of breast cancer

5.1 Stage 0

This is a non-invasive tumour stage in which both cancerous and non-cancer-
ous cells are enclosed within the boundaries of the breast part where the tumour 
begins to grow, with no evidence of their invasion into the surrounding tissues 
of that part; ductal cell carcinoma in situ (DCIS) is an example of this tumour 
stage [16].

5.2 Stage 1

Invasive breast cancer is described as this stage, and microscopic invasion is 
conceivable. It is divided into two stages: 1A and 1B. Te category 1A refers to a 
tumour that is up to 2 cm in diameter and does not include any lymph nodes, while 
stage 1B refers to a tiny collection of cancer cells bigger than 0.2 mm discovered in a 
lymph node [17].
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5.3 Stage 2

Stage 2 is divided into two categories: 2A and 2B. The tumour is detected in axil-
lary lymph nodes or sentinel lymph nodes in Stage 2A, but there is no tumour in the 
breast. The tumour may be 2 cm in diameter or 5 cm in diameter. Stage 2B, on the 
other hand, defines a tumour that is bigger than 5 cm in diameter but does not reach 
the axillary lymph nodes [18].

5.4 Stage 3

It’s broken down into four sections: 3A, 3B, and 3C. Stage 3A refers to a tumour 
that has caused swelling or ulceration on the breast skin and has spread to up to 9 
axillary lymph nodes or sentinel lymph nodes, whereas stage 3B refers to a tumour 
of any size that has caused swelling or ulceration on the breast skin and has spread 
to up to 9 axillary lymph nodes or sentinel lymph nodes. Because it has progressed 
to 9 axillary lymph nodes or sentinel lymph nodes, stage 3B breast cancer is deemed 
inflammatory. Tumour spread to 10 or more axillary lymph nodes, as well as lymph 
nodes above and below the clavicle, is classified as stage 3C [19].

5.5 Stage 4

This is the late and metastatic stage of cancer, in which the disease has spread to 
other internal organs including the lungs, bones, liver, and brain Figure 4 [20].

6. Clinical breast cancer diagnosis techniques

The assessment methods and popular imaging techniques that will aid physicians in 
providing better care to patients and advancing clinical diagnosis are discussed below.

1. History and physical examination of breast cancer

The clinical history of breast cancer patients is used to assess the risk of developing 
cancer and to show the existence or absence of breast disease symptoms [21]. Age 
at menarche, menopausal status, prior pregnancies, and usage of hormone replace-
ment therapy or oral contraceptives beyond menopause are all factors to consider. 
Personal as well as family history should be carefully investigated. Breast soreness, 
weight loss, bone pain, tiredness, and nipple discharge are just a few of the symp-
toms to check into. During a physical examination, doctors look at the breasts, the 
area around the neck and collarbone, and the armpits (axillae). Any anomalies in 
the breasts, such as lumps or other breast cancer signs, are investigated. Lymph 
nodes, which are often enlarged in breast cancer patients, are also assessed [22, 23].

2. Self examination

The value of breast self-examination is debatable since no benefit in terms of 
decreased mortality has been demonstrated. Most doctors teach women to do 
monthly self-examinations in order to get familiar with their normal structure 
and to give them authority over their own healthcare. Self-examination may 
reveal irregularities in breast size and form. Sreedharan et al. performed re-
search at hospitals in the United Arab Emirates. A self-administered structured 
questionnaire was utilised to look at self-examination and knowledge prac-
tises. This research [24] produced satisfactory outcomes. These studies have 
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demonstrated that a continuous breast cancer education programme may help 
people become more aware of the disease. Ceber et al. performed research on 
Turkish women’s breast self-examination and health attitudes, concluding that 
early detection of breast cancer may avoid physical diseases and early mortal-
ity. He further claimed that just one out of every seven patients with breast 
cancer receives a timely diagnosis [25].

3. Mammography

Mammography (MG) is the recommended method for screening and detecting 
breast cancer, and it aids physicians in gathering clinic data on BC patients. The 
data indicates that early MG screening may decrease the death rate of BC patients 
by 30 percent to 40 percent [26]. Meanwhile, only 4 percent −10 percent of BC 
patients have MG as a positive diagnostic finding. With the passage of time, MG 
continues to grow. The two primary methods for diagnosing BC patients in clinic 
are contrast-enhanced mammography (CEM) and digital breast tomosynthesis 
(DBT) [27, 28]. Age, ethnicity, personal history, radiologist expertise, and 
technique quality all influence mammography sensitivity. In high-density breasts 
in premenopausal women, sensitivity may be decreased. Mammography has 
a number of disadvantages, including the use of ionising radiation, inability 
to diagnose thick breasts, high false-positive and false-negative rates, and an 
unpleasant examination.

4. Ultrasonography

Breast ultrasonography is a low-cost and commonly available screening 
method that detects malignancies by rebounding acoustic waves off breast 
tissue. To identify the anatomy of the human breast, an ultrasonic transducer 

Figure 4. 
Stages in development of breast cancer.
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is utilised to detect the acoustic waves reflected off it. Although less efficient 
than mammography, breast ultrasonography increases cancer detection rates 
in high-risk women and helps in the identification of cysts and solid masses. 
For women at high risk of breast cancer, pregnant women, and those who are 
unable to undergo mammography, breast ultrasonography has been recom-
mended as a supplement to mammography. When breast ultrasonography and 
mammography are used together, the sensitivity of the imaging increases at 
the cost of specificity and biopsy rates. Because the reverberant characteristics 
of healthy and malignant tissues are so similar, breast ultrasonography fails 
to identify many tumours. It also necessitates the employment of qualified 
 radiologists, which has a big impact on sensitivity and specificity [29].

5. Magnetic resonance imaging

MRI creates pictures at different cross-sections by mixing a strong magnetic 
field with RF signals. Breast MRI is suggested for high-risk women, but not for 
the general population because of its high rate of inaccuracy, higher expense, 
time commitment, insufficient number of units, requirement for trained ra-
diologists, and lack of therapeutic effect. The American Cancer Society (ACS) 
has published recommendations for utilising MRI as a complement to mam-
mography, and for specific demographic groups, such as BRCA mutation car-
riers and those at higher risk of complications, annual MRI scans are advised. 
In women at high risk of breast cancer, MRI is less specific but more sensitive 
than mammography and ultrasound in identifying small lesions [30].

6. Nuclear medicine

It is a kind of molecular imaging in which a person is administered a radioac-
tive substance, and the radiation released by the radiopharmaceutical is shown 
by sensitive emission detectors such as gamma cameras and PET detectors 
located outside the patient’s body. The combination of a CT scanner and a 
gamma camera, as well as a CT scanner and a PET scanner, is a significant 
advance in the identification and localization of disease.

7. Single photon emission computerised tomography (SPECT)

This method employs single photon radionuclides that produce gamma rays, 
such as gallium-67, iodine-131, and technicium-99. It’s a fast and precise scan 
for the organ of concern. It may be used over the whole body, is quite safe in 
terms of radiation dose, and is effective in detecting both primary and meta-
static tumours. The abbreviation PET/CT refers to positron emission tomogra-
phy. PET/CT is also low-radiation since it utilises positron-emitting radionu-
clides including oxygen-15, fluoride-18, and carbon-11 to produce positrons. In 
positron emission tomography, a radioactive version of glucose, such as [18F]
fuoro-2-deoxy-d-glucose, is a typical tracer. Tissues with greater metabolic 
needs, such as developing cancer cells, absorb the tracer more readily, which 
is seen on the scan. Using a combination of CT and PET, significant informa-
tion about a range of situations impacting the different organs of the body may 
be readily mapped. PET/CT is extremely sensitive and accurate for predicting 
opaque and distinct areas of loco-regional lymph nodal extent and/or far-away 
metastases that are not apparent on conventional imaging, with up to 25% of 
patients having their staging changed. This technique is used to plan manage-
ment by describing the primary disease’s spread. It’s also utilised in  re-staging 
and treatment follow-up after a return of a managed disease [31].
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8. Tumour markers

Tumour markers should be examined at all stages of breast cancer therapy, 
diagnosis, and screening, including metastasis prediction, treatment, and 
diagnosis, according to Porika et al. Thirteen distinct breast cancer tumour 
indications are investigated, six of which are new to the guideline. The different 
variations have been proven to be therapeutically useful and are recommended 
for use in clinical practice [32]. In order to avoid over- or under-interpreting 
the therapeutic potential of a few studies, the physician must be aware of the 
limits in the combined specificity and sensitivity of each sign. With these 
restrictions in mind, submitting tissue, germ-line, and soluble tumour markers 
for clinical trials may assist individuals who are at risk for or have breast cancer 
get back on track with their treatment.

9. Breast biopsy

Breast biopsies are the most effective way to find out whether you have breast 
cancer. Biopsies of the breast occur in a range of sizes and forms. To enhance 
diagnosis accuracy and remove as many false negative results as possible, 
breast imaging, breast self - examination, and biopsy are all performed at the 
same time (triple test).

a. Fine needle aspiration

A thin prickle is used to extract cells from an abnormal area or a breast nodule. 
Ultrasound may be used to guide the prickle. A local anaesthetic may be used 
to anaesthetize the region where the prickle will be inserted.

b. Core biopsy

A larger prickle is used to extract a core of tissue from the abnormal region or 
breast lump. It is usually performed under a limited anaesthesia, so the breast 
is unaffected, and the patient may feel no pain or discomfort depending on 
when the anaesthetic is administered. For the length of the core biopsy, an 
MRI, ultrasound, or mammography may be utilised to guide the procedure.

c. Vacuum-assisted stereotactic core biopsy

Different small tissue samples are obtained through a single tiny incision in 
the skin using a prickle and a suction-type device in this core biopsy. It is done 
with the use of a local anaesthetic. To guide the prickle into place, an MRI, 
ultrasound, or mammography may be used. During the procedure, the patient 
may feel a bit uneasy.

d. Surgical biopsy

A surgical biopsy is performed if the abnormal site is too small to be biopsied 
by another technique or if the biopsy result is unclear. A guide wire may be 
inserted into the breast prior to the biopsy to aid the medical practitioner in 
locating the abnormal tissue. A local anaesthetic may be administered, and the 
wire can be guided into place using MRI, ultrasound, or mammography. After 
that, a general anaesthesia is used to perform the biopsy. Along with the wire, 
a little region around the breast tissue and lump is removed.
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7. Treatment methods

The goal of breast cancer treatment is to maintain quality of life while extending 
life expectancy. Breast cancer treatment methods vary based on the stage of the 
disease, its size, location, whether it has spread to other organs of the body, and 
the individual’s physical state. Targeted treatments, hormone treatment, radiation 
therapy, and surgery are being used to treat breast cancer.

1. Surgery

This is the most common treatment option for people with breast cancer that 
has not spread to other parts of the body, and it’s also a viable option for those 
with more advanced stages of the disease. The amount of tissue removed with 
the cancer varies according on the cancer’s features, whether it has spread, and 
the patient’s particular emotions. The following are a handful of the most com-
mon types of surgery:

a. Lumpectomy (breast conserving surgery)

According to the American Cancer Society [33], a lumpectomy, also known as a 
selective mastectomy, is a practice that requires removing the portion of the breast 
that contains the malignant tumour, as well as some healthy tissues and lymph 
nodes around it, while leaving the rest of the breast preserved as much as possible. 
This operation is often performed on women in the early stages of cancer, but in 
addition to the surgery, the patient will need additional treatments such as radia-
tion, chemotherapy, or hormone replacement therapy. Most surgeons and pa-
tients, particularly if the woman is going to lose her breast, prefer a lumpectomy 
over a full breast removal at first. Tenderness, transient inflammation, sclerosis, 
and a change in the look of the breast are all possible side effects of a lumpectomy.

b. Mastectomy

The purpose of a mastectomy is to reduce the chance of developing breast can-
cer. Bilateral preventive mastectomy reduces the risk of getting breast cancer 
but does not fully remove it. Aromatase and tamoxifen are more effective than 
contra-lateral preventive mastectomy in reducing the risk of contra-lateral 
breast cancer. Mastectomy is the most efficient treatment for a disseminated 
instance of breast cancer in whom a lumpectomy was ineffective.
Nonetheless, most women experience feelings of asexuality, loss of self-image, 
and melancholy as a result of breast loss [34].

c. Reconstructive surgery

Females who have had a mastectomy might consider having their breasts  
renovated, either immediately or later. It is used to improve the appearance 
of the breast after tumour surgery. All ladies who have had a mastectomy 
should be given the choice of reconstructive surgery [35]. Mastectomy is a very 
straightforward surgical procedure that usually requires 1–2 days in the hospi-
tal. Breast mass deficiency alters the patient’s appearance and makes it difficult 
to wear certain types of clothes. The use of an external prosthesis to address 
these issues may be uncomfortable and abrasive, especially for women with 
large breasts. The most serious side effect after mastectomy is the psychologi-
cal impact of the physical and cosmetic changes, which may include anxiety, 
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sorrow, and poor effects on body image and sexual activity [36]. Females with 
breast cancer who are unable to get breast-conserving therapy or who have a 
higher genetic risk of breast cancer often seek breast reconstruction. Breast 
reconstruction methods now available are varied and may include the use of 
a prosthetic implant, an autologous tissue flap, or both. Cancer may recur in 
the rebuilt breast regardless of the technique used; furthermore, in autologous 
tissue flaps repaired breasts, minor complexity such as fat necrosis may occur. 
Breast reconstruction, according to studies, restores body representation, 
demonstrates vitality, femaleness, and sexuality, and has a positive impact on 
the patient’s emotions of comfort and life quality [37].

2. Ovarian ablation as adjuvant therapy for breast cancer

Breast cancer patients have been treated with ovarian ablation. Radiation-
induced ovarian ablation, surgical removal of the ovaries, and long-term use 
of luteinizing hormone-releasing hormone (LHRH) analogues are all options 
for ovarian ablation. Furthermore, there are a few theories that cytotoxic 
chemotherapy may help premenopausal women with breast cancer by causing 
ovarian ablation. Many of the case studies and clinical trials of ovarian excision 
conducted in the past had methodological flaws. A meta-analysis of ran-
domised clinical trials found that women who had ovarian ablation as an adju-
vant therapy had a significant improvement in overall survival and disease-free 
survival compared to those who did not. According to a study of the literature, 
ovarian ablation may be used as an alternate treatment for breast cancer [38].

3. Breast cancer therapy by class

Various classes of therapeutic agents are employed for breast cancer treatment:

a. Alkylating agent: cyclophosphamide (nitrogen mustard)

b. Anti-metabolite: methotrexate (folic acid analogue), 5-fluorouracil 
&capacitabine (pyramidine analogues)

c. Natural product: vinorelbine (vinca alkaloid), paclitaxel (taxane),  
doxorubicin (antibiotic)

d. Hormone and antagonist: tamoxifen (anti oestrogen), letrozole&anastrazole 
(aromatase inhibitors)

e. Miscellaneous: trastuzumab (monoclonal antibody), lapatinib (Protein 
tyrosine kinase inhibitor)

4. Chemotherapy

Chemotherapy is the process of eliminating cancer cells with the help of specific 
medications. It may be administered both before and after surgery, depending on 
the patient’s health. Docetaxel, Paclitaxel, Platinum agents (cisplatin, carbopla-
tin), Vinorelbine (Navelbine), Capecitabine (Xeloda), Liposomal doxorubicin 
(Doxil), Cyclophosphamide (Cytoxan), Carboplatin (Paraplatin), and other drugs 
are included in chemotherapy, according to the American Cancer Society [39]. 
However, it has a number of negative side effects. The following are some of the 
most frequent breast cancer treatment regimens.
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Cyclophosphamide is used to treat breast cancer metastases by preventing DNA 
replication and cell division. This prodrug is converted into active metabolites by 
hepatic intracellular enzymes (i.e. 4 hydroxy cyclophosphamide, aldophosphamide, 
acrolein and phosphor amide mustard). The medication has been utilised in the 
treatment of breast cancer as an adjuvant therapy in conjunction with CMF or an 
anthracycline.

Platinum compounds such as Carboplatin and Cisplatin are used to treat breast 
cancer as monotherapy or in conjunction with other cancer treatments. Platinum 
compounds have been investigated for their effect on DNA structure and stabil-
ity, and a variety of platinum-DNA adducts have been discovered in vivo and in 
vitro. The impact of these different lesions on DNA replication, their potential to 
introduce mutations, and their susceptibility to DNA repair methods have all been 
measured in the early studies. Platinum (IV) compounds may cause further DNA 
damage, perhaps as a result of the cell’s conversion to platinum (II) compounds. 
About 20–35 percent of patients with metastatic breast cancer who were receiving 
monotherapy responded to carboplatin treatment. The medicines Gemcitabine and 
Taxanes are often used in conjunction with Platinum compounds.

Capecitabine is a fluoropyrimidine oral prodrug that, when converted to 5-FU 
by the thymidine phosphorylase enzyme, has comparable effects as 5-FU infusion. 
It has been used in conjunction with taxanes to treat metastatic breast cancer that 
has progressed.

Gemcitabine (also known as difluorodeoxycytidine) is a pyrimidine nucleotide 
that inhibits RNA synthesis and DNA replication and is used to treat malignancies of 
the lung, bladder, and breast. Weekly IV injections of gemcitabine are well tolerated.

Vinorelbine binds to tubulin, causing mitotic metaphase to be disrupted. 
According to several studies, this medication has shown encouraging effects in 
advanced breast cancer.

Although metastatic or secondary breast cancer is difficult to cure, it may be man-
aged for years. Chemotherapy may be used to control metastatic breast cancer and 
slow or stop its progression. It may also be used to reduce the severity of certain symp-
toms. Other treatments may be started before to or concurrently with chemotherapy.

5. Aromatase inhibitors

These are compounds that target aromatase, the enzyme complex that is respon-
sible for the last step in the synthesis of oestrogen, in order to reduce oestrogen 
formation. Letrozole, exemastane, and anastrozole are examples of third-genera-
tion aromatase inhibitors that are currently used. A randomised clinical study that 
looked at the efficacy of these chemicals in treating women with advanced breast 
cancer found that they are quite beneficial. Females treated with aromatase inhibi-
tors had a lower risk of developing contralateral breast cancer than women treated 
with tamoxifen, according to a clinical trial [40].

6. Anti–angiogenesis drugs

Antiangiogenic therapy for breast cancer has a lot of potential and several 
ongoing studies are attempting to better understand the optimal care settings and 
mediator selection. Research suggests a link between endocrine resistance and cancer 
dependency on angiogenic networks in patients with oestrogen receptor positive 
tumours, suggesting a possible therapeutic benefit in combining endocrine treatment 
with antiVEGF mediator. Results from randomised clinical trials highlight the wide 
range of responses to antiVEGF therapy, indicating that a better selection of patient 
subgroups is needed to maximise the benefits of these treatments. The identification 
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of biomarkers for treatment response is a single area of intense interest, however 
most studies to far have failed to find a correlation between cancer-associated indica-
tors such as cancer mutations and EGF expression and scientific response.

7. Radiation therapy

Radiation treatment is beneficial in early breast cancer patients, according to 
Zhou et al. This research looked at 143 women who had breast conserving surgery 
and received either regular or intraoperative radiation treatment. There was sub-
stantial local control of the tumour after 54 months of follow-up. Radiation treat-
ment uses high-energy beams to destroy cancer cells. Only the cells that are treated 
are affected by this treatment. After breast cancer surgery, radiation treatment may 
be used to eliminate any residual cells in the chest region [41].

a. Brachytherapy

It’s a type of radiation treatment. Accelerated partial breast irradiation is a term 
that comes to mind. It just focuses radiation in the general region where the cancer 
was discovered. This might potentially eliminate the need for whole-breast radio-
therapy. The number of management sessions is also reduced.

8. Protein tyrosine kinase inhibitor

Lapatinib is an orally active, reversible EGFR and HER2 tyrosine kinase inhibi-
tor whose primary mechanism of action tends to be driven by HER2. When trastu-
zumab-treated HER2-positive breast cancer developed, lapatinib was authorised 
for use in combination with capecitabine; it’s also utilised as a first-line treatment 
for HER2-positive metastatic breast cancer in combination with letrozole. Lapatinib 
and chemotherapy combined achieved a 22 percent response rate and a 27 percent 
clinical value rate in patients who had previously been treated with trastuzumab, 
and as prophylaxis, it achieved 12.4 percent to 25 percent clinical value rates; how-
ever, constrained resistance to lapatinib was observed in some cases [42, 43].

9. Gene therapy for carcinoma of the breast

Gene therapy is a kind of treatment that attempts to correct particular molecular 
defects related to breast cancer growth and progression. Cancer development is linked 
to mutated BRCA1 and p53 genes, which have been identified as cancer genetic markers. 
[44]. Cancer gene modification techniques may allow for selective targeting without 
presenting substantial hazards to non-cancer cells since cancer cells are the only ones 
that suffer mutational inactivation of gene activity in these circumstances. Even BRCA1 
and p53 have been found to limit tumour cells without mutations in these genes, sug-
gesting that so-called gene modification methods may be more effective than previously 
believed. These and other genes have been discovered as possible targets for gene substi-
tution therapy as cancer genetics has become more well-known. Early patient investiga-
tions using BRCA1 and p53 gene therapy have shown a lot of encouraging indications 
of effectiveness, but they have also highlighted areas where additional clinical trials are 
required before these treatments may be widely utilised in breast cancer patients.

10. Cancer stem-cell therapy for breast cancer

The cancer stem-cell idea is based on recent breast biology studies. According 
to two key aspects of this theory, cancer arises in progenitor cells or mammary 
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stem cells as a result of a dysregulation of the normally tightly controlled mecha-
nism of self-renewal. As a result, cancers contain a cellular component that retains 
basic stem-cell functions including self-renewal, differentiation, and tumori-
genesis while also being accountable for cellular heterogeneity. Advances in the 
stem-cell field have assisted the identification of stem cells in both normal and 
malignant breast tissue. The finding of these stem cells has assisted in identifying 
the origins of human breast cancer’s genetic complexity. In the early diagnosis, 
prevention, and treatment of human breast cancer, the cancer stem-cell hypothesis 
is critical. Dysregulation of stem cell renewal pathways is linked to both sporadic 
and hereditary breast cancers. These abnormal stem cells might be utilised to 
create novel cancer prevention methods. Moreover, because breast cancer stem 
cells may be resistant to chemotherapy and radiation, efficient targeting of this 
cell type may be required for the development of novel effective treatments for 
breast cancer.

11. Monoclonal antibodies

Trastuzumab is a physiologically active, humanised monoclonal antibody 
that acts against the extracellular domain IV of HER2 and has increased 
survival rates in HER2/neu positive breast cancer patients. This monoclonal 
antibody is clinically safe and effective when used in a three-week cycle, and it 
may also be used in conjunction with paclitaxel, gemcitabine, vinorelbine, or 
carboplatin.

12. Immunotherapy

To combat cancer cells, it makes use of the body’s immune system. One of the 
examples is a cancer vaccination. Vaccines are made using cancer cell parts or cancer 
cells themselves. These cells activate the immune system, which aids in the attack 
and destruction of cancer cells. Immunotherapy has become an important compo-
nent in the treatment of breast cancer. At the moment, HER2 targeted treatment is a 
significant element of HER2 over expressing breast tumour therapy.

Trastuzumab, in combination with the newer additions of pertuzumab and 
TDM1, provides significantly better breast cancer prediction.Immunotherapies 
are progressing in the field of development, with several FDA-approved antibody 
treatments being utilised in adjuvant and metastatic situations. Current gains in 
targeted treatments, robust specific immunotherapy, and grip ensure that general 
endurance in the adjuvant context will continue to improve. The very precise and 
focused vaccination treatment method not only avoids the side effects of contem-
porary standard of care medicines, such as active and passive immunotherapies 
like ipilimumab, but also provides a remedial strategy for those who are not 
HER2-overexpressing. Despite the fact that vaccinations for breast cancer have 
been mostly unsuccessful in previous clinical studies, the majority of these studies 
were done in the setting of advanced age metastatic disease, which is an unfavour-
able environment for medicines designed to halt, rather than manage disease.
Immunogenicity is now showing a connection with medical response in adjuvant 
situations, according to current clinical research.

8. Drugs used for breast cancer

FDA approved and clinical status of investigational drugs for breast cancer 
treatment is listed in Table 1 [45].
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9. Endocrine resistance for breast cancer

ER is expressed in around 70% of breast malignancies and plays an important 
role in their genesis and progression. Because of the involvement of ER in ER+ 
breast cancer, endocrine treatments such as aromatase inhibitors (AIs), selective 
oestrogen receptor modulators (SERMs), and selective oestrogen receptor degrad-
ers are commonly used to treat these tumours (SERDs). While hormone treatments 
have been successful in avoiding recurrence, about 20% of these tumours acquire 
resistance to hormone therapies and will return.

10. Drugs that block oestrogen receptors

These medicines operate by preventing oestrogen from driving the growth of 
breast cancer cells.

1. Selective oestrogen receptor modulators (SERMs)

The “selective” in the acronym SERMs alludes to the unique regulation of the 
oestrogen receptor and the downstream effect on ER signalling that happens inside 
various organs. Tamoxifen, for example, is known to have anti-proliferative (or 
antagonistic) effects in breast tissue while having agonistic or partial agonistic 
effects on the uterus, bone, and heart. In both the usage of SERMs and the creation 
of new medicines, the ratio of therapeutic benefit to negative tissue-specific effects 
has been an essential factor to address [46].

a. Tamoxifen

Tamoxifen has been effectively used to treat breast cancer in both premeno-
pausal and postmenopausal women at all stages. It’s utilised as a palliative treatment 
for those who have advanced cancer, as well as an adjuvant treatment after surgery 
for node-negative or positive cancer. Tamoxifen has consistently prolonged disease-
free intervals as a postsurgical adjuvant therapy for early breast cancer with a low 
frequency of side effects. It is possible to achieve a 20% decrease in 5-year mortality, 
with the reduction being most noticeable in women over 50. Tamoxifen is used to 
reduce the risk of breast cancer and invasive breast cancer in women who are at high 
risk for the disease, as well as those who have ductal carcinoma in situ. Negative 
oestrogen receptor tumours do not respond to treatment [47].

b. Role of tamoxifen:

For individuals with oestrogen receptor (ER)-positive breast cancer, anti-
oestrogen tamoxifen has been the endocrine therapy of choice. Tamoxifen decreases 
the risk of recurrence following surgery when used as an adjuvant treatment. 
Tamoxifen provides an objective clinical response in half of the individuals with 
recurrent illness. The cancer, on the other hand, will eventually become hormone-
independent, meaning it will no longer respond to tamoxifen. Despite significant 
research, resistance mechanisms remain mostly understood [48].

Tamoxifen’s hopeful profile spurred a slew of clinical studies and decades of 
anti-oestrogen research, which revealed new details about ER biology and its link to 
ER-dependent malignancies. There have been several randomised studies of adju-
vant tamoxifen in early breast cancer patients. Before recurrence, information on 
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every woman in any randomised study of adjuvant tamoxifen versus no tamoxifen 
that began before 1990 was sought in 1995. The overall effects of tamoxifen proved 
to be minor among these women, therefore following studies of recurrence and 
total mortality are limited to the remaining women [49].

The effects of 1–2 years of tamoxifen and around 5 years of tamoxifen in 
the studies comparing tamoxifen vs. no adjuvant tamoxifen are summarised in 
Tamoxifen versus No Tamoxifen. The studies are separated by ER status, which is 
categorised as ER-poor, ERpositive, and ER-unknown, according to the recognised 
importance of the original tumour’s hormone receptor status. Current and future 
assessments of receptor state may be more predictive of response as procedures 
for assessing receptor status advance. ER measures were, on average, extremely 
significant predictors of response to 5 years of adjuvant tamoxifen, despite the fact 
that it may be difficult to characterise the receptor assays employed in these stud-
ies many years ago. Many of the effects and side effects of tamoxifen in ER breast 
cancer patients are random [50].

2. Selective oestrogen receptor degraders (SERDs)

A selective oestrogen receptor degrader or downregulator (SERD) is a medica-
tion that binds to the oestrogen receptor (ER) and causes the ER to be degraded and 
therefore downregulated in the process. They’re utilised with earlier types of medi-
cines including selective oestrogen receptor modulators (SERMs) and aromatase 
inhibitors to treat oestrogen receptor-sensitive or progesterone receptor-sensitive 
breast cancer.

Selective oestrogen receptor degraders (SERDs) are oestrogen receptor antago-
nists that also cause proteasome-mediated ER degradation. Fulvestrant is a therapy 
for ER+ advanced breast cancer that has been authorised by the FDA [51].

a. Fulvestrant

Fulvestrant is an oestrogen receptor antagonist that inhibits and destroys oestro-
gen receptors. This medication is not a SERM; rather, it works as an anti-oestrogen 
throughout the body. It’s referred to be an oestrogen receptor degrader that’s selec-
tive (SERD). Fulvestrant is at least as effective and safe as comparator endocrine 
treatments in postmenopausal women with advanced hormone-sensitive breast 
cancer. Fulvestrant is a safe and effective systemic medication that can be regarded 
as a viable therapeutic option for postmenopausal women with hormone-sensitive 
advanced breast cancer in the treatment sequence [52].

Fulvestrant is a steroidal ER antagonist that was developed for its lack of 
agonism in almost all types of tissues studied, but it was subsequently shown to 
be a SERD that causes ER to be ubiquitinated and destroyed by the proteasome. 
It is, in fact, the only FDA-approved treatment for postmenopausal women who 
have relapsed on hormone therapy and have advanced ER-positive breast cancer. 
Fulvestrant, on the other hand, has an unfavourable pharmacokinetic profile and 
requires a painful intramuscular injection to be administered (500 mg dose). 
Stable-state plasma concentrations require 3–6 months to achieve, even with 
improved loading-dosage regimens (500 mg dose on days 1, 15, and 29). Its overall 
therapeutic efficacy is limited by the poor ER turnover seen in patient cases (less 
than 50%), compared to complete receptor downregulation shown in in-vivo 
breast cell line investigations. As a result, there is still an unmet medical need 
for a potent orally available SERD capable of reaching higher levels of malignant 
exposure [53].
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b. Mechanism associated with ER Suppression:

Resistance to oestrogen suppression or inactivation of ER by other methods 
(SERMs/SERDs) is linked to and/or caused by mechanisms. Although the phrase 
“endocrine resistance” technically refers to resistance to oestrogen suppression, we 
use it here to refer to oestrogen or ER suppression resistance.

In ER+ metastatic breast cancer, endocrine resistance is an unavoidable out-
come (MBC), As a result, when CDK4/6 inhibitors (e.g., palbociclib, ribociclib, 
abemaciclib) are added to antiestrogens, progression-free survival in patients 
with ER+ MBC is significantly increased compared to antiestrogens alone. The 
addition of CDK4/6 inhibitors to antiestrogens abrogates some of the resistance 
mechanisms. However, in early-stage cancers, they might still be important 
drivers of hormone resistance. The Figure 5 was indicating that the activa-
tion of HER2, EGFR, FGFR, and Other RTKs Promotes Endocrine Resistance, 
RTK activation is augmented by PI3K and MAPK signalling, which induces ER 
phosphorylation and promotes ligand-independent ER activation (most often 
by mutation or amplification). NF1 loss-of-function mutations activate Ras 
in a constitutive manner, which can activate the PI3K and MAPK pathways as 
well. In a ligand-independent way, ER phosphorylation increases transcription 
of ER-regulated genes. ER and oncogenic RTK signalling both target CCND1, 
the gene that encodes cyclin D1. RTKs activate additional transcription factors 

Figure 5. 
Activation of HER2, EGFR, FGFR, and other RTKs.
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that promote ER-independent survival in addition to ER. The combination of 
an ER antagonist with the appropriate RTK inhibitor CDK4/6 inhibitor might 
potentially overcome RTK-mediated endocrine resistance. Sensitivity to endo-
crine treatment and resistance to it in ER+ breast cancers are similar to other 
hormone-dependent malignancies including prostate cancer and endometrial 
cancer [54, 55].

11. Concept of selective oestrogen receptor modulation

SERMs are estrogenic and antiestrogenic molecules that have a wide range of 
effects. Two SERMs are now accessible in clinical trials: tamoxifen for breast cancer 
prevention and raloxifene for osteoporosis prevention. Tamoxifen was first created 
as an antiestrogen to treat breast cancer. Tamoxifen’s widespread use as a therapy 
for all stages of ER-positive breast cancer in men and women has been assisted by 
its low risk of adverse effects. Concerns about the effects of an antiestrogen on bone 
density and the risk of CHD were raised when the strategy of testing long-term 
(5 years) tamoxifen therapy in ER-positive, lymph node-negative women and the 
proposed testing of tamoxifen as a preventive agent in high-risk women were pro-
posed in the mid-1980s. Tamoxifen, on the other hand, is not a pure antiestrogen; 
it has antiestrogenic as well as estrogenic properties [56]. According to laboratory 
studies, tamoxifen is a selective oestrogen in areas like bone but an antiestrogen 
in breast tissue, preventing carcinogenesis and tumour development. Laboratory 
investigations dating back to the 1980s [57, 58] have confirmed raloxifene’s SERM 
activity.

11.1 Mechanisms of action

Even though exact molecular mechanism of oestrogen or SERMs at the ER 
is unknown, two ERs govern oestrogen activity in target tissues: 1) ER, the 
traditional ER [59]; and 2) ER, which controls the action of ER and decreases 
tamoxifen’s oestrogen-like effects [60, 61]. Although the crystal structure of the 
whole ER has yet to be determined by x-ray crystallography, data on the ligand-
binding domains conjugated with estrogens and SERMs has been published. 
The outer forms of oestrogen and SERM complexes have been better under-
stood as a result of this information. Oestrogen receptors (ERs) are nuclear 
transcription factors that bind estrogens, dimerize, and form a transcription 
complex with coactivators and other molecules to help unwind DNA. At oestro-
gen-responsive genes, RNA polymerase produces messenger RNA. SERM–ER 
complexes appear to alter the signal transduction route to oestrogen-responsive 
genes (through oestrogen response elements [EREs]) by binding a corepressor 
protein or activating fewer or different coactivators. This is, however, a simplis-
tic model of oestrogen and antiestrogen action that overlooks the nuances of 
SERM function.

12. Drugs repurposed for breast cancer treatment

The commercially approved drugs that were originally used for diseases other 
than breast cancer are discussed in the following section. These medicines, on the 
other hand, are now being used or researched for breast cancer treatment. The drug 
candidates repurposed for breast cancer are divided into categories based on how 
they work (Table 2).
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13. Executive summary

Breast cancer is still a significant public health problem, even though it was 
first reported more than 3500 years ago. This is particularly true in light of most 
societies’ substantial and harmful lifestyle changes. At both the epidemiological 
and molecular levels, breast cancer is diverse. Many significant breast cancer risk 
factors have been discovered by clinical and epidemiological data, including age, 
family history, early menarche, and medical history; variables that are intangible 
or beyond our control. However, about 70% of breast cancers nowadays are caused 
by risk factors that may be altered or avoided. Obesity, lack of exercise, smoking, 
drinking, and nutrition, as well as other variables that may have a detrimental 
impact on a woman’s hormonal environment, are among them. These important 
rate-limiting measures in the battle against breast cancer should not be ignored. As 
discussed in this review, significant advances in cancer biology have led to signifi-
cant advancements in cancer early detection, therapy, and prevention in recent 
years. The growing emphasis on personalised treatment, as well as the combination 
of targeted and immunological therapies with current therapeutic techniques, 
holds potential for the cure of breast cancer. Drug resistance in breast cancer is a 
complicated clinical condition caused by a variety of molecular changes. Because 
chemotherapy is often used in conjunction with targeted treatments for the ER+ or 
HER2+ subtypes in clinical practice, targeted therapy-induced resistance may lead 
to chemo-resistance and vice versa. Treatment methods and therapeutics must be 
specially developed to address each distinct resistance mechanism in various clinical 
circumstances in response to every particular resistance mechanism. Early clini-
cal trials are looking for drugs that target each route individually. Clinical studies 

Drug Chemical name Mechanism Original indication

Alkylating agent Cyclophosphamide Inhibits DNA 
replication by 
damaging genetic 
material of the cell

As immuno-modulator in 
autoimmune diseases

Thiotepa Immunosuppressant

Anthracyclins Doxorubicin DNA intercalation Antibiotic from Streptomyces 
peucetius bacterium

Capecitabine Colon cancer

Antimetabolite Fluorouracil False building 
block incorporation 
during cell growth

Keratoacanthomas, actinic 
keratosis, and skin warts

Gemcitabine Anti-viral drug

Methotrexate Leukaemia

CDK 4/6 inhibitor Palbociclib, Palbonix Interferes with cell 
cycle

CDK 4/6 inhibitor

Tamoxifen Albright syndrome, 
ovulation induction

HT-SERM Toremifene Binds to ER Infertility with an ovulatory 
disorders

Raloxifene Osteoporosis in 
postmenopausal women

HT-Aromatase 
inhibitor

Letrozole Lowers oestrogen 
amount

Induction of ovulation

Anastrazole Induction of ovulation

Table 2. 
A list of repositioned drugs approved for breast cancer treatment.
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investigating tailored medication delivery methods are also underway in the mean-
while. These therapeutic agents may enter cells through receptor-mediated endo-
cytosis, thereby bypassing typical drug resistance mechanisms such as drug efflux 
pumps, cell surface docking site mutations, and so on, allowing them to overcome 
drug resistance. The heterogeneity of breast cancer cells, on the other hand, poses 
major difficulties in terms of treatment response and may be a contributing factor 
in drug resistance. Tamoxifen, a selective oestrogen receptor modulator, is claimed 
to be used as a therapy for all stages of oestrogen receptor (ER)-positive breast can-
cer in men and women, thanks to its low risk of adverse effects. Notwithstanding 
major investments in prevention and treatment, breast cancer remains the primary 
cause of cancer mortality in women throughout the world. The existing therapeutic 
options are both expensive and have serious negative effects.

Drug repurposing, or finding new applications for existing therapies, has arisen 
as an unique drug development strategy. Repositioning existing, off-patent non-
cancer medicines with established targets into newer indications is like repurposing 
outdated weaponry for a new war. The process of medication repurposing has been 
made easier thanks to developments in genomics, proteomics, and information 
computational biology. The repositioning method not only speeds up the medica-
tion development process, but it also results in more effective, less expensive, 
and safer medicines with fewer/known adverse effects. Alkylating compounds, 
anthracyclins, antimetabolites, CDK4/6 inhibitors, aromatase inhibitors, mTOR 
inhibitors, and mitotic inhibitors have all been repurposed for breast cancer therapy 
in the recent decade.

14. Conclusion and future perspectives

Medical experts are enthusiastic about the increasing management methods, 
but they are concerned that resources will be inadequate to get these therapeutics to 
advanced clinical trials. The difficulties are therefore to choose the most competent 
drugs to be examined, as well as the appropriate clinical trials to conduct such 
assessments. Over the last several years, new drugs targeting particular therapeutic 
targets have resulted in significant advances in the treatment of breast cancer. 
Resistance to systemic therapy (endocrine and others), expensive treatment, and 
limited availability of adequate cancer care in many countries remain challenges. 
We must continue to improve our available technology in order to provide proper 
guidance for those living with the disease, as well as those at high risk of developing 
it, and to develop new, more effective therapies in order to significantly improve 
the outcomes of breast cancer patients around the world. Individualising therapies 
offers the potential of helping patients through challenging treatment choices in 
order to enhance their long-term results. In this review, we have uncovered the most 
well-documented therapy options and potential technologies in the fight against 
breast cancer. We go through the benefits of medication repurposing for breast 
cancer treatment in depth in this article. We offered a number of medicines that 
were effectively repurposed for the treatment of breast cancer. Preclinical investiga-
tions have shown that a combination of chemotherapies and a medication repurpos-
ing strategy might produce promising results. The possibility of non-cancer drugs 
being studied for breast cancer in the future, as well as the obstacles and bottlenecks 
of drug repurposing, were also highlighted. As a result, we draw the conclusion that 
combining system biology and bioinformatics to select the most appropriate gene-
protein-pathway-target-drug modelling has a high potential for providing more 
efficient, safer, and cost-effective chemotherapeutics for the treatment of even the 
most severe forms of breast cancer.
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Chapter 8

Repurposing of Metformin as a 
Multifaceted and Multitasking 
Preventative and Treatment for 
Cancer
Raymond Chang

Abstract

Metformin is a cornerstone treatment of diabetes mellitus. Since 2005 when 
it has been first reported to reduce the risk of cancer in diabetics, a large number 
of preclinical and clinical studies have implicated its potential role as a preventa-
tive and adjunct therapy for a broad range of cancers. Whereas preclinical studies 
demonstrate its actions on a multitude of molecular pathways involving nearly all 
aspects of cancer development including metabolism, angiogenesis, apoptosis, 
autophagy, immunity, epigenetics, inflammation and crosstalk with the microbi-
ome, other studies demonstrate its synergism with a range of anticancer modalities 
including chemotherapy, radiotherapy, immunotherapy, and targeted therapies. 
Furthermore, an increasing number of clinical studies not only confirm its pre-
ventative properties against cancers but have extended its potential for a possible 
adjunctive role in the neoadjuvant, adjuvant, maintenance and salvage therapies of 
cancer. This article intends to summarize the basic science that allows us to under-
stand the complex multiple mechanisms of action of this remarkable multitasking 
molecule as well as review the recent meta-analyses that have summarized the 
clinical studies assessing the therapeutic efficacy of metformin for various cancers.

Keywords: metformin, diabetes, repurposing, cancer therapy

1. Introduction

Metformin is derived from the French lilac (also known as goat’s rue or Gallega 
Officinalis), a medieval European medicinal herb that was first described as a diabetes 
treatment in a mid-17th century English treatise called Culperper’s Complete Herbal, 
but it was not until 1957 that the French physician Jean Sterne formally patented met-
formin as a drug treatment for diabetes. The efficacy of metformin for type 2 diabetes 
mellitus (T2DM) has since been established and it was approved by the US FDA in 
1995 as a treatment for T2DM. Meanwhile by the late 1980’s, studies on the effects of 
metformin on insulin receptor binding on tumor cells led researchers to conceive that 
metformin’s effect may potentially be applied for cancer management [1]. Separately, 
it has long been suspected that T2DM may be a risk for cancer with its cancer promot-
ing effects believed due to hyperinsulinemia in T2DM, since insulin was believed 
to exert a mitogenic effect [2], thus it was simply logical to investigate the potential 
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benefits of an insulin lowering and hence counter-mitogenic anti-diabetic agent for its 
possible anti-cancer effects. By the early 2000’s, studies have already established the 
potential benefits of metformin on hyperinsulinemia, obesity, hyperlipemia, hyper-
tension, fibrinolysis, and endothelial dysfunction, with the expansion of the drug’s 
potential applicability beyond T2DM to address weight gain, acanthosis nigricans, 
infertility and polycystic ovary syndrome [3]. In 2005, a landmark retrospective case 
control study by Evans et al. demonstrated that metformin exposure in T2DM was 
associated with the reduced risk of cancers [4] and further epidemiological studies 

Figure 1. 
Research development of metformin as anticancer agent: Since early epidemiologic reports suggesting metformin 
use in type 2 diabetes was associated with reduced cancer incidence, research evidence that metformin may 
be preventive and/or therapeutic for human cancers has expanded, with most of the molecular and clinical 
breakthroughs in metformin and cancer have taken place during the past decades, and hundreds of clinical 
trials are currently exploring metformin’s potential in cancer. Source: [5], Licensed under CC BY 3.0.
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also corroborated that diabetics treated with metformin have a lowered incidence of 
cancer than those treated with other agents, leading to increasing calls for the use of 
metformin to reduce the risk of cancer. In the past decade, metformin has seen over 50 
million prescriptions per year in the US alone and there has been a concurrent explo-
sion of interest in metformin’s anticancer effects with dozens of systematic reviews 
and meta-analyses performed and published on hundreds of cancer studies involving 
hundreds of thousands of patients and with hundreds of clinical trials on metformin 
and cancer currently actively recruiting. The development and expansion of research 
into metformin’s anticancer activities in the past two decades from the bench to the 
clinic is illustrated below in Figure 1.

Given that this review is intended as a summary of current clinical evidence 
for the potential uses of metformin in the prevention and treatment of cancer, we 
will provide only a succinct synthesis of the thousands of preclinical studies on the 
biological mechanisms and molecular pathways that has been performed in the past 
two decades and focus our attention mostly on recent clinical evidence of metfor-
min’s efficacy as demonstrated by clinical studies.

2. Pleiotropic effects of metformin against cancer

The early days of laboratory research on metformin’s anti-cancer mechanisms 
focused mainly on its metabolic effects on cell proliferation, which naturally 
follows from the initial use of metformin as a treatment for T2DM as a meta-
bolic disorder. Eventually, it became gradually apparent that unlike modern day 
targeted therapies, metformin’s anti-neoplastic bioactivity is broad ranged and 
pleiotropic, encompassing not only its established metabolic effects, but also 
involving antiangiogenic, anti-inflammatory, epigenetic, apoptotic and autopha-
gic, and immunologic actions as well as effects on the microbiome and on cancer 
stem cells (CSCs) that all synergistically contribute to overall cancer prevention 
and control. Furthermore, within each category of its bioactivity, it further 
exerts multiple molecular actions, and it has thus become increasingly apparent 
that metformin could be properly conceived of as a multi-faceted multi-tasking 
molecule with direct and indirect actions against cancer. In summary, the anti-
cancer effects of metformin is based on 1) its main action on cellular metabolism 
via the maintenance of plasma glucose and insulin levels, 2) targeted action 
against cancer cells with pleiotropic inhibitory effects on multiple pathways 
involved in cancer cell survival and metastasis, and 3) indirect anti-angiogenic 
anti-inflammatory as well as immunomodulatory effects and also its actions on 
the microbiome and CSCs. The complex pleiotropic nature of metformin effects 
on cancer is illustrated in Figure 2.

2.1 Metformin metabolic effects

To understand the metabolic impact of metformin on cancer, we must first 
recognize the intimate relationship between glucose energy metabolism and cel-
lular proliferation as well as a unique propensity of cancer cells to utilize glucose 
anaerobically even in the presence of oxygen in contrast to non-cancer cells which 
utilize oxidative phosphorylation to generate energy. This phenomenon was first 
noted by Otto Warburg almost a hundred years ago, and subsequently termed the 
“Warburg effect” [7]. This altered energy metabolism of cancer cells may underline 
their proliferation, invasiveness, and chemoresistance and this altered metabolic 
pattern in cancer is regulated by oncogenic and tumor suppressor signals such as 
hypoxia inducible factor 1 (HIF-1), myelocytomatosis oncogene cellular homolog 
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(Myc), p53, and the phosphoinositide 3 kinase (PI3K)/AKT8 virus oncogene cellular 
homolog (Akt)/mammalian target of rapamycin (mTOR) pathways.

Metformin’s main pharmacologic action is the reducing elevated plasma glucose 
is largely due to the improvement in hepatic insulin resistance leading to a reduction 
in hepatic glucose output from gluconeogenesis, increases glucose uptake in muscle, 
decreased absorption of sugar from the intestines, and improved insulin sensitiv-
ity, mainly via activation of a cellular energy sensor known as AMP-activated 
protein kinase (AMPK). The major downstream target of AMPK is mTOR, which 
is very important in cellular growth processes and cancer dynamics, and mTOR is 
inhibited by AMPK [8]. Since glucose metabolism is at the center of the metabolic 
derangement that is a hallmark of cancer cells, and metformin chiefly targets 
glucose metabolism, it follows that the altered metabolic pathway may be a target by 
metformin for cancer prevention or therapy.

It is through its main effects above on metabolism and cellular energetics that 
metformin can attenuate cancer cell proliferation (See Figure 3). Furthermore, 
these metabolic effects in turn impact the immune system, epigenetics, inflam-
mation, cellular apoptotic and autophagic pathways as well as the microbiome and 
CSCs which all play a role in cancer development.

2.2 Metformin immuno-modulatory effects

The immune system participates broadly in the prevention and control of 
cancer and interacts with biological pathways of metabolism and inflammation, 

Figure 2. 
Representation of some of the pleiotropic direct and indirect anticancer effects of metformin as illustrated 
by molecular and cellular pathways. Metformin effects key energy and metabolic processes such as the 
mitochondrial respiration (complex I), TCA cycle, fatty acid β-oxidation, gluconeogenesis, and glycolysis. 
Metformin affects the cell cycle, cell growth, immune response, autophagy, and apoptosis, angiogenesis and 
cancer stem cells. Abbreviations: 4EBP1, 4E-binding protein 1; ACC, acetyl-CoA carboxylase; AKT, AKT 
serine/threonine kinase 1; AMPK, AMP-activated protein kinase; BCL2, apoptosis regulator, BCL2; CCND1, 
cyclin D1; CSC, cancer stem cell; DDIT4, DNA damage inducible transcript 4; EMT, epithelial-to-mesenchymal 
transition; FOXO3, forkhead box O3; GPDH, glycerol-3-phosphate dehydrogenase; IPMK, inositol polyphosphate 
multikinase; LKB1, liver kinase B1; miRNA, micro RNA; mTORC1, target of rapamycin complex 1; SREBF1, 
sterol regulatory element binding transcription factor 1; STAT3, signal transducer and activator of transcription 
3; TCA, tricarboxylic acid; TGFB1, transforming growth factor beta 1; VEGF, vascular endothelial growth 
factor. Phosphorylated molecules are indicated by a prefix p. source: [6], Licensed under CC BY 4.0.
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and metformin again acts in a multifaceted fashion to bolster immunity against 
cancer with effects on almost every aspect of the immune system, especially 
with reference to cancer immunty (Figure 4). One of metformin’s actions is the 
enhancement of CD8+ T lymphocytes and rescues them from exhaustion. CD8+ 
T cells which is one of the key components in cellular immunity against tumors, 
as these cells can expand and transform into effector cytotoxic T lymphocytes 
(CTL) which targets cancer. This phenomenon of the rescue of exhausted CD8+ 
T lymphocytes has been confirmed in vitro in leukemia, melanoma, renal cell 
carcinoma, non–small-cell lung carcinoma (NSCLC), gastrointestinal carci-
noma, and breast cancer. Also, metformin-induced activation of AMPK as one 
of its main metabolic actions mentioned above promotes immune check-point 
programmed death ligand 1 (PD-L1) degradation, which allows CTL-mediated 
tumor cell death [11]. Additionally, metformin can also enhance local as well as 
systemic cytokine responses to tumors [12]. Furthermore, metformin also has 
indirect effects on the immune system via its influence on the microbiome and its 
anti-inflammatory effects, which has been reviewed exhaustively and is briefly 
summarized below.

Figure 3. 
The effect of metformin in suppressing cancer cell growth via metabolic pathways. Metformin inhibits 
complex I of the electron transport chain, which leads to increased AMP/ATP ratio and activation of AMPK 
by LKB1. Activated AMPK subsequently inhibits mTOR and its downstream targets by the following two 
pathways: 1. AMPK stabilizes TSC1/2, which inhibits Rheb, an activator of mTOR; 2. AMPK inhibits mTOR 
binding protein raptor. Metformin directly inhibits mTOR by up-regulating REDD1 and suppressing rags. 
AMPK, AMP-activated protein kinase; Rheb, Ras homolog enriched in brain; LKB1, liver kinase B1; REDD1, 
regulated in development and DNA damage response 1; TSC, tuberous sclerosis complex; rags, rag GTPases; 
mTOR, mammalian target of rapamycin; 4EBP1, eukaryotic initiation factor 4E binding protein 1; S6K, S6 
kinase. Source: [9], Licensed under CC BY 3.0.
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2.3 Metformin effects on the microbiome

Whereas science has become increasingly aware of the central role the gut 
microbiome plays in health and diseases including cancer, particularly via its effects 
on the immune system [13], metformin’s beneficial role on host metabolism has 
also been found to be in part related to the microflora in the gut. The microbiome 
modulates our immune system and inflammatory response and both of these are 
key factors in determining cancer development and are associated with inflam-
matory immune response [14] highlights the crosstalk between metformin effects 
on metabolism, immunity, inflammation and the microbiome, which in turn 
can modulate cancer biodyamanics, and part of the mechanisms involved in this 
complex interplay is illustrated in Figure 5 below.

2.4 Metformin anti-inflammatory effects

Inflammation effects on cancer promotion is well known. In 1863, Rudolf 
Virchow first proposed the role of inflammation in cancer based on the observa-
tion of leukocytes in cancerous tissue. Subsequently, accumulated evidence has 
identified inflammation both as a cause and result of malignancy [16], with numer-
ous studies in past decades implicating chronic inflammation in the promotion 
of malignancy [17] (Figure 6). Not surprisingly then, given the T2DM’s known 
association with chronic low-grade subclinical inflammation which is part and 
parcel of its the insulin resistance that is its hallmark [19], and metformin’s effects 
on the immune and metabolic systems, that metformin must also modulate the 
inflammatory response. This connection has been well demonstrated by animal 
experiments where metformin treated rodents reveal dampened pro-inflammatory 
pathways nuclear factor k B (NF-k) and Jun N-terminal kinase (JNK) and increased 
anti-inflammatory cytokine IL-10 [20].

Figure 4. 
Metformin effects related to anticancer immunity. Metformin indirectly increases T-cell activity by negatively 
regulating (a) chronic inflammation, (B) hypoxia, and (C) PD-L1 levels that inhibit T-cell activity. 
Metformin directly relieves T-cell exhaustion by means of metabolic reprogramming of TIL and promotes 
memory T-cell differentiation (D). Metformin shifts the profile of gut microbiota more favorably to T-cell 
immunity (TAM) tumor-associated macrophages (E); (Mφ) macrophages; (MDSC) myeloid-derived 
suppressor cells; (T) T-cell; (DAMPs) damage-associated molecular patterns; (APC) antigen presenting; 
(SCFA) short-chain fatty acid. Source: [10], CC BY-NC 3.0.
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2.5 Metformin epigenetic effects

Epigenetics is the genomic mechanism that reversibly modulates gene 
expression independent of DNA sequences. Epigenetic processes which allow 
for the gene modulatory effect involve DNA methylation, histone modification, 

Figure 5. 
Crosstalk between metformin action and gut microbiota. GLP1: Glucagon-like peptide-1; GLP2: Glucagon-like 
peptide-2; LPS: Lipopolysaccharide; SCFA: Short-chain fatty acid. Source: [15], Licensed under CC BY-NC 4.0.

Figure 6. 
Inflammatory cytokines released by immune cells within the tumor microenvironment has a direct effect on 
pre-malignant and cancer cells by increasing their proliferation and resistance to cell death and stresses thus 
directly promoting tumor growth and progression. Additionally, inflammatory signals can suppress anti-
tumor immunity via action of regulatory T-cells, myeloid cells and enhance other cancer promoting cells (such 
as fibroblasts, myeloid cells and endothelium of new blood vessels); altogether, these inflammation driven 
changes also significantly contribute to tumor growths and progression. TME: Tumor microenvironment, Treg: 
Regulatory T cells. Source: [18], Licensed under CC BY 3.0.
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the readout of these modifications, chromatin remodeling and the effects of 
noncoding RNA all of which affects cellular activities such as growth and dif-
ferentiation. Thus, epigenetics can in one sense be conceived of as a master 
switch of cancer biological processes. Recently, there has been growing interest 
in epigenetic targeting as a promising therapeutic option for cancer [21]. And 
since cellular metabolism is tightly linked to epigenetic modifications, it is again 
not surprising that metformin as a modulator of cellular metabolism may also 
possess significant epigenetic effects mainly via histone modification  
(Figure 7), which in turn is another avenue whereby metformin may exert its 
anti-cancer effects [9].

2.6 Metformin apoptotic and autophagic effects

Both apoptosis or programmed cell death and autophagy are important 
catabolic and tumor-suppressive pathways that control cell survival and cell death 
and are thus increasingly important therapeutic targets in cancer [22]. While 
apoptosis involves cellular suicide and cell death pathways, autophagy involves 
recycling and degradation of cellular waste which if maladapted and excessive 
can also lead to cell death and there is significant cross-talk between these two 
pathways [23]. In cancer biology, autophagy is cancer suppressive as it facilitates 
the degradation of oncogenic molecules thus pre-empting the development of 
cancers, while apoptosis leads to cellular suicide and limits the survival of cancer 
cells. As a result, defective or inadequate autophagy or apoptosis can both lead to 
cancer. The complexity of the crosstalk between the apoptosis and autophagy is 
illustrated in Figure 8.

In the case of these pathways, metformin has been shown to promote apoptosis 
in a variety of cancers via various biological pathways [24] while also promoting 
autophagy [25] as two other dimensions of its anti-cancer bioactivity.

Figure 7. 
Schematic of histone modifications via metabolic effects of metformin. Glycolysis determines the NAD+/NADH 
ratio, which affects the activity of histone deacetylases to reduce histone acetylation. Source: [9], Licensed under 
CC BY 3.0.
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2.7 Metformin effects on cancer stem cells

CSCs were only identified in the 1990s, and they have been hypothesized to 
persist in tumors as a distinct cell population capable of self-renewal and maybe 
responsible for cancer relapse and metastasis by giving rise to new tumors. These 
CSCs are also believed to be resistant to traditional chemotherapy and radiation. A 
complex regulatory network consisting of microRNAs and Wnt/β-catenin, Notch, 
and Hedgehog signaling pathways control the properties of CSCs. Therefore, the 
development of specific therapies targeting and its regulatory pathways is another 
avenue for improved cancer treatments to prevent relapse and metastases, and 
improve survival [26]. In this regard, metformin has been reported to target CSCs 
perhaps via blunting of the Warburg effect and consequently down-regulates their 
growth. In animal studies, it has been found that metformin exposure was associ-
ated with a ~ 2-fold reduction in ovarian CSCs and increased in chemotherapy 
response and translational studies completed as part of a multi-center phase 2 
clinical trial was able to demonstrate a 2.4-fold CSC reduction as well as improved 
survival in ovarian cancer patients [27].

2.8 Metformin’s antiangiogenic effects

Angiogenesis is the process where a tumor can induce its own blood supply via 
neovascularization to enhance its own nutrient source as well as increase its pro-
pensity to metastasize. It follows that antiangiogenesis which involves the suppres-
sion of vascular supply to tumors may be an effective method of cancer control as 
initially proposed by Folkman [28]. In this regard, preclinical studies with metfor-
min have reported that it indirectly modulates tumor angiogenesis most likely via 
metabolic pathways affecting proangiogenic signals. As an example, metformin is 
known to decrease HIF-1α stability in cancer cells, reducing the expression of HIF-1 

Figure 8. 
Complex crosstalk between autophagy and apoptosis pathways. Various proteins involved at the different 
points of crosstalk are shown and labeled. Lines denote interactions or processes, with solid lines corresponding 
to intrapathway processes and dashed lines corresponding to inter-pathway connections. Red lines denote 
inhibitory interactions, while lines with arrows indicate facilitating interactions. Source: [24], Licensed under 
CC BY 3.0.
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targeted genes and thus resulting in smaller tumor vessel size, reduced microves-
sel density and slower tumor growth [29]. Another murine experiment analyzing 
angiogenesis in a matrigel plug model found that metformin treatment lead to a 
decrease in angiogenesis [30].

3. Deployment strategies for metformin in cancer

Metformin can be used tactically under various scenarios against cancer. It can 
be used as standalone or in combination with other agents for the primary or sec-
ondary prevention of cancer [31], as neoadjuvant or adjuvant cancer therapy [32], 
as maintenance therapy or salvage therapy, or to reduce chemoresistance or enhance 
radiosensitivity [33] as well as for the reduction of side-effects or complications 
[34]. Notably, metformin is usually deployed as an adjunct but not as a sole agent 
except in the case of primary prevention. Since it has such low toxicity and multi-
faceted mechanisms of actions, it is usually integrated with other treatment agents 
and modalities under other scenarios besides primary prevention. The key feature 
of metformin that allows this combinatorial deployment is its low toxicity and its 
synergism with various other agents and modalities, as it has been demonstrated 
both in vitro and in vivo.

3.1 Metformin synergies with other anticancer agents and modalities

Notably, synergisms with metformin has been reported with numerous antican-
cer agents and modalities including chemotherapy [35], targeted drugs [36], and 
radiotherapy [37]. In the past ten years alone, metformin synergism with chemo-
therapies pemetrexed [38], temozolomide [39], cisplatin [40], gemcitabine [41], 
paclitaxel [42], 5FU [43], vincristine [44] with targeted agents erlotinib against 
non-small cell lung cancer [45], imatinib against colon cancer [46], gefitinib against 
bladder cancer [47], trastuzumab against human epidermal growth factor receptor 
2 (HER2) positive breast cancer [48], celecoxib against NSCLC [49], regorafenib 
against liver cancer [50], with everolimus as neuroendocrine cancers [51]; and other 
anticancer agents such as with nelfinavir against cervical cancer [52], propranolol 
against breast cancer [53], 2-deoxyglucose against ovarian cancer [54], arsenic 
trioxide against cholangiocarcinoma [55], and with natural compounds epigallocat-
echin-3-gallate [56], curcumin [57], berberine [58], resveratrol [59].

What is interesting is that different biological mechanisms may be responsible 
for the efficacy of metformin’s combinatorial effects depending on the specific 
combination. For example, regulation of lipid synthesis may underlie metformin 
enhancement of taxanes, pro-apoptotic mechanisms could account for its synergy 
with cisplatin, AMPK/mTOR signaling maybe significant when combined with 
hormonal drugs, and suppression of HIF-1, P glycoprotein (p-gp) and multidrug 
resistance-associated protein 1 (MRP1) expression is thought to be responsible for 
metformin’s synergy with anti-metabolites [60]. In the case of targeted agents such 
as the epidermal growth factor receptor (EGFR) inhibitor gefitinib against NSCLC 
where a Chinese study on diabetic NSCLC patients on gefitinib demonstrated 
significantly improved response rate, disease control rate, median progression 
free survival (PFS) and median overall survival (OS) compared with patients 
controls (70.5% vs. 45.7%, P = 0.017; 97.7% vs. 80.4%, P = 0.009; 19 months vs. 
8 months, P = 0.005; 32 months vs. 23 months, P = 0.002, respectively) [61]. 
Separately, metformin combination with m-TOR inhibitor everolimus in patients 
with advanced pancreatic neuroendocrine tumors showed improved median PFS 
of patients treated with the combination vs. control (median PFS, 20.8 months; 
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hazard ratio, 0.49; 95% confidence interval (CI), 0.34–0.69; P < .0001), suggesting 
that metformin may sensitize everolimus in these patients [62]. As far as combina-
tion with antibody treatments go, a randomized phase II study of metformin plus 
bevacizumab-based chemotherapy in advanced or metastatic NSCLC patients 
resulted in a 47% (95% CI, 25%–88%) one-year PFS in patients on metformin, 
which is much improved over a historical control of 15%. Median overall survival of 
15.9 months of metformin treated patients was also improved over control arm of 
13.9 months [63]. Furthermore, metformin in combination with immune check-
point inhibitors (ICI) has received much recent attention as ICI is increasingly 
being deployed in cancer treatments. A retrospective review of 50 NSCLC patients 
receiving ICIs as second or third line therapy with or without metformin showed 
higher overall response rate, disease control, median OS and PFS in the metformin 
group (41.1 vs. 30.7%, P = 0.4; 70.5 vs. 61.6%, P = 0.5; 11.5 vs. 7.6 months, P = 0.5 
and 4.0 vs. 3.0 months, P = 0.6, respectively) [64]. Very recently, several significant 
trials have been launched to further investigate the role metformin may have in 
combination with ICI’s, including a metformin-nivolumab combination in patients 
with NSCLC (NCT03048500), a phase I trial investigating the combined effect of 
metformin and another anti-PD-L1 antibody durvalamab in head and neck squa-
mous cell carcinoma (NCT03618654), a phase I trial of metformin in combination 
of the anti-PD-1 antibody pembrolizumab in advanced melanoma (NCT03311308), 
and a phase II trial combining metformin with nivolumab in stage IV colorectal 
cancer that has not responded to previous treatment (NCT03800602).

The use of metformin under various scenarios against cancer has been best 
studied clinically for primary prevention and in the neoadjuvant setting and some 
of the relevant data is summarized below.

3.2 Metformin for primary prevention of cancer

Cancer prevention is the earliest role that metformin was hypothesized to play in 
the disease as it was Evans’ original 2005 retrospective case–control study demon-
strating metformin’s involvement in reducing cancer risk in T2DM that highlighted 
its potential for cancer [4]. Subsequently, a confirmative cohort study of T2DM 
with metformin followed in which the frequency of cancer was significantly lower 
in patients receiving metformin versus controls who had never received metformin, 
after adjusting for body mass index, hemoglobin A1C, smoking and the use of 
other drugs [65], a finding that was subsequently repeatedly confirmed. Indeed, 
meta-analyses have demonstrated that metformin is associated with a decreased 
risk of breast, colon, liver, pancreas, prostate, endometrium and lung cancer across 
meta-analyses [31] suggesting that people with T2DM receiving metformin dem-
onstrate a lower risk and improved outcomes with most common cancers; more 
specifically one meta-analysis found that metformin-treated T2DM patients had a 
31% reduction in the incidence of cancer and a 34% reduction in cancer mortality 
after adjusting for body mass index [66].

3.3 Metformin in neoadjuvant treatment

Neoadjuvant effects of metformin in combination or alone has been clinically 
explored in several cancers types. In one study of two hundred eighty-five patients 
with esophageal adenocarcinoma treated with concurrent chemoradiation followed 
by esophagectomy, complete remission (CR) was higher in T2DM patients taking 
metformin (34.5%) compared to those who are not (4.8%, P = 0.01) as well as non-
diabetic patients who are not on the drug (19.6%, P = 0.05) and furthermore the CR 
rate was found to be related to metformin dose, with ≥1500 mg per day associated 
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with a higher CR rate [67]. In a separate study of diabetic rectal cancer patients 
undergoing neoadjuvant chemoradiotherapy, those on metformin experienced 
better tumor responses (P = 0.002), pathologic complete remission (p = 0.037), 
and N downstaging (P < 0.001) as well as experienced improved cancer specific 
survival and lower risk of recurrence [68]. Separately, women with endometrial 
cancer on neoadjuvant metformin 850 mg twice daily for an average of 20 days 
between diagnosis and surgery had reduced cell proliferation per Ki-67 expres-
sion, compared to the untreated [69]. A similar biomarker based on a “window 
of opportunity” assessment of metformin 500 mg three times daily for a median 
duration of 18 days in non-diabetic breast cancer also demonstrated that short-term 
preoperative metformin resulted in both clinical and cellular changes including a 
significant decrease in the Ki-67 proliferation index from 36.5 to 33.5% (P = 0.016) 
[70]. Separately and perhaps more significantly, a study involving early-stage breast 
cancer assessing remission rates after neoadjuvant therapy among metformin vs. 
non-metformin users found a significant difference in CR of 24% in the metformin 
group, 8.0% in the non-metformin group, and 16% in the non-diabetic group, 
with metformin use independently predictive of response (OR 2.95; P = 0.04) after 
adjustment for diabetes, body mass index, age, stage, grade, receptor status, and 
neoadjuvant chemotherapy use by multivariate logistic regression [71].

4.  Systematic reviews and meta-analyses on metformin clinical 
outcomes in various cancers

Since metformin is so versatile and has been studied in a wide variety of settings 
from the laboratory to bedside, and since this review is intended to focus on the 
clinical deployment of metformin, it is thus useful to have a summary perspective 
of its potential usefulness in cancer by reviewing clinical results as recently meta-
analyzed for various cancers.

4.1 Bladder cancer

A review of 9 retrospective cohort studies with 1,270,179 patients did not reveal 
a benefit from metformin in preventing bladder cancer (Hazard ratio (HR) = 0.82, 
95% CI = 0.61–1.09; P = .17). However, metformin intake was associated with 
an improved recurrence-free survival (HR = 0.55, 95% CI = 0.35–0.88; P = .01), 
progression-free survival (HR = 0.70, 95% CI = 0.51–0.96; P = .03), as well as 
cancer-specific survival (HR = 0.57, 95% CI = 0.40–0.81; P = .002) [72].

4.2 Breast cancer

There have been a number of studies relating to metformin’s effect on bio-
markers in breast cancer patients and it has been shown that metformin therapy 
reduced the levels of insulin, sex hormones and sex hormone-binding globulin, 
Ki67, caspase-3, p-Akt, obesity, CRP, blood glucose and lipid profile overall [73]. 
More, in a clinical trial to examine the clinical and biological effects of neoadjuvant 
metformin on patients with breast cancer, non-diabetic women with untreated 
breast cancer given 500 mg of metformin three times daily for ≥2 weeks exhibited 
decreased insulin receptor expression (P = 0.04), phosphorylation status of protein 
kinase B /Akt, extracellular signal-regulated kinase 1/2, AMPK and acetyl coen-
zyme A carboxylase (P = 0.0001, P < 0.0001, P < 0.005 and P = 0.02, respectively) 
in tumors correlating with decreases in tumor cell proliferation and increases in 
apoptosis [74]. In T2DM patients with breast cancer, a 2018 meta-analysis of eleven 
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studies of all-cause mortality found a 45% risk reduction was observed for all-cause 
mortality (HR = 0.55; 95% CI 0.44–0.70) and concluded that metformin may 
improve overall survival in this patient subset [75]. Separately in another review, 7 
observational studies showed significantly reduced breast cancer risk among T2DM 
patients on metformin OR = 0.83 (CI 0.71–0.97) [76]. Separately, in a sub-study 
involving over four hundred diabetic patients in the large phase 3 ALTTL trial of 
Her2+ breast cancer patients, Her2+ and estrogen receptor positive breast cancer 
cases on metformin experienced had improved disease free survival, metastasis free 
disease survival and overall survival over those patients not on metformin over a 
median of four and a half years [77]. However despite the vast amount of preclini-
cal and epidemiologic data on its benefits in breast cancer, there are no trials in 
non-diabetic breast cancer patients to date which have unequivocally demonstrated 
a clinical benefit of metformin.

4.3 Colon cancer

Ng et al. from Singapore found 58 studies that provided incidences of colorectal 
adenoma and cancer and cancer survival outcomes and found that metformin 
significantly lowered the risk of colorectal adenoma (RR 0.77, CI 0.67–0.88, 
P < 0.001), advanced adenoma (0.61, CI 0.42–0.88, P = 0.008) and colorectal 
cancer (RR 0.76, CI 0.69–0.84, P < 0.001) respectively. Overall cancer survival (HR 
0.6, CI 0.53–0.67, P < 0.001), even among metastatic cases was also higher among 
metformin users (HR 0.77, CI 0.68–0.87, P < 0.001), and it was concluded that 
metformin significantly reduces colorectal adenoma and cancer incidence as well as 
enhanced colorectal cancer survival at all stages [78].

4.4 Endometrial cancer

In 19 studies reviewed in 2017, metformin used reversed atypical endometrial 
hyperplasia to normal, and decreased cell proliferation from 51.94% (CI = 36.23% 
to 67.46%) to 34.47% (CI = 18.55% to 52.43%) [79], while separately, a review of 
seven studies showed that metformin could significantly improve overall survival 
of in endometrial cancer (HR = 0.61, 95% CI 0.48–0.77, P < 0.05) and reduce their 
recurrence risk (OR = 0.50, 95% CI 0.28–0.92, P < 0.05) [80], whereas another 
review of six retrospective cohorts if 4723 endometrial cancer cases demonstrated 
that metformin use was associated with a significant reduction in overall mortality 
in comparison with not using metformin (adjusted HR 0.64, 95% CI 0.45–0.89, 
P = 0.009) irrespective of diabetic status [81], and these results corroborated the 
improved overall (HR, 0.58; 95% CI, 0.45–0.76; P = 0.207) as well as progression 
free survival (HR, 0.61; 95% CI, 0.49–0.76; P = 0.768) found in another review of 
6242 patients from fourteen studies [82].

4.5 Lung cancer

An analysis of 13 observational studies found lung cancer incidence to be 
reduced in diabetic patients on metformin vs. no metformin (RR = 0.89; 95% 
CI, 0.83–0.96; P = 0.002) [83]. A separate meta-analysis found six studies 
comparing metformin usage and non-metformin usage significantly improved 
overall survival in diabetic patients with NSCLC [pooled HR =0.87 (0.77–0.99), 
P = 0.04] [84]. Especially noteworthy was an ambitious prospective clinical 
trial conducted by Marrone et al. which studied non-diabetics with advanced or 
metastatic NSCLC receiving platinum-based doublet chemotherapy and bevaci-
zumab with or without metformin 1000 mg twice daily followed by maintenance 
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therapy with bevacizumab and metformin combined or bevacizumab alone and 
showed a significant clinical benefit in PFS (9.6 vs. 6.7 months) with the addition 
of metformin [63].

4.6 Pancreas cancer

A review of seventeen studies involving 36791 participants study has evidenced 
a significant association of metformin adjuvant treatment in pancreas cancer with 
overall survival benefit (HR = 0.88, 95% CI = 0.80–0.97) especially in Asians, those 
with early stage disease and those undertaking surgery [85]. In terms of overall 
survival with metformin use in pancreas cancer, a study of 8 retrospective cohort 
studies and 2 randomized clinical trials representing 3,042 patients revealed overall 
survival to be improved with metformin (meta-HR = 0.79; 95% CI: 0.70, 0.92, 
P < 0.001) [86].

4.7 Prostate cancer

In a systematic review involving eleven studies with 877,058 patients, the odds 
ratio of metformin use for reducing prostate cancer was estimated at 0.89 (95%CI: 
0.67–1.17) and it was concluded that metformin consumption reduced the risk of 
prostate cancer, although the result was not statistically significant [87]. Separately, 
a review of eight studies on diabetic patients with prostate cancer found no met-
formin use was associated with an increased risk of cancer recurrence (RR, 1.20; 
95% CI, 1.00–1.44) [88], which concurs with another review of eight retrospective 
cohort studies and one nested-case–control study, metformin was found to be 
associated with a reduced risk of biochemical recurrence (pHR: 0.82, 95% CI 0.67, 
1.01, P = 0.06) [89]. Finally, a large review of 30 cohort studies, including 1,660,795 
prostate cancer patients revealed that metformin treatment compared with no 
treatment improved overall, prostate cancer specific, and recurrence free survival 
(HR = 0.72, 95% CI: 0.59–0.88, P = 0.001; HR = 0.78, 95% CI: 0.64–0.94, P = 0.009; 
and HR = 0.60, 95% CI: 0.42–0.87 P = 0.006, respectively) [90].

4.8 Ovarian cancer

One review of 13 studies involving ovarian cancer incidence and prognosis revealed 
metformin use to be associated with a lower incidence (pooled OR 0.76, 95% CI 0.62 
to 0.93, P = 0.008) as well as improved prognosis (pooled OR 0.55, 95% CI 0.36 to 
0.84, P = 0.006) [91].

4.9 Other cancers

Metformin is also increasingly studied or planned in less common cancers, such 
as glioblastoma, thyroid cancer, and non-Hodgkin’s lymphoma. The recent study 
on newly diagnosed glioblastoma showed that temozolomide plus memantine, 
mefloquine, and metformin are feasible as an adjuvant therapy [92]. One planned 
phase 1b/2 clinical trial of metformin and chloroquine was recruiting patients with 
IDH1-mutated or IDH2-mutated solid tumors, including glioma [93]. In another 
recent retrospective study from Korea, cancer preventative effects of metformin on 
thyroid cancer were observed in individuals with T2DM on long duration or higher 
doses of the drug [94]. Separately, a trial in head and neck squamous cell cancer 
patients revealed metformin to inhibit cancer by enhancing apoptosis, and increas-
ing cellular immune infiltration of the cancer [95]. In non-Hodgkin’s lymphoma, 



185

Repurposing of Metformin as a Multifaceted and Multitasking Preventative and Treatment…
DOI: http://dx.doi.org/10.5772/intechopen.96101

a retrospective analysis of looking at T2DM patients treated with standard therapy 
found improved progression-free survival and overall survival compared to control 
not taking metformin [96].

5. Discussion

Any discussion of a therapeutic agent is incomplete without covering its toxicity, 
side-effects and drug interactions. In this regard, metformin is probably one of the 
safest drugs in use, especially when compared with standard anti-cancer agents in 
its context as a potential cancer preventative or therapeutic. With its long history of 
widespread use, its pharmacokinetics and toxicity profile are well established. The 
most common side-effect is mild to moderate gastrointestinal discomfort or diar-
rhea which is usually self-limited and can be minimized if metformin is taken with 
food, while its most serious side-effect of lactic acidosis usually due to overdose is 
relatively rare, occurring once per 100,000 years of use or 3 case per 1,000,000 
after long term treatment [97]. As in the case of all medications, it should be 
dispensed carefully in elderly patients and in those with impaired renal, cardiac, 
and hepatic function. For practical purposes, it needs to be emphasized that metfor-
min as an antidiabetic and as monotherapy does not cause hypoglycemia or weight 
gain, unlike insulin or sulfonylureas. For cancer, because of its very common use 
in diabetics, it has practically seen combined use with most oncologic agents in the 
diabetic cancer patient and remarkably no serious interactions with standard cancer 
anti-cancer agents have been reported. The minimum toxic dose of metformin is not 
well defined, but rare case reports of severe toxicity has only been reported after 
ingestion of 25 to 35 grams of metformin by adults.

A treatment for any condition is ideal if it relatively non-toxic and scientifically 
well evidenced, as well as low in cost and convenient to administer. Metformin 
fits all the above criteria. It is apparent from our review that metformin has ample 
scientific evidence from bench to the bedside as a repurposed drug for cancer. In 
fact, it is safe to say that it is currently the most well evidenced repurposed drug 
for cancer. Also, its wide-spread and decades of experience of clinical use and low 
observed toxicities alone or in combination with other agents, as well as very low 
cost also marks it as an optimal therapeutic agent. Finally, the versatility it possesses 
against various cancers and its applicability from prevention to treatment further 
distinguishes it as an ideal or model repurposed drug for cancer.

Of course, there remains limitations and challenges to metformin’s use as an 
anticancer. The first obstacle we have in translating in vitro results of metformin 
to the clinical arena revolves around its dosage. The usual dosage of metformin in 
cancer trials is the same range as that prescribed normally for T2DM which is from 
1000 mg – 2000 mg per day. Treatment is usually started at the lower dose with 
dose escalations weekly to the maximum dose which means starting at 500 mg of 
the immediate release version twice daily or 850 mg of the extended release ver-
sions once daily, with 500 mg increments weekly as tolerated, to a maximum of 
2000–2550 mg per day for either immediate or extended release versions. It may not 
be apparent at first glance, but the concentration of metformin at 10–100 microM 
when used clinically at 1000-2000 mg per day is much less than the concentration 
of >2–5 mM demonstrated for its anti-cancer effects in vitro where metformin was 
usually experimented at concentrations between 5 to 20 mM, which is 2 000–10 
000 times more concentrated than achieved with clinical dosing [98]. Fortunately, 
many clinical studies still yielded positive results at the much lower metformin 
in concentrations achieved with clinical dosing, but it may also explain why the 
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clinical results of metformin in cancer may not be as dramatic as demonstrated 
in preclinical studies, and why it is never intended to be used as monotherapy for 
cancer treatment. Related to dosing is a possible dose-dependent effect of metfor-
min on cancer risk [99], which raises the question of attempting higher doses of 
metformin in future clinical trials of metformin in cancer, this while taking into 
account that there are no cases of acute metformin overdose leading to death found 
in which patients with a peak serum metformin concentration is under 50 microg/
mL [100]. Beyond dosing, another issue with the literature to date on metformin 
and cancer is that most of the clinical studies so far are retrospective that mainly 
involve observations in the T2DM patient population and thus subject to selection 
bias. However, many cohort studies in the non-diabetic is planned, and despite 
methodological limitations, it is apparent that the overwhelming evidence so far is 
in favor of potential benefits and a high benefit to risk and benefit to cost ratios for 
metformin’s application in cancer.

6. Conclusion

As an old repurposed drug, metformin is inexpensive and generic and its 
research is thus carried out usually without industry support. Despite such chal-
lenges, it is heartening that overall preclinical and clinical results is overwhelm-
ingly suggestive of a protective effect from metformin against various stages of 
a wide spectrum of cancers. Moreover, there are over three hundred registered 
clinical trials on metformin and cancer internationally as of mid-2020, of which 
approximately one third are actively recruiting. The trials involve metformin for 
pre-cancers, early stage as well as metastatic solid tumors, alone or in combination 
with other interventions including chemotherapy, radiotherapy, hormone therapy, 
immunotherapy (ICIs), targeted agents, statins, aspirin, doxycycline, nelfinavir, 
melatonin, disulfiram, vitamin C, diet in diabetics and non-diabetics. We thus look 
forward for the further establishment of metformin as an ideal repurposed agent 
for cancer prevention and treatment.
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Akt AKT8 virus oncogene cellular homolog
AMPK AMP-activated protein kinase
CI confidence interval
CR complete remission
CSC cancer stem cell
CTL cytotoxic T lymphocytes
EGFR epidermal growth factor receptor
GPDH glycerol-3-phosphate dehydrogenase
HER2 human epidermal growth factor receptor 2
HIF hypoxia inducible factor; HR: hazard ratio
hs-CRP C-reactive protein
ICI immune checkpoint inhibitor
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Chapter 9

Ivermectin: Potential Repurposing 
of a Versatile Antiparasitic as a 
Novel Anticancer
Alfonso Dueñas-González and Mandy Juárez-Rodríguez

Abstract

Drug repositioning is a alternative strategy to discover and develop anticancer 
drugs based on identification of new mechanisms of actions and indications for 
existing compounds. Ivermectin belongs to the avermectin group of compounds, a 
series of 16-membered macrocyclic lactone moieties discovered in 1967 and FDA-
approved for human use since 1987. Ivermectin has since been used by millions of 
people worldwide, and have demonstrated a wide margin of clinical safety. Here we 
summarize the in vitro and in vivo evidence demonstrating ivermectin's potential 
as a multitargeting anticancer drug that exerts antitumor effects against different 
tumor types. Notably, the in vitro and in vivo antitumor activities of ivermectin are 
achieved at concentrations that can be clinically achieved based on human phar-
macokinetic studies done in the clinical studies. Moreover, repurposed ivermectin 
safety has been well established recently in clinical studies against COVID-19. 
Consequently, we believe that ivermectin is an excellent potential candidate drug 
that can be repurposed for cancer and deserves rigorous evaluation against a variety 
of cancers in well-designed clinical trials.

Keywords: Drug repurposing, ivermectin, cancer

1. Introduction

Avermectins are a complex of 16-membered macrocyclic lactones produced 
from soil fermentation of the actinomycete S. avermitilis [1, 2]. There exist eight 
avermectin compounds (A1a, A1b, A2a, A2b, B1a, B1b, B2a, and B2b), of which 
ivermectin is the most commonly employed due to its semi-synthetic mixture 
(80% B1a and 20% B1b), and its potent antiparasitic activity as well as its safety 
[3]. The family of compounds from which Ivermectin is derived was discovered 
by Nobel laureates Satoshi Omura and William Campbell in the 1970s. The chemi-
cal is effective against a wide number of parasites and arthropods - pinworms, 
mites, lice, heartworms and fleas in dogs, parasitic worms in pasture animals by 
disrupting the fluid exchange through the insect’s cell membrane, and in the past 
40 years, ivermectin has been used extensively for agriculture and veterinary 
purposes [4–7].

The success of ivermectin treatment as antiparasitic is due to its high affinity 
for the glutamate-gated chloride channels (Glu-Cl) present in parasite cells but 
absent in vertebrates. The ivermectin-channel-interaction prevents channel closure, 
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leading to plasma membrane hyperpolarization, paralyzing the target parasite’s 
pharyngeal and somatic muscles, triggering its death [2]. In addition to activat-
ing the Glu-Cl parasites channels, ivermectin acts as a dose-dependent positive 
allosteric regulator of several vertebrate ligand-gated channels, including the 
γ-aminobutyric acid type-A receptor (GABA receptor), glycine receptor, neuronal 
α7-nicotinic receptor, and purinergic P2X4 receptor. The effects of ivermectin 
over these receptors include the potentiation of agonist-induced currents at low 
concentrations and channel opening at higher concentrations [8]. However, 
GABA-sensitive neurons are protected by the blood–brain barrier within the central 
nervous system, protecting vertebrates against the potentially harmful effects of 
Ivermectin [3, 6].

2. Drug repurposing in cancer therapy

Effective, safe, and affordable cancer drugs are highly needed to reduce cancer 
mortality. The field of drug repurposing emerged in the early 1990s as an alter-
native to the conventional drug discovery model. This model entails targeting 
discovery and validation, lead identification by high-throughput screening, and 
lead optimization by medicinal chemistry. Drug repurposing surged to overcome 
the pharmaceutical industry’s limited productivity regarding the number of 
approved drugs concerning the long time and huge money required to develop a 
drug. Classical drug discovery requires an average of 15 years of research, whereas 
drug development by repurposing is portended to be cheaper, faster, and safer. The 
significant advantage of drug repurposing is that the pharmacokinetics, pharmaco-
dynamics, and toxicity profiles of drugs are, in general, well known; thus, its rapid 
translation into phase II and III clinical trials is feasible [9]. Among the different 
drugs currently studied under the focus of therapeutic repositioning, ivermectin 
is very promising. It has been shown to have antitumor effects in vitro and in vivo 
(Figure 1).

3.  Antitumor effects of Ivermectin-mechanisms of action and in vitro 
data

Ivermectin has demonstrated antitumor effects in different types of can-
cers. Among mechanisms of action reported, ivermectin interacts and affects 
the function of 1) mitochondrial I complex, the multidrug resistance protein 
(MDR), 2) RNA helicases, 3) the WNT-TCF pathway, 4) chloride channel 
receptor, 5) immunogenic cell death via ATP- and HMGB1, 6) PAK-1, 7,8) 
epigenetic signature and sel-renewal of stem cells [10]. Preclinical testing have 
demonstrated inhibition of cell growth, induction of apoptosis in different 
cancer cell lines and antitumor effects in murine models (Figure 1) [11–19]. 
The in vitro antitumor effects are observed at a median concentration of 5 μM 
(0.01–100 μM), which is clinically attainable according to the pharmacokinetic 
data in humans shown in Table 1. We present a review of the laboratory results 
of ivermectin on various cancer cell lines below.

3.1 Ovarian cancer

Ivermectin blocks the oncogenic kinase PAK1 in human ovarian cancer and in 
NF2-deficient Schwannoma cell lines to suppress their PAK1-dependent growth 
in cell culture at a half maximal inhibitory concentration (IC50) between 5 and 
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Figure 1. 
Cancer targets of ivermectin. 1. Decreasing the function of the mitochondrial complex I, Ivermectin, limits 
the electronic movement in the oxidative phosphorylation pathway that stimulates oxygen consumption rate 
to generate ATP for the cell. Low ATP levels are related to a failure in the P-glycoprotein pump to extrude 
chemotherapy drugs. Concomitantly there is a reduction in the phosphorylation levels of Akt, impacting 
the mitochondrial biogenesis process. Furthermore, alterations in the mitochondrial machinery are related 
to increased levels of reactive oxygen species that damage DNA. 2. Ivermectin limits the function of the 
RNA helicases NS3 and DDX23, both of which are related to ribosome biogenesis and post-transcriptional 
modifications, as well as with mRNA degradation. DDX23 acts as a promoter of miR-21, which is a well-
recognized stimulator of tumor progression. 3. The WNT-TCF pathway, involved in cancer progression and 
metastases, is inhibited by Ivermectin. Indeed, this compound represses AXIN2, LGR5, and ASCL2, all of 
them WNT-TCF targets. At the same time, it promotes the repressor of the WNT signaling FILIP1L. Both 
effects inhibit the ability of WNT-TCF to downregulate the tumor suppressor APC and limit the translocation 
of β–catenin to the nucleus for epithelial to mesenchymal transition in metastatic events. 4. Ivermectin acts 
as an ionophore by the up-regulation of chloride channels to generate apoptosis and osmotic cell death. 5. 
Ivermectin induces immunogenic cell death by stimulating an ATP- and HMGB1-enriched microenvironment, 
which promotes inflammation. This drug also increases ATP sensitivity and calcium signals in P2X membranal 
receptors, particularly P2X4 and P2X7, to induce ATP-dependent immune responses. 6. Ivermectin promotes 
the poly-ubiquitination of the kinase PAK1, which directs it to degradation in the proteasome. Defective PAK1, 
in turn, inhibits the Akt/mTOR pathway. At the same time, Ivermectin stimulates the expression of Beclin1 
and Atg5, both related to induction of autophagy. Particularly, Beclin1 increases the expression of the positive 
autophagy regulators Atg14L and Vps34 and reduces the negative regulator of apoptosis Bcl-2. Together, this 
generates autophagy and apoptosis. 7,8. Ivermectin modifies the epigenetic signature and the self-renewal activity 
in the malignant cell due to its ability to mimic the SIN3-interaction that binds to the PAH2 motif of the ca.
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20 μM [14]. PAK1 is involved in various signaling pathways that play an essential 
role in cytoskeletal dynamics, cell adhesion, migration, proliferation, apoptosis, 
and mitosis. It is required for the growth of approximately 70% of neoplasms [20]. 
Additionally, cancer stem-like cells derived from SKOV-3 cell line treated with 5 μM 
ivermectin showed a significant decrease in cell viability and clonogenic capacity. 
Also, the expression levels of Nanog, Sox2, and Oct4 are reduced after treatment 
with ivermectin 5 μM [11].

3.2 Breast cancer

Ivermectin inhibits the ATK/mTOR pathway in breast cancer cell lines by 
promoting ubiquitination of PAK1. Ivermectin disrupts the binding of PAK1 protein 
with AKT, and in turn hinders the phosphorylation and activation of AKT; result-
ing in AKT/mTOR pathway inactivation. These effects of ivermectin are observed 
at concentrations above 10 μM [15]. Additionally, ivermectin preferentially inhibits 
the viability of cancer stem-like cells enriched populations (CD44+/ CD24−) in the 
range of 0.2–8 μM via reducing the expression of maintenance of the pluripotency 
and self-renewal markers Nanog, Oct4, and Sox2 at both mRNA and protein levels 
[11]. Separately, a study demonstrated that 1 μM ivermectin treatment inhibits the 
function of SIN3 [16], which is part of a complex that positively regulates Nanog 
and Sox2, leading to a decrease in mammospheres number [21]. Furthermore, 
ivermectin was reported to induce E-cadherin and Estrogen Receptor 1 expression 
and the restoration of tamoxifen sensitivity in a triple-negative breast cancer model. 
According to these observations, ivermectin has potential antitumor effects in 
triple-negative breast cancer [16]. Another study demonstrated a synergy between 
ivermectin with docetaxel or cyclophosphamide in estrogen receptor-negative 
breast cancer cells and a synergistic effect with tamoxifen in estrogen receptor-
positive breast cancer cell lines [22].

3.3 Liver cancer

In human combined hepatocellular-cholangiocarcinomas and intrahepatic 
cholangiocarcinomas (cHC-CCs and ICCs), there is robust YAP1 activation. YAP1 
is a transcriptional regulator of genes involved in cell proliferation and suppression 
of apoptotic genes, and itis inhibited in the Hippo signaling pathway which allows 
tumor suppression. Nuclear translocation of YAP1/TAZ also increases transcription 
of TGF-βs [23]. Thus, it is possible that coordinated targeting of YAP1/TAZ and 
TGF-β signaling may be a treatment for cHC-CCs and ICCs displaying dysregulated 
Hippo signaling and meanwhile drug screening revealed ivermectin to inhibit YAP1 
activation [23].

Illness/Adverse 
effects

Mild Intermediate Severe

Onchocerciasis Myalgia, skin 
eruptions, joints 
swelling, limbs or face, 
itching, fever and cold

Skin pain and edema, 
arthralgia, bone pain, severe 
dizziness, high fever, dyspnea, 
and hypotension

NA

Filariasis Headache and nausea NA Encephalopathy

Scabies Nausea Severe headache, abdominal 
pain, and tachycardia

NA

Table 1. 
Adverse effects caused by Ivermectin.
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3.4 Cervical cancer

Ivermectin inhibits the viability of HeLa cells and induces a G1/S cell cycle arrest 
leading to apoptosis and morphological changes of DNA fragmentation and chro-
matin condensation of such cells. Additionally, ivermectin can significantly increase 
intracellular ROS content and inhibit the migration of HeLa cells [24].

3.5 Glioblastoma

Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and 
apoptosis in vitro and in vivo [25]. Specifically, in glioblastoma and brain endo-
thelial cells, ivermectin has been reported to induce mitochondrial dysfunction. It 
inhibits cell growth and colony formation and blocks the enzymatic activity of the 
respiratory chain complex I, thereby decreases mitochondrial respiration, mem-
brane potential, and ATP levels while increasing the generation of superoxides that 
in turn induces cell death by caspase-dependent apoptosis. Additionally, ivermectin 
also inhibits angiogenesis at concentrations above 5 μM [12].

3.6 Leukemia and prostate cancer

The treatment of OCI-AML2 cells with ivermectin increased the concentra-
tion of intracellular chloride ions, leading to hyperpolarization of the plasma and 
mitochondrial membranes and ROS production [18]. In contrast, DU145 and PPC-1 
cells and primary normal hematopoietic cells that were resistant to ivermectin did 
not demonstrate changes in their plasma membrane potential when treated with up 
to 6 μM ivermectin. Moreover, the in vitro antitumor effect of ivermectin on various 
cancer cell lines at a concentration of 5 μM showed that DU145 is only minimally 
reduced in viability and clonogenic capacity, but when it is treated in combination 
with docetaxel cells demonstrated strong inhibition [22]. In myeloid leukemia cells 
ivermectin strongly synergizes with daunorubicin and cytarabine [18].

3.7 Colon and lung cancer

The WNT/TCF signaling pathway is constitutively active in many tumors and 
it regulates genes for cell growth and proliferation. Ivermectin can inhibit the 
WNT-TCF signaling pathway by decreasing cyclin D1, which is a direct target in this 
pathway and ivermectin also affects the phosphorylation of β-catenin, which leads 
to inhibition of proliferation and increased apoptosis in lung and colon tumor cells 
at concentrations above 5 μM [13].

4. Antitumor effects of ivermectin-animal data

In a wide-range of pre-clinical studies, rodent models of human xenografts of 
glioblastoma, leukemia, breast and colon carcinomas, as well as a variety of murine 
cell lines in syngeneic models have consistently shown ivermectin to possess robust 
antitumor effect at a median dose of 5 mg/Kg [12, 13, 15, 17, 18]. We present a 
review of some results of anticancer studies of ivermectin in animal below.

4.1 Glioblastoma

Two independent glioblastoma xenograft SCID mice models were established 
by subcutaneous injection of U87 or T98G cells, and the rodents were subsequently 
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treated with intraperitoneal ivermectin at 40 mg/Kg. The treated mice had demon-
strated significant tumor growth inhibition but maintained normal behavior and 
retained their weight [12]. A separate study using 3 mg/Kg of ivermectin showed 
a 50% decrease in tumor size and there was near complete regression of tumors at 
10 mg/Kg. Ki67 staining also confirmed that glioma cell proliferation was decreased 
in ivermectin-treated animals compared to controls [17].

4.2 Colon and lung cancers

Melotti et al. used H358 human metastatic lung bronchioalveolar carcinoma cells 
and DLD1 colorectal adenocarcinoma cells to test the antitumor effects of ivermec-
tin. The animals received intraperitoneal injections of cyclodextrin-conjugated 
ivermectin daily at 10 mg/kg after tumor establishment. Subsequently, it was found 
that tumors responded to ivermectin with a near 50% reduction of growth and a 
repressed lung cancer WNT-TCF signature and enhanced p21 levels [13].

4.3 Breast cancer

Ivermectin was evaluated in an orthotopic breast cancer model with human 
MDA-MB-231 cells subcutaneously injected in the mammary fat pad of NOD-SCID 
mice. Xenografts treated with ivermectin grew at a slower rate than those of the 
control group, and the size and weight of control tumors were macroscopically 
larger than that of ivermectin-treated tumors [15]. Another study tested JC murine 
breast cancer cells in Balb/c mice treated with a dose of 3 mg/Kg of ivermectin. 
Treatment reduced tumor size more than 60% with no changes in weight or 
behavior of the study animals when compared with controls [22]. Recently it was 
demonstrated the ivermectin at a dose of 5 mg/Kg induces immunogenic cell death 
hallmarks with large numbers of intratumoral CDA4+ and CD8+ T cells in a 4 T1 
murine tumor model. Thus, ivermectin turns cold tumors into hot ones which 
allows for marked synergy with check point inhibitor nivolumab, leading to major 
antitumor effects and most importantly, protective immunity [26].

4.4 Leukemia

Human leukemia (OCI-AML2 and K562) and murine leukemia (MDAY-D2) 
cells were injected subcutaneously into NOD/SCID mice which were subsequently 
treated with 3 mg/Kg (human equivalent dose of 0.240 mg/Kg) of ivermectin or 
control in water via oral gavage. Upon follow-up, the treated mice had up to 70% 
decrease in their tumor burden without any gross sign of organ toxicity, and treat-
ment led to increased apoptosis in OCI-AML2 xenografts [18]. It must be remarked 
that most of the in vivo studies to evaluate the antitumor effects of ivermectin dose 
ranging from 3 to 10 mg/Kg. These mice doses translate into human to 0.240 to 
0.810 mg/Kg which are clinically attainable [27].

5. Clinical experience with ivermectin

As mentioned above, there has been extensive clinical use of ivermectin as an anti-
parasitic, and the drug has been repurposed for use against other pathogens and non-
parasitic conditions in humans. However, despite considerable preclinical evidence 
of antitumor effects of ivermectin, it is curious that no clinical studies of ivermectin 
against cancer have been reported nor clinical trials launched. However, there is a case 
report on three children with refractory and heavily pretreated acute myeloblastyic 
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leukemia. In the three cases, ivermectin was at 1 mg/Kg either alone or in combina-
tion with Ara-C. Two of them had clinical improvement with durable stable disease 
in one, a and complete hematological response the second. The third one receiving 
ivermectin alone had no response. Though anecdotic, these data demonstrate that 
ivermectin can be safely administered at dosis five times higher the recommended 
dose of 0.200 mg/Kg, and that can show efficacy combined with cytotoxics [28].

Here, we briefly review the clinical experience with ivermectin as an antipara-
sitic as well as in other repurposed indications, with special attention to its toxicities 
and safety and its clinical pharmacology, the data of which can be a basis for future 
clinical trials of ivermectin against cancer.

5.1 Ivermectin use as anti-parasitic

Because of its broad spectrum applicability, ivermectin can be applied to treat 
onchocerciasis, lymphatic filariasis, strongyloidiasis, ascariasis, scabiasis, and 
enterobiasis. Since its discovery, ivermectin has been administered to millions of 
patients with the above parasitic infections around the world. Mild adverse effects 
of oral ivermectin therapy against certain parasites are common; many of them 
appear within 24-48 hours of the onset of therapy and are related to ivermectin 
dose as well as the microfilariae load in the skin in case of filiariasis [29, 30]. Some 
of these adverse effects include myalgia, skin rashes, joints swelling, limbs or face 
itching, fever, and chills. These effects are usually transient and do not require 
treatment [31, 32]. Moderate to severe effects are less common and may include skin 
edema with the presence of pain, arthralgia, severe dizziness, high fever, dyspnea, 
and hypotension (Mazzotti’s Reaction). It is known that such reaction is not related 
to the administration of Ivermectin but with the parasite amount present in the host 
[30, 31]. In addition to Mazzotti’s reaction, there have been cases of severe encepha-
lopathy that can be fatal in patients with onchocerciasis and filariasis after treat-
ment with ivermectin. The symptoms of encephalopathy include altered mental 
status, incontinence, and difficulty standing or walking 48 hours after ivermectin 
treatment [32, 33]. This effect is again probably due to the obstruction of the cere-
bral microcirculation due to the accumulation of paralyzed or killed parasites and 
not by ivermectin itself [34, 35]. Also, toxic effects have been linked to ivermectin’s 
interaction with P-glycoprotein [8]. The absence of P-glycoprotein determines the 
accumulation of Ivermectin in the brain of transgenic mice who do not express it 
and dogs with impaired P-glycoprotein function (commonly a 4 base-pair deletion 
of the MDR-1 gene that produces a stop codon) have increased neurotoxicity to 
ivermectin [36]. Table 2 summarizes ivermectin’s adverse effects. The dose and 
schedules vary but human doses are standardized for approved indications within 
the range of 0.15 to 0.4 mg/Kg. For onchocerciasis, the recommended dose is 0.15 
mg/Kg once every 12 months, though patients with heavy ocular infection may 
require retreatment every 3 or 6 months. Filariasis usually requires a single dose of 

Group Dose  
(mg/kg)

Drug 
delivery

Cmax  
(ng/mL)

Tmax 
(h)

AUC  
μg/h/mL

Onchocercosis patients 0.1–0.2 Oral 52.0 5.2 2.852

Healthy volunteers 0.35–0.6 Oral 87.0 4.2 1.444

Healthy volunteers 0.7–1.1 Oral 165.2 3.6 2.099

Healthy volunteers 1.4–2.0 Oral 247.8 4.2 4.547

Table 2. 
Pharmacokinetic data of Ivermectin in humans infected with parasites and in healthy volunteers.
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0.4 mg/Kg. In strongyloidiasis, a single dose of 0.2 mg/Kg is recommended; how-
ever, in immunocompromised (including HIV) patients, the treatment may require 
repeated administration (i.e. every two weeks) and continued suppressive therapy 
(i.e. once a month). A single dose of 0.2 mg/Kg is also used to treat ascariasis, while 
the same dose repeated once at two weeks is recommended for scabiasis [37].

Recently, there has been a growing interest in newer anti-parasitic indications 
of ivermectin such as against soil-transmitted helminths and malaria, hence doses 
above 0.4 mg/Kg are being evaluated for achieving higher plasma levels [38, 39].

An example is a pharmacokinetic trial using 18 mg ivermectin tablets in 54 
healthy adult volunteers to evaluate the safety of fixed regimens of 18 and 36 
mg [40]. A meta-analysis to investigate the safety of higher doses of ivermectin 
identified four studies for inclusion, and found no differences in the number of 
individuals experiencing adverse events at higher doses. A descriptive analysis of 
these clinical trials for a variety of indications also showed no difference in the 
severity of the adverse events between standard (up to 0.4 mg/Kg) and higher 
doses of Ivermectin (0.4-0.7 mg/Kg; 0.6 mg/Kg, and 0.8 mg/Kg). Only one trial 
showed an increase in transient and mild to moderate subjective ocular events such 
as transitory blurring of vision, itching or pain of the eye, and dyschromatopsia in 
the higher-dose group in a trial to treat onchocerciasis. Meanwhile, severe adverse 
events described as life-threatening, was reported in only one out of the four 
studies with one case of anaphylaxis at the standard dose and another case of QTc 
prolongation likely due to drug-drug interaction in a higher-dose group [41]. The 
result of this small meta-analysis is suggestive of relatively safety of higher doses of 
ivermectin.

5.2 Ivermectin’s potential as an anti-viral

Ivermectin exhibits anti-viral activity against viruses both in vitro and in vivo. 
The antiviral activity is thought to be related to tthe inhibition of nuclear trans-
location of viral proteins, facilitated by mammalian host importin also known 
as karyopherin α/β‐1 heterodimerization [42]. It is partially upon this basis that 
ivermectin has been tested as a treatment in the current COVID-19 pandemic. A 
recent meta-analysis and systematic review involving 629 COVID-19 patients from 
4 observational studies (3 with control arms and 1 without) found that adding iver-
mectin led to significant clinical improvement compared to control (OR=1.98, 95% 
CI: 1.11 - 3.53, p=0.02) [43]. however, the authors did caution on the interpretation 
of their analysis because the low quality of evidence, and it should be noted that one 
of the trials included in the analysis was subsequently retracted. Meanwhile, several 
randomized studies evaluating ivermectin against COVID-19 have recently been 
published. An Iranian trial demonstrated that a single 0.2 mg/Kg dose of ivermectin 
was well-tolerated in symptomatic COVID-19 patients, and dyspnea, cough and 
lymphopenia associated with COVID-19 were significantly improved [44]. In two 
other randomized trials, the time to viral clearance was statistically reduced. The 
doses and schedules in these two trials were ivermectin at a fixed 12 mg daily for 5 
days [45] and ivermectin at 0.1, 0.2, and 0.4 mg/Kg once at admission [46]. These 
were underpowered trials so that further evidence is still required to confirm the 
clinical usefulness of ivermectin under various COVID-19 clinical scenarios.

5.3 Other uses of ivermectin

Ivermectin possesses possible agonistic bioactivity against the γ-aminobutyric 
acid (GABA) receptor [47] and it was upon this premise that it was used in a 
patient with severe spasticity caused by spinal cord damage at a dose of 1.6 mg/
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Kg subcutaneously twice a week for 12 weeks. The patients had decreased spasm 
scores, suggesting that ivermectin may reduce spasticity in the spine without 
adverse effects at this high dose [48].

6.  Pharmacokinetics and dose considerations for ivermectin as cancer 
therapy

Due to its relatively long history of extensive use, the pharmacokinetics of 
ivermectin has been well studied. The oral route is the only approved for ivermectin 
administration in humans although it can be given subcutaneously and the intrave-
nous route of administration has also been investigated. Ivermectin is a fat-soluble 
compound and reaches a peak concentration 4-5 hours after oral administra-
tion, and it has a half-life of approximately 19 hours. After administration, it is 
subsequently extensively metabolized in human liver microsomes by cytochrome 
P-4503A4, converting the drug to at least ten metabolites, most of them hydroxyl-
ated and demethylated derivatives. Its excretion is mainly by the fecal route, and 
only 1% is excreted in the urine [49]. In healthy individuals and patients infected 
with onchocerciasis treated with a dose of 0.150 mg /Kg of Ivermectin, significant 
variability in pharmacokinetic parameters such as absorption, distribution, metab-
olism, and excretion is not observed [49].

The therapeutic dose for ivermectin as an anti-parasitic compound for human 
use is is between 0.1 and 0.4 mg/ Kg [4–7], resulting in an AUC of 1,444 μg/h/
mL. This drug exposure, which translates to a plasma concentration of 1.65 μM, is 
however less than concentrations of 5 μM or greater that has been found necessary 
to inhibit tumor cells in vitro In a phase I pharmacokinetic study done in healthy 
volunteers, it was demonstrated that doses up to 2 mg/Kg which leads to an AUC 
of 4,547 μg/h/mL can translate into a plasma concentration of 5 μM [50], thus the 
recommended dose for cancer therapy should likely be 2 mg/kg or higher.

7. Discussion

Currently, various efforts to facilitate the discovery of drug repurposing 
candidates for cancer and a large number of drug candidates do exist [51]. As an 
example, the Repurposing Drugs in Oncology (ReDO) Project, which is initiated 
by a non-profit international collaboration of researchers, clinicians, and cancer 
patient advocates whose goal is to find efficacious, minimally toxic, and affordable 
cancer treatments identified a total of 268 drugs that matched the following two 
criteria: i) the drug is licensed for non-cancer indications in at least one country in 
the world, and ii) the drug is the subject of one or more peer-reviewed publications 
showing a specific anticancer effect based on in vitro, in vivo, or clinical research in 
one or more malignancies. According to these criteria, ivermectin can be a potential 
repurposing candidate for cancer. Ivermectin has extensive preclinical in vitro and 
in vivo anticancer data and is thus an ideal candidate for clinical trials. An especially 
promising feature with ivermectin is that its anti-cancer concentration in vitro 
should be attainable clinically, inexpensively, and without undue toxicity.

8. Conclusion

Ivermectin has been administered to millions of patients as an anti-parasitic 
drug exhibiting a wide margin of clinical safety. There exists a large body of in vitro 
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and in vivo evidence demonstrating ivermectin’s anti-tumor potential, and ivermec-
tin’s anti-tumor efficacy can be demonstrated at concentrations that are clinically 
attainable based on clinical pharmacokinetics. We thus propose that ivermectin be 
considered urgently for clinical trials either as a single agent or in combination with 
existing antineoplastics for cancer.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 10

Progesterone and Glucocorticoid 
Receptor Modulator Mifepristone 
(RU-486) as Treatment for 
Advanced Cancers
Jerome H. Check and Diane L. Check

Abstract

The fetal placental unit has paternal proteins which would normally result in 
immune rejection of fetus. Thus, to allow growth to 266 days, the mother must 
develop immunosuppressive proteins, cytokines, etc. to allow progression to a 
full-term baby. One of these essential immunomodulatory proteins is called the 
progesterone induced blocking factor (PIBF). Probably, the mechanism involved 
allowing the progesterone receptor antagonist mifepristone to cause termination of 
a pregnancy is by blocking the PIBF protein. There is good evidence that cancerous 
tumors borrow some of the same mechanisms as the fetus to escape immune surveil-
lance, including the PIBF protein. Research data suggest that this protein is made 
and excreted by embryonic cells, mesenchymal cells, and trophoblast cells of the 
fetal placental unit to block the killing effect of natural killer cells and T-cells in the 
fetal microenvironment. Cancer cells do the same. Indeed, there is good evidence 
that mifepristone, a drug approved for pregnancy termination, can significantly 
improve length and quality of life in patients with various advanced cancers.

Keywords: progesterone induced blocking factor, metastatic cancer, progesterone 
receptor antagonists, natural killer cells, membrane progesterone receptors

1. Introduction

A certain minimal level of progesterone must be maintained from ovulation 
until delivery to allow the birth of a full-term live baby [1]. Progesterone (P), acting 
in conjunction with the P receptor, causes the production of a large number of 
various molecules needed for the development of an appropriate secretory endo-
metrium to allow attachment of the blastocyst to the endometrium and adequate 
invasion to the proper depth of the fetal placental unit [1].

Some of the molecules induced are also needed to suppress rejection of the fetal 
semi-allograft. One of these immunomodulatory proteins has been termed the 
progesterone induced blocking factor (PIBF) [2]. There is evidence that PIBF is one 
of the most important immunomodulatory factors produced during pregnancy to 
inhibit immune rejection of the fetal semi-allograft [3, 4].

Progesterone-induced blocking factor is an immunomodulatory protein that 
can suppress or block various aspects of the immune system, especially, but not 
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limited to, natural killer (NK) cells [5, 6]. The blocking effect on cellular immunity, 
especially NK cell cytolytic activity, may be related, at least in part, to a shift from 
thymic helper (TH)-1 to TH2 cytokine dominance [7]. One mechanism by which 
PIBF can suppress NK cell cytolytic activity is by inhibiting degranulation of 
perforin granules, one mechanism used by NK cells to kill other cells [8].

The “parent” form has a molecular mass of 90 kDa and is localized in the centro-
some [9]. Various splice variants of this nuclear protein lead to smaller intracyto-
plasmic molecules that have immunosuppressive activity [9]. The actual full-length 
protein contains 757 amino acids, and the 48 kDa N terminal part is biologically 
active [10]. The PIBF gene has been identified on chromosome 13 in the vicinity of 
breast cancer 1 (BRCA1) or BRCA2 or p53 [11, 12].

Progesterone-induced blocking factor rises precipitously in the serum after 
exposure to P (even in males injected with progesterone) and the source seems to 
be circulating gamma/delta T cells [2]. However, it seems that the main source of 
PIBF that allows the early feta-placental to escape immune surveillance are actually 
cells of the fetal placental unit namely embryonic cells, mesenchymal cells, and 
trophoblast cells [1, 9].

In 2001, Check et al. hypothesized that it is likely that cancer cells might “borrow” 
some of the same mechanisms to escape immune surveillance as the fetal-placental 
unit [13]. Based on their previous research with the PIBF protein, they considered 
that, whereas treatment for infertility or recurrent miscarriage should be aimed at 
increasing the production of the PIBF protein, theoretical treatment for cancer could 
be therapy aimed at suppressing the PIBF protein [13].

Support for this concept was provided by Lachman et al., who showed that many 
different types of cancer cells express this PIBF protein [9]. Though one may think 
that highly proliferating cancer cells may be the ones that have the classic nuclear 
progesterone present, the study by Lachman et al., found many of the cancers 
associated with PIBF were not known to be positive for the nuclear P receptor [9].

Based on this hypothesis, it was considered that a P receptor antagonist/
modulator should cause suppression of PIBF production in rapidly growing cancer 
cells which could overcome the theoretical block of immune function of cellular 
immune cells in the tumor microenvironment.

Mifepristone was the first P receptor antagonist developed [14]. It was a derivative 
of the synthetic progestin norethindrone [14]. It was purposely developed to be an 
abortifacient to alter the endometrium and cause decidual necrosis and cause the tro-
phoblast to separate from the decidua [14–16]. Mifepristone sensitizes the pregnant 
uterus and cervix to endogenous and exogenous prostaglandins increasing uterine 
contractility and helps to induce cervical softening [14–16].

Over the years other benefits of mifepristone, related to its anti-progesterone 
effect, have been developed, including treating uterine leiomyomata and endome-
triosis [17]. The anti-abortifacient drug comes in 200 mg tablets. Since mifepristone 
in higher dosages blocks the glucocorticoid receptor, it has been approved as a 
300 mg tablet to treat Cushing’s syndrome [18].

Thus, we set up a study to determine if we could detect PIBF in various leukemia 
cell lines, and, if so, determine if adding mifepristone to the medium could reduce 
PIBF secretion. To do so we collaborated with Dr. Srivastava from the Roswell Park 
Cancer Institute, who for many years studied protein production by leukemia cell 
lines. Twenty-nine cell lines of diverse lineage were all found to express messenger 
(m) RNA for PIBF [19]. In fact, there was more mRNA dedicated to the production 
of the PIBF protein, by far, than any mRNA for any other protein previously studied 
in these leukemia cell lines [19]. Ten cell lines positive for mRNA for PIBF were tested 
for the PIBF protein using a much less sensitive assay for PIBF than is presently 
available. Four tested positive for the PIBF protein. Addition of progesterone to the 
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media of the cell lines up-regulated mRNA for PIBF and also the PIBF protein [19]. In 
contrast, the addition of mifepristone to the media down-regulated both mRNA for 
PIBF and the 35 kDa PIBF intracytoplasmic splice variant protein (similar in size to 
the PIBF splice variant in fetal-placental cells) [19].

Subsequently studies using other cancer cell lines supported the conclusions 
from the leukemia cell line studies. Kyurkchiev et al. found that glioblastoma 
multiforme also express the intracytoplasmic PIBF protein, but in this case the splice 
variant measured 57 kDa [20]. Gonzalez-Arenas et al. found, similar to the afore-
mentioned leukemia cell line studies, adding P to the media up-regulates the 57 kDa 
intracytoplasmic splice variant of PIBF in glioblastoma multiforme cell lines [21]. 
Interestingly, in addition they added PIBF protein to the media and found that PIBF 
increased the number of U87 cancer cells on days 4 and 5 of treatment. This suggests 
that PIBF promotes proliferation of human glioblastoma cancer cells independent of 
an intact immune system, which would require a whole intact animal or human [21].

Mifepristone has been also found to inhibit the growth of cell lines or murine 
tumor transplantation from endometrial cancer, breast cancer, prostate cancer, 
gastric cancer, ovarian cancer, and lung cancer [22–27].

Goyeneche’s group published some interesting findings concerning mifepristone 
and ovarian cancer cell lines. They have found that mifepristone inhibits ovarian 
cancer cell growth in vitro and in vivo [28]. They have published several studies 
showing the benefit of the combination of mifepristone and chemotherapy with 
cisplatin therapy or cisplatin-paclitaxel treatment of ovarian cell lines [29–31].

Based on these cell line studies, more support was provided that cancer cells 
may borrow some of the same escape mechanisms as the fetal-maternal unit to 
escape immune surveillance. Thus, therapy aimed to suppress these immune factors 
could lead to novel effective anticancer therapies [32]. Dr. Szekeres-Bartho, another 
pioneer in determining that the immunomodulatory protein, PIBF, plays a major role 
in allowing the fetus to avoid immune surveillance, in 2010 wrote a treatise entitled 
“PIBF: the double-edged sword. Pregnancy and tumor” [33].

In an opinion entitled “Pregnancy is a model for tumors, not transplantation,” the 
renowned immunologist Kenneth Beaman, and his group, in 2016, stated “Nearly 65 
years have passed since Peter Medawar posed the following question: “How does the 
pregnant mother contrive to nourish within itself for many weeks or months, a fetus 
that is an antigenic foreign body.” Now, understanding of reproductive immunology 
has demonstrated that the HLA antigens in the placenta are non-classical and do not 
induce rejection. In the placenta and in tumors, 50% or more of the cells are cells of 
the immune system and were once thought to be primed and ready for killing tumors 
or “the fetal transplant” but these cells are not potential killers but abet the growth 
of either the tumor or the placenta. By examining the similarities of the placenta’s 
and tumor’s immune cells, novel mechanisms to cause tumors to be eliminated can 
be designed. Thus, 15 years later, the concept we published in 2001 is starting to be 
accepted by top immunologists in the field [34]. Though Beaman et al. do not refer 
at all to the PIBF protein, I recommend an article in gynecologic oncology to those 
readers wanting further knowledge into the immune similarities between pregnancy 
and cancer to open the door for other novel treatments of malignant tumors other 
than blocking the progesterone receptor [35].

2.  Animal studies with mifepristone in cancers that are, and are not, 
known to Be associated with the classic P nuclear receptor

In humans, the progesterone receptor (PR) is expressed in prostate stroma. 
Reduced PR expression in cancer-associated stroma can be conducive to a tumor 



Drug Repurposing - Molecular Aspects and Therapeutic Applications

212

microenvironment favorable for cancer cell invasion and tumor metastases [36]. 
Thus, if the presence of the PR somehow inhibits tumor invasion and metastases, 
treating with a PR antagonist may worsen the condition.

However, it may be that the loss of the PR receptor merely suggests a higher 
percentage of more aggressive cells, and thus, mifepristone, by suppressing PIBF, 
may inhibit prostate cancer proliferation. Indeed, gavaging mice with spontaneous 
prostate cancer with mifepristone (which on a weight basis was equivalent to 200 mg 
daily in humans) improved longevity of survival and body condition scores com-
pared to placebo gavaged C57BL/6 mice [37].

Controlled studies were also performed in mice where there was no knowledge 
of the presence of the classic nuclear PR. Beneficial effect on longevity and quality 
of life (body conditioning score) were observed in 129 Pd/J mice with a strong 
predisposition for testicular cancer, in aldo-keto reductase/J mice with spontaneous 
lymphocytic leukemia and A/J mice with spontaneous lung cancer [37–39]. As 
an example, in A/J mice with spontaneous lung cancer, 67.4% treated with mife-
pristone survived 1 year vs. 27% of the controls [39]. Even more important, there 
were 66.7% of mice gavaged with the equivalent of 200 mg/day in humans with 
mifepristone who had no sick days (body conditioning score less than 4) vs. zero 
% for controls [39]. These murine carcinoma studies supported the concept that 
the benefit of mifepristone is not merely for cancers positive for the classic nuclear 
PR. If the mechanism of improvement did operate through the PIBF mechanism, 
the presence of the classic nuclear PR is not needed for production of PIBF expres-
sion by the tumor cells.

3. Case reports

Based on cell line studies and controlled animal studies, we wanted to determine 
if the mifepristone could provide increased longevity and/or improved quality of 
life in human patients with advanced cancer. Unfortunately, though physicians 
generally have the right to use drugs off-label, there was a restriction for mifepris-
tone. This was not related to risk of the drug, but related to appeasing antiabortion 
groups who feared that the drug could find easy use to cause abortions. Thus, to use 
mifepristone as an anticancer drug, one needs to obtain from the Food and Drug 
Administration a compassionate use investigational new drug (IND) approval to 
use mifepristone to treat cancer.

3.1 Case 1

The first patient we treated with oral daily mifepristone 200 mg/day was a 
46-year-old woman diagnosed with a rare thymic epithelial cell cancer. Over a 
one-year period following initial surgery and radiotherapy more cancerous lesions 
developed in the lung. There was no standard chemotherapy, but she was approved 
for experimental octreotide. However, the cancer still progressed. After starting 
mifepristone 200 mg/daily, though, her lung and mediastinum lesions did not 
regress, they remained stable. Clinically, she was feeling much better in that she 
had much less shortness of breath, much less cough and, marked improvement in 
fatigue. This clinical improvement persisted for over 2 years. Her oncologist decided 
that since the lesions were stable, this could be the opportunity to attempt a “cure” 
by a second course of radiotherapy to the mediastinum. She developed pulmonary 
fibrosis from this second course of radiotherapy. According to the thymic Cancer 
Carcinoma Society, she had survived the second longest time of any patient with 
this type of cancer [40]. Now, with more clinical experience, she would have 
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been advised against more radiotherapy and just continue the mifepristone. Most 
metastatic cancers will not be “cured.” The end point of treatment with mifepris-
tone should be quality of life and increased longevity. This first case of our series 
of anecdotal cases treated with mifepristone first started treatment in 2004. It is 
important to note that thyroid epithelial cell cancer is not known to be associated 
with the classic nuclear P receptor.

3.2 Case 2

The second case of advanced cancer that we obtained a compassionate use IND 
to treat was a 61-year-old woman with a 6.5 cm invasive moderately differentiated 
adenocarcinoma of the transverse colon with extensive metastasis to the liver, peri-
toneum, ovary and uterus. She had marked ascites. The two largest liver metastases 
measured 3.1 × 1.3 cm and 2.3 × 1.9 cm. She was advised by her oncologist that even 
with chemotherapy she would only have a 15% chance of living 6 months.

After 1 year of mifepristone therapy 200 mg orally per day her carcinoembryonic 
antigen level had dropped all the way down to 1.6 ng/mL. After 18 months, there had 
not been any growth of her metastatic lesions nor did any new ones appear. She had 
no pain, no vomiting, and she stated her energy was great.

A CT-scan at 22 months showed some growth of the lesions. Nevertheless, she 
was pain free with good energy even at 27 months when ascites began to return 
(it had completely disappeared). She was still ambulatory at 30 months when 
she died.

Several years later talking to her sister we found out that at 18 months, to save 
money, she started taking the mifepristone every other day. Thus, this case helps 
to establish that the daily dosage should not be less than 200 mg/day. The case also 
supports the concept that mifepristone can prolong life and provide palliation for 
cancers not known to be associated with the classic P nuclear receptor [41].

3.3 Case 3

Another 43-year-old woman with stage IV metastatic colon cancer, who had 
progressed despite standard chemotherapy, began single agent mifepristone 
therapy. Similar to the aforementioned case, there was a halt to cancer progression, 
her energy markedly improved, and she had great relief of pain. After 18 months 
some of her metastatic lesions began to grow. She assumed that this was the end of 
her remission, so she stopped the mifepristone, and decided to try a new experi-
mental drug. She died 3 months later [40]. Based on subsequent clinical experi-
ence, we would have advised her that even though the lesions are starting to grow 
again, mifepristone will still prolong a high quality of life, and will prevent rapid 
spread, thus advising her not to stop mifepristone.

3.4 Case 4

An 83-year-old man with rapidly growing stage IV colon cancer with metastases 
to his lungs, liver, peritoneum, and lymph nodes showed no improvement to either 
capecitabine or cetuximab. He was so weak that he could not get out of bed. Within 
2 weeks of 200 mg mifepristone tablets daily obtained with compassionate use his 
energy returned, and he was able to resume normal function and go to restaurants 
and other social events and completely take care of himself (ECOG 0 now). His 
appetite also returned, and he was pain free.

After 4 ½ months of therapy none of his previously rapidly growing metastatic 
lesions grew with the exception of 1 lung lesion that grew 0.3 cm. He had no side 
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effects from treatment. Though he had no kidney metastases, he had pre-existing 
marked renal impairment. He became uremic. His wife was deciding on dialysis or 
not when he died of a sudden myocardial infarction [41].

3.5 Case 5

Sometimes, instead of the mifepristone therapy causing stable disease, or 
changing the pattern from rapid progression to slow progression, the lesions 
may show marked regression. This is evidenced by a 45-year-old woman who 
had widely metastatic leiomyosarcoma despite previous treatment with total 
abdominal hysterectomy and bilateral oophorectomy, letrozole (the tumor was 
estrogen receptor positive), and gemcitabine/docetaxel, and resection of lung 
metastases [40].

She was started on mifepristone 200 mg/day orally. This caused an almost total 
remission, with disappearance of almost all lesions, and those remaining had shown 
marked decrease in size. After 6 months, some lesions began to appear, but they 
were still very small. Nevertheless, without experience with the nature of this drug, 
the oncologist opted to stop mifepristone and place her in an experimental trial. She 
died within 1 month from complications of this new drug [40].

3.6 Case 6

Another case of very rapidly growing advanced cancer showing complete remis-
sion following ingestion of 200 mg/day oral mifepristone was an 80-year-old woman 
with a history of chronic lymphocytic leukemia who developed sudden onset respi-
ratory failure with a po2 of 72 mmHg. Chest X-ray revealed many lung lesions with 
a radiographic diagnosis of probable advanced lung cancer with multiple metastatic 
lesions. Her serum sodium was 118 mmol/L. She refused a surgical diagnosis or 
chemotherapy based on the presumptive clinical diagnosis of small cell lung cancer 
with the syndrome of inappropriate anti-diuretic hormone (SIADH) and the bleak 
prognosis, even with chemotherapy [42].

She sought an alternative treatment and agreed to mifepristone therapy 
200 mg orally daily. Within 1 month her po2 returned to 99-100 mmHg without 
supplemental oxygen. Her serum sodium increased to normal at 145 mmol/L. Her 
CT-scans showed complete disappearance of all lung lesions even 5 years after 
initial diagnosis. There did remain, however, a ground glass appearance in the 
lungs. She died 5½ years later at the age of 85.5 from an acute myocardial infarc-
tion, not from lung cancer [42].

Interestingly, though we know that PIBF is secreted by leukemia cell lines and is 
suppressed by mifepristone, this woman’s CLL slowly progressed while her rapidly 
growing presumed small cell lung cancer had a complete remission [19]. This could 
suggest that mifepristone acts better on rapidly growing cells than slowly growing 
cancers. Of course, it is possible that the mifepristone helped keep the CLL slow 
growing, but that could simply be related to the normal situation of slow progres-
sion with CLL even without treatment. It should be noted that lung cancer, whether 
small cell or non-small cell (which is still possibly the type of cancer this woman 
had though small cell was more likely because of the clinical picture) is not known 
to be associated with nuclear P receptors.

Many cancer therapies are ineffective for brain metastases or primary brain 
cancers because they cannot cross the blood-brain barrier. There is anecdotal 
evidence that mifepristone can cross the blood brain barrier and provide palliative 
benefits for primary brain cancer and brain metastases.
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3.7 Case 7

A 43-year-old male with a 3-week history of severe protracted headaches was 
found to have a large glioblastoma multiforme grade IV that originated in the 
temporal lobe but involved also the frontal, parietal and temporal lobes and metas-
tases to the spinal cord. Despite surgery, radio and chemotherapy, the tumor rapidly 
progressed. He was not considered a candidate for any other therapy. At the time of 
starting mifepristone therapy, he was paralyzed from the neck down and his hands 
were fixed in the clenched position. He slept most of the day, and when awake, was 
not able to carry out conversations [43].

Within 2 weeks of treatment with 200 mg oral mifepristone daily, he became 
much more alert and was able to carry out intelligent conversations. He was now 
able to open his clenched fists and move his hands. He continued treatment for 
3 months and remained alert. However, his paralysis slowly progressed to the point 
where he was having trouble breathing and swallowing. The mifepristone was 
stopped, and he died 2 weeks later [43].

3.8 Case 8

Another case demonstrating that mifepristone can cross the blood brain barrier 
to thwart brain metastases from progressing is a case of a 68 year old male with 
stage IV metastatic non-small cell adenocarcinoma lung cancer with brain metas-
tases who was referred by his oncologist for mifepristone therapy [44]. Based on 
the experimental data with efficacy of mifepristone inhibiting growth of cancer 
cell lines, the beneficial effect in controlled various murine carcinomas, and the 
anecdotal benefits in individual causes with various advanced cancers following 
single agent mifepristone therapy the FDA approved our investigator imitated 
study entitled “A phase II study of treatment with oral mifepristone as salvage 
therapy in patients who have failed two or more previous chemotherapy regimens” 
(www.clinicaltrials.gov).

He had no tumor markers that could provide him targeted therapy. His cancer 
progressed despite 3 rounds of multi-agent chemotherapy including carboplatin/
avastin/docetaxel, pemetrexed, and gemcitabine. In October of 2015 he had a sei-
zure and magnetic resonance imaging indicated a 1 cm right frontal lobe metastatic 
lesion. He received palliative stereotactic radiotherapy to the brain lesion which was 
completed in November 2015.

With deteriorating symptoms, for example, dyspnea on exertion and fatigue and 
with no other treatment options available (PD-L1 marker was negative and check-
point inhibitors were not approved for PD-L1 negative patients at this time), he was 
referred for our FDA study.

In all previous cases, the 200 mg mifepristone tablets were obtained from Danco 
Inc. at a cost of about $500 per month. For the FDA approved investigator-initiated 
study, we decided to use mifepristone 300 mg tablets daily because the company 
Corcept, Inc. which manufactures the 300 mg tablet for treatment of Cushing’s 
syndrome (though the dosage is generally much higher than 300 mg to block the 
glucocorticoid receptor) was willing to provide the drug free to approved patients.

His clinical symptoms improved significantly within 1 month of treatment with 
single agent oral mifepristone 300 mg daily. He was ECOG 1 at the start of therapy 
and after 1 month was ECOG zero. He remains ECOG zero after 4.8 years of treat-
ment, and for the majority of visits, he answers his 43 questions on the quality of life 
evaluation as “not at all” (the best answer that could be given). There has been no evi-
dence of growth of his previous brain metastases or any new lesions by MRI testing.



Drug Repurposing - Molecular Aspects and Therapeutic Applications

216

One additional important piece of information that his case provides. His meta-
static lesions remained stable for 1.5 years. But after 1½ years, some lesions began to 
grow slowly. His oncologist, based on his experience with other anticancer agents, 
thought that once disease progression began, it usually accelerates rapidly. He thus 
suggested to the patient that he stop the mifepristone, and consider nivolumab 
or pembrolizumab, which had at this time been tried on some patients who were 
PD-L1 negative, or consider another biopsy to determine if a new tumor marker 
could be found that would allow targeted therapy. The patient feeling so good on 
mifepristone therapy and feeling so poorly on all of his previous chemotherapy 
regimens, opted to take our advice and continue on the mifepristone therapy. Now 
3.5 years later and still feeling great, he is very satisfied with his decision not to stop 
mifepristone therapy [44].

This case exemplifies the mistakes, from lack of experience, that we alluded 
to in some of the previous case reports, that is, one should not stop the drug if 
there is the start of tumor progression. There is still a good chance the drug will 
provide continued extension of a good quality life. Naturally, if a new therapy is 
likely to be more effective than the mifepristone therapy, then it would make sense 
to try the new agent. But it makes no sense to try a completely new experimental 
drug with unknown side effects, as tried by some of the previous described cases. 
Furthermore, experience suggests that mifepristone inhibits metastases, but 
cessation of therapy results in rapid spread. This progression can be so rapid that 
it could be too late to resume mifepristone therapy if the new anticancer therapy is 
not working.

Therapy with mifepristone could be considered hormonal therapy, but because 
its hypothesized mechanism is that it removed a block (i.e., PIBF), and thus allows 
the cellular immune system (especially NK cells) to attack cancer cells, it could also 
be considered a form of immunotherapy. The question arises as to whether the drug 
would be effective in cancers positive for the programmed cell death protein ligand 
1 (PD-L1) marker where there was initial response to immunotherapy with a check-
point inhibitor but where the tumor was now showing resistance.

3.9 Case 9

We did describe a case of a 66-year-old woman with stage IV non-small cell lung 
cancer, who not only had the PD-L1 marker, but also her cancer was positive for 
the epidermal growth factor receptor (EGFR). When her cancer began progressing 
following chemotherapy with carboplatin, pemetrexed and bevacizumab regimen 
and the carboplatin and docetaxel regimen, she was started on a targeted therapy 
for the EGFR marker, erlotinib [45]. At that time, there was only first-generation 
tyrosine kinase inhibitors.

When her cancer progressed despite erlotinib, she was treated with 11 cycles of 
the check-point inhibitor nivolumab. It was stopped after 11 months because it was 
apparent the drug was no longer inhibiting her cancer progression. She qualified for 
the investigator-initiated study, and thus she was treated with the 300 mg oral daily 
dose of mifepristone [45].

After 18 months of oral 300 mg single agent mifepristone therapy, there had 
been no cancer progression based on lung CT scans performed every 2 months. In 
fact, some lesions were actually smaller. She was considered ECOG 1 at the start of 
mifepristone therapy. At the end of 1 year, she was still ECOG 1 with a good quality 
of life and normal physical activity.

After 1 year, her pre-existing severe chronic obstructive pulmonary disease 
(COPD) worsened and she required supplemental oxygen to keep her po2 above 
80 mmHg. Based on her COPD, but not her cancer which still had not progressed, at 



217

Progesterone and Glucocorticoid Receptor Modulator Mifepristone (RU-486) as Treatment…
DOI: http://dx.doi.org/10.5772/intechopen.93545

18 months from initiation of treatment, she was an ECOG 3. She died 2 months later 
from pneumonia.

Thus, this patient not only showed that mifepristone can prolong life and 
provide a good quality of life not only in a patient whose lung cancer is positive for 
the PD-L1 marker, but a person who also has the EGFR mutation [45].

Anecdotal cases are important, but more influential to other physicians would be 
a larger series. Even better would be a controlled trial with sufficient power, and the 
very best, a study that has all these qualifications, but is also multi-centered. The 
FDA approved the aforementioned investigator-initiated study for 40 patients. It 
is not considered ethical to have patients with such severe disease and subject them 
to placebo controls. Thus, the study was to evaluate in a larger series the efficacy of 
mifepristone therapy for advanced lung cancer and compare outcome to historical 
controls, that is, from quality of life to life expectancy, when dealing with a similar 
group of patients with lung cancer that has stage IV and failed at least two chemo or 
immunotherapy regimens.

We were allowed two principal investigators. However, as an investigator-
initiated study with no funds provided to the principal investigator by a pharma-
cological company or a grant, we could not find a principal investigator who treats 
a larger population of patients with lung cancer. Thus, we became, by default, 
the only principal investigator. Unfortunately, it is not totally clear to us as to the 
reasons, but despite our efforts we have only recruited the two aforementioned 
patients that were treated in this investigator-initiated study. Perhaps some of the 
fault lies in making the criteria for registering too harsh, but most of the problem 
is that we have not been referred very many patients to even screen for the study. 
Even the physician who referred us our first case who still is doing so well after 
almost 5 years of single agent mifepristone therapy, plus years with no side effects, 
has not referred us another patient [44]. We asked him if he had more patients 
and he stated that he could send us 40 patients in 1 year, but patients do not want 
to travel 100 miles every month to receive the medication. This seem unbelievable 
but this was also related to us by an oncologist whose research with us involving 
PIBF helped him get into medical school, where the patients would only have to 
travel only 15 miles. He was supposed to be our first principal investigator, but his 
associates objected. Even our own well renowned cancer facility at our institution 
turned down the opportunity to be a principal investigator and has never referred 
one patient for treating cancer whether they had lung cancer for this investigator-
initiated study, or for compassionate use for other cancers. From what we have 
ascertained, they refer the patients to hospice when they are at the stage eligible for 
our study. Yet they kindly refer to us many patients to consider oocyte freezing or 
embryo banking before potential ovary damaging therapy.

3.10 Cases 10 and 11

Actually, there were two patients with lung cancer that we screened that 
would have qualified for the investigator-initiated study. They both had stage IV 
non-small cell lung cancer positive for the EGFR mutation that were at the end of 
targeted therapy (erlotinib, afatinib, and osimertinib) because the lesions were 
progressing. They both responded very well to single agent mifepristone. Their 
case reports were accepted for presentation at the 2020 American Association for 
Cancer Research (“Improvement in quality and length of life following treatment 
with mifepristone in women with stage IV non-small cell lung cancer positive for 
the EGFR mutation that previously progressed on targeted therapy”). Because 
our study was not recruiting very well, we advised these two patients to try 
compassionate use 200 mg mifepristone, where the drug can be shipped to their 
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homes, rather than travel thousands of miles monthly to receive the medication 
gratis as required by the study design.

3.11 Case 12

There were two other abstracts accepted by the annual 2020 AACR meeting. The 
title of one tells it all – “Treatment with oral mifepristone enables a patient with 
end-stage pancreatic cancer, in hospice, on a morphine drip, to restore a decent 
quality of life.” The only other patient who we treated with mifepristone from pan-
creatic cancer, similar to the aforementioned patient, demonstrated a marked relief 
of her severe pain that had been present despite opiates. However, her husband, 
a physician, was informed by a major oncologic center of a new phase I research 
study. He quickly brought his wife there for treatment and she died 2 days later from 
cardiac complications of the new drug [40].

3.12 Case 13

A third abstract accepted for the 2020 annual AACR meeting is entitled 
“Palliative benefits of oral mifepristone for metastatic osteosarcoma.” This shows 
the wide diversity of different advanced cancers that have responded to extremely 
well tolerated oral mifepristone, frequently providing the patients their best quality 
of life even when their cancers had not been as advanced. The reason is that even in 
less advanced stages, many of these patients suffered from side effects of chemo-
therapy or even immunotherapy.

Pancreatic cancer and fibrous osteosarcoma are not known to be associated 
with the nuclear P receptor. Other patients with some rare advanced cancers have 
demonstrated significant palliative benefit following mifepristone therapy include 
a malignant fibrous histiocytoma in a 23-year-old male and an extremely aggressive 
transitional cell carcinoma of the renal pelvis [40].

4. Clinical studies using mifepristone to treat cancer

4.1 Cancers positive for the classic progesterone nuclear receptor

The presence of the classic nuclear P receptor in breast cancer tumors has been 
known for at least 40 years [26]. The thinking in those days was that the presence of 
the hormone receptor may be needed for the tumor to proliferate. Thus, intervening 
with the hormone receptor interaction may inhibit cancer growth while not creating 
serious adverse effects in the patient as long as the hormone-receptor interaction 
was not essential to life or well-being.

Based on the beneficial effects of blocking the estrogen receptor with selective 
estrogen receptors, that is, tamoxifen, it is not surprising that mifepristone was 
evaluated for treating advanced breast cancer with the thought that the interaction 
of progesterone with the classic nuclear progesterone receptor could somehow 
allow tumors, for example, breast and ovarian cancer to proliferate.

Mifepristone is a type II progesterone receptor antagonist which promotes 
DNA binding and also promotes progesterone receptor phosphorylation [46]. 
Mifepristone was given to advanced stage tamoxifen resistant women (second 
line setting) and the authors reported a complete or partial response in about 10% 
[47]. However, 6 of the 11 showed stable disease [47]. Another small study found 
an objective response rate of 18% [48]. For first line, mifepristone for untreated 
metastatic breast cancer, a 10% objective response rate was observed [49].
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The main method of evaluating efficacy of anticancer treatments 25–40 years 
ago, and even today, is inhibition of disease progression. Thus, the improvement did 
not seem adequate enough compared to other “more encouraging therapies”. Thus, 
interest waned in treating advanced breast cancer with mifepristone. Subsequently, 
more experience with mifepristone therapy for a variety of advanced cancers will 
show that although sometimes the treatment will cause a very good objective remis-
sion, the majority of the time the drug provides significant palliation and extension 
of a higher quality life while it slows disease progression.

For ovarian cancer not only is the classic nuclear progesterone receptor present 
but it also predicts a favorable outcome [50]. For similar reasoning as with breast 
cancer, mifepristone was given about 20 years ago to patients with ovarian cancer 
who had persistent lesions or recurrent lesions despite one round of chemotherapy 
[51]. Mifepristone 200 mg/day was given daily and continued until disease progres-
sion was found. They were treated for a mean of only 2 months. For 34 patients 
there was a response in 26.5% (9% complete and 17.5% partial) [51]. A second study 
of this drug conducted 10 years later showed a partial response in 42% of patients 
[52]. Again, the drug was stopped if there was any evidence of progression. The 
median time of treatment was 2 months [52]. From what we know today, if they 
would have continued the drug, the ovarian cancer may have progressed slowly 
while the patient maintained a high-quality extension of life [53].

5. Discussion

Should biopsy specimens be tested for PIBF to see if a given patient should be 
treated with mifepristone?

We do not think it would be unreasonable to see if a given specimen produces 
PIBF, but can we be sure that the tests are sensitive enough to deprive a patient the 
potential great benefit of treatment with mifepristone?

Can measurement of serum PIBF be helpful in determining if the cancer is 
responding to mifepristone or if mifepristone therapy is no longer working?

There have been developed more sensitive and specific serum PIBF assays 
[2]. However, based on measurement of serum PIBF in patients with gynecologic 
cancers or breast cancers that are P receptor positive, or even associated with breast 
cancer antigen 1 or 2, the serum level of PIBF may not be helpful for these purposes 
[54, 55]. It is the PIBF in the tumor microenvironment that seems to be most 
important, and this, of course, would be difficult to measure.

The 200 mg daily dosage of mifepristone does not appear high enough to block 
the glucocorticoid receptor. So, another important question, is if it is the action of 
mifepristone on blocking the P receptor that leads to its efficacy in treating cancer 
why does it seem to work in cancers that are not associated with the classic nuclear P 
receptor?

The evidence supports the fact that it acts on membrane P receptors. 
Activation of the nuclear P receptor initiates transcription, which is a slower 
process, whereas rapid activation of the membrane P receptor is a more rapid 
signaling action [46].

Do cancers need to secrete P to activate the membrane P receptor?
It is possible that at a certain stage cancer cells can make P or a P-like substance 

sufficient to interact with membrane P receptors. There is evidence that a large 
variety of cancer cells express the human chorionic gonadotropin (hCG)-beta 
subunit gene [56]. Activation of the hCG beta subunit gene to produce hCG could 
lead to local P production by the cancer cells. Alternatively, there may be some 
other mechanism to activate the membrane P receptor to make PIBF. Even with this 
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scenario, mifepristone could still block the effect of this theoretical non-P mem-
brane P receptor agonist.

Does mifepristone only works when the cancer is at the stage of rapid 
metastasis?

It is possible that all cancers have mRNA to produce PIBF, but only at a certain 
level, that is, perhaps stem cell level is the membrane progesterone receptor is 
activated and PIBF is manufactured. Thus, it is possible that activation of tumor 
secretion of PIBF only occurs at the stage when it is ready to rapidly metastasize. 
About 20% of meningiomas are associated with the classic nuclear P receptor. 
However, a large study comparing mifepristone vs. placebo for unresectable tumors 
did not find any therapeutic benefit for mifepristone vs. placebo [57]. This could 
be because meningiomas are slow growing tumors and the PIBF mechanism is only 
seen with rapidly growing tumors. However, it is also possible that some meningio-
mas are considered benign. Thus, maybe it is the ability to make PIBF that is one 
factor allowing the tumor to follow a benign vs. malignant course. One benefit of 
this large study was to demonstrate a very good safely profile for mifepristone with 
few side effects [57].

Since a compassionate use IND is required by the FDA, that organization is 
reluctant to grant an off-label use unless all “standard” treatments have been 
exhausted. Thus, most of the study subjects in our center have been patients with 
very advanced cancers where there are few, if any, reasonable treatment options.

One exception is a man, who at the age of 58 was found to have bilateral renal 
cell carcinoma with metastases to local lymph nodes [42]. Renal cell carcinoma can 
be multifocal, and even when several lesions are present, the tumor is generally 
not extremely aggressive. Today the recommendation is renal sparing surgery and 
to remove the tumors every time one reaches a certain critical size [58–60]. But 
16 years ago, the recommendation was bilateral nephrectomy.

Since there were no chemotherapy or immunotherapy agents16 years ago for 
renal cell carcinoma, and the patient did not want to become a dialysis cripple, 
the FDA approved a compassionate use IND for oral mifepristone following a 
laparoscopic hemi-nephrectomy with retention of a kidney with three lesions left 
untreated.

After 10 years of single agent treatment, there were no new tumors. The three 
lesions previously noted on the left kidney remained stable [42]. After 10 years his 
diabetes caused kidney failure and the start of dialysis. Thus, he had the 1½ kidneys 
removed. After 2 years of hemo-dialysis, he was approved for a kidney transplant. 
He is still doing well 16 years from initial diagnosis [42].

This case showed that mifepristone can also work to inhibit tumor growth even 
when not at the rapidly growing cell stage. Whether this is specific only for renal 
cell carcinoma, or applies to other malignancies, needs to be determined. Thus, 
perhaps one should consider using mifepristone in earlier stage metastatic cancers 
following tumor remission following treatment with chemotherapy or immuno-
therapy to possibly inhibit recurrence or negate the need to treat with another 
chemotherapy or immunotherapy regimen with morbid side effects.

One final thought. Frequently, once a tumor has widely metastasized che-
motherapy or even immunotherapy may frequently extend life somewhat at the 
expense of significant side effects from treatment. Mifepristone therapy is devoid 
of major side effects, and thus may provide possibly a longer higher quality life 
than “approved therapy.” The treatment of patients with cancer has provided huge 
profits both for the pharmaceutical companies and the treating institutions. So 
realistically it is unlikely that mifepristone therapy will become popular in capitalis-
tic societies.
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However, in some countries needed to provide effective, yet inexpensive treat-
ment, one could consider offering patients oral government provided mifepristone 
rather than expensive chemo or immunotherapy agents. The cost of a mifepristone 
pill in China is 50 cents. In fact, since growth of tumors is still consistent with a 
prolonged good quality life, one could save money on expensive diagnostic tests to 
monitor progression. Possibly mifepristone could be considered first line therapy 
for metastatic disease with consideration of other therapeutic modalities only if 
health deteriorates despite mifepristone therapy.

Since the drug is available as a generic already, it is unlikely any pharmaceutical 
company will invest in larger studies to prove its efficacy. Hopefully, the published 
anecdotal cases, and the easing of the requirements for compassionate use, will 
encourage other clinicians treating patients with advanced cancer to try the drug 
and publish their findings. If enough treating physicians request compassionate use 
IND for mifepristone use, perhaps the FDA will eventually drop the requirement 
of compassionate use IND, facilitating the use for treating physicians around the 
world. Many countries, similar to the United States, at this time also restrict the 
use of mifepristone solely for the purpose of therapeutic abortions, and in some 
countries, it is completely illegal, at least at the relatively inexpensive price for the 
200 mg dosage to use this drug. The use of the 300 mg dosage that does not require 
a compassionate use IND is cost prohibitive. Possibly the manufactures may one 
day reduce the price considerably or it will be manufactured by a generic company 
at a much lower price when the patent expires. Perhaps at a lower cost, insurance 
companies will be happy to pay for off-label use of mifepristone realizing how 
much cheaper it is for cancer therapy than conventional chemo or immunotherapy 
regimens.

As previously mentioned, clinical trials with mifepristone for cancers associated 
with the classic nuclear P receptor were “disappointing” and thus clinical trails 
were not pursued. When these studies were initiated 20–30 years ago, the hope 
was that metastatic cancer can be “cured.” It is now realized that the best hope for 
advanced cancer is a truce with extension of a better quality of life. Also, at that 
time the goal of therapy was to induce a tumor response as evidenced by complete 
or partial tumor regression. We think if they had used the endpoints of quality and 
length of life, they would have had the satisfaction of treatment as we have had in 
these anecdotal cases. The majority of cases do not show tumor regression but stable 
disease and improved quality and length of life.

As far as side effects, the drug has been well tolerated. In higher dosages 
mifepristone can, by blocking the glucocorticoid receptor, lead to higher serum 
cortisol levels which acts on the mineralocorticoid receptor leading to hypoka-
lemia. One has to be careful when using other drugs that can interfere with the 
metabolism of mifepristone leading to hypokalemia. We had one unreported 
case of a woman adding mifepristone to her ongoing treatment with alpelisib, 
which in itself can cause hypokalemia. Whereas the combination led to hypoka-
lemia, neither drug by itself caused it. She was taking just the 200 mg dosage of 
mifepristone.

Similarly, case number 9, who was taking the 300 mg dosage, did develop 
hypokalemia when she was switched to another bronchodilator for her COPD, but 
reverted back to normal when it was stopped. She was taking the 300 mg dosage of 
mifepristone [45].

One man with stage IV non-small cell lung cancer became more somnolent 
when adding mifepristone to his fentanyl that he was using for pain. Though we 
advised him to reduce the dosage of fentanyl, he chose to just stop the mifepristone 
and died 2 weeks later. He had only taken the mifepristone for 2 days.
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Abstract

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype 
lacking the three hormonal receptors namely estrogen receptor, progesterone recep-
tor and HER2 receptor, and the only treatment option available for TNBC is che-
motherapy. Chemotherapy lacks specificity since it acts on normal healthy cells as 
well resulting into secondary diseases in TNBC patients. In addition chemotherapy 
poses recurrence and relapse issues due to the development of chemoresistance 
among TNBC patients. Immunotherapy remarkably immune checkpoint inhibi-
tors show a great therapeutic potential in TNBC. As TNBC contain an increased 
TILs (tumor infiltrating lymphocytes) infiltration making it more suitable as a 
therapeutic target anti-tumor immune strategy. Moreover, evidences have indicated 
that chemotherapy upregulates the anti-tumor immune response in TNBC. As a 
result, a combination of immunotherapy with chemotherapy may increase the 
overall relapse and recurrence free survival of TNBC patients. Therefore, in this 
chapter we will focus on how the immunotherapy works in TNBC, their effects and 
consequences. We will further be discussing the clinical studies and the importance 
of immune checkpoint inhibitors (ICIs) in combination with various therapeutic 
agents and target. Further, we will explore the processes involved.

Keywords: TNBC, PD-1, immunotherapy, immune checkpoints,  
immune checkpoint inhibitors, epigenetics, CTLA-4, oncolytic virus

1. Introduction

Triple negative breast Cancer (TNBC), is an aggressive breast cancer subtype 
characterized by the lack of hormone receptors; estrogen receptor, progesterone 
receptor and HER2 receptor accounting for about 15–20% of all breast cancers, 
with chemotherapy available as the prime systemic therapy. The treatment results 
into low median overall survival with earlier recurrence and metastasis posing to 
be a great hurdle in the control of this disease [1]. Therefore, improved therapies 
are urgently needed. Immunotherapy has prolonged survival in other solid tumors 
and represents a promising treatment strategy for TNBC (Figure 1). In the recent 
days, targeting immune checkpoint inhibitors are noted immunotherapeutic agents 
that are known to block immunosuppressive receptors like PD-1 (anti-programmed 
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death receptor-1) and CTLA-4 (cytotoxic T lymphocyte antigen-4), which are 
significantly involved in tumor directed immune responses [2]. Moreover, several 
characteristics of TNBC make immunotherapy to be corner stone of the modern 
therapeutic regimens such as the presence of TILs (Tumor infiltrating Lymphocytes 
(TILs). The TILs are associated with better therapeutic responses increasing the 
disease free survival and overall prognosis in TNBC in comparison to other breast 
cancer subtypes. The presence of TILs as well acts as predictive biomarkers for 
immunotherapy response that makes immunotherapy more intriguing for TNBC 
treatment [3–5]. Besides, TNBC are known to possess higher PD-L1 expression 
levels on both tumoral and immune cells that are likely to respond to the immune 
checkpoint inhibitors (ICIs) such as pembrolizumab, nivolumab (monoclonal anti-
bodies against PD-1), Ipilimumab (antibody against CTLA-4) and Atezolizumab, 
Avelumab (antibody against PD-L1) [2, 6, 7]. In addition, the presence of sig-
nificant number of non-synonymous mutations in TNBC generate neo-antigens 
specific to tumors that activate robust anti-tumor immune responses that can be 
synergistically utilized by the current immunotherapeutic agents like ICIs [8–10]. 
Nevertheless, the presence of higher levels of BRCA1 and BRCA2 mutations giving 
rise to unstable genetics acts as a significant predictive marker for immunotherapy 
response [11].

The immune system plays a dual role in a way that it not only is involved in 
tumor initiation and progression but also acts significantly in the recognition and 
destruction of cancer cells. The later generates a tumor-directed immune response 
involving cytotoxic T lymphocytes [12, 13]. For cancer progression the tumors are 
known to evade the anti-tumor immune response by certain array of mechanisms 
like activation of pro-tumor-polarized innate inflammatory cells, activation of 
humoral immunity, suppression of tumor-specific antigens, infiltration by Th2 T 
cells, absence of major histocompatibililty complexes (MHC) on tumor cell surface 
and negative immune checkpoint inhibitor expression by tumor cells [13, 14]. These 
mechanisms followed by tumor cells to evade immune responses are known as hall-
marks of cancers as these work in concordance to suppress the anti-tumor response 
and promote cancer progression. Therefore, in order to bring cancer control strate-
gies targeting these specific mechanisms are utilized in immunotherapy to bring in 
control the tumor progression (Figure 2) [15].

Figure 1. 
Represents the available treatments for TNBC (triple negative breast cancer).
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Therefore, actively manipulating the immune system for TNBC treatment repre-
sents to be an attractive strategy as this particular breast cancer subtype has lacked 
in terms of extensive clinical management. In view of that, immune checkpoint 
inhibitors (ICIs) has revealed promising results in TNBC patients by substantial 
improvement in TNBC patients overall prognosis. However, the focus of this field 
is to recognize the immunogenic identity of patients for the clinical management 
of patients and in specific to identify specific therapeutic agents to target tumor 
microenvironment [14]. Nevertheless, the utilization of current therapeutics like 
chemotherapy, radiotherapy in combination with immunotherapy will augment the 
immunotherapeutic response as they enhance tumors mutational load, downregu-
late immune suppression by tumor microenvironment and boost antigen presenta-
tion by tumor cells, henceforth making tumors more prone to immunotherapy 
(Figure 2) [16–18]. Interestingly, many clinical trials are underway and some have 
revealed that combination of immunotherapy with other therapeutic agents besides 
chemotherapy and radiotherapy has enhanced the patient responses in terms of 
progression free survival and standard of care [19, 20].

2. Role of immunotherapy in TNBC

The immune system is known to kill tumor cells by a process called immuno-
surveillance in which the immune cells target and kill the tumor cells by two ways; 
either directly or indirectly by releasing soluble chemicals. The cells involved are 
cytotoxic T lymphocytes (CTL), dendritic cells (DC), macrophages, Natural killer 
cells (NK) etc. As described earlier, the cancer cells are known to evade the host’s 
immune responses in that the host’s immune system identify the tumor cells as self 
due to which the tumor cell is favored to escape, grow, proliferate and metastasize 
to distant organs. Furthermore, as the tumor develops, they modify the immune 
cells for their own benefit like they modify TAMs and recruit them to the tumor 

Figure 2. 
Overview of involvement of immune system in TNBC with combination treatment options; A. Represents on 
recognition of the antigen from the tumor cell the immune cell destroying the tumor cell B. Shows that how 
PD-L1 from the tumor cell interacts with PD-1 and this binding causes T cell exhaustion and helps the tumor 
cell evading the immune response.
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microenvironment to release chemicals that suppress the immune system further 
enhancing the suitable environment for the tumor cells to survive and proliferate 
[21]. Therefore, targeting this strategy of immune evasion by cancer cells i.e. modu-
lating the immune system is imperative for the development of therapeutics against 
tumors. In addition, the currently available treatment options like chemotherapy, 
radiotherapy are known to be ineffective because of the induction of relapse and 
recurrence, development of resistance, lack of specificity in addition to side effects 
and toxicity that leads to tumor development and metastasis in secondary sites. 
In view of this, immunotherapy is considered to be the most reliable therapeutic 
approach in terms of target specificity by targeting different immune cells, their 
functional attributes to block the development and spread of aggressive tumors 
and as a non-toxic anti-cancer therapeutic strategy. Moreover, immunotherapy has 
emerged as the fourth most important treatment for cancer after surgery, chemo-
therapy and radiotherapy and has shown effective treatment responses among 
patients (Figure 2) [22].

Recently immunotherapy was developed as an effective treatment strategy 
against cancers with a goal to design therapeutics that can effectively enhance  
the immune system in terms of its specificity and strength its response towards the 
evading tumors [23]. In the year 2018, James P. Allison and Tasuku Honjo won the 
Nobel Prize in Physiology and Medicine for discovering a treatment for cancer by 
downregulating the negative immunomodulation. In their study, they demonstrated 
that the immune checkpoints like PD-1 (programmed cell death protein1) and 
CTLA-4 (cytotoxic T lymphocytes associated protein 4) act as “brake” in immune 
system as they may reactivate T cells by immune checkpoint inhibition, hence elicit-
ing an improved immune response against malignant tumors [24]. The significance 
of immune checkpoint inhibitors as potential therapeutics has proven in various 
studies. Many studies have revealed that PD-1 inhibition promotes effective immune 
responses against cancers [25]. Accumulating studies on PD-1 signaling suppression 
has revealed that the patient’s clinical response to immunotherapy depends upon the 
effectiveness of T-cells to penetrate the tumor [26]. In the past decade many immune 
system components have been explored as adoptive immunotherapies like cytotoxic 
T cells, TILs, anti-CD3 monoclonal antibody-induced killer cells and activated killer 
cells but they showed less efficiency as therapeutics because of their low anti-tumor 
functions [27]. However, an in-vitro study has suggested the cytokine-induced 
killer (CIK) cells to a promising target for utilization as immunotherapeutic target 
because of its higher proliferation rate, hence more effectiveness towards eradicating 
cancer [21]. CIKs contribute to sturdy cytolytic activities towards tumors as these 
are non-major Histocompatibility complex- restricted cells that can express both 
natural killer cell and T cell markers such as CD56 and CD3 [28]. Furthermore, CIKs 
are known to improve the immune response in patients by regulating and therefore, 
increase the efficacy of immune function [29]. However, study of CIK cell therapy 
in breast cancer, particularly in TNBC has been limited. Despite that evidences have 
reported that the association of CIKs with chemotherapy may result in synergistic 
effects, supported by an in-vitro and in-vivo study against cancer stem cells that 
were resistant to chemotherapy. Therefore, strongly suggests that combined therapy 
might improve therapeutic efficacy in patients having TNBC, as chemotherapy has 
shown to regulate the patient’s immune status [30].

3. Immune checkpoints in immunotherapy

Immune checkpoints comprise of a collection of different regulatory proteins 
in the adaptive system that regulate the immune system functions i.e. anti-tumor 
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activity and self-tolerance. They are known to function by coordinating the fre-
quency, magnitude and type of immune response either via positive or negative 
regulation. There are mainly two immune checkpoint s studied namely PD-1/PD-L1 
and CTLA-4, as their presence in the TME prevents to elicit an anti-tumor response 
via negative regulators of immune activation [31].

3.1 PD-1

PD-1 also known as CD279 was first discovered in the year 1992 [32]. It is a 
55 kDa transmembrane protein comprising of 288 amino acids with an extracel-
lular N-terminal domain, a cytoplasmic tail at each N and C end, a transmem-
brane domain respectively with two tyrosine bases [33]. PD-1 are expressed on 
a number of immune cells like macrophages, B lymphocytes, activated T cells, 
Dendritic cells, natural killer cells, activated T cells and monocytes. However, 
they are highly expressed on specific T-cells. PD-1 is known to act as an inhibitor 
of both innate and adaptive immune responses [34]. It is supposed its transcrip-
tion is triggered by many transcription factors such as NOTCH, nuclear factor of 
activated T cells (NFAT), Interferon (IFN), Forkhead box protein (FOXO1) and 
interferon regulatory factor 9 (IRF9) [35]. PD-1 expression is highly increased 
during acute infection and also when there happens to be leakage from cancer 
cells. PD-1 function in both beneficial and harmful manner to the immune 
system as it plays a significant role in maintaining immune tolerance by regula-
tion of the harmful and inefficient immune responses while also interfering with 
the classical protective role of immune system by negative regulation [36–38]. A 
higher PD-1 expression has been seen in TNBC patients in comparison to non-
TNBCs and has been associated with larger tumors, higher histological grades, 
increased TILs etc. [39].

3.2 PD-L1

PD-L1 is a ligand to PD-1. It belongs to the B7 series and is also known as 
B7-H1 and CD279. It is a transmembrane glycoprotein as is PD-1, containing 

Figure 3. 
Represents PD-1 mediated T cell inhibition. The binding of PD-L1 expressed on tumor cells binds to its receptor 
PD-1 on T cells delivering an inhibitory signal to T cells that lead to T cell exhaustion and ineffective T cells.
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290 amino acids with IgC domains in its extracellular portion. The cells that 
express PD-L1 include: activated B and T cells, epithelial cells, macrophages and 
dendritic cells, particularly at the time of inflammatory responses. The PD-L1 
expression is connected with the production of Th1 cytokines, presence of CD8 T 
cells, interferon, other chemical factors as well as expression of specific genes i.e. 
all these are responsible for the over expression of PD-L1 and further malignant 
disease progression, which we will be discussing later in the chapter. Therefore, 
inhibiting the particular pathways for instance, on activation the NK and T cells 
secrete interferon-gamma that induces PD-L1 expression on the cells including 
tumor cells etc. has been shown to promote strong antitumor responses among 
patients.

The PD-L1 is utilized by the opportunistic tumor cells to evade immune 
response by mimicking the “Adaptive immune process”. Furthermore, PD-L1 is 
known to act as a pro-tumorigenic factor activating survival and proliferating 
signaling pathways by receptor binding, hence implicating its greater role in 
tumor proliferation and metastasis (Figure 3). In addition, PD-L1 also acts in a 
non- immune pattern by inducing epithelial to mesenchymal transition exerting 
in the tumor cells stem cell like characteristics promoting metastasis and disease 
progression Table 1 [41].

3.3 CTLA-4

CTLA-4 is a member of the CD28 family and is considered to be the “leader” 
of the immune checkpoint inhibitors as it potentially stops autoreactive T cells 
in the lymph nodes at the initial stages of development [42, 43]. It is the first 
immune checkpoint discovered among other immune checkpoints. It is a trans-
membrane receptor of T cells and it is a leukocyte differentiation antigen  
that regulates the immune process by negative regulation by competing and 
binding to the B7 receptor, as it is a CD28 homolog [40]. CTLA-4 plays a signifi-
cant role to prevent self-reactive immune responses particularly by increasing 
immunosuppressive Treg. Activity and downregulation of the T effector cell 
function [14].

Similarities Difference

Expressed by activated T cells CTLA-4 limits T-cell responses early in an immune response, 
primarily in lymphoid tissues; PD-1 limits T-cell responses later in 
an immune response, primarily in peripheral tissues

Regulate an overlapping set of 
intracellular T-cell signaling proteins

CTLA-4 affects Tregs functioning; the role of PD-1 on Tregs is 
unclear

Level of expression affected by 
the strength and duration of TCR 
signaling

CTLA-4 is expressed by T-cells; PD-1 is expressed by T cells and 
other immune cells

B7 receptor family members CTLA-4 ligands are expressed by professional APCs; PD-1 ligands 
are expressed by APCs and other immune cells, and can be 
inducibly expressed on non-immune cells, including tumor cells

Reduce T-cell proliferation, glucose 
metabolism, cytokine production 
and survival

PD-1 engagement interferes with more T-cell signaling pathways 
than does CTLA-4 engagement

Adapted from [40].

Table 1. 
Comparison of immune checkpoints CTLA-4 and PD-1.
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4.  Possible mechanism of action of anti-programme death receptor-1/
Ligand-1 (PD-1/PD-L1) in cancer

PD-1/PD-L1 is known to control the induction and maintenance of immune 
tolerance within the tumor microenvironment. It performs a significant role in 
cytotoxic secretion and T cell activation and proliferation in cancer to inhibit anti-
tumor immune responses in host [41]. During tumor proliferation, the PD-L1 is 
highly expressed on tumor cells that bind to the PD-1 receptor on T cells that receive 
an inhibitory signal from the PD-L1 binding i.e. to inhibit the T cell’s immune func-
tion that leads to T cell exhaustion making T cells ineffective (Figure 3).

However, monoclonal antibodies that target PD-1 and PD-L1 are being studied 
and used as these pathways are majorly taken by tumor cells to proliferate in host’s 
body that are known to typically regulate activity of T cells for their own benefit 
that is to evade the immune responses generated against them. Accumulating 
evidences has suggested that by inhibiting the binding of PD-L1 to PD-1, the anti-
tumor response is made stronger as the T cell exhaustion is reversed. Therefore, in 
view of that several monoclonal antibodies are being studied, particularly in TNBC 
like Atezolizumab, Avelumab and Durvalumab that specifically target PD-L1 and 
others such as Pembrolizumab and Nivolumab specific to target PD-1 [31].

5.  Possible mechanism of action of cytotoxic T lymphocytes (CTLA-4) in 
cancer

CTLA-4 (Cytotoxic T lymphocyte-associated protein-4), is another regulatory 
pathway of T cells. During T cell activation CTLA-4 is highly upregulated. Upon 
T cell activation, the CTLA-4 is translocated from the intracellular granules to the 
plasma membrane that further amplifies the T-cell response by regulating T-cell 
priming and activation. It inhibits the intracellular T cell activation signaling by 
competitive binding for CD80/CD86 that results in downregulation of immune 
response. Moreover, it acts through protein tyrosine phosphates 6 and 11 to suppress 

Figure 4. 
Shows CTLA-4 inhibits T cell activation thereby regulating the immune responses. Therefore, tumor cells escape 
immune response by suppressing CTLA-4.
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the TCR signal. CTLA-4 plays an important role in regulating peripheral tolerance 
that is an immunological process to prevent auto-immune responses by suppressing 
T effector cell function and further by upregulating the immunosuppressive Treg 
activity. Tregs express CTLA-4 constitutively unlike effector cells thereby acting as 
a major mechanism for immune suppression (Figure 4) [14].

Therefore, many monoclonal antibodies are currently being studied for 
instance; Tremelimumab specific for target CTLA-4 is being investigated in patients 
with TNBC. Limited research is available regarding CTLA-4, eagerly awaiting the 
need for research in discovering treatment options and other potential targets in 
TNBC treatment [31]. By inhibiting the CTLA-4 mediated response or the blockade 
of CTLA-4 results into the activation of non-specific immune cell activation and is 
connected with increased treatment-related adverse events (TRAEs). For instance, 
CTLA-4 depletion has results into rheumatoid arthritis, type I diabetes, collagen 
induced arthritis and systemic lupus erythematosus [14].

6. Other immune checkpoints under investigation

Apart from the above two immune checkpoints, a variety of other immune 
stimulatory and suppressive checkpoints are currently under investigation as 
immunotherapy targets that include; TIM-3, LAG-3, TIGIT, VISTA and BTLA-4, 
these reduce the anti-tumor immune response by regulating T cell activity like 
CTLA-4 and PD-1. Among them TIM 3, BTLA-4 and LAG-3 are implicated as T cell 
exhaustion markers in tumors same as that of PD-1. TIM 3 negatively regulates the 
cytotoxic CD8 T cells and Th1 CD4 T cells, thereby shifting the immune responses. 
TIGIT is expressed by a number of cells such as: T cells, Treg cells and NK cells 

Immune checkpoints Function

Immunoinhibitory checkpoints

PD-1 Regulates T cell activation by binding to its ligand PD-L1 and PD-L2

CTLA-4 Acts by competitive binding with the receptors and prevent the 
co-stimulatory signal thereby balancing the stimulatory signals of the 
host immune response

TIM-3 Shifts the immune response by negatively regulation of Th1 CD4 T 
cells and cytotoxic CD8 T cells

TIGIT TIGIT on T cells binds with the poliovirus receptor on the APCs and 
act as competitive antagonist to CD226 have suppressive effects

VISTA Expressed by both APCs and T cells plays a role in both Treg function 
and myeloid cell activation

Immunostimulatory 
checkpoints

ICOS It is a member of the CD28 family. It provides the second signal in 
immune activation by binding with B7H/B7RP-1.

CD40L CD40L interacts with CD40 receptor on T cells and function by 
promoting a proinflammatory immune response

OX40 OX40 downregulates Treg function by binding with the ligand 
OX40L.
It also induces the expression of pro-apoptotic proteins like BCL-2 and 
BCL-XL

Table 2. 
Immune checkpoints in immunotherapy.
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and is known to bind to poliovirus receptor on APCs or tumor cells. It is supposed 
to perform both direct and indirect immunosuppressive effects by competitively 
binding to NK and T cell receptors in place of CD226; it also leads to downstream 
inhibition of AKT signaling in T cells [14, 44]. In addition, TIGIT increases the 
suppressive activity and releases inhibitory cytokines by receptor binding of TIGIT 
on the APCs and Tregs [45]. Moreover, VISTA is expressed by both APCs and T cells 
play a role in both Treg function and myeloid cell activation [14].

On the contrary, other checkpoints like OX40, ICOS and CD40L are immunos-
timulatory checkpoints that function in the maintenance and activation of effector 
T cells. The expression of OX40 is induced at the time of T-cell activation leading to 
the expression of anti-apoptotic factors such as BCL-2 and BCL-XL that leads to the 
sustenance of T cells proliferation. It also acts as a co-stimulatory signal in tumor 
induction and is constitutively expressed on Tregs and OX40 also decreases the 
Treg function by binding to its receptor on Treg [46–48]. Furthermore, ICOS leads 
to the activation of second signal in immune activation by binding to B7H/B7RP-1 
[49]. Another immunostimulatory checkpoint CD40L interacts with CD40 on APCs 
induces via NF-ƙB signaling a proinflammatory immune response Table 2 [14].

The immunostimulatory checkpoints can be inhibited by therapeutic agents 
targeting recombinant ligand peptides, ligands expressing viral particles or ago-
nistic monoclonal antibody that is in contrast, to the inhibitory checkpoints where 
monoclonal antibodies inhibit the interaction between the respective ligand and 
receptors. Therefore, there is an emerging need to fully explore these biomarkers for 
better prognosis of patients using immunotherapy strategy [14].

7. Biomarkers in immunotherapy

Biomarkers are of significant importance in view that it predicts the clinical 
benefit to immunotherapy. Therefore, there is a need to bring into light several 
biomarkers in TNBC to distinguish that which patients is likely to get benefited 
from the ICIs or to build up certain therapies to overcome the hindrance in treat-
ing the respective malignancy. Until now PD-L1 was considered to be the major 
biomarker in TNBC. However, recent studies depicted that most of the mTNBC 
patients are PD-L1 negative arising the need to prospect into the immunotherapy 
field to find other novel biomarkers to get an insight into the patient responses to 
immunotherapy as a monotherapy or as a combinational therapy [50, 51]. Some 
of the biomarkers studied so far in TNBC include: TILs, TMB (tumor mutational 
burden), Gene signatures.

8. Tumor infiltrating lymphocytes as biomarkers (TILs)

Tumor infiltrating lymphocytes (TILs) have a predominant role in breast cancer 
as predictive and prognostic biomarker. It is present intratumorally and in adjacent 
stromal tissues. The increased presence of TILs in Breast cancer is associated with 
improved prognosis and overall survival in response to neoadjuvant chemotherapy 
[52, 53]. In a recent study higher number of TILs was in TNBC as compared to other 
breast cancer subtypes, therefore is associated with the possibility to show better 
responses to neoadjuvant and adjuvant chemotherapy with relapse free survival  
[54, 55]. The connection of TILs with anti-tumor immune response in TNBC patients 
also serves as a predictive biomarker, thereby making examination of immuno-
therapy in TNBC more interesting [14]. Furthermore, clinical trial KEYNOTE-173 
trial investigating pembrolizumab in combination with chemotherapy has shown 
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promising results in the neoadjuvant setting of TNBC, as this trial demonstrated 
the presence of higher levels of TILs and higher PD-L1 expression resulting in a high 
combination score with increased overall response rates in TNBC patients [56].

9. Tumor mutational burden (TMB) as TNBC biomarker

TMB is defined as the measurement of non-synonymous mutations present in 
tumor cells. Here mutations lead to enhanced expression of neoantigens in terms 
of MHC I class antigens thereby increasing the visibility of cancer cells to T cells. 
However, limited data for TMB is reported while the frequencies of TMBs are found to 
be significantly higher in TNBC comparative to the other breast cancer sub types [57]. 
Therefore, the presence of TMB is linked with immunogenicity in several tumor types 
[58]. A recent study revealed no significant difference for breast cancer patients pre-
treated with ICIs (immune checkpoint inhibitors) in survival. Therefore, it is assumed 
that TMBs alone are not supposed to represent a sole predictor as biomarker evoking 
the need to enrich the available information regarding TNBC biomarkers [58, 59].

10. Gene signatures as biomarkers in TNBC

A number of multiple gene signatures in correlation with TILs have been stud-
ied as surrogates of breast cancer immunogenicity. According to immune-related 
gene expression profiling breast cancer consisted of four categories namely ICR1–4 
(immunologic constants of rejection) and these were seen to be associated with 
survival in a retrospective manner using in-silico analysis. Interestingly, the ICR4 
(Th1 helper phenotype) was linked with the upregulation of transcripts like PD-L1, 
IDO1, PD-1, FOXP3 and CTLA-4 that indicated a better survival among patients, in 
contrast a negative regulation was showed in disruptions induced by the presence 
of MAPK components linked with the ICR1, an unfavorable-immune response. A 
study on mouse models has shown an increased anti-tumor immune response in 
TNBC patients that was suggested to result by the inhibition of MEK, a molecule of 
MAPK pathway in combination with PD-1 inhibitor due to which the MHC I and 
PD-1 expression on Tumor cells increased resulting in apoptosis of cancer cells. 
Moreover, in TNBC a four gene-signature such as CXCL13, GBP1, SULT1E1 and HLF 
were shown to represent an upregulation of TILs and enhanced disease free survival 
among patients, however their predicting response with ICIs needs to be defined [58].

11. Importance of immune checkpoint inhibitors as monotherapy

Immunotherapy stimulates the immune system by active immunization with 
cancer vaccines or passive immunization with tumor-specific antibodies and 
immune modulators, such as immune-checkpoint inhibitors. Immune checkpoints 
are a complex group of adaptive immune system regulatory points that play roles 
in self-tolerance and antitumor immunity. These checkpoints regulate the immune 
response in either a negative or positive way, coordinating the magnitude and form 
of response. Immune checkpoint inhibitors (ICIs) are regarded as the emerging 
immunotherapy superheroes, allowing a patient’s self-immune cells to destroy 
tumors and remodeling cancer treatment in a board spectrum of cancers. The use of 
immune checkpoint inhibitors against programmed death receptor-1 (PD-1) or its 
ligand PD-L1 to treat a wide range of solid and hematologic tumors has dramatically 
altered the cancer treatment paradigm.
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11.1 PD-1 inhibitors

PD-1, also known as CD279, is a CD28 family member expressed on lymphoid 
cells such as T cells, B cells, and natural killer (NK) cells, as well as on myeloid 
cells [60]. The binding of PD-1 on T cells with the ligands PD-L1 or PD-L2 sup-
presses signals downstream of T-cell receptor activation in the context of antitumor 
immunity [61, 62]. The monoclonal antibody that target the programmed death-1 
receptor is Pembrolizumab, which is a humanized monoclonal antibody directed 
against PD-1.

11.2 Pembrolizumab

Pembrolizumab prevents immune-cell deactivation and inhibition by steri-
cally blocking the interaction of PD-1 and its ligands. Pembrolizumab was the first 
immune checkpoint inhibitor to be approved as a first-line treatment, as well as 
the first PD-1-targeted therapy. Pembrolizumab a dose of 10 mg/kg was adminis-
tered every two weeks to patients with previously treated, advanced TNBC in the 
KEYNOTE-012 trial, which showed efficacy and an adequate safety profile [63]. 
The overall response rate was 18.5 percent of the 27 patients who were assessed for 
antitumor activity, with 17.9 weeks an average response time (Table 3) [63]. The 
KEYNOTE-086 trial is presently examining the use of pembrolizumab (200 mg per 
3 weeks) in metastatic TNBC (NCT02447003). Cohorts A and B were presented 
in an oral session at the 2017 ASCO conference [64, 65]. Cohort A comprises of 
patients with TNBC who had advanced on at least one systemic treatment. Among 
the 170-patient cohort, 4.7% responded, and 7.6% accomplished disease control for 
24 weeks or longer, which included stable disease, partial response, and complete 
response [66]. In addition, 0.6% showed an absolute response to pembrolizumab 
monotherapy, and 27% had a decrease in the target lesion size after the first dose. 
The KEYNOTE-086 trial’s Cohort B included metastatic TNBC with PD-L1+ 
tumors, without having received some systematic treatment previously. 23% of the 
52 patients in this cohort showed an objective responses [64]. The use of pembro-
lizumab as a primary therapy and the inclusion of PD-L1+ tumors as a criterion for 
inclusion may have contributed to the increased response in cohort B, with only 58 
percent of the patients admitted had a cumulative PD-L1 positive composite score 
of >1 (Table 3) [64].

11.3 PD-L1 inhibitors

The monoclonal antibodies atezolizumab and avelumab target the PD-L1, a 
transmembrane protein found on tumor cells. Avelumab is a fully human IgG1 
MAB that binds to PD-L1, while as Atezolizumab is a humanized IgG1 isotype 

Agent Clinical trial id Cancer type Phase Recruitment status

Pembrolizumab NCT01848834 mTNBC Ib Completed

Pembrolizumab NCT02447003 mTNBC II Completed

Atezolizumab NCT01375842 mTNBC I Completed

Avelumab NCT01772004 mTNBC Ib Completed

Tremelimumab NCT02527434 mTNBC II Active, not recruiting

Table 3. 
Main monotherapy clinical trials of immune checkpoint inhibitors in mTNBC.
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monoclonal antibody that binds to PD-L1. The FDA has approved these PD-L1 
inhibitors for the treatment of other solid tumors, and they are currently being 
explored further for the treatment of TNBC.

11.4 Atezolizumab

The first PD-L1 inhibitor to receive FDA approval was atezolizumab. An open-
label, phase I dose-escalation analysis (NCT01375842) showed that Atezolizumab is 
safe in patients with locally advanced or metastatic solid tumors (Table 3). A cohort 
of 54 patients with mTNBC was evaluated for protection, and 21 patients were evalu-
ated for efficacy in this study. 69% of the patients in the protection cohort had PD-L1 
expression of at least ≥5%, and all of the patients in the efficacy cohort had PD-L1 
expression of at least ≥5%. The ORR for this study was 19%. There were three patients 
who had pseudoprogression, but their tumors gradually shrink. A total of 63% of 
patients experienced drug-related side effects, with 11% experiencing grade 3 toxicity. 
Pneumonitis of grade 4 was diagnosed in one of the patients. Fatigue (15%), fever 
(15%), and nausea (15%) were the most common drug-related side effects [67].

11.5 Avelumab

In a Phase 1b JAVELIN trial, a human anti-PD-L1 IgG1 mab, Avelumab, was 
tested in patients with MBC [68] (Table 3). A total of 168 MBC previously treated 
patients were treated with avelumab monotherapy, including 58 TNBC patients. 
The confirmed ORR for the whole population was 3%, with 1 CR (complete 
response) and 4 PRs (partial responses). The ORR for TNBC patients was 5.2 per-
cent. Furthermore, in both general population (16.7% vs. 1.6%) and in TNBC class 
(22.2% vs. 2.6%) patients with PD-L1 positive tumor-associated immune cells had a 
greater ORR than those with PD-L1 negative tumor-associated immune cells.

11.6 CTLA-4 inhibitors

CTLA-4 inhibits T-cell activation by interacting with its target ligand, CD80 
or CD86 [69, 70]. Monoclonal antibodies (mAbs) that block CTLA-4 have been 
demonstrated to augment T-cell activation and thereby enhance cancer cell death.

11.7 Tremelimumab

A phase II open-label trial (NCT02527434) is evaluating the efficacy of 
Tremelimumab, a CTLA-4 inhibitor, in patients with advanced solid tumors such as 
TNBC (Table 3). While on treatment with tremelimumab, if the patient’s develops 
progression in disease, they are given Durvalumab or a Durvalumab/Tremelimumab 
in combination. The objective response rate is the primary endpoint, with length of 
response, progression-free survival, and overall survival as secondary endpoints [71].

12. Drug repurposing an important aspect in immunotherapy regimen

Despite the success of disease diagnosis in modern era, the recent developments 
and discovery of new drug is laborious, inefficient, time consuming process and 
costly process [72, 73]. Not only that most drugs face high failure rates in clinical trials 
[74]. To overcome these problems in drug discovery a strategy namely drug repurpos-
ing (also called drug reprofiling or repurposing) came into existence which works by 
identifying existing drugs and using them for new purposes [75]. Several strategies 
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are being put to use in order to repurpose the existing drugs whether FDA approved 
or which are used under investigation. These include methods based on computa-
tional and non-computational strategies, also experimental based studies. However, 
the computational methods help in improved effectiveness in repurposing a drug. The 
computational methods help to select the effective candidate drugs before in-vitro-
experiments [76]. Drug repurposing in breast cancer is considered an old weapon 
for new war. The immunotherapy approach in combination with chemotherapy is 
considered an important modality in TNBC treatment. As already discussed due to 
escape mechanisms in immunotherapy it is being combined with chemotherapy that 
repurposing the old school drugs for instance some FDA  
approved drugs like Anthracyclines and taxanes. Also these drugs are being repur-
posed to modulate the immune system response for better clinical outcome  
[74, 77]. For instance, cyclophosphamide that is an alkylating chemotherapeutic 
agent having well-built immunosuppressive activity and acts via cytotoxic or through 
immune enhancing mechanisms. However due to its high toxicity effects low-dose 
cyclophosphamide has been combined with immunotherapy options like immune 
checkpoint inhibitors, immune therapeutic agents including vaccines as well and it 
been tested and has shown better results in animal models [77]. Accordingly in this 
chapter we have provided a detailed account for the combination of immunotherapy 
with chemotherapy as an effective mechanism for drug repurposing that is using the 
different strategies to modulate existing drugs for efficient use.

13. Checkpoint inhibitors in combination with chemotherapy

In the process of immunotherapy, a combination with chemotherapy may be 
synergistic. Chemotherapy has been demonstrated to promote tumor cell antigen 
release, prompt class I MHC molecules, neoantigens, and expression of PD-L1, and 
stimulate activation of dendritic cells, which could improve the immune response 
release after or in the course of Immune Checkpoint Inhibitor treatment [78–80]. 
Combination therapies of checkpoint inhibitors and chemotherapy have showed 
significant results in TNBC. Pembrolizumab’s safety profile and clinical efficacy 
have been examined in most of the analysis on inhibition of PD1 in TNBC. In 
highly positive PD-L1, untreated mTNBC patients who obtained pembrolizumab in 
conjunction with chemotherapy (PAX, nab-paclitaxel, carboplatin/gemcitabine), 
interim evaluation of the phase 3 KEYNOTE-355 (NCT02819518) trial shows a sub-
stantial increase in PFS (5.6 vs. 9.7 months) [81]. Pembrolizumab in combination 
with the microtubule inhibitor eribulin mesylate in the KEYNOTE-150/ENHANCE 
1 (NCT02513472) trial showed a 25.6 percent ORR with an average progression free 
survival of 4.1 months [82]. The TONIC trial (NCT02499367) phase 2 analyzed the 
effectiveness of PD1 with nivolumab in previously treated mTNBC patients. The 
ORR for nivolumab treatment followed by doxorubicin was 35%, compared to 23% 
for CIS and 17% for patients who did not receive prior chemotherapy, implying that 
chemotherapy would cause an inflamed tumor microenvironment [83]. For LA or 
mTNBC patients treated with atezolizumab in conjunction with nab-paclitaxel, the 
clinical study GP28328 (NCT01633970) phase 1b showed an ORR of 39.4% and an 
average PFS of 5.5 months (Table 4) [84].

The first randomized Phase 3 trial to show the effectiveness of atezolizumab 
in conjunction with nab-paclitaxel in metastatic TNBC patients which were not 
treated previously was IMpassion130 (NCT02425891) [80]. The FDA and the 
European Medicines Agency (EMA) approved atezolizumab in conjunction with 
nab-paclitaxel as a primary trearment for PD-L1-positive, uneradicably, locally 
advanced, or mTNBC in 2019. The IMpassion131 trial (NCT03125902) phase 3 will 
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assess the protection and effectiveness of atezolizumab in combination with PAX 
as a primary treatment in TNBC patients. The IMpassion 132 study (NCT03371017) 
examines the potential of previously treated, untreated, locally advanced and 
mTNBC patients who have not been eligible for the IMpassion130 trial may benefit 
from atezolizumab and chemotherapy (capecitabine, gemcitabine/carboplatin). 
Randomized study GeparNuevo (NCT02685059) phase 3 results demonstrated 
that durvalumab in conjunction with neoadjuvant chemotherapy based on taxane-
anthracycline provides clinical benefits in early TNBC from 44% to 53% of pCR 
(pathological complete response) [85]. A neo-adjuvant chemotherapy (paclitaxel 
plus carboplatin) NSABP B-59 (NCT03281954) phase 3 is currently being recruited 
with atezolizumab, followed by atezolizumab adjuvant and chemotherapy. The 
Impassion031 (NCT03197935) trial, which combines atezolizumab neoadjuvent 
with concurrent nab-paclitaxel and chemotherapy based on anthracyclines in 
patients with an early stage TNBC, recently published interim results. Patients who 
were given atezolizumab in combination with chemotherapy had a pCR rate of 
57.6%, compared to 41.1% in patients who obtained chemotherapy in combination 
with placebo [86].

Trail id Regimen Disease 
setting

Phase Recruitment 
status

NCT02819518 pembrolizumab + nab-paclitaxel 
or paclitaxel or gemcitabine/
carboplatin

Metastatic III Active, not 
recruiting

NCT02513472 pembrolizumab + eribulin 
mesylate

Metastatic Ib Active, not 
recruiting

NCT02499367 cyclophosphamide, cisplatin 
or doxorubicin followed by 
nivolumab

Metastatic II Active, not 
recruiting

NCT01633970 atezolizumab + nab-paclitaxel Locally 
advanced, 
metastatic

I Completed

NCT02425891 atezolizumab + nab-paclitaxel Metastatic III Active, not 
recruiting

NCT03125902 atezolizumab + paclitaxel Locally 
advanced, 
metastatic

III Active, not 
recruiting

NCT03371017 atezolizumab + gemcitabine/
carboplatin or capecitabine

Locally 
advanced, 
metastatic

III Recruiting

NCT02685059 neoadjuvant durvalumab + nab-
paclitaxel + EC

early stage II Completed

NCT03281954 neoadjuvant atezolizumab + 
paclitaxel + carboplatin, followed 
by adjuvant atezolizumab + AC 
or EC

early stage III Recruiting

NCT03197935 neoadjuvant atezolizumab + nab-
paclitaxel, followed by AC

early stage III Active, not 
recruiting

AC- doxorubin + cyclophosphamide; EC- epirubicin + cyclophosphamide.

Table 4. 
Trials evaluating the use of immune checkpoint inhibitor in combination with chemotherapy.
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14.  Immune checkpoint blockade in combination with a targeted 
immunotherapy

14.1 Immune checkpoint inhibitors in combination with PARP inhibitors

Breast cancer patients with germline BRCA1 or BRCA2 mutations account for 
around 5% of all cases. While TNBC is the most common cancer with the muta-
tion in BRCA1 gene, cancers linked to the BRCA2 mutation can turn up in any 
subtype of breast cancer with the same frequency as sporadic subtypes. Breast 
cancers with BRCA1/2 mutations have a deficiency in homologous recombination 
repair, a DNA double-strand break repair mechanism, the defect which has a 
lethal synergy with single-strand DNA repair inhibition [87]. The poly(ADP-
ribose) polymerase (PARP) is involved in single-strand DNA repair, and PARP 
inhibitors have shown antitumor activity in patients with HER2-negative meta-
static breast cancer who have BRCA1/2 germline mutations. The use of immune 
checkpoint inhibitors in combination with PARPi in TNBC patients has the 
ability to cause a powerful immune response against tumors due to the infiltrat-
ing T cell activation followed by tumor antigen release via PARPi-induced cell 
death. Moreover, PARPi has been shown to increase the expression of PD-L1 in 
cell lines, supplying additional support for combining treatment with checkpoint 
inhibitors [88].

The TOPACIO (NCT02657889) trail found that a combination of pembroli-
zumab with the PARPi niraparib resulted in an ORR of 29% in mTNBC patients 
[89]. The ORR was higher than what has been identified in similar patient 
populations for anti-PD1 monotherapy [64]. In addition, various clinical trials 
evaluating the PD-L1 inhibition combination with PARP inhibitors in mTNBC 
have been planned, two phase II studies included the combination of the PARPi 
olaparib with durvalumab (NCT03167619 and NCT03801369) and a phase II 
trial of atezolizumab in combination with olaparib (NCT02849496). In addition, 
triplet PD-L1 inhibition therapies with PARPi and VEGF inhibitors are currently 
being developed. A phase I/II analysis (NCT02484404) in case of progressive or 
recurring solid tumor is looking at the combination of durvalumab in conjunc-
tion with olaparib and cediranib the VEGFR inhibitor. According to preliminary 
findings, the recommended dosage was bearable and resulted in clinical benefit 
rate of 67% in 9 women having recurring solid tumors, TNBC was one of them 
(Table 5) [90].

Trail id Intervention Phase Recruiting status

NCT02657889 pembrolizumab + niraparib II Active, not recruiting

NCT03167619 durvalumab + olaparib II Active, not recruiting

NCT03801369 durvalumab + olaparib II Recruiting

NCT02849496 atezolizumab + olaparib II Recruiting

NCT02484404 durvalumab + olaparib + VEGFRi I/II Recruiting

NCT02079636 Pembrolizumab+ Abemaciclib I Completed

NCT02322814 atezolizumab + taxanes + MEKi II Active, not recruiting

Table 5. 
Combinations of PD1/PD-L1 antibody-targeted therapy in TNBC.
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Figure 5. 
Diagram representing the targets of immune checkpoint inhibitors.

14.2  Immune checkpoint therapy and CDK4/6 (CDK4/6) inhibitors in 
combination therapy

In patients with ER-positive, HER2-negative metastatic breast cancers, phar-
macological inhibitors of CDK4/6 have demonstrated remarkable activity [91–93]. 
Inhibitors of CDK4/6 have been demonstrated to improve anti-tumor immune 
response in preclinical models by manipulating two main immune evasion mecha-
nisms in tumors [94–96]. First, CDK4/6 inhibitors elevate intracellular levels of 
double-stranded RNA by activating tumor cell expression of endogenous retroviral 
components. As a result, type III interferon synthesis is stimulated, which in turn 
improves tumor antigen presentation. Secondly, CDK4/6 inhibitors significantly 
reduce regulatory T-cell proliferation. Finally, these events facilitate tumor cell 
clearance by cytotoxic T cells, which can be intensified even further by the intro-
duction of an immune checkpoint inhibitor. Abemaciclib in conjunction with pem-
brolizumab was studied in patients with HER2-, HR+, MBC in a phase I trial (JPBJ, 
NCT02079636). The main objective of the study was to determine the combination 
therapy’s safety profile. A total of 28 patients were enrolled in the study. At the end 
of 24 weeks, four patients (14%) showed an analytical response. At the appropriate 
early time intervals in the MONARCH 1 analysis, this response was greater than the 
response shown by patients treated with abemaciclib monotherapy [97].

14.3 Combination of immune checkpoint inhibitors with MEK inhibitors

Suppression of the MAPK signaling pathway, which is frequently unregulated 
in TNBC and is correlated with enhanced proliferation of cells and shows resis-
tance towards apoptosis, is another approach for combining immune checkpoint 
inhibitors with targeted therapy [98]. In the phase 2 COLET (NCT02322814) trial, 
cobimetinib the MEK1/2 inhibitor was combined with atezolizumab and PAX/
nab-paclitaxel as a primary therapy in patients with LD or mTNBC. According 
to preliminary findings, paclitaxel in combination with nab-paclitaxel has a 34% 
ORR, while nab-paclitaxel has a 29% ORR [99]. Clinical studies of binimetinib the 
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MEK inhibitor in conjunction with pembrolizumab (NCT03106415) or avelumab 
(NCT03971409) in patients with LD or mTNBC are also underway (Figure 5).

14.4 Combination therapy: PD1/PD-L1 antibody and cancer vaccine

Cancer vaccines are a novel approach to cancer immunotherapy. These vaccines 
promote T cell priming and activation and strengthen immune recognition of can-
cer cells by presenting breast cancer peptides to T cells. Monovalent vaccines, which 
provide a single tumor-associated antigen (TAA) target for the immune system, 
and polyvalent peptide vaccines, which provide several TAA targets, are two types 
of cancer vaccines. Low response rates have hampered the application of peptide 
vaccines for the treatment of patients with metastatic cancer; although, making 
use of a multi-peptide vaccine strategy, the response rate in various cancer types 
has improved to 9.9% [100, 101]. Furthermore, cancer vaccines in conjunction 
with immune checkpoint inhibitors can improve the vaccine’s anti-tumor immune 
response. In advanced TNBC, a few ongoing studies are looking into the effective-
ness of cancer vaccines in conjunction with pembrolizumab, making use of either 
the multipeptide vaccine PVX-410 (NCT03362060) or specific vaccines which 
target p53 (NCT02432963) or WT1 (NCT03761914). Furthermore, few clinical 
trials have been conducted to investigate the efficacy of durvalumab in combination 
with the multipeptide vaccine PVX-410 (NCT02826434) or with a neoantigen vac-
cine (NCT03606967, NCT03199040), as well as atezolizumab in combination with 
a neoantigen vaccine (NCT03289962) (Table 6).

15. Combining immunotherapy with epigenetics in cancer treatment

Immunotherapy arguably is one of the exciting new developments for the man-
agement of advanced human tumors, in particular the concept of immune check-
point blockade [102–104]. Antibodies targeting PD-1, CTLA-4 and PD-L1 show 
robust responses in treatment of melanoma, and in high grade tumors. Although, 
these recent advances are very exciting and promising, however majority of the 
tumor patients including TNBC patients show little or no response at all to immune 
checkpoint therapy alone [105, 106].

Therefore raising an apparent question as to whether immunotherapy could 
work in combination with other therapies like immune checkpoint targeting agents 
to enhance the clinical response and efficiency of various sub types of cancers. 
Nevertheless, various clinical trials as like previously discussed are evolving while 
keeping in control the related toxicities [107].

Trail id Intervention Phase Recruiting status

NCT03362060 pembrolizumab + PVX-410 I Active, not recruiting

NCT02432963 pembrolizumab + p53-specific vaccine I Active, not recruiting

NCT03761914 pembrolizumab + WT1-specific vaccine I/II Recruiting

NCT03606967 durvalumab + Nab-paclitaxel+ neoantigen 
vaccine

II Recruiting

NCT03199040 durvalumab + neoantigen DNA vaccine I Recruiting

NCT03289962 atezolizumab + neoantigen vaccine I Recruiting

Table 6. 
Current clinical trials for cancer vaccine and immunotherapy.
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Other combination strategies targeting immunotherapy in combination with 
chemotherapy as well targeted therapy approaches likely epigenetic therapy. As 
epigenetic therapy has been evidenced to strongly sensitize patients to immune 
checkpoint therapy.

16. Definition of epigenetic therapy

The term epigenetic therapy is now widely used, and involves use of drugs 
or other epigenome-influencing mechanisms for treatment of human disorders. 
Recent advances have delineated regulatory mechanisms of the cancer and normal 
epigenomes and the functional understanding of histone modifications, methyla-
tion patterns, and dynamics of nucleosomes [108, 109]. Recent studies in the field 
of cancer epigenetics have not only defined key targets for cancer management but 
also provided key insights in drug repurposing for modulating cancer epigenomes 
[110]. In epigenetic therapy, drugs target three specific protein categories (a) 
Writers, enzymes that establish epigenetic marks; (b) Readers, proteins that recog-
nize histone and may bring in other protein complexes to change gene expression; 
and (c) Erasers, enzymes that remove epigenetic marks [111]. Drugs that impede 
writers of DNA methylation, DNA methyltransferases (DNMT), and erasers (his-
tone deacetylases or HDAC) that regulate histone lysine acetylation are central to 
epigenetic therapy in cancer treatment. HDACs and DNMTs are mostly linked with 
transcriptional repression. Thus, inhibiting HDACs and DNMTs can upregulate 
expression of involved genes with many consequences for downstream pathways of 
this gene activation.

Cytidine analogues inhibit DNMTs by blocking their catalytic and likewise 
induces their degradation [112]. Also, the degradation of DNMTs can remove key 
scaffolding properties that may function for repression of transcription [113, 114]. 
Tumors show significant alterations in DNA methylation of cytosines at CpG 
dinucleotides such as loss of methylation at regions such as repetitive elements 
that must be silenced for genome stability and gain of methylation at the promoter 
regions of tumor suppressor and other genes [115]. Inhibitors targeting DNMTs 
promote reactivation of tumor suppressor, silenced by promoter DNA methyla-
tion [116]. DNA methylase inhibitors (DNMTi) showed augmented apoptosis, 
decreased cell cycle activity, and reduced stemness in a transient exposure to 
several cancer cells (Figure 6) [117]. DNMTis such as 5-azacytidine and 5-aza-
20-deoxycytidine showed robust efficacy in treatment of hematological disorders 
and has been approved by FDA for the treatment of myelodysplastic syndrome 
(MDS) [118]. Several clinical studies are undergoing presently to study the effect of 
epigenetic therapy in cancer treatment Table 7.

Histone modifications by acetylation plays a central role in epigenetic gene 
regulation by altering the condensation status of chromatin, modulating the 
accessibility of transcription factors to target DNA sites. Histone acetyltransferases 
(HAT) and HDACs maintain the acetylation state of histones of nucleosomes. 
Inhibitors targeting HDACs known as (HDACi) are presently approved for the 
treatment of peripheral T-cell lymphoma (PTCL) and cutaneous T-cell lymphoma 
(CTCL), although it is yet to be known as why these two cancers are highly sensitive 
towards HDACi [119, 120]. Also, it has been observed that HDACi show dependency 
of, compound, dose and pleotropic characteristics. Many of the HDACi directly 
affect acetylation of histone proteins and modulate epigenetic changes while some 
affect acetylation of non-histone or cytoplasmic proteins [121]. Besides, it has been 
observed that transient exposure of tumor cells to low doses of DNMTs, followed by 
HDACi treatment increases gene expression of hypermethylated genes.
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17. Connecting epigenetic modulation with immunotherapy

Over In the past two decades, the FDA approval of various DNA methyltrans-
ferase inhibitors, collectively called DNA HMAs, and histone deacetylase inhibi-
tors (HDACi) has brought epigenetic therapy to the forefront of cancer therapies. 
However, the benefits of epigenetic therapy are mainly restricted to the treatment 
of hematological malignancies. Thus, combination strategies with standard che-
motherapy and targeted therapy approaches can be considered. A recent study 
involving advanced NSCLC patients revealed that patients after receiving low-dose 
epigenetic therapy entered a trial for immune checkpoint therapy. Approximately 
20% of the patients responded to the immune checkpoint therapy alone, passing 
24 weeks without progression, with most achieving high-grade RECIST criteria 
responses [122]. This is an astounding result for immunotherapy in NSCLC.  

Figure 6. 
Flowchart representing the overall effects of epigenetic therapy.

Epigenetic inhibitor Target Type of cancer

Entinostat HDAC1/HDAC3 Recurrent or refractory solid 
tumors

KA2507 HDAC6 Solid tumors

Tazemetostat EZH2 Advanced solid Tumors

AZD5153 BRD4 Advanced solid tumors and 
lymphomas

Triple: Entinostat, Nivolumab and 
Ipilimumab

HDAC/ICB Locally advanced or metastatic
HER2-negative breast cancer

Entinostat plus Pembrolizumab HDAC/ICB Advanced solid Tumors

CC-486 plus Durvalumab HMA/ICB Colorectal, ovarian, and breast 
tumors

CPI-1205 plus Ipilimumab EZH2/ICB Advanced solid tumors

Table 7. 
Clinical trials for epigenetic inhibitors.



Drug Repurposing - Molecular Aspects and Therapeutic Applications

250

All 5 patients who had received the prior epigenetic therapy passed the 24-week 
point without progression with subsequent immune checkpoint therapy and three 
of these developed high-grade partial RECIST criteria responses that have all been 
durable over 2.5 years [123, 124]. Moreover, findings to date, support the hypothesis 
that there may be extraordinary potential for combined epigenetic and immuno-
therapy to increase the frequency of durable responses for immune checkpoint 
therapy in not only NSCLC but also other common tumor types.

18.  Epigenetic therapy drugs boost immune attraction properties of 
epithelial cancer cells

Immunotherapy has presently become a remarkable tool to employ immune 
cells in tumor management. Blocking immune checkpoints to stimulate and retore 
immune response in the tumor immune suppressive microenvironment has showed 
robust clinical response. However, several patients tend to remain unresponsive 
towards immune checkpoints blockades. Epigenetic therapy using DNMTis and 
HDACis have showed potential in immune modulation properties of tumor cells 
and immune cells, thereby suggesting a rationale for integrating epigenetic with 
immunotherapy.

It is well known that cytotoxic T cells (Tc) are requisite for an anti-cancer 
immune response and immune check point blockade. This mechanism relies on 
antigen presenting cells and the quantity of antigens presented to Tc cells. Also, 
tumors with high mutations show robust response to immune check point blockade 
due to high presence of neo-antigens presented to Tc cells [125, 126]. Several stud-
ies demonstrate that high immunogenicity is followed by exposure to epigenetic 
therapy. DNTMis have been found to upregulate and augment expression of cancer 
testis antigens (CTAs) such as MAGE-A1 and NY-ESO-1 [127]. Besides, exposure to 
epigenetic therapy viz. HDACis and DNMTis also upregulated antigen presenting 
and processing related genes such as b2-microglobulin, Human leukocyte antigen 
(HLA)-class I genes, and TAP1 in solid tumors [128, 129]. Furthermore, it was 
revealed that HDAC inhibitors stimulate human endogenous retroviruses (HERVs) 
reactivation, which induce activation of pattern recognition receptors and a type 
I/III interferon response thereby enhancing antigen presentation to Tc cells [129, 
130]. Together, these results paint the picture that epigenetic therapy using HDACis 
and DNMTis augment presentation of CTA and HERV-derived antigens, thus 
enhancing immune response in low mutation therapy [131]. In AML patients, epi-
genetic therapy with DNMTis promoted robust T cell mediated immune response 
by reactivation of CTAs [132]. The host immune system recognizes the CTAs with 
high affinity, they represent good candidates for immunotherapy, including vac-
cines. There is thus great potential for DNMT inhibitor treatment to upregulate 
CTAs on tumors, facilitating targeting by the host immune system [133]. Guo et al. 
demonstrated that exposure of 4T1 mammary carcinoma cells in syngeneic mice to 
DNMTi 5-aza-2-deoxycytidine induced demethylation and upregulation of CTA 
P1A. Also, the upregulated P1A was targeted by P1A–specific T cells, and combined 
therapy with 5- aza-20-deoxycytidine and adoptive transfer of these T cells signifi-
cantly reduced lung metastases in this mouse model [134].

Additionally, synergistic relation was observed in pre-clinical models of diffuse 
large B cell lymphomas for combinatorial exposure to DNMTis and HDACis [135]. 
Increasing evidence suggests that tumors possess variable numbers of infiltrated 
immune cells and the quantity, type, and location of infiltration can help in predict-
ing response to immune check point blockade [36, 136]. It is now well established 
that epigenetic therapy with modulates directly infiltration of immune cells in 
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tumor stroma. DNMTi treatment in addition to inhibiting tumor progression, 
increased infiltration of CD8+ T cell infiltration, and natural killer (NK) cells and 
reduced infiltration of immune-suppressive cells [131, 137]. Also, HDACis treat-
ment in combination with DNMTis activates chemokine signaling networks and 
augments infiltration of cytotoxic T cells [138]. In preclinical studies, treatment 
with romidepsin, the pan-HDAC inhibitor, augmented expression of chemokines by 
tumor cells which elevated infiltration of T cells into the tumor stroma and reduced 
tumor growth by robust immune response [139].

Accumulating evidence from preclinical models of diverse solid tumors viz. 
breast, melanoma and colorectal cancer, revealed that combining immune check 
point inhibitors such as anti-CTLA4 or anti-PD1 with epigenetic therapy (DNMTis 
and HDACis) augmented antitumor response and reduced tumor growth and 
response to immunotherapy than using monotherapy of either agent [122, 136]. 
Also, combinational treatment with DNMTis and anti-CTLA4 antibody enhanced 
chemokine expression and increased survival of mice with orthotopic or subcuta-
neous tumors [137].

Together, these results paint the picture that combining immunotherapy 
with combinational therapy, greatly enhances antitumor immune responses, by 
augmented expression of chemokines and these act in a synergistic manner. Also, 
multiple clinical trials are currently testing the combination of DNMTi or HDACi 
with various immune check point inhibitors (Table 7).

19.  Integrating immunotherapy with oncolytic viruses for cancer 
treatment

The antitumor activity of oncolytic viruses involves multiple mechanisms that 
encompass the natural interactions between viruses, tumor cells and the immune 
system [140]. During the last decade oncolytic viruses are becoming an effective 
means in cancer treatment. Viruses have developed sophisticated means to escape 
immune surveillance and which can be manipulated for therapeutic purposes to 
stimulate anti-cancer immune response. Likewise, nearby infusion of oncolytic 
virus into a tumor site can incite an abscopal impact, in which distant, uninfected 
tumors additionally go through insusceptible immune rejection [141]. This abscopal 
effect is caused by oncolytic viruses’ sequential activity, multiply in cancer cells and 
then progresses to activation of immunogenic cell death, which results in the release 
of antigens and danger factors, which then enhance both innate and adaptive anti-
tumor immune responses. Furthermore, oncolytic viruses can be genetically modi-
fied to express therapeutic genes, which can improve antitumor activity even more. 
In the absence of viral replication, viral encoded gene expression allows immune 
regulation against tumors while restricting the antiviral immune response [142]. 
This points out, oncolytic viruses are highly adaptable agents that offer a critical 
‘on’ switch that enhances the migration of tumor infiltrating lymphocytes into 
the tumor stroma, and this can be exploited to improve antigen-specific immune 
responses as part of combo-immuno therapies.

20. Characteristics of oncolytic viruses

Viruses are microscopic particles that selectively replicate in the interior milieu 
of host cells, and inflammation and underlying pathogenicity can be associated 
with viral infection [143]. During the last decades, viruses have been employed 
in delivery of therapeutic genes for the treatment of metabolic and degenerative 
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illnesses, immunization against infectious diseases, and as oncolytic agents for 
cancer therapy [140].

The genome, which is either single-stranded or double-stranded RNA or DNA; 
the capsid, which is a protein coat that covers the genetic material; and the capsid, 
which is a protein coat that covers the genetic material, also in certain viruses, the 
lipidic envelope which surrounds the capsid and may enhance virus adhesion to 
host cell membranes, so increasing viral penetration, are the three major struc-
tural parts of most viruses. Oncolytic viruses have been developed over the last 
decade using both DNA and RNA viruses. DNA viruses offer several advantages: 
their huge genomes can be altered without interfering with viral replication; big 
eukaryotic transgenes may be incorporated by DNA viruses to boost therapeutic 
effectiveness or immunological regulation; DNA viruses express high fidelity DNA 
polymerases, assuring viral genome integrity and effective replication; and there 
is little, if any, nuclear integration of DNA viruses Table 8 [144]. RNA viruses 
offer additional advantages: because they are smaller than DNA viruses, they can 
pass the blood–brain barrier, allowing tumors in the central nervous system to be 
targeted [145]. Despite the fact that their short genome restricts their capacity to 
encode big transgenes, because pre-existing tolerance to certain RNA viruses is 
poor in humans, viruses are more suited for systemic distribution, at least for the 
brief period before antiviral immunity is generated. Furthermore, the detection of 
viral double-stranded RNA by protein kinase R (PKR) that happens in normal cells 
may not occur in tumor cells, which often have lower levels and phosphorylation of 
PKR [146, 147]. Many aspects influence the selection of oncolytic viruses for tumor 
immunotherapy, in particular high pathogenicity, immunogenicity, cancer tropism, 
the potential to encode therapeutic transgenes, feasible viral concentration during 
synthesis, and durability. The active phase of viral infection and reproduction in 
host cells is described by the lytic virus life cycle [148]. Attachment, penetration 
and uncoating, synthesis, assembly, and release are the five different phases of the 
viral life cycle, which may be managed by genetic modification of the viral genome 
and can serve as a physiologically realistic strategy for selectively targeting tumor 

Adenovirus Coxsackie virus Maraba virus Pox virus

Genome dsDNA ssRNA ss (−) RNA dsDNA

Genome size Moderate 
(32 kb)

Small (~8 kb) Small 
(11–15 kb)

Large 
(130–375 kb)

Cell entry 
mechanism

Endocytosis Micropinocytosis 
via epithelial tight 
junctions

Endocytosis; 
pH dependent 
fusion 
activation

Membrane 
penetration 
and fusion

Cell entry receptors hCAR
VCAM1
CD46

CAR
DAF

Unknown GAGs
EFC

Transgene
capacity

Moderate Low Very low High

Viral
immunogenicity

Low Low Low High

Ability to
penetrate Blood 
brain barrier

Very limited Moderate Limited Very limited

Table 8. 
Characteristics of oncolytic virus.
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cells for infection and viral replication. Viruses also display pathogenicity and 
immunogenicity, which vary depending on viral species, dosage, mode of admin-
istration, pre-existing host immunity, and other variables, and are characteristics 
that can produce effective antitumor immunity.

21. Anti-tumor activity of oncolytic viruses

Considering they influence multiple crucial phases in the cancer–immunity pro-
cess, oncolytic viruses offer several benefits as cancer treatment agents [149]. These 
features include preferential replication in tumor cells, stimulation of immunogenic 
cell death and release of soluble antigens and danger signals, induction of innate 
immune responses by recruitment of immature dendritic cells (DCs) and innate 
lymphoid cells, correction of antigen processing and presentation abnormalities, 
and activation of adaptive immunological responses. Although the molecular and 
cellular intricacies of how oncolytic viruses correct these processes are not entirely 
known, advances in the generation of antitumor immunity employing oncolytic 
viruses are being achieved, and insights into rational combination therapy based on 
oncolytic viruses are being explored.

22.  Combing oncolytic virus treatment with immune check point 
blockade

Immune check point blockade therapy (ICB) is extensively in cancer treatment, 
and long-term clinical outcomes are promising. Clinical responses are associated 
with pre-existing antitumor immune responses, such as an increased number of 
TILs, a high mutation load, and the formation of a diverse neoantigen repertoire 
[150, 151]. Combination therapy utilizing ICB and oncolytic viruses are appealing 
because the oncolytic virus can drive recruitment of TILs into immune-deficient 
tumors and prompt the production of soluble tumor antigens, danger signals, and 
pro-inflammatory cytokines, which can improve T cell recruitment and boost 
immune cell activation. Viral infection also raises the expression of CTLA4, PDL1, 
and other immunological checkpoint molecules, which would normally inhibit T 
cell activation (and so antitumor immunity), but also makes tumors more suscep-
tible to ICB (Figure 7) [152, 153]. Preclinical research with a B16–F10 melanoma 
indicated that localized injection of tumors with oncolytic Newcastle disease virus 
caused infiltration of tumor-specific CD4+ T cells and CD8+ T cells into both the 
injected tumor and distant tumors, as well as improved tumor susceptibility to 
systemic CTLA4 inhibition 18. An oncolytic virus Maraba demonstrated thera-
peutic potential as a neoadjuvant in a preclinical model of triple-negative breast 
cancer and sensitized previously refractory tumors to ICB [154]. Several additional 
oncolytic viruses, including B18R-deficient vaccinia virus and vesicular stomatitis 
virus expressing a library of melanoma antigens (VSV- ASMEL), also shown 
substantial (P 0.05) therapeutic effect when used in tandem with ICB [155, 156]. 
Administration of T- VEC intratumorally, followed by anti-CTLA4 antibody (ipili-
mumab) treatment via intravenous injection, demonstrated an object response rate 
of 50%, with 44% of patients showing robust responses lasting more than 6 months 
in a phase Ib clinical trial. Also, no dose limiting toxicities were observed in the 
patients [157]. Additionally, a recent study reported that treatment with oncolytic 
poxvirus CF33-hNIS-ΔF14.5 modulates tumor microenvironment in TNBC model, 
and increases the response of tumor cells towards anti-PD-L1 antibody. Tumor 
microenvironment is one of the central plays in tumor growth, metastasis and 
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development of resistance. Further in vivo and in vitro analysis revealed that infec-
tion with the virus stimulated expression of PD-L1 in TNBC cells. Also, exposure of 
mice model of TNBC to oncolytic poxvirus CF33-hNIS-ΔF14.5 enhanced infiltra-
tion of CD8+ T cells and increased expression of proinflammatory cytokines IFNγ 
and IL-6 by tumor cells. Combinational treatment with oncolytic poxvirus CF33-
hNIS-ΔF14.5 and anti-PD-L1 antibody augmented TME modulation and induced 
50% tumor regression in mice models. Administration of these as single agents 
failed to inhibit tumor growth. Besides, it was also observed that the recovered mice 
with combinational treatment did not develop tumor after re-challenge with the 
same cancer cells suggesting that they developed immunity against those cancer 
cells [158, 159].

Taken together, studies demonstrate that oncolytic virus treatment positively 
induces tumor immune microenvironment modulation in triple-negative breast 
cancer model making them responsive to the immune checkpoint inhibitors and 
hence warrants further studies to determine the clinical applicability of this combi-
nation approach.

23. Summary

1. Chemotherapy lacks the success in treating malignant tumors like TNBC as it 
lacks specificity and can act on normal healthy cells causing secondary diseases 
in patients.

2. Furthermore, immunotherapy have shown downfall in its efficacy due 
to the major problem of escape of tumor cells from the immune response 
against them.

3. Therefore, drug repurposing a strategy commonly used to reprofile or 
repurpose the existing chemotherapeutic drug has shown promising effects 
in targeting various diseases including malignant tumors.

Figure 7. 
Represents the role of oncolytic virus in immunotherapy.
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4. Drug repurposing is mainly done by using both computational and non-
computational methods including target-based computational studies and 
in vitro based experimental studies

5. These methods permit us to select an existing drug whether FDA approved or 
drugs that are under investigational studies before in vitro studies thus reducing 
time consumption and proving cost effective.

6. Because most chemotherapeutic drugs are toxic in nature and lack target speci-
ficity as well, therefore by using drug repurposing approach we can combine 
the chemotherapeutic drugs with target specific immunotherapeutic options to 
make them effective.

7. Therefore, chemotherapeutic drugs can be combined with immune checkpoint 
inhibitors, PD-1/PD-L1 antibody and vaccines to provide promising results in 
anti-tumor response

8. Various enlisted clinical trials have shown promising results in combining 
chemotherapy with immunotherapy.

24. Future perspective

TNBC is the most aggressive, lethal and complex subtype of breast cancer. What 
makes it more aggressive is the lack of targeted therapies leaving chemotherapy as 
the main treatment option available. However, chemotherapy itself mostly lacks 
target specificity and can harm normal healthy cells of an individual. Moreover, 
another treatment option that is immunotherapy also faces some problems showing 
inefficacy due to escape of tumor cells from immune surveillance. Nevertheless, 
a strategy known as drug repurposing has shown to be a promising strategy to 
overcome the inefficacy of available treatment options. In drug repurposing, an 
existing chemotherapeutic drug can be repurposed to modulate its efficacy. In this 
chapter, we have focused primarily on repurposing the available drugs whether 
PARP inhibitors or MEK inhibitors, vaccines including the ones under clinical trials 
as well by combining them with other available immunotherapeutic options like 
immune checkpoint inhibitors, PD-1/PD-L1 antibodies etc. Also the currently used 
epigenetic therapy drugs also are known to show significant efficacy in modulating 
immunotherapy responses in patients suffering from cancers especially TNBC. 
From our point of view combining drugs with other target specific drugs like drugs 
targeting immune system components provides a significant insight as it repurposes 
the drug whether chemotherapeutic or epigenetic drug making it target specific.
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Chapter 12

Role of Activated Cdc42-Associated 
Kinase 1 (ACK1/TNK2)-Inhibitors 
in Precision Oncology
Ruby Srivastava

Abstract

Activated Cdc42-associated kinase 1 (ACK1) is an intracellular non-receptor 
tyrosine kinase referred to as TNK2, which is considered as an oncogene and 
therapeutic target in various cancers including breast cancer, non-small-cell lung 
cancer (NSCLC), hepatocellular carcinoma (HCC), and many others. Oncogenic 
non-receptor tyrosine kinase mutations occur either due to point mutations, 
duplications or insertions and deletions, or by involving in the development of a 
fusion gene resulting from a chromosomal rearrangement. ACK1 is involved with 
multiple signaling pathways of tumor progression. With these signaling networks, 
ACK1 participates in cell survival, invasion, migration, and tumorigenesis that are 
strongly related to the prognosis and clinicopathology of cancers. Previous studies 
predicted that ACK1 is a carcinogenic factor and blockage of ACK1 inhibits cancer 
cell survival, proliferation, migration, and radiation resistance. FDA has approved 
many multi-kinase inhibitors as therapeutic drugs that show good inhibitory activ-
ity not against ACK1 but also towards multiple targets. As ACK1 is a key target for 
other neurological diseases, inflammation, and immunological diseases also, so the 
studies on these inhibitors not only provide potential strategies for the treatment of 
cancers that require simultaneous targeting of multiple targets but also can be used 
in drug repurposing for other diseases.

Keywords: inhibitors, therapeutics, signaling pathway, prognosis, clinicopathology

1. Introduction

Tyrosine kinases are enzyme family member which interpose the movement of 
the phosphate group to tyrosine residues of target protein, thus transmitting signals 
from the cell surface to cytoplasmic proteins and the nucleus to regulate physi-
ological processes. TKs are divided in two sub groups: receptor and non-receptor 
proteins. Receptor tyrosine kinases (RTKs) include Platelet-derived growth fac-
tor receptors (PDGFR), Fibroblast growth factor receptor (FGFR), Epidermal 
growth factor receptor (EGFR), and Insulin receptor (IR). The Non-receptor TKs 
(NRTK) are divided in 9 sub-families based on the sequence similarities which 
included Abl, FES, JAK, ACK, SYK, TEC, FAK, SRC, and CSK. Activated Cdc42-
associated kinase 1 (ACK1/TNK2) (PDB code-6VQM) is a non-receptor tyrosine 
kinase, which belongs to VIII tyrosine kinase family. There are seven different 
types of ACKs as, ACK1/TNK2, ACK2, DACK, TNK1, ARK1, DPR2 and KOS1 [1]. 
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ACK1 was identified as first effector protein of Cdc42 [2, 3], and was cloned in 
hippocampus of the human brain that binds to GTP-bound form of Cdc42 [4] and 
inhibits its GTPase activity. ACK regulates about 147 proteins expression which 
is strongly connected with cell survival mechanisms [5]. The crystal structure of 
ACK1 is given in Figure 1.

ACK1 is an approximately 114 kDa protein and have 1038 amino acids. ACK1 con-
sists of 8 domains; sterile α motif domain (SAM), tyrosine kinase domain (TKD), Src 
homology 3 domain (SH3), Cdc42/Rac-interactive binding motif (CRIB), clathrin-
binding region (CLATH), PPXY motif or WW domain-interacting region, epidermal 
growth factor receptor-binding domain (EBD) or Mig-6-homology region (MHR), 
and ubiquitin association domain (UBA). The SAM domain is related to membrane 
localization, dimerization, and activation of ACK1 (Figure 2) [7].

Its coding gene TNK2 is located on 3q29. The main function of TNK2 is to 
regulate the cell cycle by binding to CDC42 [8]. TNK2 can also act as an effector 
of CDC42 to regulate cellular attachment and migration [9]. The CRIB domain 
is important for ACK1 activation and its cytoskeletal functions. ACK1 is more 
specified for Cdc42 activation over other GTPases (Rac and Rho) [10]. The second 
half of ACK1 has GRB2 [2], Sortin nexin 9 (SNX9) [10], and cortactin [11] as SH3 
domain-containing binding partners. The frequent amplification and mutations of 
ACK1 leads to the abnormal activity of the ACK1 signaling cascades [12]. TNK2 is 
related to the hematological malignancies and other types of cancers [5, 13–16]. The 
structure of ACK family includes ACK1, 38-negative kinase 1 (TNK1), their splicing 
variants, activated Cdc42-associated kinase 2 (ACK2), kinase of embryonic stem 
cells (Kos1), and homologous proteins. It can be easily identified in mice, cows and 
fruit flies (ACK (Dack)) and A Ras-regulating kinase 1 (Ark-1). TNK1 is the first 
tyrosine kinase in which the tumor suppressor activity is found. TNK1 participates 
in inflammatory responses and promotes apoptosis. Its genetic variation is related to 
the Alzheimer’s disease. ACK1 has a special structure, which gives it unique regula-
tory functions. ACK1 can integrate many RTK signals and proved to be associated 
with cancer cell survival, proliferation, migration, and radiation resistance. It is 
used for cancer prediction and prognosis also. The multidomain structure of ACK1 
has ability to bind to a variety of proteins, which is not only conductive to the 
precise location of ACK1, but also promotes its various diversified functions.

ACK1 act as an important transducer of variety of extracellular signals [11]. 
The amplification of ACK1 gene can cause ACK1 phosphorylation (p-ACK1) and 

Figure 1. 
The crystal structure of ACK1/TNK2 protein with loop (A, C), lobe (C, N) and helix (C) with PDB code-
6VQM. The DLG, gate keeper and hinge is represented in a separate box. Adapted from Aoxue Wang et al. [6].
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auto-activation, which results in the activation of ACK1 signal transduction [15, 17]. 
Activated ACK1 senses extracellular signals while interacting with activated receptor-
tyrosine kinases including AKT, EGFR, HER2 and MERTK [18], clathrin, WW domain-
containing oxidoreductase (Wwox), Grb2, AKT1, ubiquitin, androgen receptor, and 
Nedd4-1/2 E3 ligases [19–23]. Further studies indicated that tyrosine kinases directly 
regulate the activity of DNA repair and cell cycle check point proteins by tyrosine 
phosphorylation. ACK1 as an oncoprotein which act as an epigenetic regulator. Tyrosine 
kinases epigenetically regulate DNA damage signaling pathways by modifying the core 
histones as well as chromatin modifiers at critical tyrosine residues. The deregulated 
tyrosine kinase driven epigenomic alterations have intense inferences in malignancies, 
aging and genetic abnormalities (Figure 3).

ACK1 phosphorylates and activates key survival-promoting kinase receptors 
on different tyrosine residues and eliminates tumor suppressors through similar 
mechanisms, resulting in cell survival, proliferation, and migration. ACK1 can 
interact with several components of vesicle dynamics in cell endocytosis and traf-
ficking. ACK1 plays an important role in promoting extrinsic apoptosis, intervene in 
mechanically-induced inhibition of growth and weaken mitogenic signals to avert 
the abnormal growth of tissues.

The physiological roles of ACK1 include both the cancer and the normal tis-
sues. In cancer, ACK1 participates in the regulation of many signaling pathways 
and exerts corresponding physiological functions, which include proliferation, 
differentiation, survival, apoptosis, migration, and epidermal-mesenchymal 
transition (EMT) and influences several important cellular processes. ACK1 is 
frequently overexpressed in various aggressive tumors also. It was found that ACK1 
is a molecular component of the signaling cascade of neurotrophins. It is highly 
expressed in human brain and plays important physiological function in inflamma-
tion and immune system.

Figure 2. 
Representation of downstream signaling pathways of ACK1. The full names of these kinase proteins are ACK1 
(activated Cdc42-associated kinase 1); AKT (protein kinase B); AR (androgen receptor); ATM (ataxia 
telangiectasia mutated); Cdc42 (cell division cycle protein 42); KDM3A (lysine (K)-specific demethylase 3A); 
p130Cas (p130 Crk-associated substance); RTK (receptor tyrosine kinase); SIAH (seven in absentia homolog); 
SLP-76 (SRC homology 2 domain-containing leukocyte phosphoprotein of 76 kDa); SNX9 (sorting nexin-9); SRC1 
(steroid receptor coactivator 1); TNF-α (tumor necrosis factor α); WASP (Wiskott− Aldrich syndrome protein) 
and Wwox (WW domain-containing oxidoreductase). Adapted from Aoxue Wang et al. [6].
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There are three ways to activate ACK1, which are RTK interaction, somatic 
cell missense mutation, and gene amplification. In previous studies, mutations in 
ACK1 genes have been observed in 21 kinds of cancers. 131 missense mutations, 
39 nonsense mutations, and 3 fusion mutations are found in different regions of 
ACK1 [6]. The gene amplification of ACK1 is also observed in approximately 20 
types of cancers. In cancers ACK1 is a key drug target of approximately 24 types 
of cancers as Metastatic Colorectal Cancer, Breast Cancer, Leukemia, Prostate 
Cancer, Melanoma, Gastric cancer, Lung cancer and many more. In one of 
RNA sequencing studies on Non-small Cell lung cancer (NSCLC) it was found 
that silencing of ACK1 upregulated several immune pathways as T cell recep-
tor signaling, PI3K-Akt, Ras signaling pathways, MAPK, cAMP, Wnt signaling 
pathways. It was observed that ACK1 gene copy numbers were inversely linked 
with the infiltration levels of B cell, CD8+ T cell, CD4+ T cell, macrophage, 
neutrophil, and dendritic cells in NSCLC [25]. Studies showed that many ACK1 
tyrosine kinase signaling proteins in many tumor cells are activated repeatedly in 
breast cancers and the expression of ACK1 is positively correlated to the disease 

Figure 3. 
Representation of various exogenous and endogenous agents activating DNA damage checkpoints in cancers. 
Chromatin alterations can also activate DNA damage signaling pathways. Activated checkpoint kinases, ATM 
or ATR arrest the cells at a specific stage in the cell cycle and allow time for repair. DNA double strand breaks 
due to ionizing radiation may be repaired either by the homologous recombinational repair pathway (HRR) 
or the non-homologous end joining pathway (NHEJ). Eukaryotic cells face a many situations, which lead to 
unstable genomic states, aberrant activity of the end joining proteins and mutations in the DNA and histone 
modifying enzymes. Small molecule inhibitors can be a therapeutic option to restore genome stability and also 
inhibiting tumor growth by radio sensitization. Adapted from Mahajan and Mahajan [24].
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severity progression and negatively correlated to the survival rate in breast cancer  
patients [4, 12, 26–30]. However clinical trials of targeting ACK1 in triple nega-
tive breast cancers (TNBCs) have not shown any promising results with specific 
inhibitors. Many tyrosine kinases (EGFR), oncoproteins (AKT), tumor suppres-
sor proteins (Wwox), and epigenetic modification regulatory proteins (KDM3A) 
interacts with ACK1 in breast cancer [4, 28–32]. The clinical trials in hepatocel-
lular carcinoma (HCC) studies predicted that ACK1 was highly expressed to the 
HCC tissues than in non-HCC tissues and further analysis indicated that ACK1 is 
positively correlated with p-ACK1 and negatively correlated with WWOX expres-
sion in HCC. The investigation revealed that ACK1 can act as potential prognostic 
biomarker and therapeutic target in HCC [33]. TNK2 and miR-125a-3p are con-
sidered as potential diagnostic and therapeutic targets in Colon cancer [34]. TNK2 
drives the malignant state via a feed-forward ACK1/pY88-H4/WDR5/MLL2/AR 
epigenetic circuit in castration-resistant prostate cancers [35] and prostate cancer 
survival [36].

As ACK1 is highly expressed in many cancers and play a major role in 
tumor occurence, targeting ACK1 gives a promising strategy for tumor treat-
ment. Interestingly, increased Cdc42-dependent Ack1 phosphorylation has 
been observed in cells depleted of dynamin, and in these cells, ACK1 showed 
enhanced binding of both endocytic and ubiquitylated proteins [37]. ACK1 
has shown potential to overcome drug resistance and provide novel possibili-
ties of drug combination schemes for targeted therapies in cancer treatment. 
Kinase Inhibitors as a major drug class were emerged after the FDA approval 
of imtinib in 2001. Till now there are 71 small-molecule FDA approved kinase 
inhibitors (SMKIs) and additional 16 SMKIs which are approved by other gov-
ernment authorities. In oncology, 110 novel kinases as a target are explored, for 
which 45 targets of approved kinase inhibitors are developed so far [38]. Small 
molecule inhibitors are discovered, designed and synthesized by researchers to 
target ACK1. Various methods as fragment-based drug design, high-throughput 
screening, repurposing, and skeleton transitions are used for this purpose. Many 
inhibitors exhibited favorable pharmacokinetic activities and good antican-
cer activity, which can be used for clinical treatment of cancers. These drugs 
can be divided as (a) Selective Inhibitors, (b) Multikinase Inhibitors, and (c) 
Combination Drugs.

The chemical structures of few selective drugs are given in Figure 4. Compound 
1 having IC50 (24 nM), is used to suppress pan cancer cells [39] through PTEN/
AKT/mTOR signaling pathways [40]. Compound 2 and 3 has hindrance activ-
ity for ACK1. It was observed that the ACK1 inhibitory ability was not higher in 
Compound 4. Compound 5 is also a suitable drug with good pharmacokinetic 
properties. Compound 6 is a fragment based drug design with low water solubility. 
Though Compound 7, 8, 9, 10 have low pharmacokinetic activities, they can be used 
to provide reference to develop novel inhibitors for mutations in ACK1 tumors. 
Many other studied inhibitors are Pyrrolo [2,3-d]pyrimidine, Pyrazolopyrimidine, 
Imidazopyrazine and their derivatives [6].

We have used in silico approaches to study the pharmacokinetic properties 
of 14 multikinase inhibitors and its interaction to activated Cdc42-associated 
Kinase 1 (ACK1/TNK2) [41]. Many of these multikinase inhibitors are FDA 
approved therapeutic drugs targeting multiple targets for disease treatments. 
These drugs included the third generation dasatinib (5) [42], and bosutinib (6) 
[43] as an Abelson leukemia virus (ABL) and proto-oncogene tyrosine protein 
kinase Src kinase inhibitor. ADZ9291 (10) [44], Sunitinib (11), flavopiridol 
(12), gefitinib (13) [42] and compound 14 [45] has inhibitory effects on ACK1 
(Figure 5).
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As these drugs alone are not enough for the survival, so advances are made on 
the combination therapies for effective cancer treatment. The studied inhibitors 
showed better results when used in combination with other drugs.

2. Challenges

Though ACK1 is a therapeutic target for cancers, inflammation, immune and 
neurological diseases, very few inhibitors have entered the clinical trials. Hence 
there is urgent need to develop potential inhibitors. The in vivo pharmacokinetic 
properties of inhibitors also need to be improved. Some inhibitors have limited 
solubility in water which restricts the studies to be carried out on the animal 
models only. Due to the large distribution and participation of ACK1 in regulation 
of many signaling pathways, high specificity and precise positioning of inhibitors 
to diseased tissues are required, which increases the difficulty in drug designing. 
So, it is necessary to explore more biological functions of ACK1 and to verify the 
effectiveness of drugs in vivo and in vitro. As the inhibitors are developed by only 
limited methods (screening small molecules and fragment libraries), it have weak 
affinities which makes the selection of drug candidates difficult and time consum-
ing. Further the development of allosteric inhibitors of ACK1 is also difficult as 

Figure 4. 
Chemical structures of few selective inhibitors. The name of these selective inhibitors are AIM-100 (1), (2), (3), 
(4), KRCA-0008 (5), (R)-9b (6), XMD8-87 (7), XMD16-5 (8), benzopyrimidodiaze-pinone derivatives ((9), 
(10)). Adapted from Aoxue Wang et al. [6].

Figure 5. 
Optimized structures of 14 multikinase inhibitors. The name for few multikinase inhibitors are GNF-1(1), 
Dasatinib (5), bosutinib (6), ceritinib (7), PD158780 (8), vemurafenib (9), ADZ9291 (10), sunitinib (11), 
flavopiridol (12), and gefitinib (13). Adapted from Srivastava [41].
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it need full-length proteins in the biochemical analysis of ACK1, which is a great 
challenge as these proteins may exhibit aggregation, conformational changes and 
other phenomena, which are not possible for the in vivo and in vitro studies. In last 
10 years, innovative immunochemotherapies have shown promising results in dis-
ease control rates but not survival. So, there is an acute need to develop novel drugs 
that can target dysregulated pathways in malignant tumors. Several functional 
challenges include the description of genetic abnormalities in the cancer kinomes 
and the recognition of accurate drivers which are accountable for tumor develop-
ment. Only the precise analysis of the therapeutic involvement will indicate the 
clear role of kinases; as a tumor suppressor in non-cancer cells or a tumor mediator 
in cancer cells.

3. Application of inhibitors in drug repurposing

In oncology, repurposing of drugs means the reuse of already existing drugs 
to treat cancer rather than testing new drugs for the existing symptoms with 
malignancies. Introducing new drugs is a very time-consuming and costly process 
which requires many pre-clinical trials before its use for the commercial purposes. 
The existing drugs have a huge potential with untapped agents, which are clinically 
more relevant for disease treatment. More than 200 existing used off patent drugs 
have shown some evidence for anti-cancer treatment. Since these FDA approved 
drugs are not in larger number, it is better to repurpose the existing drugs for 
therapeutic purposes. These drugs can be repurposed for not only cancer treatment 
but also in rheumatoid arthritis and other disorders. Interestingly multikinase 
inhibitors are used to interact simultaneously many targets, these drugs can play an 
important role in drug repurposing for treatment of different diseases.

4. Future perspectives

Now it is well established that ACK1 is a promising target for tumor therapy 
and the clinical studies show that there is a strong correlation between the expres-
sion level of activated ACK1 and prognosis and progression of cancers. Six specific 
inhibitors with high affinity for ACK1 has been identified which showed potential 
inhibitory activity. Some inhibitors also showed good pharmacokinetics proper-
ties in vivo. It has been observed that light-controlled PROTACs degrade specific 
proteins at certain locations in the body, so novel ACK1 inhibitors could have a local 
impact on pathologic tissues by light control. Fortunately, immunotherapy has been 
considered as an alternative tool for cancer patients. The treatment included many 
checkpoint inhibitors as nivolumab, pembrolizumab, and atezolizumab. Many 
other inhibitors as dasatinib, nilotinib, bosutinib along with imatinib mesylate has 
also used as chemotherapeutic agent for treatment in chronic myeloid leukemia 
(CML) patients. Considering these problems, Allosteric inhibitors, inhibitors 
targeting different structural domains of ACK1, inhibitors having blocking interac-
tions within proteins, Proteolysis targeting chimeras (PROTACs), Combination 
therapies and dual-target drug complexes need to be develop in future. Moreover, 
many ACK1 interacted proteins or substrates need to be identified which can be 
utilized for precision medicine in cancer patients. The implementation of bioinfor-
matics based methodologies as structure based drug designing can definitely help 
in drug delivery precision medicine for cancers. Refinement of effective compound 
screening and profiling technologies, and natural compounds need to be explored 
to reduce the off- target toxicity. Allosteric and covalent inhibitors, and targeted 
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degraders such as PROTACs and molecular glues will be the next players of kinase 
drug discovery in future.

Acknowledgements

RS acknowledges the financial assistance by the DST WOS-A (SR/WOS-A/
CS-69/2018). RS is also thankful to her mentor Dr. Shrish Tiwari, Bioinformatics 
Department, CSIR—Centre for Cellular and Molecular Biology, Hyderabad and 
Prof. G. Narahari Sastry, Director, NEIST for the technical support.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



277

Role of Activated Cdc42-Associated Kinase 1 (ACK1/TNK2)-Inhibitors in Precision Oncology
DOI: http://dx.doi.org/10.5772/intechopen.102343

References

[1] Prieto-Echague V, Miller WT. 
Regulation of ack-family nonreceptor 
tyrosine kinases. Journal of Signal 
Transduction. 2011;2011:742372.  
DOI: 10.1155/2011/742372

[2] Lin Q, Wang J, Childress C, Yang W. 
The activation mechanism of ACK1 
(activated Cdc42-associated tyrosine 
kinase 1). The Biochemical Journal. 
2012;445:255-264. DOI: 10.1042/
BJ20111575

[3] Manser E, Leung T, Salihuddin H, 
Tan L, Lim L. A non-receptor tyrosine 
kinase that inhibits the GTPase activity 
of p21cdc42. Nature. 1993;363:364-367. 
DOI: 10.1038/363364a0

[4] Mahajan K, Mahajan NP. ACK1/
TNK2 tyrosine kinase: Molecular 
signaling and evolving role in cancers. 
Oncogene. 2015;34:4162-4167.  
DOI: 10.1038/onc.2014.350

[5] Xu SH, Huang JZ, Xu ML, Yu G, 
Yin XF, Chen D, et al. ACK1 promotes 
gastric cancer epithelial-mesenchymal 
transition and metastasis through 
AKT-POU2F1-ECD signalling. The 
Journal of Pathology. 2015;236:175-185. 
DOI: 10.1002/path.4515

[6] Wang A, Pei J, Shuai W, Lin C, Lu F, 
Wang Y, et al. Small molecules targeting 
activated Cdc42-associated kinase 1 
(ACK1/TNK2) for the treatment of 
cancers. Journal of Medicinal 
Chemistry. 2021;64(22):16328-16348. 
DOI: 10.1021/acs.jmedchem.1c01030

[7] Liu X, Wang X, Li L, Han B. Research 
progress of the functional role of ACK1 
in breast cancer. BioMed Research 
International. 2019;2019:1018034.  
DOI: 10.1155/2019/1018034

[8] Modzelewska K, Newman LP, 
Desai R, Keely PJ. Ack1 mediates 
Cdc42-dependent cell migration and 
signaling to p130Cas. The Journal of 

Biological Chemistry. 2006;281:37527-
37535. DOI: 10.1074/jbc.M6043 42200

[9] Satoh T, Kato J, Nishida K, Kaziro Y. 
Tyrosine phosphorylation of ACK in 
response to temperature shift-down, 
hyperosmotic shock, and epidermal 
growth factor stimulation. FEBS Letters. 
1996;386:230-234. DOI: 10.1016/0014- 
5793(96)00449-8

[10] Yeow-Fong L, Lim L, Manser E. 
SNX9 as an adaptor for linking 
synaptojanin-1 to the Cdc42 effector 
ACK1. FEBS Letters. 2005;579:5040-
5048. DOI: 10.1016/j.febslet.2005.07.093

[11] Kelley LC, Weed SA. Cortactin is a 
substrate of activated Cdc42-associated 
kinase 1 (ACK1) during ligand-induced 
epidermal growth factor receptor 
downregulation. PLoS One. 2012;7: 
e44363. DOI: 10.1371/journal.pone. 
0044363

[12] Mahajan K, Mahajan NP. PI3K-
independent AKT activation in cancers: 
A treasure trove for novel therapeutics. 
Journal of Cellular Physiology. 2012;227: 
3178-3184. DOI: 10.1002/jcp.24065

[13] Qi L, Ding Y. TNK2 as a key drug 
target for the treatment of metastatic 
colorectal cancer. International Journal 
of Biological Macromolecules. 2018;119: 
48-52. DOI: 10.1016/j.ijbiomac. 
2018.07.124

[14] Lei X, Li YF, Chen GD, Ou DP, 
Qiu XX, Zuo CH, et al. Ack1 
overexpression promotes metastasis  
and indicates poor prognosis of 
hepatocellular carcinoma. Oncotarget. 
2015;6:40622-40641. DOI: 10.18632/
oncotarget.5872

[15] Shinmura K, Kiyose S, Nagura K, 
Igarashi H, Inoue Y, Nakamura S, et al. 
TNK2 gene amplification is a novel 
predictor of a poor prognosis in patients 
with gastric cancer. Journal of Surgical 



Drug Repurposing - Molecular Aspects and Therapeutic Applications

278

Oncology. 2014;109:189-197.  
DOI: 10.1002/jso.23482

[16] Xu SH, Huang JZ, Chen M, Zeng M, 
Zou FY, Chen D, et al. Amplification of 
ACK1 promotes gastric tumorigenesis 
via ECD-dependent p53 ubiquitination 
degradation. Oncotarget. 2017;8:12705-
12716. DOI: 10.18632/oncotarget.6194

[17] Gajiwala KS, Maegley K, Ferre R, 
He YA, Yu X. Ack1: Activation and 
regulation by allostery. PLoS One. 
2013;8:e53994. DOI: 10.1371/journal.
pone.0053994

[18] Howlin J, Rosenkvist J, Andersson T. 
TNK2 preserves epidermal growth 
factor receptor expression on the cell 
surface and enhances migration and 
invasion of human breast cancer cells. 
Breast Cancer Research. 2008;10:R36. 
DOI: 10.1186/bcr2087

[19] Shen F, Lin Q, Gu Y, Childress C, 
Yang W. Activated Cdc42-associated 
kinase 1 is a component of EGF receptor 
signaling complex and regulates EGF 
receptor degradation. Molecular Biology 
of the Cell. 2007;18:732-742.  
DOI: 10.1091/mbc.e06-02-0142

[20] Chan W, Tian R, Lee YF, Sit ST, 
Lim L, Manser E. Down-regulation of 
active ACK1 is mediated by association 
with the E3 ubiquitin ligase Nedd4-2. 
The Journal of Biological Chemistry. 
2009;284:8185-8194. DOI: 10.1074/jbc.
M806877200

[21] Lin Q, Wang J, Childress C, Sudol M, 
Carey DJ, Yang W. HECT E3 ubiquitin 
ligase Nedd4-1 ubiquitinates ACK and 
regulates epidermal growth factor 
(EGF)-induced degradation of EGF 
receptor and ACK. Molecular and 
Cellular Biology. 2010;30:1541-1554. 
DOI: 10.1128/MCB.00013-10

[22] Tan DS, Haaland B, Gan JM, 
Tham SC, Sinha I, Tan EH, et al. 
Bosutinib inhibits migration and 
invasion via ack1 in kras mutant 

non-small cell lung cancer. Molecular 
Cancer. 2014;13:13. DOI: 10.1186/ 
1476-4598-13-13

[23] Hu F, Liu H, Xie X, Mei J, Wang M. 
Activated cdc42-associated kinase is 
upregulated in non-small-cell lung 
cancer and necessary for FGFR-
mediated AKT activation. Molecular 
Carcinogenesis. 2016;55:853-863.  
DOI: 10.1002/mc.22327

[24] Mahajan K, Mahajan NP. Cross talk 
of tyrosine kinases with the DNA 
damage signaling pathways. Nucleic 
Acids Research. 2015;43(22):10588-
10601. DOI: 10.1093/nar/gkv1166

[25] Zhu J, Liu Y, Ao H, Liu M, Zhao M, 
Ma J. Comprehensive analysis of the 
immune implication of ACK1 gene in 
non-small cell lung cancer. Frontiers in 
Oncology. 2020;10:1132. DOI: 10.3389/
fonc.2020.01132

[26] Liu X, Wang X, Li L, Han B. 
Research progress of the functional role 
of ACK1 in breast cancer. Hindawi 
BioMed Research International. 
2019;6:1-6. DOI: 10.1155/2019/1018034

[27] Mahajan K, Mahajan NP. 
Shepherding AKT and androgen 
receptor by ACK1 tyrosine kinase. 
Journal of Cellular Physiology. 
2010;224(2):327-333. DOI: 10.1002/
jcp.22162

[28] Mahajan K, Mahajan NP. ACK1 
tyrosine kinase: Targeted inhibition to 
block cancer cell proliferation. Cancer 
Letters. 2013;338(2):185-192.  
DOI: 10.1016/j.canlet.2013.04.004

[29] Mahajan K, Coppola D, Challa S, 
et al. ACK1 mediated AKT/PKB tyrosine 
176 phosphorylation regulates its 
activation. PLoS One. 2010;5(3):e9646. 
DOI: 10.1371/journal.pone.0009646

[30] Wu X, Zahari MS, Renuse S, et al. 
The non-receptor tyrosine kinase TNK2/
ACK1 is a novel therapeutic target in 



279

Role of Activated Cdc42-Associated Kinase 1 (ACK1/TNK2)-Inhibitors in Precision Oncology
DOI: http://dx.doi.org/10.5772/intechopen.102343

triple negative breast cancer. 
Oncotarget. 2017;8(2):2971-2983.  
DOI: 10.18632/oncotarget.13579

[31] Yoo J, Jeon YH, Cho HY, et al. 
Advances in histone demethylase 
KDM3A as a cancer therapeutic target. 
Cancers (Basel). 2020;12(5):1098.  
DOI: 10.3390/cancers12051098

[32] Mahajan K, Lawrence HR, 
Lawrence NJ, Mahajan NP. ACK1 
tyrosine kinase interacts with histone 
demethylase KDM3A to regulate the 
mammary tumor oncogene HOXA1. 
Journal of Biological Chemistry. 
2014;289(41):28179-28191.  
DOI: 10.1074/jbc.M114.584425

[33] Xie B, Zen Q, Wang X, He X, Xie Y, 
Zhang Z, et al. ACK1 promotes 
hepatocellular carcinoma progression 
via downregulating WWOX and 
activating AKT signaling. International 
Journal of Oncology. 2015;46:2057-
2066. DOI: 10.3892/ijo.2015.2910

[34] Ling S, He Y, Li X, Ma Y, Li Y, 
Kong B, et al. Significant gene 
biomarker tyrosine kinase non-receptor 
2 mediated cell proliferation and 
invasion in colon cancer. Frontiers in 
Genetics. 2021;12:653657. DOI: 10.3389/
fgene.2021.653657

[35] Mahajan K, Malla P, Lawrence HR, 
Chen Z, Kumar-Sinha C, Malik R, et al. 
ACK1/TNK2 regulates histone H4 
Tyr88-phosphorylation and AR gene 
expression in castration-resistant 
prostate cancer. Cancer Cell. 2017;31: 
790-803. DOI: 10.1016/j.ccell.2017. 
05.003

[36] Mahajan NP, Coppola D, Kim J, 
Lawrence HR, Lawrence NJ, Mahajan K. 
Blockade of ACK1/TNK2 to squelch the 
survival of prostate cancer stem-like 
cells. Scientific Reports. 2018;8:1954. 
DOI: 10.1038/s41598-018-20172-z

[37] Shen H, Ferguson SM, Dephoure N, 
Park R, Yang Y, Volpicelli-Daley L, et al. 

Constitutive activated Cdc42-associated 
kinase (Ack) phosphorylation at 
arrested endocytic clathrin-coated pits 
of cells that lack dynamin. Molecular 
Biology of the Cell. 2011;22(4):493-502. 
DOI: 10.1091/mbc.e10-07-0637

[38] Zhang B, Kirov S, Snoddy J. 
WebGestalt: An integrated system for 
exploring gene sets in various biological 
contexts. Nucleic Acids Research. 
2005;33:W741-W748. DOI: 10.1093/
nar/gki475

[39] Mahajan K, Coppola D, Chen YA, 
Zhu W, Lawrence HR, Lawrence NJ, 
et al. Ack1 tyrosine kinase activation 
correlates with pancreatic cancer 
progression. The American Journal of 
Pathology. 2012;180:1386-1393.  
DOI: 10.1016/j.ajpath.2011.12.028

[40] Wang B, Song K, Chen L, Su H, 
Gao L, Liu J, et al. Targeted inhibition of 
ACK1 can inhibit the proliferation of 
hepatocellular carcinoma cells through 
the PTEN/AKT/mTOR pathway. Cell 
Biochemistry and Function. 2020;38: 
642-650. DOI: 10.1002/cbf.3522

[41] Srivastava R. Molecular and 
Biological efficacy of Multikinase 
Inhibitors and interaction to Activated 
Cdc42-Associated Kinase 1 (ACK1/
TNK2). Communicated to Frontier in 
Chemistry 

[42] Lombardo LJ, Lee FY, Chen P, 
Norris D, Barrish JC, Behnia K, et al. 
Discovery of N-(2-chloro-6-methyl-
phenyl)-2-(6-(4-(2-hydroxyethyl)-
piperazin-1-yl)-2-methylpyrimidin-4-
ylamino)thiazole-5-carboxamide 
(BMS-354825), a dual Src/Abl kinase 
inhibitor with potent antitumor activity 
in preclinical assays. Journal of 
Medicinal Chemistry. 2004;47: 
6658-6661. DOI: 10.1021/jm049486a

[43] Stansfield L, Hughes TE, 
Walsh-Chocolaad TL. Bosutinib: A 
second-generation tyrosine kinase 
inhibitor for chronic myelogenous 



Drug Repurposing - Molecular Aspects and Therapeutic Applications

280

leukemia. The Annals of 
Pharmacotherapy. 2013;47:1703-1711. 
DOI: 10.1177/1060028013503124

[44] Remsing Rix LL, Rix U, Colinge J, 
Hantschel O, Bennett KL, Stranzl T, 
et al. Global target profile of the kinase 
inhibitor bosutinib in primary chronic 
myeloid leukemia cells. Leukemia. 
2009;23:477-485. DOI: 10.1038/
leu.2008.334

[45] Song D, Lee M, Park CH, Ahn S, 
Yun CS, Lee CO, et al. Novel 
2,4-diaminopyrimidines bearing 
tetrahydronaphthalenyl moiety against 
anaplastic lymphoma kinase (ALK): 
Synthesis, in vitro, ex vivo, and in vivo 
efficacy studies. Bioorganic & Medicinal 
Chemistry Letters. 2016;26:1720-1735. 
DOI: 10.1016/j.bmcl.2016.02.052



281

Section 6

Pharmacogenomics Based 
Drug Repurposing for Novel 

Drug Discovery





283

Chapter 13

Gene Signature-Based Drug 
Repositioning
Zhilong Jia, Xinyu Song, Jinlong Shi, Weidong Wang 
and Kunlun He

Abstract

With the advent of dynamical omics technology, especially the transcriptome 
and proteome, a huge amount of data related to various diseases and approved 
drugs are available under multi global projects or researches with their interests. 
These omics data and new machine learning technology largely promote the 
translation of drug research into clinical trials. We will cover the following topics in 
this chapter. 1) An introduction to the basic discipline of gene signature-based drug 
repurposing; 2) databases of genes, drugs and diseases; 3) gene signature databases 
of the approved drugs; 4) gene signature databases of various diseases; 5) gene 
signature-based methods and tools for drug repositioning; 6) new omics technol-
ogy for drug repositioning; 7) drug repositioning examples with reproducible code. 
And finally, discuss the future trends and conclude.

Keywords: transcriptome, databases, drug repurposing, mode of action, 
reproducible study

1. Introduction

Drug repositioning is to identify new indications of the approved drugs. It has 
lower risk, less human resources, lower cost, and shorter developmental period, 
compared with traditional drug development. Sir James Black, a Nobel Prize 
laureate, originally stated that “The most fruitful basis for the discovery of a new 
drug is to start with an old drug”, largely promoting the concept of drug reposition-
ing [1]. There are huge examples of drug repositioning as described in the book. 
Multinational pharmaceutical companies, such as AstraZeneca and GSK, also 
showed their great interest in drug repurposing approaches [2, 3].

In this chapter, we focus on gene signature-based drug repositioning. The idea 
could date from 2000 year. Hughes et al. built a prototypical library of the microar-
ray-based gene expression signatures of Yeast with about 300 diverse gene muta-
tions and the treatment of 13 drugs with known molecular targets by keeping other 
experimental conditions consistent [4]. They identified a new target of the drug 
dyclonine by comparing the signatures of genes and drugs via pattern matching [4]. 
This article opened a door for gene signature-based drug repositioning [5].

A comprehensive gene signature library of genes, diseases and perturbations 
plays a fundamental role in gene-signature-based drug repositioning. From the 
genes’ view, the knocking down, knocking out, knocking in genes could be achieved 
to represent the expression signatures of genes with the advances of molecular biol-
ogy, especially the emergence of the RNAi and CRISPR/Cas9 technology [6].
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From the diseases’ view, modeling disease in a cell or animal experimental assay 
would make it possible to produce the gene signatures of various diseases via the 
quantification of molecular phenotypes. It should be noted that modeling various 
diseases in parallel and high throughput ways are relatively difficult so far as the 
condition of modeling various diseases is disease-specific or unclear due to the 
complexity and our little understanding of some diseases. However, with the devel-
opment of the pathogenesis of various diseases, it will be efficient to model cellular 
and animal models of various diseases by magic genome editing using CRISPR/
Cas9 technology [7].

Finally, from a drugs’ view, there are thousands of approved drugs available so 
far. Lots of the bioactive compounds, besides the approved drugs, were also tested 
to obtain their gene signatures. Particularly, the connectivity map (CMap) [8] and 
Library of Integrated Network-based Cellular Signatures (LINCS) program [9, 10] 
largely promoted the rapid development of drug repositioning as they provided a 
huge of gene signatures of drugs and compounds freely available to the scientific 
community.

The core principle of gene signature-based drug repositioning is that the 
candidate drugs should revert the gene signature of the disease of interest, which is 
changed by the disease, compared with the controls (Figure 1). The reversion could 
be characterized by anti-correlation, distance, similarity and metrics produced 
by machine learning models. A derivative principle is that the similarity of two 
drugs could reveal similar indications of the two drugs. In detail, if drug A could 
be used to treat disease C, and the other drug B is similar to drug A based on their 
gene signatures, then drug B could also be used to treat disease C. This idea should 
come from chemoinformatics as the principle that similar drugs based on chemical 
structures should have similar functions is widely used in the field of drug research 
and development, especially the development of me-too drugs [11]. Importantly, 

Figure 1. 
The core idea of gene signature-based drug repositioning. Drug repositioning tools search the gene signatures of 
a drug library to identify which signature is “opposite” to the gene signature of disease, reverting the state of 
disease to the healthy state.
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several researchers have developed or detailed this principle from different perspec-
tives, making this idea efficient to implement and use.

The gene signatures are the molecular phenotype, revealing the molecular 
landscape of genes, diseases or drugs. In general, the gene signatures are the 
expression profiles or changes of RNA measured by RNASeq-based transcriptome 
via microarray, Next-Generation Sequencing or Third-Generation Sequencing [5, 8]. 
More broadly, the gene signature could be the abundance profiles or changes of 
proteins qualified by the antibody-based or tandem mass spectrometry (MS/MS)-
based proteome. The reason why is that the principle of gene signature-based drug 
repositioning is suitable to any molecular phenotype, such as the transcriptome and 
proteome. Moreover, in machine learning models, the tabular data of transcriptome 
and proteome is similar to a great extent as they are features of samples in a high-
level and united view.

In summary, with the rapid advance of various omic technology, a huge amount 
of public available omic data related to molecules, drugs, diseases and genes, 
computational resources and efficient deep learning algorithms make the field 
of drug repositioning vigorous. There will be increasing therapeutic applications 
of drug repositioning. In the following sections, we will introduce the databases 
related to genes, pathways, drugs and diseases, providing the resources for gene 
signature-based drug repositioning, then describe key tools for web servers for 
drug repositioning with a highlight on the new powerful and easy-to-use methods, 
show examples for drug repositioning for several diseases with reproducible code, 
convenient to the readers to follow. Finally, we will summarize the ongoing chal-
lenges, unmet needs, future trends and conclude.

2. Databases of genes, pathways and drugs for drug repositioning

Genes play a critical role in gene signature-based drug repositioning. Especially, 
the targets of drugs are of importance in traditional drug development. In General, 
the targets of drugs are human or viral proteins, which are druggable [12] and 
associated with a particular disease or multi diseases. So far, there are about 900 
biomolecules targeted by about 1500 US FDA-approved drugs as curated by Rita 
et al. [13]. Obtaining this information will facilitate the process of gene signature-
based drug repositioning. Some databases and web servers have gene information, 
which are useful in drug development [14].

GeneCards (https://www.genecards.org/) is an integrative knowledge base 
and web server with comprehensive information on all human genes, scratch-
ing more than 150 high-quality web sources, from genotype to phenotypes and 
functional information [15]. Though it is a general database, which is not centric 
on drug development, it provides comprehensive knowledge about a gene of 
interest. It is highly recommended to browse this website at the beginning of a 
study of a target.

DGIdb (drug-gene interaction database, www.dgidb.org) is a webserver with 
drug-gene interaction and druggable genes information, collected from more 
than thirty high-quality web sources [16]. If biomarkers or therapeutic targets are 
identified, then researchers could search which drugs could target the biomarker or 
therapeutic target using DGIdb, achieving a quick translational opportunity.

The Open Targets database (https://www.opentargets.org/) aims to identify 
and prioritize promising therapeutic targets of drugs by analyzing human genet-
ics, genomics and functional genomics data [17, 18]. The database emphasizes the 
importance of genetics of diseases via genome-wide association studies to approach 
gene causal inference, which is beneficial to drug development [19, 20].
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The Clue.io webserver (https://clue.io/) includes the updated CMap LINCS gene 
expression resource perturbed by CRISPR gene over-expression, RNAi gene knock-
down and CRISPR gene knockout generating loss-of-function mutants [9, 21]. This 
webserver has abundant data about the gene perturbation, providing a great resource 
to study the effect of a target, mimicking the targets affected by drugs [22–24]. 
Meanwhile, it also supplies a drug repositioning hub for researchers, a curated library 
of drugs with a companion knowledge resource [25].

Pathways, besides gene level, could also be a key resource in drug reposition-
ing. Pathway, consisting of a set of genes, could be the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway, gene ontology (GO), Reactome Pathway 
Database (https://reactome.org/) and other gene sets. As genes in a pathway are 
not randomly selected, a generalized pathway concept is the gene set, substantially 
enlarging the function aspects of pathways. A good resource of the gene sets is 
the Molecular Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/
msigdb/) as it supplied a downloadable gmt-formatted gene set dataset, facilitating 
its use in the bioinformatic analysis [26]. Several reasons highlight the importance 
of the pathway. Firstly, it could be used to illuminate the mode of action of drugs 
by connecting the genes and drugs [27]. Secondly, it could be a feature summariz-
ing the gene-signature at a higher level, which is useful in machine learning-based 
modeling. It is different from the gene level as it captures different information 
about drugs or diseases [28–30]. Thirdly, the pathway analysis could enhance the 
confidence of the prediction of the candidate drugs [31].

The information about drugs is an invaluable resource to drug repositioning 
and an evaluation dataset of drug repositioning. The repoDB database is a standard 
dataset to benchmark various computational repositioning methods, which consist 
of 6677 approved and 4123 failed drug-indication pairs [32]. The Experimental 
Knowledge-Based Drug Repositioning Database (EK-DRD, http://www.idruglab.
com/drd/index.php) curated 1861 FDA-approved and 102 withdrawn drugs with 
validated drug repositioning annotations [33]. These datasets will facilitate the 
training and testing of the machine-learning-based models.

3. Gene signature databases related to drugs

The gene signature databases of drugs and compounds are fundamental 
resources determining the searching space for drug repositioning. For a long time, 
researchers have been pursuing the enlargement of the gene signature library of 
drugs and compounds. For example, researchers have explored a bunch of bioac-
tive compounds and ligands, such as growth factors and cytokines, which are not 
drugs but with known functions [8–10]. There are lots of data resources related to 
drugs. The sources of these data are mainly from two aspects. One is the public data, 
such as GEO, which is scattered in the database. A manual curation by professional 
researchers is necessary to make a usable dataset for drug repositioning. There is 
a trend for advanced metadata curation from the GEO [34]. The other one is from 
large projects, such as CMap, aiming to create a reference dataset of gene signatures 
for drug development.

NCBI GEO [35], EMBL-EBI ArrayExpress [36] and NGDC Gene Expression 
Nebulas [37] store massive omics data, including many transcriptome data of drugs 
and other compounds. But researchers need to search, collect and tidy them before 
their use for drug repositioning. Fortunately, several groups have collected multi-
gene expression signatures related to the drugs.

The CREEDS (CRowd Extracted Expression of Differential Signatures) 
extracted and analyzed the signatures of 875 drugs and 828 diseases from GEO 
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via a crowdsourcing project, setting in a massive open online course on Coursera 
[38]. The dataset could be downloaded from the website, https://maayanlab.cloud/
CREEDS/.

HERB (http://herb.ac.cn) is a high-throughput experiment database of tradi-
tional Chinese medicine, consisting of 7263 herbs and 49,258 ingredients, from 
472 high-throughput GEO datasets, providing complementary and valuable drug 
resources [39].

The CMap version 1 (https://portals.broadinstitute.org/cmap/) consists of 
Affymetrix-based 6100 gene signatures of 1309 compounds perturbing five dif-
ferent cell lines (such as PC3, MCF7, HL60) with varying doses (mainly 10 μM). 
Notably, there were 164 distinct perturbagens, including approved drugs and non-
drug bioactive compounds, in the original article published in the Science journal 
[8]. Indeed, this dataset stimulates the rapid development of drug repositioning, 
indicated by the high citations (more than 1800 times). It suggests the great value 
and success of a large-scale community Connectivity Map project.

The CMap version 2 (https://clue.io/cmap), belonging to NIH’s Library of 
Integrated Network-Based Cellular Signatures (LINCS) program, includes 1.3 
million L1000 profiles and 25,200 unique perturbations on variable cell lines [9]. 
They used L1000 technology due to the cost and argued that about 1000 landmark 
genes could recover 82% of the information in the full transcriptome based on a 
comprehensive comparison [9]. As expected, the updated dataset also motivated 
the continual development of drug repositioning. It should be noted that the 
consistency between the two versions of CMap is not high with a low recall [40]. It 
suggests that drug repositioning based on the CMap should consider other evidence 
to filter false positives in the computational drug repositioning.

In summary, the availability of huge gene signatures of drugs makes the gene 
signature-based drug repositioning possible as a big data basis. Meanwhile, 
researchers are still developing new transcriptome technology to make the large-
scale transcriptome sequencing of millions of drugs treating different cell lines with 
various doses possible at a relatively low cost. In addition, with the cost of conven-
tional RNASeq lower, it is also possible to use the RNASeq directly soon.

4. Gene signature databases of various diseases

The gene signature databases of various diseases are a complementary resource 
to drug repositioning. Importantly, the gene signatures of diseases are robust across 
different tissues and experiments to some extent (Dudley et al. 2009). As men-
tioned in the introduction section, it is difficult to apply a high-throughput way to 
model various diseases in parallel. Researchers have collected some gene signature 
datasets related to numerous diseases. However, in practice, biologists usually focus 
on a specific disease, which means that they could obtain the gene signature of the 
disease by themselves. Once they have the gene signature of the disease, they could 
directly query the gene signature library of drugs to get the candidate drugs for this 
disease.

The gene signatures of diseases were mainly collected from the GEO. ADEPTUS 
(Annotated Disease Expression Profiles Transformed into a Unified Suite) sup-
plied about 14,000 ready-to-use gene signature profiles, annotated with Disease 
Ontology terms [41]. ADEPTUS built a classic way to form a gene signature of vari-
ous diseases. The STARGEO (Search Tag Analyze Resource for GEO) project gener-
ated annotations of disease-related samples in GEO to identify robust signatures of 
disease by meta-analysis via a crowdsourcing approach [42]. It covered about 250 
types of diseases and could be improved via the webserver. The DrugVsDiseasedata 
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(Drug versus Disease data) package defined 45 gene signatures of diseases, such as 
Breast with Small-cell Lung, Cervical, Bladder and Prostate cancer, collected from 
GEO [43]. Recently, Porcu et al. reported that differentially expressed genes reflect 
disease-induced rather than disease-causing changes in the transcriptome via the 
Mendelian randomization method. Thus, identifying the upstream genes, which 
cause the diseases, would be a promising direction in the transcriptome data of 
diseases.

Although, there are several gene signature datasets of diseases, more efforts are 
necessary to enlarge the library of the types of diseases. The disease ontology is a 
fruitful resource for reference when searching for a disease. With the scale of gene 
signatures of diseases increasing, there will be more possibility of connecting drugs 
and diseases as the searching space for the algorithm is expanded.

5. Gene signature-based methods and tools for drug repositioning

Once the gene signatures of drugs and diseases, as well as other useful informa-
tion (such as the structure of drugs), are ready, we could make a computational 
drug repositioning analysis. In the end, it is to find a method to connect the drug 
and disease. This connecting method could be a similarity metric [44], community 
discovery, matrix factorization and completion, machine learning-based models 
and so on. A good method should significantly enrich true positive results and 
deplete false-positive results.

There are several biologist-friendly web servers, convenient to use without the 
need for programming. The CMap version 1 website is one of the most popular 
websites in the field of drug repositioning. The CMap version 2 website supplies a 
more fruitful website. The enrichr website (https://maayanlab.cloud/Enrichr/) also 
provides the drug repositioning module with the drug and disease libraries (for 
example, Drug_Perturbations_from_GEO_down gene set) [45, 46]. Biologists could 
easily use these websites for drug repositioning without programming.

The nonparametric Kolmogorov–Smirnov statistic, formalized in Gene Set 
Enrichment Analysis (GSEA), was used in the original CMap article, indicating its 
power [8, 47]. It tests whether the empirical distribution of data (a set of genes) is 
different from a reference distribution (such as a ranked gene list related to a drug). 
The nonparametric test simplifies the statistical test process, making it feasible to 
multi situations.

PAGE (parametric analysis of gene set enrichment) was more sensitive and 
less-computational than GSEA [48], which could be used to evaluate the similar-
ity between two gene expression signatures. Dr. Insight used the concordantly 
expressed genes in a frame-breaking statistical model to connect the drug and dis-
ease [49]. The eXtreme Sum (XSum) was a similarity scoring algorithm, which was 
developed by Jie et al. It showed a better performance than the KS statistic based on 
the area under the curve using 890 drug-indication pairs with 496 compounds and 
238 disease signatures [50].

Network-based community discovery could exploit the similarity in gene 
expression signatures of drugs and identify the similar drugs, which should be 
clustered together [51]. They also implemented a tool, MANTRA (Mode of Action 
by NeTwoRk Analysis), which was accessible and biologist-friendly at http://
mantra.tigem.it [52]. GPSnet (Genome-wide Positioning Systems network) associ-
ated the drug and the gene signature-based disease modules in the protein–protein 
interactome network [53]. DeMAND (detecting mechanism of action by network 
dysregulation) developed a regulatory network-based approach to elucidate the 
MoA using gene expression signatures [54]. Chemical Checker integrated five-level 
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data of drugs, such as targets, morphology and gene expression signatures, to 
evaluate the similarity of the drugs via the dimensionality reduction and network 
embedding algorithm [55].

Cogena, co-expressed gene-set enrichment analysis, focused on the idea of tar-
geting co-expressed genes instead of all the differentially expressed genes for drug 
repositioning [27]. It empowered simultaneous, gene set knowledgebase-driven 
drug repositioning analysis and illustrated the mode of action of the predicted drug 
and disease pairs. Cogena has been widely used in drug repositioning for several 
diseases, including psoriasis, Coronavirus Disease 2019 (COVID-19) [56, 57], 
Crohn’s disease [58], periodontitis [59].

Machine learning, especially deep learning algorithms, are suitable to the gene 
expression signatures inherently. The low-rank matrix approximation and ran-
domized algorithms were used in drug repositioning by filling out the unknown 
connection in the drug-disease pairs [60] The iDrug could reposition drugs via 
a cross-network embedding and transferring knowledge from the drug target 
information [61]. DLEPS (deep learning-based efficacy prediction system) used 
one-dimensional convolutional neural networks to learn the relationship between 
the structure of drugs and gene expression signatures to predict drug efficacy [62]. 
Clearly, with the advances of deep learning, especially the graph neural network, 
lots of innovative algorithms will be continually applied in the drug repositioning 
field to improve performance.

6. New high-throughput technology for drug repositioning

Researchers try to develop new high-throughput RNASeq technology to improve 
the precision of transcriptome with the constraint of cost. For example, the micro-
array was used in the first version of CMap, while the L1000 technology was used in 
the second version of CMap, that is LINCS with a more than 1000-fold scale-up of 
the CMap. Via a Luminex bead-based probe hybridization, the L1000 only mea-
sured the mRNA abundance of 978 “landmark” genes with the expression of the 
remaining gene inferred by a machine learning algorithm [9]. This selection largely 
resulted from lowering the cost of obtaining the transcriptome of a huge scale of 
drugs and compounds.

RNA-Seq via Next-Generation Sequencing is a relatively new emerging technol-
ogy in the drug repositioning field. Due to the higher cost, researchers tried to 
maintain the transcriptome performance when lowering the cost in several ways. 
For example, a subset of genes with a reduced representation of the transcriptome 
could be sequenced instead of all the mRNA. The L1000 technology used the 
most informative genes, named “landmark” genes [9]. Deepak et al. argued that a 
knowledge-driven subset of 1500 sentinel genes could precisely predict pathway 
perturbations [63]. RASL-seq (RNA-mediated oligonucleotide annealing, selec-
tion, and ligation) only measured hundreds of pre-defined genes in response to a 
set of 350 chemicals and their mixtures, which provided a cost-effective approach 
to quantify gene expression signature with a panel of marker genes [64]. TempO-
Seq, Templated Oligo assay with Sequencing readout, could determine the whole 
transcriptome via a targeted way, requiring less sequencing depth [65].

The pooled and low-depth Next-Generation Sequencing is another approach to 
lower the cost but maintain the performance. PLATE-seq (pooled library ampli-
fication for transcriptome expression) introduced the sample-specific barcodes, 
allowing pooled library construction in 96 wells and low-depth sequencing, which 
is about 15-fold less expensive than canonical RNA-Seq [66]. DRUG-seq efficiently 
captured transcriptional changes with low-depth reads by importing cell barcode 
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and Unique Molecular Index (UMI) in 384- and 1536-well format with fewer steps, 
compared with PLATE-seq [67]. Notably, DRUG-seq also supplied an open-source 
R program analysis pipeline at Github recently [68]. BRB-seq (Bulk RNA Barcoding 
and sequencing) used early-stage multiplexing to produce 3′ cDNA libraries for 
multi-samples, while with a lower cost [69]. 3’Pool-seq was an optimized cost-effi-
cient method of transcriptome profiling, which was also adapted for a 96-well plate 
format and ERCC spike-ins. Collectively, researchers have developed multi new 
transcriptome technologies while lowering the cost of sequencing to implement the 
RNASeq for large-scale samples, which could be due to the different doses, different 
treatments, and different periods of treatment.

Other types of gene signatures, such as the proteome and metabolome, could 
also be used in drug repositioning. Zhao et al. created a systematic map of protein-
drug connectivity that compiled 210 clinically relevant protein signatures based 
on antibody-based proteomics technology in more than 12,000 cell-line samples in 
response to about 150 drugs [70]. ProTargetMiner was a proteome signature library 
of 56 molecules in A549 cancer cell lines, forming a valuable tool in drug discovery 
[71]. Benjamin et al. profiled the proteomes of five lung cancer cell lines (such as 
A549, Calu6 and Calu1) perturbed by more than 50 drugs based on the label-free 
proteomics platform [72]. Moreover, an atlas (http://bbmri.researchlumc.nl/
atlas/) of 87 drugs and 150 clinically relevant plasma-based metabolite associations 
will contribute to the drug development as well [73]. Other omics data, besides 
transcriptome, related to drugs and diseases will promote the drug repositioning 
flourishing. In summary, new omics technology will precisely quantify the signa-
tures related to drugs and diseases with a low cost, permitting the large-scale omics 
project, enlarging the searching library for drug repositioning.

7. Drug repositioning examples with reproducible code

Due to the pandemic of COVID-19 and no effective drugs for this disease, drug 
repositioning is a great way to combat this disease. Several researchers have used 
cogena for drug repositioning to fight the COVID-19 [56, 74].

We used the metatranscriptome data of the bronchoalveolar lavage fluid from 
8 severe COVID-19 patients and 20 healthy controls to obtain the gene expression 
signature of COVID-19 [75]. The co-expression analysis, pathway analysis and 
drug repositioning analysis were done using the cogena pipeline [56]. We identi-
fied several drugs which were associated with COVID-19 reported before. For 
example, Saquinavir, a protease inhibitor, is a drug for human immunodeficiency 
virus infection. This drug was also identified by several docking methods [76]. 
Dexamethasone is a “major development” in the fight against COVID-19 in the 
RECOVERY trial [77]. Ribavirin can be used to treat SARS-CoV and MERS-CoV 
infections [78]. Importantly, it is a recommended drug in the diagnosis and treat-
ment protocol for COVID pneumonia (trial version 5–latest) published by the 
National Health Commission of the P.R. of China. It was also identified by several 
docking methods [79]. Furthermore, we identified several other candidate drugs for 
COVID-19, for example, dinoprost, a smooth muscle activator, and (−)-isoprena-
line, a bronchodilator for obstructive lung diseases. These candidate drugs could be 
tested in vitro and in vivo to validate their possibility.

The whole pipeline of this gene-signature-based drug repositioning for COVID-
19 using cogena is accessible at https://github.com/zhilongjia/COVID-19 with data 
and code, forming a good resource for drug repositioning and reproducible study.

There are also other examples of drug repositioning using cogena with repro-
ducible codes. For instance, the code of the drug repositioning for psoriasis is 
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available at https://github.com/zhilongjia/psoriasis and the code of drug reposi-
tioning for periodontitis is available at https://github.com/zhilongjia/Fn_HGFcell. 
These examples will enhance our understanding of how drug repositioning works 
and how to implement drug repositioning.

8. Future perspectives and conclusion

The future of gene signature-based drug repositioning is bright. The booming 
biotechnology and pharmaceutical industry, especially the emerging sequenc-
ing and MS field, supplies an important motivation to sequence more omics data 
related to drugs and diseases. The artificial intelligence industry, particularly the 
deep learning algorithm, will also promote the rapid development of the drug 
repositioning field as it will improve the rate of the true positives and lower the 
rate of false positives. The omics data of drugs and diseases is like electricity, while 
the algorithm is like a machine. The seamless combinations of them will produce 
new opportunities for gene signature-based drug repositioning. More data means a 
larger searchable space to identify the new relationship between drugs and diseases. 
Additionally, the signatures-based combination of drugs could also be investigated 
to deal with intractable diseases. Meanwhile, more evidence from different aspects 
of the drug-disease pairs will improve the quality of perdition.

In the end, we highlight the key points of this chapter.

1. A systematic introduction to gene signature-based drug repositioning and the 
core principle of gene signature-based drug repositioning;

2. Gene signature could be achieved based on molecular phenotypes, such as 
transcriptome and proteome;

3. Basic databases of gene, pathway and drug for drug repositioning;

4. Gene signature databases of drugs and diseases

5. Gene signature-based methods and tools for drug repositioning;

6. New high-throughput technology for drug repositioning;

7. Drug repositioning examples with reproducible code;

8. The future direction of gene signature-based drug repositioning.
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Chapter 14

Recent Progress in Drug 
Repurposing Using Protein 
Variants and Amino Acids in 
Disease Phenotypes/Disorders
Michael P. Okoh and Lukman A. Alli

Abstract

Life is constituted of large group of macromolecule, functional and structural 
called “Protein,” made of amino acids (AA), and linked with peptide bonds with 
specific protein unique sequences. Variations in proteins are thought to have diverse 
effects with consequences on structure, stability, interactions, pH, enzymatic 
activity, abundance and other properties. Variants can be of genetic origin or it 
could occur de novo at the post-translational protein level. The sequence of amino 
acids defines protein structure and functions. Protein is involved in several critical 
functions like the physical cell-cell communication. Breakthrough in molecular 
science has shown that, to develop drugs for managing a disease-associated varia-
tions requires understanding of consequences of variants on the function of the 
affected protein and the impact on the pathways, in which protein is involved. Using 
biophysical/bioinformatics methods, immense amount of variation data generated is 
handled-connected to disease phenotypes. Obviously, there remain continuous needs 
for the combinations of genetic probing methods/bioinformatics, to predict single-
nucleotide variations (SNV), for effective rational drug design that would embrace 
naturally occurring bioactive components of plant origin, towards the effective 
management of disease phenotype emanating from protein and amino acid varia-
tions. This, well thought out and synchronized concept, remains a way forward.

Keywords: protein variation, epigenetics, disease management, single nucleotide 
variation, protein variants, amino acids in disease phenotypes/disorders

1. Introduction

Variations in the genome and protein expression remain a driver of most  
diseases with their polygenic phenotypes. Diseases may manifest with time emanat-
ing from aberrant protein expression. These biochemical processes are complex in 
nature, as it involves molecular interactions at both the DNA-RNA/protein level. 
Within the context of protein-protein interaction (PPI), it has become essential 
to look at the long-term clinical goal, which could be to identify disease-specific 
patterns of PPIs, which could serve as a disease- or treatment-responsive biomark-
ers whose selective measurement may lead to improved diagnosis or prognosis for 
common human disorders [1].
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Interests in the study of variations in DNA/protein have helped to espouse factors 
germane to influencing biological processes and genome stability. This is more so 
bearing; genomic integrity is particularly important as they provide the blueprint 
for the next generation [2]. During cell division, homeostasis is required, and for 
human health, the genome needs to be copied prudently such that a copy of each 
chromosome is passed on to the daughter cells. The polygenic nature of some disease 
phenotypes, controlled by a combination of several genes all playing together makes 
it essential to unravel biological processes in a piecemeal. For instance, most diseases 
with a number of persons with inherited predispositions including, heart disease, 
arteriosclerosis, and some cancers are thought to be polygenic [3].

Looking at these processes within the context of ribonucleic acid (RNA) on the 
other hand presents different facts. At some point in time, RNA was thought to 
be much less important than DNA since it did not carry any of the genetic char-
acteristics of an organism. However, lately, it has become obvious that this might 
not be entirely so bearing, the life cycle of RNA viruses for instance is directed to 
transport, multiply, and deliver the viral RNA genome into other cells. Fortunately, 
not all of these viral genomes can encode all proteins in the cell that are required 
for these known processes to be accomplished. Thus, overcoming this limitation, 
viruses are known to hijack cellular RNA-binding proteins (RBPs) [4, 5].

Responding to such invasion, host cells do concertedly employ specialized RBPs as 
a detection mechanism for viral RNAs and their intermediates of replication through 
the recognition of the molecular signage such as the under-methylated, cap tri-
phosphate ends, and double-stranded RNA (dsRNA) [6]. Beyond this, several other 
observations have been made [3, 4], highlighting the essential role that RBPs play in 
regulating the viral life cycle. For instance, it is thought that RBP sensing of viral RNA 
triggers the cellular antiviral state, which can suppress viral gene expression [6], lead-
ing to the inhibition of protein synthesis and the production of interferons [4, 5].

Recently, using multiple proteome-wide approaches [7] had identified RBPs 
involved in the SARS-CoV-2 life cycle whilst showing that the repertoire of cellular 
RBPs widely remodels in response to SARS-CoV-2 infection, via proteins involved in 
antiviral defenses, RNA metabolism, and other pathways.

In all of these processes, transcription factor (TF) mutations have been studied 
for decades, with RBPs being overlooked as drivers of disease and as therapeutically 
relevant targets. Now it is established that RBPs determine the fate of transcribed 
RNAs by regulating their splicing, polyadenylation, translation, subcellular local-
ization, and turnover [8].

For drug repurposing, diseases that are driven by a known or combination of 
mutants at the protein level are of major attention for direct targeting. Moreover, 
changes in cellular growth rate and the identity that occur during diseases such as 
cancer, hemoglobinopathy, etc., are, known to be driven by specific gene expression 
signatures that are programmed by the activity of DNA-binding TFs and RBP [9]. 
From recent findings, it is now clear that RNA-binding proteins (RBPs) are critical 
regulators of post-transcriptional gene expression [9]. Within this context, Liu and 
Shi [10] earlier established the importance of RBP in Amyotrophic lateral sclerosis 
(ALS), disease progression. Establishing that the heterogeneous ribonucleoproteins 
(horn A2/B1) mutation in patients with ALS did not just disable the protein, but 
instead, the mutation conferred some new toxic properties that scrambled RNA 
processing, fast-tracking the death of motor neurons [10].

Some other known fact is that missense mutation is a mistake in the DNA and it 
could arise due to aberrant TF. Missense mutations for instance in tumor suppres-
sors result in its loss of function (LOF) in a variety of manners including loss of 
stability of the protein or the disruption of a crucial ligand/DNA/protein binding 
site [11]. The Worldwide Protein Data Bank (wwPDB) have over 88,000 protein 



301

Recent Progress in Drug Repurposing Using Protein Variants and Amino Acids in Disease…
DOI: http://dx.doi.org/10.5772/intechopen.102571

structures, many of which play vital roles in critical metabolic pathways that may 
be regarded as potential therapeutic targets and specific databases containing 
structures of binary complexes [12]. Moreover, a recent breakthrough in molecu-
lar science has shown that the key to developing targeted therapy, for disease-
associated variations is with the critical understanding of the consequences of that 
variant on the function of the affected protein, and the impact on the pathways 
in which that protein is involved [9]. Proteins are produced and recycled by some 
critical processes in their tissue sources and are degraded into necessary amino 
acids through very controlled bio-signaling and feedback systems. For instance, the 
salvage pathways are known as a major source of nucleotides for the synthesis of 
DNA, RNA, and enzyme co-factors.

The disproportion of protein demand, dietary supply, and productions do result 
in a variety of disease phenotypes due mainly to deficiency, occasioned sometimes 
by variation properties. A critically important enzyme of purine salvage in rapidly 
dividing cells for instance is adenosine deaminase (ADA), which catalyzes the 
deamination of adenosine to inosine. Deficiency in ADA results in the disorder 
called severe combined immunodeficiency (SCID). This is a genetic disease 
amongst many others that is characterized by the development of nonfunctional 
T and B cells due to genetic mutation resulting in heterogeneous clinical pheno-
type [13].

2. DNA-protein interactions

The cis-regulatory DNA elements’ interactions with the transcription factors 
seem to be critical components of transcriptional regulatory networks [14]. The 
genome with the complete cDNA sequences contains large numbers of transcrip-
tion factors with their binding DNA sequences. It is expected that a comprehensive 
analysis of DNA-transcription factor interactions will provide a deep understanding 
of the mechanisms of drug metabolism in critical processes such as cell prolifera-
tion, developmental processes in tissue morphogenesis, and disease manifestation 
[14]. The combined use of chromatin immunoprecipitation (ChIP) assay with DNA 
microarrays (ChIP-chip) [14, 15] are the most widely used high-throughput method 
for discovering non-coding region but important (cis-regulatory) DNA elements 
for a transcription factor [16]. Albeit, the development of high-throughput meth-
ods for discovering transcription factors for DNA regulatory elements remains in 
its infancy, even though the yeast one-hybrid method [17] and phage display [16] 
are attractive candidates, in this regard. However, these methods have some short-
comings including, they are not easily scalable because of the use of living cells. 
Further, the overexpression of transcription factors are thoughts to affects cellular 
metabolism, and as such, making transcription factors difficult to screen. Thus, to 
avoid these difficulties, focus totally on in-vitro mRNA display technology such as 
in-vitro virus (IVV) method [11, 16] for the discovery of DNA-protein interactions 
serve as a good alternative.

To map out the transcriptional regulatory networks at a wider genome level, a 
comprehensive analysis of DNA-protein interactions is important Thus, the IVV 
method had been employed for in vitro selection of DNA-binding protein het-
erodimeric complexes [18]. Using improved selection conditions, enhanced with a 
TPA-responsive element (TRE) as a bait DNA, known interactors such as; c-fos and 
c-jun were simultaneously enriched about 100-fold from a model library  
(a 1:1:20000 mixture of c-fos, c-jun, and gst genes) after one round of selection 
[18]. Moreover, the AP-1 family genes, including c-jun, c-fos, junD, junB, atf2, and 
b-atf, were successfully selected from an IVV library constructed from a mouse 
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brain poly A+ RNA after six rounds of selection [19]. These results indicated that 
this method (IVV selection system) have the potential to identify a variety of DNA 
binding protein complexes in a single experiment. Since almost all transcription 
factors form hetero-oligomeric complexes towards binding with their target DNA, 
this method should be most useful to search for DNA-binding transcription factor 
complexes [11, 16], which will further illuminate the understanding of drug repur-
posing in disease state conditions.

3. Diseases arising from mutations

Numerous computational tools have been developed for the interpretation, 
analysis, and prioritization of variations and their effects [20]. Many DNA/protein 
variations and disease-causing mutation databases are now available for references. 
For instance, the locus specific variation database (LSVD) is present at Leiden Open 
Variation Database (LOVD) system for all human genes [21]. Although some of the 
databases seem to contain similar information, however, the LSDBs are listed at the 
Human Genome Variation Society (HGVS) Website (http://www.hgvs.org/locus-
specific-mutation-databases), the LOVD site (http://grenada.lumc.nl/LSDB_list/
lsdbs), the GEN2PHEN server (http://www.gen2phen.org/data/lsdbs) [22], and at 
the Web Analysis of the Variome (http://bioinformatics.ua.pt/WAVe/) [20, 23, 24].

Besides the above databases, there are many others that were most recently 
covered ([20, 25], and the references therein). Moreover, recent advances in 
genome-wide association studies, next-generation sequencing technologies coupled 
with genetic linkage analysis have enhanced output in the analysis of mutation-
causing diseases. Many of these methods are useful for detecting single-nucleotide 
polymorphisms (SNPs), which are found to be common in aberrant gene function-
ing. However, it may also be noted, the majority of structural variations (SVs) that 
occur in the human genome are yet to be fully characterized by single short-read 
platforms [26]. Suffice, for many genetic diseases, association studies have relied 
most heavily upon short read, high throughput sequencing technologies [27, 28].

Some `genetic variations with the consequence encoded proteins are known 
to manifest into disease phenotypes with the deleterious outcome to the patient. 
Within these are hemoglobinopathy including sickle cell disease (SCD), which 
are caused by a single germ-line mutation substituting (A to T) in the codon for 
amino acid 6. The change converts a glutamic acid codon (GAG) to a valine codon 
(GTG) [29, 30].

3.1 Single mutation as a lead cause of amyotrophic lateral sclerosis (ALS)

Most recently, due to the advances mentioned above, it led to the finding that 
a mutation in the C9orf72 gene (chromosome 9 open reading frame 72 genes) is 
the primary genetic cause of amyotrophic lateral sclerosis (ALS). These losses of 
function, induced by the mutation of the C9orf72 gene are thought to affect com-
munication between motor neurons and muscles in people with ALS [31]. Further, 
this mutation is thought in part to be responsible for 40–50% of hereditary cases 
of ALS, and 5–10% of cases without family history. This mutation consists of an 
expansion of a sequence of hexanucleotide (GGGGCC) DNA bases, going from a 
few copies (less than 20 in a healthy person) to more than 1000 copies [30]. Until 
now, it still remains unclear how this GGGGCC base repeat expansions cause neu-
rodegeneration in ALS. Although, mechanistically, the C9orf72 protein function in 
a complex with the WDR41 and SMCR proteins (guanine exchange factors (GEF)) 
for Rab8 and Rab39 [31].
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In a more recent study, the gene C9orf72 role on the protein TDP-43 (transac-
tive response DNA binding protein-43) was revealed. The TDP-43 protein plays an 
important role in ALS. It is thought that the C9orf72 gene may affect the protein 
TDP-43’s location within the cell. “In approximately 97% of ALS patients, it is 
being observed that the TDP-43 protein is depleted from the nucleus, forming 
aggregates in the cytoplasm rather than being in the nucleus, as is the case in 
healthy people [26, 32, 33].

The average incidence rate of ALS worldwide is about one in 50,000 people 
per year and the average age of onset of the disease is about 60 years, with men at 
a slightly higher risk compared to women. FDA-approved treatments for ALS are 
only modestly effective and the disease still results in complete paralysis and death 
within the first 5 years after diagnosis [31, 32].

3.2 Troponin variation in cardiomyopathy

The calcium-mediated interaction between actin and myosin is controlled by 
cardiac regulatory proteins, cardiac troponin T (cTnT) and troponin I (cTnI). The 
cardiac forms of these regulatory proteins theoretically have the potential of being 
unique to the myocardium [34], as they are coded for by specific genes.

Cardiac troponins are detected in the serum by the use of monoclonal antibodies 
to epitopes of cTnI and cTnT. These antibodies are highly specific for cardiac tro-
ponin and have negligible cross-reactivity with skeletal muscle troponins. Indeed, 
cTnI has not been identified outside the myocardium [34]. Cardiac troponin T is 
expressed to a small extent in skeletal muscle; however, the current cTnT assay does 
not identify skeletal troponins [35].

The majority of cTnI and cTnT form part of the contractile apparatus within the 
myocardial cell with lower concentrations found in the cytoplasm [35]. Whenever 
there is myocardial ischemia resulting in myocardial necrosis, the cTn will be 
released from the cytosolic pool into the bloodstream within a few hours of the 
injury. This is typically followed by a more prolonged and sustained elevation of 
cTn due to degradation of the contractile apparatus, which may also be a reflection 
of the size of the infarct [35].

However, the release kinetics of cTn after the myocardial injury can differ 
between individuals and is also dependent on myocardial blood flow. It can also 
differ between cTnI and cTnT which are thought to have monophasic and biphasic 
concentration-time profiles respectively, and with the increase in cTnT tending to 
last for longer than that of cTnI [34].

After the onset of an acute coronary event, cardiac troponins may not be detected 
in the serum for up to 4 hours and should be repeated 12 hours after the first test, if 
the troponin concentration is not raised in an individual presenting with chest pain.

In the identification of cardiac muscle damage, the measurement of serum 
cTnI and cTnT are superior in terms of sensitivity and specificity to cardiac 
muscle enzyme measurements [36]. Elevated cardiac troponin concentrations are 
now an acceptable standard biochemical marker for the diagnosis of myocardial 
infarction [37].

In order to enhance the comparison of results for cTnT, from one laboratory to 
another, troponin T is measured using a single assay, and a cutoff value of 0.1 μg/liter 
is indicative of myocardial damage [38]. However, there are several cTnI assays with dif-
ferent sensitivities and cutoff values. According to the European Society of Cardiology 
and American College of Cardiology consensus criteria, serum cTnI values that indicate 
myocyte necrosis/myocardial damage range from 0.1 to 2 μg/liter [38].

In the management of patients with acute chest pain, the measurement of 
cardiac troponins as markers of myocardial damage has produced two important 
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beneficial effects on clinical practice [39]. The first beneficial effect is that more 
patients with chest pain who would not have been diagnosed as having myocardial 
damage with conventional muscle enzyme assays are being diagnosed with myocar-
dial infarction, even in the absence of ST-segment elevation. The second beneficial 
effect is that mortality is reduced because many of these patients are at high risk of 
full-thickness myocardial infarction or even death within 6 month period [40, 41].

The Universal Definition of Myocardial Infarction requires at least one cTn 
concentration above the 99th percentile value of a normal reference population for 
the diagnosis of myocardial injury [38]. However, there have been some concerns 
regarding the use of a 99th percentile threshold value for hs-cTn because of its limi-
tations [42]. Firstly, the 99th percentile varies with assay [43]. Secondly, the 99th 
percentile varies with reference population selection (age, gender, ethnicity, and 
definition of healthy status), reference population size, and the statistical method 
used to calculate it [44, 45]. Some studies have shown that elevations of hs-cTn 
can be seen in older adults, which may be independent of pathological conditions 
[46, 47]. Thirdly, detectable chronic elevations in cTn above the 99th percentile 
are commonly seen in conditions such as chronic renal or cardiac failure [48, 49]. 
In addition, the improved analytical sensitivity of these assays has resulted in the 
detection of elevated cTn in numerous cardiac and non-cardiac conditions that 
cause myocardial cell necrosis, such as myocarditis, arrhythmia, cardiac procedures, 
pulmonary embolism, and sepsis [34, 41]. Due to these challenges, international 
guidelines have sought to promote consistency by proposing recommendations for 
determining 99th percentiles [50, 51]. It would therefore seem that the 99th percen-
tile should not be the only metric for diagnosing acute myocardial injury.

Cardiac troponins may also be elevated in many other conditions associated with 
secondary ischaemic injury [44], such as large pulmonary emboli, coronary spasm, 
cardiac arrhythmias [52], hypertrophic cardiomyopathy [52], idiopathic dilated cardio-
myopathy [53, 54]. It can also be elevated in conditions that cause myocardial injuries, 
such as cardiac trauma, chemotherapy [55], myopericarditis [55, 56], septicemia [57].

Some studies also found that cTn was detectable in nearly all children, where 
concentrations increased with increasing age and left ventricular mass, thus sup-
porting the notion that cTn release is not always pathological [58].

In addition, it has recently been demonstrated that cTn may exhibit diurnal varia-
tions [59, 60]. One study noted that cTnT concentrations exhibited a decreasing trend 
between morning and afternoon (0830 hours and 1430 hours) for healthy individuals 
and individuals requiring hemodialysis [59]. For cTnI concentrations, a decreasing 
trend during these hours was also noted in individuals requiring hemodialysis, how-
ever, the pattern was not apparent in healthy individuals [59]. Furthermore, another 
study in men with type 2 diabetes found that cTnT decreased during the day and then 
increased during the night, with peak concentrations in the morning at 0830 hours 
[58]. This was further confirmed in another study of healthy individuals, where cTnT 
exhibited diurnal variation but cTnI did not have such variation [60]. In other words, 
cTn can be described as organ-specific but not disease-specific.

4. RNA splicing in disease diagnosis

RNA splicing is a post-transcriptional process necessary to form a mature mRNA 
[61]. There are two main forms of splicing, that is, constitutive splicing and alterna-
tive splicing.

Constitutive splicing involves removal of introns from the pre-mRNA and 
joining the exons together to form a mature mRNA. Alternative splicing describes 
how exons can be included or excluded in different combinations to create a 



305

Recent Progress in Drug Repurposing Using Protein Variants and Amino Acids in Disease…
DOI: http://dx.doi.org/10.5772/intechopen.102571

diverse array of mRNA transcripts from a single pre-mRNA and therefore serves as 
a process to increase the diversity of the transcriptome. It was initially thought that 
about 5% of human genes were subjected to alternative splicing [62]. Now, after 
the implementation of next-generation sequencing technologies, it is now known 
that the vast majority, >95% of mRNAs, are subjected to alternative splicing [63]. 
However, the function of a large fraction of these splice isoforms is still unknown.

Splicing is more prevalent in multicellular than in unicellular eukaryotes 
because of the lower number of intron-containing genes in the latter [64]. As evo-
lution progress, alternative splicing becomes more prevalent in vertebrates than 
in invertebrates. Skipping of a single exon in the RNA-binding protein (RBP) and 
polypyrimidine tract binding protein 1 (PTBP1) may be responsible for numer-
ous alternative splicing changes between species, which suggest that one splicing 
event can augment the varieties observed in transcriptome between species [65].

The hypothesis that alternative splicing largely contributes to organism diversity is 
fueled by the observation that the total number of protein-coding genes does not dif-
fer much between species. And indeed, as we move up the phylogenetic tree, alterna-
tive splicing complexity increases, with the highest complexity in primates [66, 67].

4.1 Major and minor spliceosome

RNA splicing is performed by the spliceosome, a large and dynamic ribonucleo-
protein complex composed of proteins and small nuclear RNAs (snRNAs), which 
assembles on the pre-mRNA (Figures 1 and 2).

Figure 1. 
Two-step splicing reaction. Splicing occurs by a 2-step trans-esterification reaction to remove introns and join 
exons together. The first step, U1 small nuclear ribonucleoprotein (snRNP) assembles at the 5′ splice site of 
an exon and U2 snRNP at the branch point sequence (BPS), just upstream of the 3′splice site of the adjacent/
downstream exon. This configuration is known as the pre-spliceosome. Hereafter, U1 and U2 are joined by 
the snRNPs U5 and U4–U6 complexes to form the pre catalytic spliceosome. Next, U4–U6 complexes unwind, 
releasing U4 and U1 from the pre-spliceosomal complex. This allows U6 to base pair with the 5′ splice site and 
the BPS. The 5′ splice site gets cleaved, which leads to a free 3′ OH-group at the upstream exon, and a branched 
intronic region at the downstream exon called the intron lariat.
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During the second step, U5 pairs with sequences in both the 5′ and 3′ splice sites, 
positioning the 2 ends together. The 3′ OH-group of the upstream (5′) exon fuses 
with the 3′ intron-exon junction, thereby conjoining the 2 exons and excising the 
intron in the form of a lasso-shaped intron lariat. Finally, the spliceosome disas-
sembles, and all components are recycled for future splicing reactions.

Recent evidence has shown that splicing does not occur after transcription, but 
happens during transcription; therefore, the vast majority of human introns are 
spliced out when transcription is still taking place [69].

Figure 2. 
Major and minor splicing. (A) Major, and minor splicing. The major introns are spliced out, and minor introns 
are either retained (and the mRNA is most often subsequently degraded) or the minor intron is spliced out, and a 
mature mRNA is formed. (B) The 4 basic splicing signals are the 5′ splice donor site, the 3′ splice acceptor site, the 
branch point sequence (BPS), and the polypyrimidine tract (PT). Spliceosomal components recognize and bind to 
these sequences and mediate the splicing reaction. Intronic and exonic splicing enhancers and silencers determine 
the inclusion rate of exons. The BPS (major, YNYURAY; minor, UCCUUAACU) is located 20–50 bp upstream of 
the 3′ splice site, and the PT (Y10–12) is located in between the BPS and the 3′ splice site (N〓any nucleotide, Y〓C 
or U, R〓A, or G and S〓C or G). (C) Minor splicing uses different 5′ and 3′ splice sites and BPS, and lacks the 
PT. ESE indicates exonic splicing enhancers; ESS, exonic splicing silencers; ISE, intronic splicing silencers; and ISS, 
intronic splicing silencers. Note: The Figures 1 and 2 are a modification from van den Hoogenhof et al. [68].
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4.2 RNA splicing in cardiomyopathy

Several mouse models suggest a role for splicing factors in postnatal heart devel-
opment. One such example is the alternative splicing factor ASF/SF2 (or SFRS1), 
an SR protein that is ubiquitously expressed and acting as an alternative splicing 
regulator [70]. ASF/SF2 conditional knockout mice die 6–8 weeks after birth, due 
to hypercontractile cardiac phenotype caused by a defect in Ca2+ handling. When 
ASF/SF2 is deleted, it leads to mis-splicing of several genes, including cardiac 
troponin T (cTnT), LIM-domain binding 3 (LDB3), and Ca2+/calmodulin- depen-
dent protein kinase (CamkIIδ), Atypical alternative splicing of CamkIIδ, cTnT, and 
LDB3 can present 20 days after birth, even though ASF/SF2 was deleted at the early 
stages of cardiogenesis.

Mis-splicing of CamkIIδ in ASF/SF2 knockout hearts can lead to perturbation 
of Ca2+ handling and severe excitation-contraction coupling defects, which in turn 
leads to dilated cardiomyopathy (DCM).

Embryonic lethality may occur in systemic deletion of SC35 in mice, even before 
the onset of cardiogenesis [71]. Attempt to bypass this problem by generating a 
heart-specific knockout of SC35 uncovered the role of SC35 in the heart, as cardiac 
hypertrophy and DCM developed in these mice at 5–6 weeks of age [71].

In conclusion, ablation of SC35 in the heart shows that proper expression of this 
splice factor during postnatal heart development is essential to maintain cardiac 
form and function.

Severe and lethal DCM has been reported to occur 2 weeks after birth in mice 
with deletion of hnRNP U in the mouse heart [72]. The importance of alterna-
tive splicing of Ca2+-handling genes in early postnatal heart development can be 
observed in the role of heterogeneous nuclear ribonucleoprotein U (HnRNP U) in 
splicing of calcium/calmodulin-dependent protein kinase IIδ (CamkIIδ).

4.3 Role of alternative splicing in disease phenotype

Atypical alternative splicing has been documented to contribute to disease 
severity and susceptibility [73]; as observed in retinitis pigmentosa, Prader-Willi 
syndrome, and spinal muscular atrophy [74, 75]. Spinal muscular atrophy, for 
example, is caused by the loss of the survivor of the motor neuron-1 (SMN1) gene, 
which is required for proper assembly and transport of snRNP [74].

Kong et al. [76] used a genome-wide approach to study alternative splicing 
changes in the diseased heart. The splicing of 4 key sarcomeric genes, troponin T 
(TNNT)-2, TNNI3, MYH7, and FLNC, were significantly altered in human ischemic 
cardiomyopathy, DCM, and aortic stenosis.

5. Epigenetic DNA modifiers

Epigenetics and its attendant markers influence the proliferation of diseases 
and their phenotypes. Outside, DNA canonical structure, DNA folds into alterna-
tive structures including DNA hairpins, cruciforms, triplexes or G-quadruplexes 
(G4), and holiday junctions [77, 78]. Besides these DNA structural changes, 
epigenetics processes, using DNA methylation and histone modification as the 
driver, are another primary vehicle for changes in DNA. Changes due to epi-
genetics modification with time can alter our phenotypes profoundly. Known facts 
are that everything from what we eat, drink, and smoke to other factors within 
our immediate environment including, stress can interfere with the way our genes 
express themselves up and down the line with the finest totality [79]. The primary 
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Figure 3. 
Factors influencing epigenetics (modified from [84]): complex interplay is required for a wholesome 
gene expression understanding; such complexes will further enhance the use of phytomedicine in disease 
management.

vehicles for epigenetic changes are DNA methylation and histone modification; 
there are many known enzymes that act on histone modifications by either add-
ing or removing the covalent modifications. Such changes influence the degree of 
interaction between DNA and histone, which have some profound effects on the 
ability of that DNA to be transcribed. Histone modifications are subject to rapid 
changes (in seconds/minutes), giving room for the cell to respond to external 
stimuli. Furthermore, many of the known enzymes responsible for modifying 
histone residues have numbers of non-histone substrates such as transcription 
factors [80, 81].

Some mechanisms for the function of histone modifications have been char-
acterized including; the compression of chromatin, and the recruitment of non-
histone proteins [82]. There are different types of modification and these determine 
the amino acid residue produced. The modifications of histone lead to either gene 
activation or repression, and the addition of acetyl groups, to the tail of histone H3, 
neutralizes the basic charge of the lysine, leading to the unfolding of the chromatin, 
allowing transcription to occur. Conversely, the removal of these acetyl groups 
results in chromatin compression, which prevents transcription [82]. These kinds 
of changes in chromatin structure help to prevent access by other proteins that can 
further modify the chromatin (e.g., remodeling ATPases).

Understanding the etiology of some of these diseases, from PPI, protein DNA/RNA 
interaction is important as it will herald in more robust drug treatments for patients 
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with specific disease phenotypes. Along this line, Okoh et al. [81] recently, using avail-
able data, espoused the need for the combination of herbal medicine to target some 
epigenetic markers by way of epigenetic engineering (site-specific DNA binding mod-
ule fusions with DNA demethylating enzymes for epigenetic induction of for instance; 
fetal hemoglobin (HbF) for therapy of sickle cell disease (SCD)). This is in consonance 
with earlier postulation [83, 84], implying such technique may provide a better way to 
activate/or repress inherent gene expression, bearing transient modification of DNA 
and histones should remain stable over many cell divisions helping in delaying HbF 
switching [83, 84].

Moreover, Okoh et al. [81], suggested that the de-methylation of DNA at the 
CpGs site on both DNA strands may be possible using the combination of herbal 
medicine, foods rich in flavonoids could be vital in tweaking histone acetylation, 
which can modulate gene expression. The figure below postulates the complex 
interplay between, epigenetics and phyto-compound modifiers towards enabling 
gene transcription for proper protein translation (Figure 3).

6. Future perspective

CRISPR/Cas9-based therapy, are been used as a candidate to be administered 
systemically, via intravenous infusion, for precision editing of a gene in target 
tissue in humans [85]. Similarly using this technology, gene therapy was developed 
to treat the rare neurodegenerative condition, Dopamine Transporter Deficiency 
Syndrome (DTDS) using a personalized approach with a view to counter the exact 
genetic fault present in a patient’s neurons [85]. Using a novel approach where, skin 
cells from patients, turned into pluripotent stem cells in the laboratory with the aim 
to get neuronal cells with the disease-causing mutation. A vector carrying adeno-
associated virus gene therapy was created to target the neurological fault and its 
efficacy was tested in both neuronal human cell lines and a mouse model, with the 
corresponding loss of function mutations in SLC6A3 [85]. This research ingenuity/
approach has provided, promising results leading to some clinical trials that may 
put an end to this cruel disease.

DTDS is an area of unmet medical needs and the disease is also known as 
infantile parkinsonism-dystonia, due to it having neurodegenerative and movement 
symptoms similar to Parkinson’s disease [85]. It is a very rare inherited condition 
known to affect around 50 children around the world. Although this might be due 
to under-diagnosis by clinicians bearing the symptoms are similar to other inherited 
movement disorders e.g., cerebral palsy [85].

Environmental factors are implicated in the formation of ROS affecting human 
health by directing epigenetics signature of the genome, such could also drive the 
addition of methyl group (▬CH3) to some nucleotides neighboring guanosine (CpG 
islands) of the genome. These are areas where drug repurposing becomes essential 
as they could target methylation processes which are amongst, inherent biochemi-
cal/epigenetics machinery of cells, containing necessary pathways that allow 
environmental agents to induce mutations. Bearing these epigenetic signatures play 
a significant role in genomic balance, they play a leading role in several diseases 
hence are the essential target for drug repurposing.

Many diseases present some inherent opportunities via epigenetics markers that 
required intelligent manipulation of phyto-compounds to access new therapy that 
is efficient and easily accessible. Phytochemicals are known to play vital roles in 
preventing oxidative stress with concomitant damages [2, 85]. At the cellular and 
molecular level, they inactivate Reactive Oxygen Species (ROS). And under specific 
low concentration, inhibit or delay oxidative processes by interrupting the radical 
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chain reaction of lipid peroxidation [2, 86]. Bioactive components with anti-oxi-
dative capacity naturally present in food are of great interest due to their beneficial 
effects on human health as they offer protection against oxidative deterioration.

DNA processes such as replication, transcription, recombination, and repair are, 
known to be facilitated by several factors covered in this chapter and others such as 
supercoiling that help facilitate both the packaging of DNA and many fundamental 
genetic processes that enabled the enzymatic manipulation of DNA. Aberrant 
RBP-RNA interactions are now known to promote disease progression, as much 
as mutations in TFs. RBP’s role in disease was initially understudied because of 
their systematic evaluation was limited by, lack of sensitive and efficient assays for 
phenotypic interrogation of individual RBPs.

There is profound evidence that suggests, consumption of food rich in phy-
tochemicals may progressively reduce the risk of different diseases by modulat-
ing immune-inflammatory markers [87]. Using the combination of disparate 
molecular/biophysical tools we recently [88], compared the binding affinity of 
artesunate and azadirachitin to gephyrin E this is towards enabling insights into 
natural bioactive compounds useful for rational drug design, essential in the race 
to manage myriad of disease phenotypes. The results from our research and oth-
ers are necessary as they, may provide, the impetus for more studies into bioac-
tive components of plant origin towards the effective management of different 
disease phenotypes.

6.1 Next-generation sequence in disease diagnosis

Next-generation sequencing (NGS), is a massively parallel and a high-through-
put DNA sequencing technology that enables the fast generation of data on thou-
sands to millions of base pairs of DNA from an individual patient by sequencing 
large numbers of genes in a single reaction [89]. NGS can sequence millions of DNA 
fragments in a massively parallel fashion, instead of sequencing a single DNA frag-
ment one at a time, as observed in traditional capillary electrophoresis sequencing. 
The general workflow of NGS includes four main steps:

I. library preparation,

II. cluster generation,

III. sequencing, and

IV. data analysis.

Sequence reads are produced from fragment libraries, a pool of adaptor-ligated 
and enriched DNA fragments. One advantage is that a small quantity of DNA, from 
a patient, is needed to produce a library.

In step 1, patient DNA is randomly fragmented by different methods and then 
prepared for sequencing by ligating specific adaptor oligonucleotides to both 
ends of each DNA fragment. Adapter-ligated fragments are further enriched with 
specific oligonucleotides designed for the target genes included in the NGS panel 
and are then amplified by polymerase chain reaction (PCR). The prepared library is 
loaded into a flow cell for cluster generation and subsequent sequencing.

During sequencing, short read lengths (35–250 bp, depending on the platform) 
sequences that are produced are then aligned to a reference genome with bioinfor-
matics software [89].
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During data analysis, variant calling can be achieved by various standard and 
in-house analysis pipelines. All detected variants are checked against standard 
databases (e.g., dbSNP137, 1000 Genomes Project, Exome Variant Server, ExAC 
Browser, OMIM catalog, ClinVar, Human Gene Mutation Database) to enable 
interpretation of the pathogenicity of a given variant.

Next-generation sequencing panels are now commonly used in clinical diagnosis 
to identify genetic causes of various monogenic disease groups, such as epilepsy 
[90], intellectual disability [91, 92], neurodevelopmental disorders [93], neuro-
metabolic disorders [94], amongst others.

The use of NGS in clinical laboratories is increasing, with application in the 
diagnosis of immune disorders, infectious diseases, human hereditary disorders, in 
non-invasive prenatal diagnosis, and recently, in the therapeutic decision making 
for somatic cancers [95, 96].

Today two different NGS technologies are mainly used in clinical laboratories: 
Ion Torrent and Illumina systems [97].

The Ion Torrent exploited the emulsion PCR using native dNTP chemistry that 
releases hydrogen ions during base incorporation by DNA polymerase and a modi-
fied silicon chip detecting the pH modification [98], while Illumina technology is 
based on the existing Solexa sequencing by synthesis chemistry with the use of very 
small flow-cells, reduced imaging time and fast sequencing process [97].

6.2 Usefulness of NGS

NGS approaches will remain useful because:

1. It is highly accurate and cost-effective.

2. It has a wide application for use in clinically heterogeneous inherited disorders, 
resulting in an increase in the number of reported disease-causing genes.

NGS is appealing when there is a genetic contribution in heterogeneous and 
complex diseases, such as in cardiomyopathies, in cardiac arrhythmias, in connec-
tive tissue disorders, in mental retardation or autism, and where a large number of 
genes are involved in a large phenotypic syndrome [99, 100]. In these cases, NGS 
approaches allow us to test a large number of genes simultaneously in a cost-
effective manner [101].

Two options of NGS are currently available [101]:

1. Targeted gene panels sequencing or

2. Whole-exome sequencing (WES).

Targeted sequencing is applicable for genetic disorders, such as non-syndromic 
deafness [98], common diseases, such as hypertension and diabetes [102], or in 
traditional cytogenetic and Mendelian disorder diagnosis [103]. The main limita-
tion of targeted sequencing is the rigidity of testing only a selected number of 
genes. Since the genetic field is rapidly evolving, new genes may be associated 
with a clinical phenotype, and as such redesigning and revalidation of the panel is 
needed [101].

The WES application could be applicable for the identification of genes respon-
sible for the dominant Freeman-Sheldon syndrome, the recessive Miller syndrome, 
and the dominant Schinzel-Giedion syndrome [104]. The shortcoming of WES is 
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that about 10% of targeted bases sequenced in WES do not get the 20 read depth 
[105], required for clinical confidence and interpretation, and approximately only 
85% of genes associated with human diseases into the principle database (OMIM) 
receive the adequate coverage [106].

6.3 Challenges of NGS in disease diagnosis

In the NGS process, one limiting step is the complexity of genetic variation 
interpretation in whole-exome, due to the presence of thousands of rare single 
nucleotide variations without pathogenic effect. Moreover, in the majority of 
human diseases, the pathological phenotype may be caused by a pathogenic rare 
mutation with a strong effect or it may be caused by a co-presence of multiple 
genetic variations [107].

Another important challenge of the use of the NGS approach in clinical diagnos-
tic is the management of the amount of data generated [108]. Indeed generation, 
analysis, and also storage of NGS data require sophisticated bioinformatics infra-
structure [109], which could be capital intensive.

A skilled bio(chem)-informatics staff is needed to manage and analyze NGS 
data, therefore increasing the impact of computing infrastructure and manpower 
on costs of NGS applications in clinical diagnostics [110, 111].

7. Conclusions

The interest in studying protein interactions, their variations, and their 
constituent’s effects on pathological conditions has grown within the last few 
decades. These interests are behind, for instance, the increasing examination of 
the application of mass spectrophotometer (MS)-based experimental analyses of 
model systems to explore heterogeneous PPI networks and protein complexes, 
which will promote drug repurposing within the context of human diseases.

The use of other robust technology such as NGS in the study of biological 
processes, which would have otherwise remained elusive, is the driver for the 
actualization of personalized medicine for which drug repurposing form a central 
aspect. Molecular interactions at both the DNA-RNA/protein level are sequined 
with the SNP, epigenetics, mutations causing variants, and other factors emanating 
from our immediate environment e.g. stress. Technological advancement discussed 
in this chapter is all part of the process for science and scientists to understand the 
biological phenomenon that governs life at the molecular level.

Many disease variants resulting from SNP, single point mutation, and RBP role 
in disease manifestation are discussed with a view to heighten our thinking towards 
drug repurposing, the uptake of phytomedicine, and bioactive compounds in the 
management of various disease phenotypes.
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Abstract

Drug discovery is an exciting yet highly costly endeavor. In the United States, 
developing a new prescription medicine that gains marketing approval takes near a 
decade and costs drugmakers for near 3 billion. More challengingly, the success rate 
of a compound entering phase I trials is just slightly under 10%. Because of these 
mounting hurdles, repurposing market approved drugs to new clinical indications 
has been a new trend on the rise. Another merit to this approach is the already 
confirmed toxicity profiles of the drugs and their possession of drug-like features. 
Thus, repurposed drugs can reach the market approved stage in a much faster, 
cheaper, and more efficient way. Notably, epigenetic enzymes play a critical role in 
the etiology and progression of different diseases. Researchers are now assessing the 
possibilities of using market approved drugs to target epigenetic enzymes as a novel 
strategy to curtail disease progression. Thus, in this book chapter, we will provide 
an outlook on repurposing market drugs to target epigenetic enzymes in various 
diseases. Consequently, this book chapter will not only provide the readers with 
current knowledge in this specific field, but also will shed light on the pathway for-
ward for repurposing market drugs to target epigenetic enzymes in human diseases.

Keywords: disease, drug, EMA, epidrug, epigenetic, FDA, repurposing

1. Introduction

1.1 Overview of drug approval agencies

Drug approval agencies are responsible for the oversight and scientific evalu-
ations that ensure the safety and effectiveness of the drugs that reach the market, 
and eventually, patients. Several agencies regulate drug approval worldwide, with 
the United States (US) and Europe being the top regulators. Some examples include 
the US Food and Drug Administration (FDA), the European Medicines Agency 
(EMA), Health Canada, Japan’s Pharmaceutical and Medical Devices Agency 
(PMDA), Australia’s Therapeutic Goods Administration (TGA), and so on [1]. In 
the last 5 years, the US FDA has approved about 245 drugs, many of which include 
anti-cancer and neurological disorder drugs [2]. Following drug discovery and 
preclinical trials, different types of applications can be filed to the FDA to begin 
a drug’s journey to the market. A sponsor can either file the Investigational New 
Drug (IND) application followed by the New Drug Application (NDA) or the 
Abbreviated New Drug Application (ANDA). An IND application is submitted if 
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a drug is deemed safe after preclinical investigations. Then, an NDA can be sub-
mitted after the drug is deemed safe from the clinical trial results. At this point, a 
request can be made to produce and market the drug in the US [3]. On the other 
hand, ANDA is filed for the approval of generic drugs. Although clinical studies are 
not needed for this application, sponsors must prove that their drug is similar and 
bioequivalent to the original approved branded counterpart [4]. In the European 
Union, sponsors submit a clinical trial application (CTA) followed by a marketing 
authorization through either a centralized process or a decentralized process [3, 5]. 
Notably, both the FDA and EMA have similar yet distinct regulatory mechanisms 
to categorize drug approvals. For example, the FDA may grant drugs a standard 
approval, fast-track designation, accelerated approval, breakthrough designation, 
or priority review. Similarly, besides the standard approval, the EMA has acceler-
ated assessment and conditional approval for expedited programs to bring a drug 
to market faster [5]. Taken together, these drug approval agencies do participate 
in a global collaborative effort to protect and improve public health by ensuring 
patients’ timely access to safe and effective medicines [6].

1.2 Overview of traditional drug discovery method

The world population is constantly increasing and aging, with a census of close 
to 8 billion people in 2021 [7]. Additionally, there remains a growing necessity 
for novel therapeutics to combat the increasing number of cancers, metabolic 
disorders, infectious diseases, neurodegenerative diseases, and diabetes, as they 
are a major burden on public health. Despite this necessity, the rate of creation and 
approval of novel therapeutics is slow by comparison with estimated costs ranging 
from several hundred million dollars (USD) to several billion per therapeutic with 
an estimated development time of 12–15 years [8]. The reasons behind these high 
costs and difficulties with bringing novel therapeutics to market are in some ways 
straightforward: many projects fail in clinical trials; clinical trials are expensive and 
time-consuming; therapeutics have failed in the market due to previously unknown 
public health concerns; research costs are constantly increasing, and the initial 
investment cost of each therapeutic is high for a pharmaceutical company [9–12]. 
Traditional drug discovery involves the identification or creation of a new molecu-
lar entity (NME). The identification process of an NME usually proceeds as follows: 
initial basic research generates data supporting inhibition or activation of a protein 
or pathway that will result in a therapeutic effect in a disease state. Then a lead 
discovery compound such as a small molecule or biological therapeutic is discov-
ered following some compound screening. The target is validated, and preclinical 
screening is performed, then the therapeutic can go through clinical trials before 
filing for drug agencies’ approval [11]. The basic steps of this process are illustrated 
in Figure 1. However, at any step of the drug discovery timeline, the therapeutic can 
fail for a multitude of reasons. Generally, it comes down to two main factors: effi-
cacy and safety [11]. For instance, several therapeutics of AstraZeneca have failed 
in phase II trials due to toxicological concerns [13]. Other studies stopped clinical 
trials when the newly developed therapeutics had decreased efficacy compared to 
existing therapeutics [14]. Furthermore, the time during each of these steps can be 
lengthy with several years, such as effort needed for compound discovery, clinical 
development, clinical trials, and FDA or EMA filing (Figure 1) [15]. For instance, 
the overall percent likelihood of approval (LOA) from phase I to approval in all 
therapeutic fields from 2011 to 2020 was merely about 8% [16]. The LOA differed 
greatly per therapeutic and per phase (lead compound to phase I, phase I to phase 
II, etc.). The only step of drug discovery where therapeutics were highly likely 
to progress was during NDA approval, with a success rate of 80–90% [17]. These 
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are what led to the long development times for therapeutics discovered through 
traditional drug discovery methods. In summary, the overall takeaway message is 
that there is a multitude of factors that can stall drug discovery, and an alternative 
methodology may be a better approach to bring therapeutics to market.

1.3 Overview of basis of drug repurposing

Due to the immense financial costs and timescale associated with traditional 
drug discovery methods, it is natural to assume alternatives may be preferable, such 
as repurposing current therapeutics. As shown in Figure 1, repurposing known 
therapeutics follows a similar but truncated development cycle as traditional drug 
discovery. The timeline includes the discovery of a therapeutic target, usually a new 
therapeutic indication for a previously approved indication. Then, it is followed 
by clinical trials. Given that the information on the preclinical, pharmacokinetic, 
and pharmacodynamic are already known, the clinical trial phase moves faster. 
Following this step is filing for market approval as usual [18, 19]. This allows for 
a development time of 5–10 years compared to 12–15 years of development for 
traditional drug discovery (Figure 1). This also drives down the two major factors 
hampering novel drug development: cost of new therapeutics and time of discovery 
to market. Therefore, it is not surprising that an increasing number of therapeutics 
developed by the FDA or EMA are repurposed therapeutics [20]. Interestingly, the 
discovery of novel indications for therapeutics has been made through a multitude 
of approaches. Drug repurposing involves integrating data from multiple resources 
and the use of different approaches to allow for the discovery of novel indications. 
One major path for novel indications is model-based computation or in silico drug 
repurposing. This can include numerous screens of a therapeutic concerning its 
drug molecular targets, chemical structure, and signaling pathways to predict 
unknown targets or biomarkers for disease [18]. Besides computational modeling, 
high-throughput and/or high-content screening (HTS/HCS) of drug compounds are 
frequently used to screen known therapeutics for novel targets [21]. Additionally, 
in silico screening of known compounds can be used for molecular docking or 
binding-based studies [22]. Furthermore, in silico screening can also help with 
the computational prediction of novel metabolic pathways, signaling pathways, 

Figure 1. 
Traditional drug discovery process (I) from discovery of target, validation, trials, and FDA/EMA approval 
with timescale versus repurposing of a market drug (II). This schematic describes the timeline of traditional 
drug discovery, wherein years of rigorous basic research leads to discovery of a drug, which then undergoes 
extensive pre-clinical development before going through the clinical trial and market approval phase. With 
the advent of drug repurposing approach, the timeliness and cost-efficiency of drug discovery significantly 
improved the driving of a drug for newer indications to the market faster.
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and protein-protein interactions between diseases and known drugs [23]. Other 
major methods of screening for novel indications of current therapeutics include 
recently AI-based machine learning, which has been used to some effect to screen 
large groups of compounds for anti-Sars-Cov-2 inhibition [24]. Further predictive 
modeling of drug repurposing includes network modeling wherein networks of 
drugs, genes, and drug products, as well as their interactions and relationships can 
be modeled, allowing for a greater understanding of structure-guided targeting of 
therapeutics [25]. Furthermore, large-scale genome-based predictive modeling, such 
as genome-wide association studies (GWAS) can help predict potential novel thera-
peutic interactions [26]. Another aspect not commonly studied is the known side 
effects of therapeutics and how it can be used to identify novel therapeutic targets 
via computational modeling [27]. According to Sahragardjoonegani and colleagues, 
roughly two-thirds of new therapeutics approved by the FDA within the last 15 years 
have not been indicated for secondary indications besides their original purpose 
[28]. This creates a largely untapped field of current therapeutics that have not 
been studied in the context of other diseases. Overall, drug repurposing for therapy 
requires less time and cost for development and research than traditional drug 
discovery. Thus, it is an attractive approach for the discovery of new therapeutics.

2. Role of epigenetic enzymes in human diseases

Epigenetics is the study of mechanisms that results in heritable changes in gene 
expression without the alteration of the genetic code [29]. The deregulation of 
epigenetic mechanisms, such as DNA methylation and histone modifications, have 
been reported to facilitate differential expression of genes, many of which underlie 
the etiology and/or the progression of human diseases [30].

These epigenetic mechanisms are mediated by their respective epigenetic 
enzymes. For instance, DNA methyltransferases (DNMTs) coordinate the methyla-
tion of DNA by catalyzing the transfer of a methyl group to cytosine (C) from the 
donor molecule S-adenosylmethionine (SAM) [31]. The methylated DNA is read by 
methyl-Cp-guanine (G) binding domains (MBD) protein. DNA methylation can be 
reversed by a group of human demethylase enzymes termed ten-eleven transloca-
tion proteins (TET 1/2/3) [31]. DNA methylation is responsible for gene silencing 
and often occurs in regions rich in C and G nucleotides, also known as CpG islands. 
The catalysis of DNA methylation is primarily conducted by the following family of 
DNMTs: DNMT1, DNMT3A, and DNMT3B [32]. These enzymes help maintain the 
integrity of the human genome, regulate transcriptional processes, and aid cellular 
development and differentiation [33]. Thus, dysregulation of DNA methyltransfer-
ase and demethylases are implicated in several human diseases.

Similarly, the covalent modification of histones is another facet of epigenetics 
that plays a pivotal role in human diseases. The core histone proteins, H2A, H2B, 
H3, and H4, form an octameric structure that wraps about 146 base pairs of DNA to 
form a nucleosome, and the linker histone, H1, connects the repeating nucleosomes 
that make up the chromatin. Histones’ terminal regions project out of the chromatin 
in a tail-like structure, and these tails are subjected to post-translational modifica-
tion (PTM) by different histone-modifying enzymes [28, 31]. Some of the most 
common classes of histone-modifying enzymes include histone acetyltransferases 
(HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), and 
histone demethylases (HDMs) [34]. HATs and HDACs are writers and erasers 
of acetylation, respectively, on lysine (K) residues of histones and non-histone 
proteins. The acetylation of histones results in a relaxed chromatin that promotes 
gene transcription [35]. HATs are classified into Type A: p300/CBP, general control 
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non-depressible 5 (GCN5)-related N-acetyltransferase (GNAT), Moz, Ybf2/Sas3, 
Sas2, Tip60 (MYST), nuclear receptor coactivator- (NCOA-) related HAT, and 
transcription factor-related HAT; and Type B: HAT1, HAT2, HatB3.1, Rtt109, and 
HAT4 [36]. While HDACs comprise 18 enzymes: HDAC1-11 and sirtuins (SIRT)1-7 
[37]. The BRD and extra terminal domain (BET) proteins are responsible for 
recognizing K residues that are acetylated [37]. On the other hand, methylation of 
histones, which occurs on either K or arginine (R) residues of histones, can lead 
to gene transcription repression or activation. The addition of methyl group(s) to 
histones is mediated by HMTs while its removal is mediated by HDMs [34]. HMTs 
are further subdivided into lysine methyltransferases (KMTs) and arginine methyl-
transferases (PRMTs) [38]. Similarly, HDMs are classified into lysine demethylase 
1 (LSD1 or KDM1) and Jumonji C (JmjC) domain-containing histone demethylases 
[39]. Together, these classes of histone-modifying enzymes regulate the expression 
of genes vital to many human biological processes.

2.1 Epigenetic enzymes implicated in cancer

The dysregulation of epigenetic enzymes is one of the chief contributors to 
cancer development and progression. Several cancers are accompanied by sig-
nificantly altered DNA methylation status, and this has been shown to serve as a 
diagnostic and prognostic marker [40]. The resulting imbalance in gene expression 
is mainly caused by hypomethylation of oncogenic genes or hypermethylation of 
tumor-suppressive genes. Thus, inhibiting DNA methyltransferase and/or DNA 
demethylase is a promising therapeutic strategy for many of these cancers. For 
example, in breast cancer models, the inhibition of DNMT exerts reduced cel-
lular proliferation, migration, and anchorage-independent growth activity and 
potentiates anti-cancer immunity [41, 42]. Similarly, inhibiting DNMT sensitizes 
non-small cell lung cancer (NSCLC) to ionizing radiation and a potent targeted 
therapeutic poly (ADP-ribose) polymerase (PARP) inhibitors [43]. The overexpres-
sion of DNMT, particularly DNMT3Ab, in gastric cancer facilitates the epithelial to 
mesenchymal transition (EMT)-related metastasis and correlates with poor prog-
nosis in gastric cancer patients [44]. Aberrant gene silencing or activation caused by 
deregulated DNMTs and TETs have also been widely reported in renal, colorectal, 
brain, pancreatic, bladder, prostate, and other hematological cancers [45]. Among 
the genes that are implicated in DNA methylation dysregulation include but are not 
limited to retinoblastoma tumor-suppressor gene (Rb), breast cancer susceptibility 
gene 1 (BRCA1), cyclin-dependent kinase inhibitor 2A (CDKN2A), and microRNAs 
[46]. Collectively, the atypical expression of some of these genes leads to genomic 
instability and uncontrolled cell cycle progression.

Likewise, the PTM of histone tails at gene promoters and on specific residues of 
non-histone proteins promote different cancer hallmarks. HATs and HDACs regulate 
acetylation patterns on several proteins and serve as co-activators/repressors of tran-
scription factors implicated in cancer [35, 36]. For instance, in prostate cancer tissues, 
CBP/p300 transcript levels are significantly high. They potentiate the constitutive 
activation of androgen receptor signaling in castration-resistant prostate cancer, 
leading to increased tumor growth [47]. Moreover, the overexpression of the human 
MYST1, a member of HATs, promotes acetylation of Nrf2 at K588, thereby aiding 
the tolerance of replication stress in NSCLC [48]. The erasure of acetylation marks is 
also an important driver of cancer progression. HDACs are typically overexpressed 
and result in the silencing of key tumor suppressor genes. Particularly, in breast 
cancer, the use of HDAC inhibitors has shown remarkable potential in preventing 
hormonal-based therapy resistance through the restoration of epigenetic alterations 
[49]. A separate review has extensively delineated the role of HDACs in altering 
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gene expression in cancer through chromatin remodeling and transcription factors 
regulation [50]. Also, the methylation and demethylation of histone and non-histone 
substrates have a diverse function in carcinogenesis. For example, the high expression 
of human telomerase reverse transcriptase (hTERT) observed in many cancers is 
associated with the heavily trimethylated histone H3K4. H3K4 is a known substrate of 
SMYD3, a KMT that is commonly overexpressed in cancers [51]. Also, different KMTs 
such as KMT2A and Dot1-like protein (DOT1L) fuse with proto-oncogenes to pro-
mote the progression of hematological malignancies [38]. Another overly expressed 
KMT in cancer, enhancer of zeste homolog 2 (EZH2) catalyzes the methylation of 
H3K27 and genes like p16, NF-κB, CDK4, Ras, β-catenin to further different tumors’ 
survival [52]. Similarly, overexpression of KDMs, such as LSD1, LSD2, and KDM5B, 
cause increased tumor growth and chemoresistance via aberrant demethylation 
of H3K4 in prostate cancer, breast cancer, NSCLC, and hepatocellular carcinoma 
[53]. A growing number of studies have also documented the widespread role of the 
known human PRMTs in cancers. The overexpression of PRMTs has been found in 
breast, prostate, colon, bladder, ovarian, skin, and gastric cancers, including various 
hematological malignancies [54]. Notably, our group extensively studies PRMT5, and 
we discovered that its overexpression in pancreatic and colorectal cancer results in 
increased cell growth, migration, and anchorage-independent growth via dimethyl-
ation of R30 of NF-κB subunit, p65 [55, 56]. We also revealed that PRMT5 oncogenic 
role in colorectal cancer potentiates NF-κB signaling through dimethylation of R205 
of Y-box binding protein 1 (YBX1) [57]. Taken together, the deregulation of epigen-
etic enzymes has an entrenched and indisputable role in the etiology and progression 
of many cancers, making them promising therapeutic targets.

2.2 Epigenetic enzymes implicated in neurodegenerative disorders

Recently, genomic profiling studies and molecular investigations have delineated 
the impact of epigenetic alterations on neurodegeneration. Neurodegenerative 
diseases encompass the gradual loss of cognitive and/or motor functions in humans. 
Examples include but are not limited to Alzheimer’s disease (AD), Parkinson’s 
disease (PD), multiple sclerosis (MS), Huntington disease (HD), and amyotrophic 
lateral sclerosis (ALS) [58]. It has been reported that the DNA methylation of 
AD-associated genes, such as the β-secretase (BACE), amyloid precursor protein 
(APP), and presenilin 1 (PS1) genes, is dramatically decreased in AD cell models 
and results in the exacerbation of AD pathology [59]. In a genome-wide study con-
ducted by Huynh and colleagues on MS patients’ brains, several differential methyl-
ated regions in the DNA were observed. Genes that are critical to oligodendrocyte 
regulation, such as BCL2L2 and NDRG1, were found to be hypermethylated and 
showed decreased expression levels [60]. Also, given that HATs like p300/CBP are 
involved in memory formation, its loss has been shown to lead to different neuro-
logical dysfunction, which is characteristic of HD, Rubinstein-Taybi syndrome, and 
AD [61, 62]. Thus, HDAC inhibitors can be used as a therapeutic strategy to offset 
the imbalanced role of HATs in the aforementioned neurodegenerative diseases. On 
the contrary, the downregulation of p300 levels by native α-synuclein (αsyn) exerts 
neuroprotective function in the brain. Thus, it has been suggested that misfolded 
αsyn, a major phenotype of PD, may lead to enhanced p300/CBP activity, thereby 
causing impaired motor function [63]. In ALS, reduced p300/CBP has been found to 
cause the hypoacetylation of the cyclin D1 gene, a critical gene for cell cycle progres-
sion [64]. Similarly, increased methylation marks on histones have been linked with 
aging, an important risk factor in neurodegeneration [65]. In ataxia-telangiectasia, 
the loss of A-T mutated (ATM) increases the tri-methylation of H3K27 via EZH2 
stabilization, thereby affecting neuronal survival [66]. Also, overexpression of an 
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H3K9 methyltransferase, ERG-associated protein with SET domain (ESET, also 
known as SET domain bifurcated 1, SETDB1), is shown to be markedly increased in 
HD patients, and the inhibition of ESET was reported to restore the normal behav-
ioral and neuronal function in HD mice [67]. Moreover, PRMT1 was reported to 
play a neuroprotective role in ALS via asymmetric dimethylation of H4R3, a methyl-
ation mark that aids histone acetylation, and consequently, transcription of survival 
genes [64]. Collectively, this brief overview shows that chromatin modification via 
epigenetic processes is critical to neuronal function.

2.3 Epigenetic enzymes implicated in cardiovascular diseases

Cardiovascular disease, one of the leading causes of mortality globally, is com-
prised of a group of diverse disorders known to be influenced by genetic, environ-
mental, and epigenetic mechanisms [68]. For example, GWAS on atherosclerotic 
aorta versus normal aorta showed the differential methylation of DNA is associated 
with atherosclerotic plaque stability, vascular remodeling, low-density lipoprotein 
(LDL) signaling, among other biological processes [69]. This suggests the role of 
altered DNA methylation in the pathogenesis of atherosclerosis. Similarly, case-
control investigations on heart failure patients revealed differential methylation of 
angiogenic genes known to be involved in endothelial cell migration and capillary 
tube formation [70]. Also, multiple studies have demonstrated that high levels of 
HDAC and DNA/histone methylation have been linked to the causation of high 
blood pressure, a known symptom of hypertension [71]. Similarly, the use of HDAC 
inhibitors attenuates myocardial infarction in in vivo studies [72]. A separate study 
showed that environmental factors, such as particulate matter in air pollution known 
to cause impaired cardiac function, increase the methylation of Toll-like receptor 2 
(TLR2), causing its gene silencing. TLR2 is known to proffer immunity following 
environmental challenges [73]. Thus, its hypermethylation has been linked to the 
cardiac dysfunction caused by air pollution. Also, de novo mutations have been found 
in histone-modifying genes in congenital heart disease, including KMT2D, KDM5A, 
and KDM5B, thereby suggesting their role in the disruption of cardiac development 
[74]. The overexpression of PRMT6 has been reported to induce cardiac hypertrophy 
and its associating increase in asymmetric dimethylation of H3R2 promotes the 
expression of atrial natriuretic peptide (ANP), a hypertrophic marker [75]. This 
diverse implication of epigenetic enzymes in various cardiac functions suggests its 
potential as a treatment approach for cardiovascular diseases.

3. Classes of epigenetic enzymes targeted with repurposed market drugs

As discussed in previous sections, epigenetics is pivotal to the etiology and 
progression of different human diseases. And multiple studies have shown that 
targeting epigenetic enzymes has a profound effect on attenuating the severity or 
progression of diseases [59]. Given that the traditional approach to drug discovery is 
costly and time-inefficient, it is more valuable to reposition readily available market 
drugs for new disease indications. In this section, we will discuss the major epigen-
etic enzymes being targeted with repurposed drugs or preclinical compounds and 
examples of the repurposed drugs with their old and new indications.

3.1 Repurposed drugs for DNMTs

The alteration of DNA methylation is one of the prominent underlying causes 
of different diseases. Several market drugs have been shown to lessen disease 



Drug Repurposing - Molecular Aspects and Therapeutic Applications

330

progression via targeting DNMT, suggesting that those drugs could have newer 
indications. As summarized in Table 1, hydralazine is a hypertensive drug that has 
been repurposed as both DNMT inhibitor and HDAC inhibitors [76]. In combina-
tion with another drug, valproate, hydralazine showed a significant increase in 
progression-free survival in patients with advanced cervical cancer in a randomized 
phase II clinical trial [95]. Currently, a phase III clinical trial is underway to exam-
ine the effect of hydralazine on AD (NCT04842552). It has been suggested that the 
stability of polyglutamine repeat expansion, an underlying cause of multiple neuro-
degenerative diseases, can be caused by hypermethylation of the repeat and the use 
of hydralazine induces demethylation [96]. This may suggest a mechanism through 
which hydralazine helps ameliorate AD. Another repurposed drug, procaine, a local 
anesthetic agent, has been reported to be a potent inhibitor of DNMT activity with 
an anti-tumor effect in gastric cancer [77]. Procaine has also been shown to exert 
cardioprotective and neuroprotective effects [78]. Other examples of repurposed 
drugs that target DNMTs include Procainamide, Mithramycin A, Nanaomycin A, 
and Disulfiram, etc. [79] (Table 1).

Table summarizes the different market approved drugs for other indications 
known to target epigenetic enzymes in newer indications. The listed drugs are 
either in preclinical or clinical trial phase for their newer indications.

3.2 Repurposed drugs for HDACs

Among the different classes of epigenetic enzymes, HDAC has the highest num-
ber of market-approved inhibitors for diseases, especially in cancer [97]. Vorinostat 
is the first HDAC inhibitor approved by the FDA for cutaneous T-cell lymphoma 
(CTCL) treatment [98]. Another HDAC inhibitor, Belinostat, has been granted 
accelerated approval for treatment of relapsed or refractory peripheral T-cell 
lymphoma (PTCL) [99]. Also, repurposed drugs that target HDAC are on the rise. 
One category of drugs that targets HDAC is statins. Statins are a class of medications 
developed to inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reduc-
tase for atherosclerosis treatment [100]. Multiple studies have shown that statins 
exhibit anti-cancer activity and attenuate diabetic nephropathy via the inhibition of 
HDAC [80, 81]. Similarly, the anti-malaria drug artemisinin was reported to exert 
anti-cancerous effects on breast cancer cells partly via the inhibition of HDAC [82]. 
Through indirect inhibition of HDACs and other epigenetic modifiers, metformin, 
a type 2 diabetic medication, has been suggested to have a protective effect on can-
cer, cognitive impairment, and cardiovascular diseases [83]. Carbamazepine, which 
is approved for the treatment of psychomotor and grand mal seizures, has been 
reported to inhibit HDAC 3, 6, and 7 and reduce cancer growth in breast, liver, and 
colon cancer [101]. Currently, trichostatin A (TSA), an approved antifungal drug 
with HDAC inhibitory activity, is undergoing a phase I clinical trial for relapsed or 
refractory hematologic malignancies (NCT03838926) (Table 1).

3.3 Repurposed drugs for HATs

The normal levels of gene acetylation can also be restored by HAT inhibitors in 
diseases. This category of inhibitors is particularly explored as anti-cancer agents, 
given that inhibiting HATs would only exacerbate cardiovascular and neurodegenera-
tive disease progression. Also, the role of HATs in cancer is context-specific as certain 
HAT family members can act as oncogenes or tumor suppressors in different tumors. 
For example, the overexpression of p300/CBP, GCN5, and males absent on the first 
(MOF) has been shown to sustain cancer hallmarks in glioma, colon, lung cancer, 
mixed-lineage leukemia (MLL), and acute myeloid leukemia (AML). On the other 
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hand, the deletion of p300/(CREB binding protein) associated factor (pCAF) and 
Tip60 promotes tumorigenesis in certain cancers [35]. Currently, there have been no 
investigations into the use of market-approved drugs to target HATs in cancer. Natural 
compounds targeting HATs, such as anacardic acid, plumbagin, garcinol, and lunasin 
have been reported to have potent anti-cancer properties [79]. Notably, the progres-
sion of HAT inhibitors into clinical trials has been challenging due to the resulting 
false positive hits gotten from HTS [102]. Thus, more effort is needed to find existing 
market drugs that not only inhibit HATs activity but also attenuate tumor progression.

3.4 Repurposed drugs for HMTs

Given the diverse roles of the two classes of HMTs, KMTs, and PRMTs, in 
different diseases, there have been increasing efforts towards developing/repur-
posing drugs that affect HMTs for the treatment of diseases. Under the class of 
KMT enzymes, EZH2 is one of the highly pursued targets for epigenetic therapy. 
For example, Astemizole (Table 1), an antihistamine drug used to treat allergies, 
disrupts the proliferation of lymphoma cells via inhibition of EZH2 methyltrans-
ferase activity [84]. Also, a pilot HTS identified 4 out of 1600 FDA-approved 
drugs as putative EZH2 inhibitors, with apomorphine hydrochloride being the 
most potent inhibitor [103]. Apomorphine hydrochloride, under the brand name 
Kynmobi, is FDA approved for the treatment of PD Off episodes [104]. A separate 
review has suggested the repurposing of apomorphine hydrochloride in AD, ALS, 
HD, and multiple cancers considering the mounting evidence that demonstrates 
its neuroprotective and anti-cancer effects [85]. However, whether this drug exerts 
its protective properties via EZH2 remains to be investigated. The anti-malaria 
drug, hydroxychloroquine, inhibits EZH2 and has been reported to be effective for 
the treatment of multiple myeloma (MM) [86]. Furthermore, there are about 10 
clinical trial studies investigating PRMT inhibitors for both solid and hematologi-
cal malignancies on clinicaltrial.gov. Given the lack of investigation on market 
approved drugs for targeting PRMTs in diseases, our lab has taken considerable 
efforts to address this important gap. Currently, we have a provisional patent on 
repurposing the FDA-approved drugs for cough (Cloperastine) and for hyperten-
sion (Candersatan) to target PRMT5 in tumors (PCT/US2020/067694) [87, 88].

3.5 Repurposed drugs for KDMs

One of the types of KDMs, LSD1, is a member of the amine oxidase family. 
Consequently, it shares sequence similarity with monoamine oxidase (MAO), an 
important enzyme involved in the clearance of neurotransmitters from the brain 
[105]. As a result, approved monoamine inhibitors, such as the antidepressant 
tranylcypromine, can also inhibit LSD1 [89]. Notably, tranylcypromine has been 
reported to suppress amyloid β-induced proinflammatory responses in AD mouse 
models [89]. Tranylcypromine also reduces tumor growth and metastasis. Hence, 
its derivatives were developed to optimize the inhibition of LSD1 [90]. One of these 
derivatives, ORY-1001, is in phase II clinical trial for AML, relapsed, phase I clinical 
trial for extended-stage disease small cell lung cancer (ED SCLC), and phase I clini-
cal trial for refractory or relapsed acute leukemia (AL). Also, other classes of MAO 
inhibitors, such as pargyline (anti-hypertensive drug) and phenelzine (antidepres-
sant), inhibit LSD1 with anti-cancer effects in breast and prostate cancer, respec-
tively [91, 92]. On the other hand, the second class of KDM, the JmjC KDM, is yet to 
be investigated for market drug repurposing. Nonetheless, a couple of pharmaceuti-
cal companies are taking strides to develop inhibitors against this class of KDM in 
hematological and solid cancers [32].
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3.6 Repurposed drugs for BETs

BET protein family, including BRD2, BRD3, BRD4, and BRDT, are readers 
of acetylated K residues on histones and non-histone proteins. BET inhibition is 
effective against kidney diseases, tumor development, cardiovascular disease, and 
other inflammatory diseases [106]. Some drugs have been repurposed to target 
BET proteins in diseases. For example, nitroxoline (Table 1) is an FDA-approved 
antibiotic and also a potent inhibitor of most BET family members. A study 
reported that nitroxoline significantly reduced the proliferation of leukemia cells 
via induction of apoptosis and cell cycle arrest. The anti-cancer action of nitroxo-
line is partly through BET inhibition and its downstream targets [93]. Another 
class of BET inhibitors, for example, molibresib, is a derivative of benzodiaz-
epines, a psychoactive class of drugs used to treat neurological-related conditions. 
Molibresib is currently in phase I clinical trial for the treatment of multiple 
cancers [107]. Additionally, azelastine, an antihistamine used to treat hay fever 
and allergies, was ranked as one of the top drugs for having the best binding 
affinity to BRD4 [94]. Collectively, the aforementioned approved and putative 
repurposed drugs could serve as an effective BET inhibition-based therapy in 
different diseases.

4. Recent advances in drug repurposing for epigenetic-based therapy

Repurposing drugs for epigenetic-based therapy is a newly emerging field with 
significant potential for the development of drugs for diseases with high incidences, 
such as cancer and cardiovascular diseases. Notably, epigenetic enzymes play a criti-
cal role in the molecular pathology of the diseases discussed in this chapter. Thus, it 
is important to increase the development of drugs targeting epigenetic enzymes in a 
timely and cost-efficient manner. Due to the increased development of HTS meth-
ods, availability of comprehensive omics data, and advances in computational tools, 
the use of drug repurposing as a therapeutic strategy is highly promising. Through 
literature database search, researchers can often extrapolate the potential efficacy 
of a market-approved drug in a new indication based on the drug’s molecular effect 
and cellular impact in an older indication. Such information opens a window of 
opportunity to examine the use of market-approved drugs in a new indication. 
For example, researchers observed that artemisinin, an approved malaria drug 
derived from the wormwood plant, forms free radicals with iron. Considering that 
increased iron levels are a well-established risk factor for breast cancer develop-
ment, an investigation was launched into the anti-cancer effects of artemisinin [82]. 
Moreover, recent studies in epigenetic-based therapy have also adopted molecular 
docking tools to identify valuable drug candidates that can be repurposed for new 
indications [94, 108]. The study of the target structure and ligand interaction 
significantly scales down the evaluation of drugs that are unlikely to bind to the epi-
genetic targets that fuel a disease progression. This approach also leverages struc-
tural similarities of a market-approved drug’s target to discover potential newer 
indications. Notably, our group developed an AlphaLISA-based high-throughput 
screen (HTS) that aided the identification of promising market-approved drug 
candidates which targets PRMT5. This unique HTS method allowed us to preclini-
cally investigate the efficacy of candesartan and cloperastine, a hypertensive and 
cold medicine, respectively, in several solid cancers [87, 88]. As with other drug 
discovery approaches, the exciting advances in targeting epigenetic enzymes with 
market-approved drugs can be improved with additional extensive research on 
various aspects of the drug’s molecular mechanisms. In some cases, although a 
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repurposed drug is known to have an epigenetic effect, its primary molecular target 
is not always clear. This gap creates an avenue for the possibility of off-target effects 
that may be adverse in newer indications. Similarly, the challenges with false-pos-
itive results in HTS can be surmounted by incorporating the dose-response factor 
as a critical variable for understanding a market-approved drugs’ efficacy against 
an epigenetic target. Also, considering that the function of a market-approved 
drug can be context-dependent, it is critical to pursue new indications known to be 
highly driven by an epigenetic target of interest. Collectively, addressing the gaps in 
molecular mechanisms that drive disease pathology and improving existing screen-
ing methods will significantly advance the field of epigenetic-based therapy using 
market-approved drugs.

5. Future perspectives

Given that the de novo drug discovery approach for epigenetic targets is time-
consuming, costly, and has a high failure rate in clinical trials, researchers may 
consider increasing their efforts into repurposing drugs with known epigenetic 
effects for newer disease indications. One of the merits of drug repurposing is that 
it alleviate patients’ treatment costs and provide hope to those with rare conditions. 
Recognizing this approach as a great benefit to patients, governmental agencies and 
philanthropic organizations should increase the establishment of funding programs 
for drug repurposing endeavors [109]. More importantly, the paradigm for drug 
discovery is moving from a single target to a multitarget approach and drug repur-
posing is a suitable strategy to meet this evolving paradigm in pharmacology [110]. 
Thus, considering the slow pace and millions to billions of dollars spent on bringing 
a single drug to market, it is worthwhile to steer efforts and resources towards drug 
repurposing for epigenetic-based therapy in human diseases.

6. Executive summary

• Drug repurposing is a creative approach to drug discovery that comprises find-
ing new indications for approved drugs in the market or drugs that have been 
recalled/inefficacious in a previous indication.

• The advent of computer-aided drug discovery and the HTS methods have 
significantly accelerated the drug repurposing process.

• The extensive role of molecular targets such as DNMTs, HDACs, HMTs, KDMs, 
and BETs in several human diseases necessitates the development of drugs to 
alleviate the progression of diseases driven by the aforementioned epigenetic 
enzymes.

• Thus, epidrugs (drugs that target epigenetic marks) have been widely incor-
porated in the management of diseases such as cancer, cardiovascular diseases, 
kidney disease, and neurological disorders.

• Recent advances in the drug repurposing approach increased the use of 
market-approved drugs to target epigenetic enzyme-driven diseases.

• Currently, several market-approved drugs have shown significant pre-clinical 
efficacy in diseases and/or are undergoing clinical trials for new indications.
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Abstract

Drug repurposing involves reusing an active pharmaceutical ingredient that is 
already in the market and drugs that were unsuccessful in their clinical phases of 
development for a new indication. It has numerous benefits in drug development. 
Therapeutic inhibitors are agents that could be of synthetic or natural source with 
the ability to trigger the down-regulation of an enzyme or protein, thereby inducing 
therapeutic effect(s). Researchers have embraced synthetic methods in searching 
for therapeutic molecules through structural activity relationships and other means 
in the past and recent times. Despite these synthetic drugs, the morbidity and 
mortality rate of ailment and disease affecting humanity remains overwhelming. 
Research has shown that solutions to these challenges can be attempted through 
drug repurposing. In the past, natural products in raw forms have been utilized in 
traditional, complementary medicine to manage and treat diseases and illnesses, as 
there are molecules in use today as drugs, which originated from plants and other 
natural sources. Studies on natural products have led to diverse natural product 
databases that can serve as a source of repurposing agents. There are also databases 
for protein and enzymes of human origin, which have an enormous role in the in-
silico drug repurposing approach.

Keywords: repurposing, therapeutics, inhibitors, in-silico, protein database, natural 
products

1. Introduction

Repurposing of a drug is the process of reutilizing already utilized drugs for 
other treatment purposes. It is the use of a known drug for treating conditions 
other than their primary use [1]. Drug repurposing encourages disease-related 
drug development in a much cheaper, faster, and more accessible way for patients 
[2]. The drug studied for repurposing is the shelved drugs, drugs in use, discon-
tinued drugs, and experimental drugs that either could not make it to the late 
phases of clinical trials or have failed in the market. Because the efficacy, safety, 
and toxicity of these drugs have already been established, the preliminary phases 
of the clinical trials can be omitted, minimizing the cost and length of the clinical 
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trials. It takes about 15 years to deliver a new drug to the market [3]. The objective 
of drug repurposing is to identify new biological targets and different therapeutic 
uses of previously approved and/or investigational drugs, including drugs that 
did not meet primary therapeutic expectations. As such, a number of pre-clinical 
development and optimization issues, including negative toxicological profiles, 
can be avoided or at least minimized. Although most successful experiments in 
reallocating drugs are derived from coincidence, current research efforts focus on 
predicting opportunities for reallocating on rational grounds [4]. Interestingly, 
while most drug reallocation campaigns rely on chemical-based compounds, 
natural products can offer important opportunities. Natural products are charac-
terized by unique and favorable properties, considerable structural diversity, and 
a large number of pharmacological activities [5]. Therefore, these are chemical 
entities preferred for the (re)discovery of medicines. Strategies that may bring 
to light new therapeutic uses that may not be related to their original biological 
space [6].

In the drug repurposing process, there are three important processes that are 
involved. They include (i) identification of the targets of interest for a new indica-
tion, (ii) assessment of mode of action intricate in drug or ailment of study, and  
(iii) establishment of the drug the usefulness in the second and third phases of 
a clinical trial. Of all the stages, finding a principal candidate is one of the most 
important. This is the stage where the most advanced and efficient techniques are 
required to be involved in generating new hypotheses in the reallocation of drugs. 
Drugs can be repurposed in multiple ways, which may be either experimentally, 
clinical-based, or computationally. The computational approach is an “in-silico” 
repurposing of drugs, which is divided into two sub-categories: centered drugs 
or diseases. Under the drug-based approach, we find new indications for existing 
drugs, while under the disease-based approach, we try new drugs for an existing 
disease (Figure 1) [7].

Recently, natural products have seen a revival of awareness in drug discovery, 
with a different approach. Newer and evolving technologies, such as computational 
screening, proteomics, metabolomics and big data analysis, have come to the fore 
to drive and speed up the “repurposing” of natural compounds and, more generally 
speaking, of nature-inspired compounds [8].

Even though a large number of natural product formulations are available as 
extracts, the phytocompounds components of these extracts can be utilized in drug 
repurposing, with the utilization of Computer-Aided Drug Design, after isolation, 
purification, and structural elucidation.

Figure 1. 
Drug repurposing approaches.
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Approaches for Speeding Up Drug Repurposing

• In-silico models—In-silico or bioinformatic models help to identify complex 
relationships between drugs, targets, and diseases necessary for reuse [9].

• Target Linkage—The use of high-throughput assessment technological 
skills to identify multipharmacological molecules that affect numerous 
targets can remedy multifactorial ailments such as cancer and diseases of 
 neurodegeneration [10].

• Artificial Intelligence (AI)—AI makes records more accessible. Broad literature 
mining to identify possible drug interactions, adversarial effects, mode of 
actions, regulations of a gene can help accelerate the development of medicines 
[11]. The side effect of the medicine may be utilized to treat another condition. 
If the medications have the same adverse reactions, then they can work on the 
same disease [2].

Therapeutic inhibitors are agents, compounds that could be of synthetic or 
natural source, with the ability to trigger the down-regulation or block the expression 
or overexpression of an enzyme or protein, or block protein-protein interactions or 
block the addition of phosphates to other molecules, thereby inducing therapeutic 
effect(s). Therapeutic inhibitors perform their functions either directly or indirectly 
by affecting the catalytic properties of the active site. Inhibitors can be extraneous 
to the cell or normal constituents of it. Inhibitors which are a normal component 
of a cell, can represent a significant component of the regulation of cell metabo-
lism. Many toxins and also pharmacologically active agents (both illegal drugs and 
prescription and over-the-counter medicines) act by inhibiting specific enzyme-
catalyzed processes [12], which can be targeted in-silico using computer-aided drug 
design in the process of new therapeutic inhibitor development from natural prod-
ucts. There are thousands of natural products existing in natural product databases 
that can be utilized for this purpose. The protein and enzyme target are also readily 
available in protein databases in formats needed for computer simulation studies [13].

2. Classifications of therapeutic inhibitors

Based on the current mechanisms of action of already existing drugs, therapeutic 
inhibitors can be classified into

1. Enzyme inhibitors

2. Protease inhibitors

3. Kinase inhibitors

4. Protein synthesis inhibitors

5. Protein-protein interactions inhibitors (Figure 2).

2.1 Enzyme inhibitors

Enzyme inhibitors are compounds that interact with enzymes (either temporar-
ily or permanently) in some way and minimize the rate of an enzyme-catalyzed 
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reaction or stop enzymes from working in a normal manner [13]. In therapeutic, 
enzyme inhibitors bind to enzymes and lower their activity [14] and achieve a 
therapeutic benefit. Some molecules are used as drugs today because of their ability 
to cause correction of metabolic imbalance, the correction which is due to the 
effectiveness of the molecules in causing blockage of enzyme activity. Therefore, 
the search and discovery of molecules with inhibitory enzyme ability is an active 
area of research in biochemistry and pharmacology [14]. It is noteworthy to state 
that not all molecules that bind to enzymes are inhibitors; some could be enzyme 
activators; in this case, the molecules bind to enzymes and elevate their enzymatic 
activity [15], which can also cause therapeutic benefit. The binding of inhibitors to 
enzymes can either be reversible or irreversible.

A molecule is a reversible inhibitor if it binds non-covalently to the enzyme’s 
active site to produce an inhibition. The binding could be direct with the enzyme, 
the enzyme-substrate complex, or both [15].

A reversible inhibitor is described as one that, once removed from the enzyme, 
the enzyme returns to its normal function pre-inhibition. It exerts no permanent 
effects on the enzyme and does not change the shape of the active site of the 
enzyme [16]. There are different types of reversible inhibition. They include 
competitive, non-competitive and uncompetitive types, although a mixed type 
sometimes arises [15].

The underlying principle of competitive inhibition is that, at a single active or 
binding site of a drug-metabolizing enzyme, there is the mutually exclusive binding 
of either the substrate or the inhibitor [17]. Competitive enzyme inhibitors possess 
a comparable shape to that of the substrate molecule. These two drugs compete for 
binding to a single active site of an enzyme. Substrates are compounds or molecules 
upon which enzymes act. The interaction of a substrate and an enzyme occurs at the 
active site of the enzyme or in a binding site that can, in turn, alter the active site. 
This brings about competition for binding/active sites between a substrate and an 
inhibitor.

The second type of reversible inhibition, non-competitive reversible inhibition, 
utilizes inhibitors that do not have similarity with the substrate and so do not bind 
to the active site but rather to a separate site on the enzyme. The outcome of an 
interaction of a non-competitive inhibitor with an enzyme appreciably differs from 
an interaction with a competitive inhibitor due to the non-existence of antagonism. 
In the case of an antagonistic inhibition, the inhibitory effect could be minimized 
and subsequently overcome with escalating concentrations of substrate. With 
non-competitive inhibition, growing the quantity of substrate does not affect the 
percentage of an enzyme that is active. Indeed, in non-competitive inhibition, the 

Figure 2. 
Therapeutic inhibitors.
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percentage of enzyme inhibited remains the same through all ranges of a substrate. 
The implication of this is that non-competitive inhibition will efficiently diminish 
the concentration of enzyme by equal, fixed concentration in a typical experiment 
at every substrate concentration used [18].

The third type of reversible inhibition, uncompetitive reversible inhibition, 
utilizes inhibitors that bind to the already formed enzyme-substrate complex and 
not to the free enzyme. In this type of reversible inhibition, the interaction of the 
substrate with an enzyme could trigger a conformational modification that leads 
to the revelation of an inhibitor binding site on the enzyme, or the inhibitor could 
bind and interact directly to the enzyme-bound substrate. The underlining outcome 
in this type of reversible inhibition is that it does not compete with the substrate for 
the same active site in either case and so the increasing concentration of substrate 
cannot overcome the effect of the inhibitor [19].

As opposed to reversible inhibition, there is irreversible inhibition. In irrevers-
ible inhibition, the inhibitor no longer separates from the enzyme after binding and 
interaction and the enzyme reaction is reduced. The reduction rate is dependent on 
the enzyme and inhibitor concentrations only and independent of the concentra-
tion of the substrate. This implies one inhibitor molecule can ideally minimize to 
zero the activity of one enzyme molecule [20]. Irreversible inhibition could be of 
two forms. The first occurs when an inhibitor is strongly bound and complex with 
an enzyme and fail to dissociate under physiological conditions from the enzyme. 
There are two types of irreversible inhibitors. The first type is so strongly com-
plexed to the enzyme that it fails to dissociate from the enzyme under physiological 
conditions but can be dissociated through the method of dialysis or by chromato-
graphic techniques [20]. The second type of irreversible inhibition is one in which 
the inhibitor forms a covalent bond with the enzyme; in a situation whereby the 
formation of the covalent bond terminates the conversion of substrate to product, 
then the enzyme has been irreversibly terminated. The irreversible inhibitors that 
function through the formation of covalent bonds are of two main types. The first 
type involves the reaction of an inhibitor with an essential functional group by a 
bimolecular process on the enzyme [21]. The biomolecular process is a reaction that 
involves the combination of two molecular entities. In the second type of irrevers-
ible inhibition that occurs through the formation of a covalent bond, the inhibitor 
which bears a leaving group forms a reversible complex with an enzyme. As this 
occurs, the presence of a nucleophilic group on the enzyme of the leaving group, 
juxtaposed within the reversible enzyme-inhibitor complex formed on the enzyme 
of the leaving group, could lead to a rapid neighboring group reaction within the 
complex in which a covalent bond is formed. Such formation of a covalent bond 
can be highly specific since properly positioned neighboring groups can react more 
rapidly than the identical bimolecular reaction [21]. A leaving group is an atom 
or group of atoms that dissociates from the rest of the molecule, taking with it the 
electron pair, which was previously the bond between the leaving group and the rest 
of the molecule.

2.2 Kinase inhibitors

Kinase is a type of enzyme that acts to add phosphates to other molecules, such 
as sugars or proteins. The addition of phosphate may cause other molecules in a 
cell or system to become either active, overactive, or inactive. Kinases facilitate the 
transmission of a phosphate moiety from a high-energy molecule to its substrate 
molecule. Kinases are widely utilized to convey signs and control multifaceted 
procedures in cells. Phosphorylation of compounds can boost or impede their 
effectiveness and regulate their capability to interrelate with other compounds. 
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The presence and absence of phosphoryl groups offer the cell a means of control 
because various kinases can react to diverse situations or signals. There are 518 
kinases encoded in the human genome are 518 kinases. These kinases are known to 
phosphorylate about one-third of the proteome [22, 23]. Nearly all signal transduc-
tion route occurs through a phosphotransfer process. This indicates that kinases 
offer several nodes for therapeutic mediation in numerous abnormally controlled 
biological processes [24]. Kinase function deregulation has been shown to perform 
an essential role in cancer immunological, inflammatory, degenerative, metabolic, 
cardiovascular and infectious diseases [25, 26].

Kinases are of three main categories depending on the substrate type of kinase: 
protein kinase, lipid kinase, carbohydrate kinase. Protein and lipid kinases repre-
sent one of the most important target classes for treating human disorders after 
G-protein-coupled receptors (GPCRs) and proteases. As a matter of fact, one-third 
of the protein targets currently undergoing investigation by pharmaceutical compa-
nies consist of protein or lipid kinases [27].

Kinase inhibitors are molecules with the ability to alter the activities of kinases. 
The recognized druggability and the therapeutic safety profile of standard kinase 
inhibitors make kinases attractive targets for drug development. Nevertheless, 
there are many kinases yet to be studied effectively; this shows that the discovery of 
kinase inhibitors is still the majority of kinases that have been historically under-
studied, indicating that the field of kinase inhibitor discovery is still not fully har-
nessed [28–30]. There are some significant challenges in drug discovery as regard 
kinase inhibitors. These challenges are obstacles to the full potential of kinases as 
drug targets. The challenges include validating novel kinase targets, utilization of 
kinase inhibitors in non-oncology therapeutic areas, overcoming drug resistance, 
obtaining target selectivity to minimize off-target-mediated toxicity and to develop 
effective compound screening and profiling technologies [31]. Nevertheless, some 
progress has been made in towards overcoming these challenges, and also research 
in the field of kinase inhibitors have Over the course of the past 5 years, immense 
progress has been made towards these goals, and also studies the field of kinase 
inhibitor discovery is expanding rapidly in oncology and into different disease 
areas, including autoimmune and inflammatory disease as well as degenerative 
disorders.

The estimated current spending in research and development by pharmaceutical 
companies towards the development of new kinase inhibitors is about 30%. In all 
these, one of the most important classes of drugs targeted by pharmaceutical indus-
trial researchers is protein kinases. To date, 89 drugs targeting protein kinases have 
clinically received approval. It is estimated that the current global market for kinase 
therapies is about US$20 billion per annum, projection to rise distinctly. Over 100 
active small-molecule kinase inhibitors are currently in an advanced stage of clinical 
development, and many more are expected to be approved in the years ahead [32].

2.3 Protease inhibitors

Proteases, which are also known as proteinases or proteolytic enzymes, are a 
large class of enzymes that catalyzes the hydrolysis of peptide bonds in proteins and 
polypeptides. Proteases control the fortune, localization, and numerous protein 
actions. Proteases are important aspects in the well-being and viability of cells, par-
ticipating in several procedures, such as replication, transcription, cell multiplica-
tion, differentiation, extracellular matrix remodeling, and processing of hormones 
and biologically active peptides. Proteases are greatly controlled (e.g. transcription-
ally, post-translationally, stimulated, inhibited, and classified) [33]. Protease action 
has been found to play a role in the pathogenesis of vascular diseases, including 
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atherosclerosis, thrombosis, and aneurysm. Broad diversity of proteases represent-
ing various proteolytic groups and their corresponding inhibitors are involved. 
These proteases play a role(s) vascular ailment through a sequence of overlapping 
pathways that upset the overall inflammatory status and structural integrity of the 
vessel wall. By triggering PARs (protease-activated receptors), these enzymes cause 
inflammatory signaling, cytokine production, and inflammatory cell recruitment. 
Furthermore, proteases can destroy components of the extracellular matrix (ECM), 
elastic lamina, and fibrous cap in the atheroma. The fundamental paradigm is that 
excessive proteolytic action is an important contributor to the start and progression 
of vascular disease. Recent approaches to the treatment of vascular pathologies have 
attempted to modulate protease activity in an effort to reduce inflammation and 
preserve the structural integrity of the vessel wall [34]. Proteases can be divided 
into six broad classes based on proteolytic mechanism: serine proteases, threonine 
proteases, cysteine proteases, aspartic proteases, metalloproteases, and glutamic 
acid proteases.

Protease inhibitors are synthetic drugs that prevent the activity of HIV-1 prote-
ase, an enzyme that cleaves two precursor proteins into smaller fragments. These 
fragments are essential for viral growth, infectivity, and replication. It is important 
to mention that proteases are not limited to HIV. Protease inhibitors interact with 
protease at the active site, thereby thwarting the growth and development of the 
freshly formed virions; this makes them stay non-infectious. Protease inhibitors  
are utilized in taking care of individuals with human immunodeficiency virus  
(HIV infection) and acquired immune deficiency syndrome (AIDS) [35]. Also, 
protease inhibitors are useful medically as angiotensin-converting enzyme inhibi-
tors for blood pressure, proteasome inhibitors for myeloma, dipeptidyl peptidase 
IV inhibitors for type II diabetes [33]. Currently, there are many studies in progress 
targeting SAR-COV-2 main protease (Mpro) [36–41]. Mpro, also termed 3CL 
protease, is a 33.8 kDa cysteine protease that mediates the maturation of functional 
polypeptides involved in the assembly of replication-transcription machinery [42]. 
Due to the significant role of this main protease, it is considered a promising drug 
target, as it is dissimilar to human proteases.

2.4 Protein synthesis inhibitors

The process of making a protein molecule using DNA, RNA, and various 
enzymes by cells is termed protein synthesis. In biological systems, it takes place 
inside the cell and involves amino acid synthesis, transcription, translation, and 
post-translational events. It takes place in the cytoplasm of prokaryotes, while in 
eukaryotes, it takes place usually in the nucleus and aids the generation of a tran-
script (mRNA) of the coding region of the DNA. The transcript departs the nucleus 
and gets to the ribosomes, where translation into a protein molecule takes place 
with a specific sequence of amino acids [43].

A protein synthesis inhibitor is a molecule with the ability to terminate or reduce 
the growth rate of cells by interrupting the progressions that directly leads to the 
production of new proteins [44]. Even though a wide description of this definition 
could be utilized in closely describing any compound depending on the amount 
present, in reality, it classically denotes compounds that exert their molecular effect 
level on translational machinery. Protein synthesis inhibitors are another major 
group of therapeutically useful antibacterials, such as erythromycin, tetracycline, 
chloramphenicol, and aminoglycosides. They specifically interact with the 70S 
bacterial ribosome and spare the 80S eukaryotic ribosome particle. Macrolide, lin-
cosamide, and streptogramins (MLS) antibiotics represent three classes of structur-
ally diverse protein biosynthesis inhibitors used clinically [45]. Generally, protein 
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synthesis inhibitors work at different stages of bacterial mRNA translation into 
proteins, like initiation, elongation (including aminoacyl tRNA entry, proofreading, 
peptidyl transfer, and bacterial translocation) and termination.

2.5 Protein-protein interactions inhibitors

The protein-protein interaction (PPI) can be described as a substantial network 
linking a protein and its partner(s) [46–48]. These networks may exhibit a variety of 
heterogeneities and complexities in large molecular structures, leading to the forma-
tion of protein dimers, multi-constituent complexes, or lengthy chains [49]. The 
contact between subunits of protein can be transitory or constant, similar or dissimi-
lar, and precise or imprecise [48, 50, 51]. There are closely 650,000 protein-protein 
interactions in humans, and this figure keeps on increasing as additional interaction 
networks are being discovered [48, 52]. Protein-protein interactions (PPIs) play 
pivotal roles in biological processes [53]. Mutations or compromised regulation of PPIs 
affect cellular networks and have a role to play in the development of diseases. The dis-
covery and development of new PPI inhibitors with the intention to control abnormal 
pathways have therefore aroused substantial interest from the pharmaceutical industry 
[54]. Almost half of the dry mass of a cell is composed of proteins, and disorder in 
PPIs often causes diseases, including cancer [55, 56]. Hence, research and studies on 
PPI play a vital role in advancing our understanding of molecular biology and human 
diseases, as well as for developing new therapeutic agents in drug discovery [51, 57, 58].

Generally, protein-protein interactions were used to being seen as a non-
druggable target. This standing is likely due to the lack of or limited knowledge 
on high-throughput assessment assays, as well as the consideration that most 
protein-protein interactions are held to by big, chemically noncomplex surfaces 
with a deficiency of easily druggable pockets [59]. While such tough protein-protein 
interaction targets indisputably exist, it is now understood that many protein-pro-
tein interactions use minimal interfaces for their interaction, regularly consisting of 
an unstructured peptide bound to a distinct groove [54]. Additionally, mutagenesis 
analyses of numerous PPIs have shown that surfaces causing the affinity of a given 
PPI are not steadily spread across the whole interface. Rather, there tends to be 
a “hot spot” or a small number of important residues that anchor two proteins 
together [60]. This implies that a putative inhibitor would not need to dislodge 
the entirety of a given PPI but rather only occupy the hot spot, a more tractable 
problem.

Currently, researches in the area of SARS-COV-2 also include inhibition of 
Spike-ACE2 interaction, which is a protein-protein interaction [61, 62].

3. Natural products option

Plants as a source of medicine Nature, as old as mans’ existence, have been a 
provider of medicines and agents used for the development of medicine. There are 
other natural sources of medicinal products like marine, but the most prevalent 
source is a plant [63]. An enormous number of the medications in use today was 
obtained from a plant. Some medications in use also were developed from a com-
pound originally gotten from a plant. The development of most of these medicines 
gotten from a plant started from the study of the utilization of the plant in tradi-
tional medicinal practice, which gave an insight into the type of pharmacological 
property or likely pharmacological effect for which the molecules from plants could 
be developed for.
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The system of traditional medicinal practice keeps on being a very indis-
pensable target in the world’s healthcare system because of the dependence of 
the 80% of the world population on traditional medicinal practice system for 
their elementary healthcare needs, according to World Health Organization. 
The remaining 20% of the population who are residents of developed countries 
also use plant products for healthcare needs or substances developed from plant 
products [64]. Research has it that between 1959 and 1980 in the United States 
that about 25% of the dispensed prescription drugs from community pharmacies 
were products of plant extracts or contained active ingredients obtained from 
higher plants [65].

Currently in use as medications are at least 119 chemical entities obtained from 
90 different plant species. Of all these 119 drug entities, 74% were obtained from 
plants through direct isolation of active substances from plants that are already in 
use in traditional medicinal practice systems [66]. It is on record that in all sales 
made by the leading pharmaceutical industries in the year 1991, most of the sales 
were made on products derived from natural sources or containing a substance or 
substances that are natural product-based [67]. It is also on record that in 1993, a 
total of 57% of the top 150 brand-name products that were prescribed had at least 
one major active compound from a natural source or derived from a natural source 
or patterned after substances reflecting biological diversity [68].

Many researchers have taken an interest in discussing and accessing different 
medicinal plants as a reservoir for new therapeutic agents [63], and some others 
have persuasively converged their research on the use of specific chemical classes 
like flavonoids, alkaloids, glycosides, etc. in drug discovery. Recent research 
has continued to demonstrate and validate the ethnomedicinal drug discovery 
approach to the initial discovery approaches of pharmaceuticals [69]. Still, some 
other researchers have estimated that out of about 375 total compounds of pharma-
ceutical importance in the rain forests, only about one-eight have been explored. 
Assessing and observing the roles these natural product base medications have 
played in humanity, there are possibilities that more efficient ones are still in the 
forest unexplored [70].

This forms the basis for the need for more exploration and research on tra-
ditional medicinal plants for the emerging healthcare challenges of humans. 
Researchers in the field of medicinal plants are no longer only interested in testing 
plant extracts for pharmacological activities but are also undertaking the isolation 
of molecules from plant extracts and identifying these molecules. Some has gone 
further to establish the pharmacological effect of these isolated molecules. For 
example, in previous research on Vernonia amygdalina, we were able to establish 
the antidiabetic and antihelminthic effectiveness of methanolic extract Vernonia 
amygdalina [71, 72], and we went further to isolate six pure molecules from the 
methanolic extract [73] and then tested the isolated molecules for the antidiabetic 
and antihelminthic property. From the study, we were able to identify the mol-
ecules responsible for the antidiabetic and antihelminthic effects observed in the 
extract [74].

Likewise, there are thousands of isolated molecules from plants yet to be studied 
for any pharmacological activity. These molecules form plants are usually deposited 
in natural product databases from where their structures can be downloaded for 
studies using Computer-Aided Drug Design. Some of them are also available for pur-
chase for in-vitro and in-vivo studies. Some of the natural product databases include;

• ColleCtion of Open NatUral producTs (COCONUT) [75], containing 406,747 
phytocompounds
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• African Natural Products Database (ANPDB) [76, 77], containing 6515 
phytocompounds

• Comprehensive Marine Natural Products Database (CMNPD) [78], containing 
32,000 compounds

These isolated and identified natural products can also serve as a primary 
source for new molecule development through in-silico structural modification and 
synthesis. The existence of these natural products and these databases has provided 
a vast background for targeted natural product drug design and development. To be 
able to utilize these natural compounds in receptor/protein/enzyme targeted drug 
design and development in-silico, the receptor/protein/enzyme need to be available 
in a portable format that will enable its utilization in-silico, which is provided in 
protein databases.

4. Protein databases

A protein database is a body of data derived from physical, chemical and biologi-
cal information about the sequence, domain structure, function, three-dimensional 
structure, and protein-protein interactions. Together, protein databases can serve as 
a database of protein sequences. Therefore, it is significant to utilize suitable protein 
databases that can analyze and store data relating to protein science and also expe-
dite the utilization of analytical software accessible to the scientific community. 
Protein databases can be broadly grouped into two types. The first is a universal 
type, a set of proteins found in all identified biological species. The second kind of 
protein database is a specialized database that deals with proteins belonging to a 
specific group or family of certain species. In addition, each protein database can be 
further categorized according to the type of information required [79].

4.1 Categories of a protein database

Since protein datasets are being developed from different experimental groups, 
it would be necessary to provide suitable databases to meet their needs. Presently 
there are several types of protein databases accessible to the public, which can be 
further classified into more specialized categories based on the type of information 
sought [79].

4.1.1 Protein sequence database

Protein sequences consist of 20 different amino acids; this sequence is known 
as the primary structure of a protein. This type of protein database, which collects 
amino acid sequences of proteins and related information, is termed a protein 
sequence database. Examples of this type of database include; Swiss-Prot [80], 
TrEMBL [80], PIR [81], DDBJ [82], etc.

4.1.2 Protein structure databases

Protein structure regulates function, given that the specificity of active sites and 
binding sites hinges on the exact three-dimensional conformation. Protein struc-
ture databases contain information related to three-dimensional protein structure 
and secondary structure obtained from analyses by X-ray crystallography, electron 
microscopy and NMR. Examples include Protein Data Bank (PDB) [83], etc.
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4.1.3 Protein-protein interaction databases

A protein-protein interaction database is developed on the basis of protein-pro-
tein interaction information gotten from yeast two-hybrid, co-purification, affinity 
column chromatography, in vitro binding and IP/coIP (protein immunoprecipita-
tion (IP)/ co-immunoprecipitation (Co-IP) methods. Examples include; BIND 
(biomolecular interaction network database) [84], DIP (database of interacting 
proteins) [85], MINT (molecular interactions database) [86], etc.

4.1.4 Protein pattern and profile databases

Motifs can be identified in protein, DNA, and RNA sequences, but the most 
familiar use of motif-based analysis is the identification of sequence motifs 
conforming to structural or functional features in proteins. One of the essential 
instruments for sequence analysis is the utilization of protein sequences or profiles 
to establish protein function [87, 88]. Example, Interpro [89], etc.

4.1.5 2-D PAGE databases

These 2-D PAGE databases comprise gel image data acquired by examining the 
2-DE and documented data on gel spots about molecular mass (M.W.), isoelectric 
point (pI), a status report on the identified location, and cross-reference links [90].

4.1.6 Metabolic pathway databases

Metabolic databases offer descriptive data on enzymes, biochemical reactions 
and metabolic pathways. Examples are BioCyc [91], MetaCyc [92], etc.

4.1.7 Signaling pathway databases

This signaling pathway database is to inspire complementary investigation in 
individual laboratories and to enable access to essential information on biologi-
cal signaling pathways. This database can be classified into the following areas, 
depending on the format, for it contains both graph and tree-type data structures.

Examples are TRANSPATH [93], etc.
With these receptor/protein/enzyme databases and natural product databases, 

more in-silico research aiming towards the discovery and development of more 
therapeutic inhibitors from natural products can be initiated. At the present time, 
in-silico approaches have become an essential aspect of the drug discovery pro-
cedure. The use of in-silico/ computational approaches to discover, develop, and 
analyze drugs and similar biologically active molecules is referred to as Computer-
Aided Drug Design.

5. Computer-aided drug design/repurposing

Computer-aided drug design, which commenced in about the early 1970s, 
is a process where new drug molecules are designed/identified, redesigned or 
repurposed to bind with a biological target of known or predictable 3D structure 
and express substantial affinity/specificity [94]. The core purpose of drug design 
methods is to utilize the receptor/ligand tertiary structures for accelerating the drug 
discovery process and also repurposing or enhancing the inhibition properties of a 
ligand, which could act as a therapeutic inhibitor. In performing computer-aided 
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drug design, two approaches can be implemented. The first is structure-based 
(target-based), while the second is ligand-based (analogue-based) [95].

Methods by which the 3D structure of a protein can be generated include X-ray 
crystallography, NMR, electron microscopy, or prediction based on homology in 
silico. Once the 3D structure has been resolved, the protein’s binding site or active 
site is identified. Structural-based drug design methods recognize/design an inhibi-
tor having functional properties complementary to the protein binding site. These 
include molecular docking and the design of de novo molecules. Molecular docking 
techniques assess a molecule’s most viable binding geometries at the binding site 
of a target protein in the 3D space. These binding geometries are termed binding 
poses, which include both configurations, which are the molecule’s position in the 
target or the receptor-binding site and conformational sampling. These binding 
geometries are recorded using molecular mechanics and calibrated according to 
the intensity of the interaction with the receptor. This process can be performed on 
large high-speed databases (virtual screening), allowing rapid molecular screening 
to recognize the right inhibitors. De novo design approaches form ligands that have 
not been synthesized before. In this approach, the functional groups responsible 
for interactions with the target receptor are positioned in the additional 3D space 
of the protein binding site and are linked to the binding scaffolding. This technique 
assumes that only the functional groups of a molecule are responsible for their 
activity and not the scaffold [96].

Ligand-based drug design approaches like quantitative structure-activity rela-
tionship (QSAR) and pharmacophore modeling have established their effectiveness 
in designing/envisaging the action of new molecules and in searching chemical 
databases to detect novel lead scaffolds in the absence of target receptor 3D structure 
[97–99]. QSAR and quantitative structure-property relationship approach developed 
a mathematical model for biological activity employing numerous structural and 
functional properties [100–102]. This activity (dependent quantity) and property 
(independent quantity) model can be used to contemplate the activity of novel 
molecules as inhibitors without knowing the structure of the 3D receptor. These rela-
tions can be obtained using statistical measurements such as regression approach, 
neural networks, main component analysis (PCA), partial least squares (PLS).

These days in-silico drug repurposing is attracting global awareness as a result of 
the accessibility of a huge amount of data on protein structures, pharmacophores, 
disease data, clinical investigations, or gene expression profiles of medicines. As well, 
increased public social networking technologies and computational access to genetic 
information have greatly helped computational approaches predict new indications. 
As a result, most pharmaceutical companies use bioinformatics or modern comput-
ing resources to reposition drugs from various chemical spaces. The ultimate desire 
of each pharmaceutical company is to be able to put medication into the market with 
increased speed and at the same time lower the cost of design and development. 
The powerful in-silico technology can provide these benefits. With the increase of 
drug-related data available, new computational approaches with improved recall 
and precision for targeted profiling of small compounds have been developed. These 
approaches enhance the repurposing procedure by including chemoinformatics, 
bioinformatics, network biology, systems biology or genomic information to uncover 
unidentified targets and mechanisms for approved drugs with accelerated timeframes.

6. New therapeutic inhibitors and natural products

In utilizing existing drugs in drug repurposing and natural molecules in the dis-
covery and development of new therapeutic inhibitors, all we have discussed above: 



359

Therapeutic Inhibitors: Natural Product Options through Computer-Aided Drug Design
DOI: http://dx.doi.org/10.5772/intechopen.104412

classification of therapeutic inhibitors, protein database, natural product database 
and Computer-Aided Drug design, have essential roles to play.

Before one can aim at targeted drug design, there must be a disease of interest at 
heart. Then, understanding the pathophysiology and pathogenesis of the disease. A 
good understanding of these processes to identify the protein and enzymes involved 
in the pathophysiology and pathogenesis and also the role(s) each of these proteins 
and enzymes plays. Apart from the role the proteins and enzymes play in the 
diseases of interest development, there might also be other positive roles (s) these 
proteins and enzymes play in the system. With all these, a proper decision can be 
made on the possibility of achieving a beneficial therapeutic effect without causing 
a chronic negative outcome to the system.

Protein databases already described above ensure the availability of proteins and 
enzymes in a format that can be downloaded and utilized for in-silico studies. These 
databases contain proteins and enzymes from humans, animals and different levels 
of organisms. Some of the databases can be accessed for free, making them open for 
any interested researcher to access. An interesting feature of most of these proteins 
available on protein databases like protein data banks is that their active sites are 
specified, with a ligand molecule attached, making it easier for a specific study to be 
carried out using the proteins and enzymes.

The natural product databases described above and existing drugs library like 
drug bank provide the ligands (molecules) which can be utilized or from which new 
therapeutic inhibitors can be sourced for the purpose of drug repurposing. Because 
of the number of these natural products as contained in the databases, handling 
such an enormous amount of data might be challenging, but with the advances in 
in-silico high throughput screening, there are drug design applications that can be 
deployed in minimizing the number of ligands that could lead to hit molecule(s).

With the advances in computer-aided drug design and bioinformatics, certain 
steps can be undertaken using natural products towards the discovery and develop-
ment of better therapeutic inhibitors and also repurposing already existing drugs 
for the discovery and development of better therapeutic inhibitors. So many studies 
are already in progress using these steps. There are so many applications that can 
utilize in the in-silico study for the discovery and development of new therapeutic 
inhibitors. With these applications, drug-likeness and ADMET of thousands of 
natural compounds can be predicted, protein active site can be established, molecu-
lar docking can be simulated, molecular dynamic simulation can be carried out, 
and in-silico that is of the essence in determining which molecule(s) has the lowest 
chance of failure if taken to in-vitro experiments.

7. Conclusion

Search for discovery and development of new therapeutic inhibitors is an 
inexhaustible area of research because, even though there are already existing 
therapeutic inhibitors for different disease conditions, there is always a need for a 
better option than what is currently available through drug repurposing of already 
existing drugs or natural products. The abundance of unutilized natural product 
molecules provides us with a wide range of options from which new and better 
option therapeutic inhibitors can be sourced. It is well known that the search for 
the better option is time-consuming and also expensive; there is the need to ensure 
that the process of discovery and development of new therapeutic inhibitors is 
undertaken in a manner that minimizes the chances of failure of the process. With 
the information currently available regarding protein and metabolic pathway 
databases, ligand and natural product databases, Computer-Aided Drug Design 
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can be utilized by researchers to initiate steps that will ensure that the most suitable 
drug repurposing candidates are identified earlier in the process of discovery and 
development of new therapeutic inhibitor.
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