13 research outputs found

    Chaos generation with impulse control : Application to Non-Chaotic Systems and Circuit Design

    Get PDF
    Peer reviewedPostprin

    ROBUSTIFICATION OF CHAOS IN 2D MAPS

    Full text link

    A Systematic Methodology for Multi-Images Encryption and Decryption Based on Single Chaotic System and FPGA Embedded Implementation

    Get PDF
    A systematic methodology is developed for multi-images encryption and decryption and field programmable gate array (FPGA) embedded implementation by using single discrete time chaotic system. To overcome the traditional limitations that a chaotic system can only encrypt or decrypt one image, this paper initiates a new approach to design n-dimensional (n-D) discrete time chaotic controlled systems via some variables anticontrol, which can achieve multipath drive-response synchronization. To that end, the designed n-dimensional discrete time chaotic controlled systems are used for multi-images encryption and decryption. A generalized design principle and the corresponding implementation steps are also given. Based on the FPGA embedded hardware system working platform with XUP Virtex-II type, a chaotic secure communication system for three digital color images encryption and decryption by using a 7D discrete time chaotic system is designed, and the related system design and hardware implementation results are demonstrated, with the related mathematical problems analyzed

    Hopf bifurcation, antimonotonicity and amplitude controls in the chaotic Toda jerk oscillator: analysis, circuit realization and combination synchronization in its fractional-order form

    Get PDF
    In this paper, an autonomous Toda jerk oscillator is proposed and analysed. The autonomous Toda jerk oscillator is obtained by converting an autonomous two-dimensional Toda oscillator with an exponential nonlinear term to a jerk oscillator. The existence of Hopf bifurcation is established during the stability analysis of the unique equilibrium point. For a suitable choice of the parameters, the proposed autonomous Toda jerk oscillator can generate antimonotonicity, periodic oscillations, chaotic oscillations and bubbles. By introducing two additional parameters in the proposed autonomous Toda jerk oscillator, it is possible to control partially or totally the amplitude of its signals. In addition, electronic circuit realization of the proposed Toda jerk oscillator is carried out to confirm results found during numerical simulations. The commensurate fractional-order version of the proposed autonomous chaotic Toda jerk oscillator is studied using the stability theorem of fractional-order oscillators and numerical simulations. It is found that periodic oscillations and chaos exist in the fractional-order form of the proposed Toda jerk oscillator with order less than three. Finally, combination synchronization of two fractional-order proposed autonomous chaotic Toda jerk oscillators with another fractional-order proposed autonomous chaotic Toda jerk oscillator is analysed using the nonlinear feedback control method

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue
    corecore