505 research outputs found

    Time reduction effects of steel connected precast concrete components for heavily loaded long-span buildings

    Get PDF
    The characteristics of large logistics buildings are their long spans and the ability to take heavy loads. Usually, PC components are used for their frames to ensure quick construction. However, the erection of most pin jointed PC structures increases the time and the cost incurred for ensuring structural stability and construction safety. To solve this problem, “smart” frames have been developed, which have tapered steel joints at both ends of the PC components. A smart frame with the moment frame concept not only assures structural stability and construction safety, but it also simplifies and quickens the erection because of its tapered joint detail. The purpose of this study is to compare the erection time and cost effects of the steel connected PC components for heavily loaded long-span logistics buildings with the existing PC frames. For this study, we selected a logistics building constructed with PC components and redesigned it as the smart frame, and the erection simulations were performed. We analyzed the time reduction effects of the smart frame. Our results confirmed that the use of the smart frame reduced the erection time and cost practically. Our investigations will help develop the erection simulation algorithms for smart frames

    The Future of the Technologies of Shell and spatial Structures. Bridges

    Get PDF
    The objective of this lecture is try to predict the future of this important type of spatial structures. In this way the activities of the different IASS Technical Working Groups can be stimulated and coordinated in order to play a more relevant role in this future. To grasp a possible evolution of bridges it is convenient a reflection on the bridge history and on their present situation, particularly in relation to the different existing achievements

    Proceedings of IWAMISSE 2018 the International Workshop on Advanced Materials and Innovative Systems in Structural Engineering: Seismic Practices

    Get PDF
    The International Workshop on Advanced Materials and Innovative Systems in Structural Engineering: Seismic Practices, IWAMISSE 2018, is co-organised by The International Federation for Structural Concrete Turkey Branch, fib-Turkey, and Istanbul Technical University, ITU, on November 16, 2018 at ITU. The International Federation for Structural Concrete, fib, is a not-for-profit association formed by 45 national member groups and approximately 1000 corporate and individual members. The fib’s mission is to develop at an international level the study of scientific and practical matters capable of advancing the technical, economic, aesthetic and environmental performance of concrete construction. Istanbul Technical University (ITU) was established in 1773 and is a state university which defined and continues to update methods of engineering and architecture in Turkey. It provides its students with innovative educational facilities while retaining traditional values, as well as using its strong international contacts to mould young, talented individuals who can compete not only within their country borders but also in the global arena. With its educational facilities, social life and strong institutional contacts, ITU has always been preferred by Turkey’s most distinguished students since its foundation and has achieved justified respect. The workshop covers the topics of advanced materials and innovative systems in structural engineering with a focus on seismic practices as well as other issues related with steel fiber reinforced concrete, anchors/fasteners, precast structures, and recent advances on different types of structural systems such as reinforced concrete, steel, and reinforced masonry structures. This proceeding book contain sixteen papers from ten countries worldwide. We have no doubt that the up-to-date subjects covered during the workshop will be extremely beneficial for the workshop participants both from academia and industry. We would like to thank all authors for their contributions to the workshop as well as the members of the International Scientific Committee for their rigorous work for reviewing the papers. We also gratefully acknowledge the support of the sponsoring companies and we express our sincere thanks to organization committee for their tireless efforts in the overall organization of the workshop. Many thanks go as well to undergraduate and graduate students from ITU for their assistance during all stages of the workshop

    New Precast Wall Connection Subjected to Rotational Loading

    Get PDF
    The connection of discrete elements in precast concrete structures has important role in overall continuity of the building. Investigations show that most precast structure damages occur in connections under earthquake loads or other disasters. This study aims to propose a new connection in order to improve rotational loading capacity and develop a finite element model of precast wall with connections by considering all details of different parts for a contemporary connection, as well as the proposed connection. Pushover analysis is conducted for major or minor bending moment and torsion moment degrees of freedom (DOFs) to obtain the capacity of each type of connection. Four key features of concrete panels and steel reinforcements are considered to determine the effect of incremental lateral movements. Pushover results indicate a significant improvement in the maximum flexural strength of the proposed connection. Indeed, the maximum moment in the bending moment DOF is enhanced when the proposed connection is used. Consequently, the result reveals that the contemporary connection has a significant defect in terms of strength in bending moment and torsion moment DOFs

    Enhancing Facilities Management and Structural Design through Building Information Modeling

    Get PDF
    The project explored using Building Information Modeling (BIM) as a tool to provide continuity in the flow of information from the design/construction phases of the new Center to its occupation/operation by the WPI Department of Facilities. Three structural steel alternatives were designed, presented visually, and then compared to the precast arches located above the natatorium. A decision matrix was used to evaluate the structural options and select a preferred system. A BIM-prototype was created to demonstrate the capabilities of BIM for storage and retrieval of closeout documents and other critical information for the Department of Facilities. This system demonstrates the benefits of using information technology for facilitating the phases of construction and facilities management

    Technology and Management for Sustainable Buildings and Infrastructures

    Get PDF
    A total of 30 articles have been published in this special issue, and it consists of 27 research papers, 2 technical notes, and 1 review paper. A total of 104 authors from 9 countries including Korea, Spain, Taiwan, USA, Finland, China, Slovenia, the Netherlands, and Germany participated in writing and submitting very excellent papers that were finally published after the review process had been conducted according to very strict standards. Among the published papers, 13 papers directly addressed words such as sustainable, life cycle assessment (LCA) and CO2, and 17 papers indirectly dealt with energy and CO2 reduction effects. Among the published papers, there are 6 papers dealing with construction technology, but a majority, 24 papers deal with management techniques. The authors of the published papers used various analysis techniques to obtain the suggested solutions for each topic. Listed by key techniques, various techniques such as Analytic Hierarchy Process (AHP), the Taguchi method, machine learning including Artificial Neural Networks (ANNs), Life Cycle Assessment (LCA), regression analysis, Strength–Weakness–Opportunity–Threat (SWOT), system dynamics, simulation and modeling, Building Information Model (BIM) with schedule, and graph and data analysis after experiments and observations are identified

    Experimental and numerical assessment of the location-based impact of grouting defects on the tensile performance of the fully grouted sleeve connection

    Get PDF
    The presence of grouting defects emanating from construction operations constitutes a major threat to the structural integrity of the grouted sleeve connection of precast concrete members. This work presents a location-based assessment of the impact of grouting defects on the tensile performance of the grouted sleeve connection. Twenty-two specimens with different configurations of defects were subjected to a uniaxial tensile experiment. Corresponding numerical models were proposed, validated and used to conduct a sensitivity analysis of the connection to the defect's location while considering different design confinements of grouting materials. Experimental and numerical studies revealed the following outcome: In consideration of confinement parameters, when the defect of size 3d is located in the mid-span anchorage length, the variation of the sleeve-to-bar diameter (ds/d) from 2.66 (lower design limit) to 3.55 (upper design limit) changed the drop in the ultimate capacity from 19% to 44% below the connection's design requirement. The governing parameters of the grout-bar bond stiffness were the defect's location and degree of confinement. This work proposes a theoretical diagnosis model and a risk assessment catalogue as a promising step toward establishing a computerized diagnosis model of the defective connection to enlighten rational maintenance actions in actual construction
    corecore