206 research outputs found

    A Survey on Scheduling in IEEE 802.16 Mesh Mode

    Get PDF
    Cataloged from PDF version of article.IEEE 802.16 standard (also known as WiMAX) defines the wireless broadband network technology which aims to solve the so called last mile problem via providing high bandwidth Internet even to the rural areas for which the cable deployment is very costly. The standard mainly focuses on the MAC and PHY layer issues, supporting two transmission modes: PMP (Point-to-Multipoint) and mesh modes. Mesh mode is an optional mode developed as an extension to PMP mode and it has the advantage of having an improving performance as more subscribers are added to the system using multi-hop routes. In 802.16 MAC protocol, mesh mode slot allocation and reservation mechanisms are left open which makes this topic a hot research area. Hence, the focus of this survey will mostly be on the mesh mode, and the proposed scheduling algorithms and performance evaluation methods

    Chapter Utilizing IEEE 802.16 for Aeronautical Communications

    Get PDF
    Neurology & clinical neurophysiolog

    An Integrated Routing and Distributed Scheduling Approach for Hybrid IEEE 802.16E Mesh Networks For Vehicular Broadband Communications

    Get PDF
    An integrated routing and distributed scheduling approach for fast deployable IEEE 802.16e networks is presented where distributed base stations with dual radios form a mesh backhaul and subscriber stations communicate through these base stations. The mesh backhaul is formed via an IEEE 802.16e mesh mode radio on each base station, while the subscriber stations communicate with base stations via PMP mode radios. The proposed routing scheme divides the deployed network into several routing zones. Each routing zone contains several base stations that form the mesh backhaul with one base station equipped with either a fiber, satellite or any other point-to-point backhaul link to reach a gateway on the core network (for example, Internet or Enterprise Network). Traffic from the subscriber stations is routed by the serving base station through the mesh to the gateway-connected base station using min-hop routing metric. Mobile IP scheme is used to assign a care-of address to a subscriber station that moves from one routing zone to the other, thereby avoiding a change in IP address for network layer applications. The scheduling approach consists of two phases. In the first phase, a centralized mesh scheduling algorithm is applied with collected information on network topology, radio parameters, and initial QoS provisioning requirements. At the same time, each base station derives a PMP schedule for actual demands from associated subscriber stations constrained by the initial mesh schedule. In the second phase, each base station monitors its carried PMP traffic load statistics; to accommodate traffic load changes in a distributed fashion, each base station lends or borrows time slots from neighboring base stations to adjust its mesh and PMP radio schedules. The distributed schedule adaptation method not only allows individual base stations to accommodate short-term increases in bandwidth demands, it also provides the means for optimizing the mesh and PMP schedules with respect to actual bandwidth demands. Several deployment strategies are considered and an analytical model is developed to identify the achievable increase in overall network throughput using the proposed scheduling approach. Simulations are run in network simulator ns-2 to verify results obtained using the analytical model

    Utilizing IEEE 802.16 for Aeronautical Communications

    Get PDF
    Neurology & clinical neurophysiolog

    Connection admission control and packet scheduling for IEEE 802.16 networks

    Get PDF
    Includes bibliographical references.The IEEE 802.16 standard introduced as one of the Wireless Metropolitan Area Networks (WMAN) for Broadband Wireless Access (BWA) which is known as Worldwide Interoperability for Microwave Access (WiMAX), provides a solution of broadband connectivity to areas where wired infrastructure is economically and technically infeasible. Apart from the advantage of having high speeds and low costs, IEEE 802.16 has the capability to simultaneously support various service types with required QoS characteristics. ... While IEEE 802.16 standard defines medium access control (MAC) and physical (PHY) layers specification, admission control and packet scheduling mechanisms which are important elements of QoS provisioning are left to vendors to design and implement for service differentiation and QoS support

    Performance Analysis for Bandwidth Allocation in IEEE 802.16 Broadband Wireless Networks using BMAP Queueing

    Full text link
    This paper presents a performance analysis for the bandwidth allocation in IEEE 802.16 broadband wireless access (BWA) networks considering the packet-level quality-of-service (QoS) constraints. Adaptive Modulation and Coding (AMC) rate based on IEEE 802.16 standard is used to adjust the transmission rate adaptively in each frame time according to channel quality in order to obtain multiuser diversity gain. To model the arrival process and the traffic source we use the Batch Markov Arrival Process (BMAP), which enables more realistic and more accurate traffic modelling. We determine analytically different performance parameters, such as average queue length, packet dropping probability, queue throughput and average packet delay. Finally, the analytical results are validated numerically.Comment: 16 page

    Spectrum Sharing Methods in Coexisting Wireless Networks

    Get PDF
    Radio spectrum, the fundamental basis for wireless communication, is a finite resource. The development of the expanding range of radio based devices and services in recent years makes the spectrum scarce and hence more costly under the paradigm of extensive regulation for licensing. However, with mature technologies and with their continuous improvements it becomes apparent that tight licensing might no longer be required for all wireless services. This is from where the concept of utilizing the unlicensed bands for wireless communication originates. As a promising step to reduce the substantial cost for radio spectrum, different wireless technology based networks are being deployed to operate in the same spectrum bands, particularly in the unlicensed bands, resulting in coexistence. However, uncoordinated coexistence often leads to cases where collocated wireless systems experience heavy mutual interference. Hence, the development of spectrum sharing rules to mitigate the interference among wireless systems is a significant challenge considering the uncoordinated, heterogeneous systems. The requirement of spectrum sharing rules is tremendously increasing on the one hand to fulfill the current and future demand for wireless communication by the users, and on the other hand, to utilize the spectrum efficiently. In this thesis, contributions are provided towards dynamic and cognitive spectrum sharing with focus on the medium access control (MAC) layer, for uncoordinated scenarios of homogeneous and heterogeneous wireless networks, in a micro scale level, highlighting the QoS support for the applications. This thesis proposes a generic and novel spectrum sharing method based on a hypothesis: The regular channel occupation by one system can support other systems to predict the spectrum opportunities reliably. These opportunities then can be utilized efficiently, resulting in a fair spectrum sharing as well as an improving aggregated performance compared to the case without having special treatment. The developed method, denoted as Regular Channel Access (RCA), is modeled for systems specified by the wireless local resp. metropolitan area network standards IEEE 802.11 resp. 802.16. In the modeling, both systems are explored according to their respective centrally controlled channel access mechanisms and the adapted models are evaluated through simulation and results analysis. The conceptual model of spectrum sharing based on the distributed channel access mechanism of the IEEE 802.11 system is provided as well. To make the RCA method adaptive, the following enabling techniques are developed and integrated in the design: a RSS-based (Received Signal Strength based) detection method for measuring the channel occupation, a pattern recognition based algorithm for system identification, statistical knowledge based estimation for traffic demand estimation and an inference engine for reconfiguration of resource allocation as a response to traffic dynamics. The advantage of the RCA method is demonstrated, in which each competing collocated system is configured to have a resource allocation based on the estimated traffic demand of the systems. The simulation and the analysis of the results show a significant improvement in aggregated throughput, mean delay and packet loss ratio, compared to the case where legacy wireless systems coexists. The results from adaptive RCA show its resilience characteristics in case of dynamic traffic. The maximum achievable throughput between collocated IEEE 802.11 systems applying RCA is provided by means of mathematical calculation. The results of this thesis provide the basis for the development of resource allocation methods for future wireless networks particularly emphasized to operate in current unlicensed bands and in future models of the Open Spectrum Alliance

    On the Merits of Deploying TDM-based Next-Generation PON Solutions in the Access Arena As Multiservice, All Packet-Based 4G Mobile Backhaul RAN Architecture

    Full text link
    The phenomenal growth of mobile backhaul capacity required to support the emerging fourth-generation (4G) traffic including mobile WiMAX, cellular Long-Term Evolution (LTE), and LTE-Advanced (LTE-A) requires rapid migration from today\u27s legacy circuit switched T1/E1 wireline and microwave backhaul technologies to a new fiber-supported, all-packet-based mobile backhaul infrastructure. Clearly, a cost effective fiber supported all-packet-based mobile backhaul radio access network (RAN) architecture that is compatible with these inherently distributed 4G RAN architectures is needed to efficiently scale current mobile backhaul networks. However, deploying a green fiber-based mobile backhaul infrastructure is a costly proposition mainly due to the significant cost associated with digging the trenches in which the fiber is to be laid. These, along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks, have prompted many carriers around the world to consider the potential of utilizing the existing fiber-based Passive Optical Network (PON) access infrastructure as an all-packet-based converged fixed-mobile optical access networking transport architecture to backhaul both mobile and typical wireline traffic. Passive Optical Network (PON)-based fiber-to-the-curb/home (FTTC/FTTH) access networks are being deployed around the globe based on two Time-Division Multiplexed (TDM) standards: ITU G.984 Gigabit PON (GPON) and IEEE 802.ah Ethernet PON (EPON). A PON connects a group of Optical Network Units (ONUs) located at the subscriber premises to an Optical Line Terminal (OLT) located at the service provider\u27s facility. It is the purpose of this thesis to examine the technological requirements and assess the performance analysis and feasibility for deploying TDM-based next-generation (NG) PON solutions in the access arena as multiservice, all packet-based 4G mobile backhaul RAN and/or converged fixed-mobile optical networking architecture. Specifically, this work proposes and devises a simple and cost-effective 10G-EPON-based 4G mobile backhaul RAN architecture that efficiently transports and supports a wide range of existing and emerging fixed-mobile advanced multimedia applications and services along with the diverse quality of service (QoS), rate, and reliability requirements set by these services. The techno-economics merits of utilizing PON-based 4G RAN architecture versus that of traditional 4G (mobile WiMAX and LTE) RAN will be thoroughly examine and quantified. To achieve our objective, we utilize the existing fiber-based PON access infrastructure with novel ring-based distribution access network and wireless-enabled OLT and ONUs as the multiservice packet-based 4G mobile backhaul RAN infrastructure. Specifically, to simplify the implementation of such a complex undertaking, this work is divided into two sequential phases. In the first phase, we examine and quantify the overall performance of the standalone ring-based 10G-EPON architecture (just the wireline part without overlaying/incorporating the wireless part (4G RAN)) via modeling and simulations. We then assemble the basic building blocks, components, and sub-systems required to build up a proof-of-concept prototype testbed for the standalone ring-based EPON architecture. The testbed will be used to verify and demonstrate the performance of the standalone architecture, specifically, in terms of power budget, scalability, and reach. In the second phase, we develop an integrated framework for the efficient interworking between the two wireline PON and 4G mobile access technologies, particularly, in terms of unified network control and management (NCM) operations. Specifically, we address the key technical challenges associated with tailoring a typically centralized PON-based access architecture to interwork with and support a distributed 4G RAN architecture and associated radio NCM operations. This is achieved via introducing and developing several salient-networking innovations that collectively enable the standalone EPON architecture to support a fully distributed 4G mobile backhaul RAN and/or a truly unified NG-PON-4G access networking architecture. These include a fully distributed control plane that enables intercommunication among the access nodes (ONUs/BSs) as well as signaling, scheduling algorithms, and handoff procedures that operate in a distributed manner. Overall, the proposed NG-PON architecture constitutes a complete networking paradigm shift from the typically centralized PON\u27s architecture and OLT-based NCM operations to a new disruptive fully distributed PON\u27s architecture and NCM operations in which all the typically centralized OLT-based PON\u27s NCM operations are migrated to and independently implemented by the access nodes (ONUs) in a distributed manner. This requires migrating most of the typically centralized wireline and radio control and user-plane functionalities such as dynamic bandwidth allocation (DBA), queue management and packet scheduling, handover control, radio resource management, admission control, etc., typically implemented in today\u27s OLT/RNC, to the access nodes (ONUs/4G BSs). It is shown that the overall performance of the proposed EPON-based 4G backhaul including both the RAN and Mobile Packet Core (MPC) {Evolved Packet Core (EPC) per 3GPP LTE\u27s standard} is significantly augmented compared to that of the typical 4G RAN, specifically, in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. Furthermore, the proposed architecture enables redistributing some of the intelligence and NCM operations currently centralized in the MPC platform out into the access nodes of the mobile RAN. Specifically, as this work will show, it enables offloading sizable fraction of the mobile signaling as well as actual local upstream traffic transport and processing (LTE bearers switch/set-up, retain, and tear-down and associated signaling commands from the BSs to the EPC and vice-versa) from the EPC to the access nodes (ONUs/BSs). This has a significant impact on the performance of the EPC. First, it frees up a sizable fraction of the badly needed network resources as well as processing on the overloaded centralized serving nodes (AGW) in the MPC. Second, it frees up capacity and sessions on the typically congested mobile backhaul from the BSs to the EPC and vice-versa

    Dynamic Adaptation of the Distributed Election Procedure in IEEE 802.16 WMNs

    Get PDF
    The goal is to propose an algorithm wich gives to every node of the mesh network the possibility to adapt the holdoff time dynamically and than evaluate the performance
    • …
    corecore