5 research outputs found

    Unexpected Cost of Korean Wave during Pandemic Covid-19 in Makassar, South Sulawesi

    Get PDF
    This study discuss phenomenal success Korean Wave during pandemic covid-19 in Makassar, South Sulawesi, Indonesia. In recent years, Korean wave has become an addiction to young people in Makassar. This paper aims to explore the young people’s habit during pandemic covid-19, how they spend their leisure time throughout large scale social restriction (PSBB). Through the process of interviews, questionnaires, media, and article, this study result that the young people are willing to pay more to fulfill their hobby of watching Kdrama

    Diversity Control in Evolutionary Computation using Asynchronous Dual-Populations with Search Space Partitioning

    Get PDF
    Diversity control is vital for effective global optimization using evolutionary computation (EC) techniques. This paper classifies the various diversity control policies in the EC literature. Many research works have attributed the high risk of premature convergence to sub-optimal solutions to the poor exploration capabilities resulting from diversity collapse. Also, excessive cost of convergence to optimal solution has been linked to the poor exploitation capabilities necessary to focus the search. To address this exploration-exploitation trade-off, this paper deploys diversity control policies that ensure sustained exploration of the search space without compromising effective exploitation of its promising regions. First, a dual-pool EC algorithm that facilitates a temporal evolution-diversification strategy is proposed. Then a quasi-random heuristic initialisation based on search space partitioning (SSP) is introduced to ensure uniform sampling of the initial search space. Second, for the diversity measurement, a robust convergence detection mechanism that combines a spatial diversity measure; and a population evolvability measure is utilised. It was found that the proposed algorithm needed a pool size of only 50 samples to converge to optimal solutions of a variety of global optimization benchmarks. Overall, the proposed algorithm yields a 33.34% reduction in the cost incurred by a standard EC algorithm. The outcome justifies the efficacy of effective diversity control on solving complex global optimization landscapes. Keywords: Diversity, exploration-exploitation tradeoff, evolutionary algorithms, heuristic initialisation, taxonomy

    SODE: Self-Adaptive One-Dependence Estimators for classification

    Full text link
    © 2015 Elsevier Ltd. SuperParent-One-Dependence Estimators (SPODEs) represent a family of semi-naive Bayesian classifiers which relax the attribute independence assumption of Naive Bayes (NB) to allow each attribute to depend on a common single attribute (superparent). SPODEs can effectively handle data with attribute dependency but still inherent NB's key advantages such as computational efficiency and robustness for high dimensional data. In reality, determining an optimal superparent for SPODEs is difficult. One common approach is to use weighted combinations of multiple SPODEs, each having a different superparent with a properly assigned weight value (i.e., a weight value is assigned to each attribute). In this paper, we propose a self-adaptive SPODEs, namely SODE, which uses immunity theory in artificial immune systems to automatically and self-adaptively select the weight for each single SPODE. SODE does not need to know the importance of individual SPODE nor the relevance among SPODEs, and can flexibly and efficiently search optimal weight values for each SPODE during the learning process. Extensive experiments and comparisons on 56 benchmark data sets, and validations on image and text classification, demonstrate that SODE outperforms state-of-the-art weighted SPODE algorithms and is suitable for a wide range of learning tasks. Results also confirm that SODE provides an appropriate balance between runtime efficiency and accuracy

    Importance of Parameter Settings on the Benefits of Robot-to-Robot Learning in Evolutionary Robotics

    Get PDF
    Robot-to-robot learning, a specific case of social learning in robotics, enables multiple robots to share learned skills while completing a task. The literature offers various statements of its benefits. Robots using this type of social learning can reach a higher performance, an increased learning speed, or both, compared to robots using individual learning only. No general explanation has been advanced for the difference in observations, which make the results highly dependent on the particular system and parameter setting. In this paper, we perform a detailed analysis into the effects of robot-to-robot learning. As a result, we show that this type of social learning can reduce the sensitivity of the learning process to the choice of parameters in two ways. First, robot-to-robot learning can reduce the number of bad performing individuals in the population. Second, robot-to-robot learning can increase the chance of having a successful run, where success is defined as the presence of a high performing individual. Additionally, we show that robot-to-robot learning results in an increased learning speed for almost all parameter settings. Our results indicate that robot-to-robot learning is a powerful mechanism which leads to benefits in both performance and learning speed

    Artificial Evolution by Viability Rather Than Competition

    Get PDF
    Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design
    corecore