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Importance of Parameter Settings on
the Benefits of Robot-to-Robot
Learning in Evolutionary Robotics
Jacqueline Heinerman*, Evert Haasdijk and A. E. Eiben

Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands

Robot-to-robot learning, a specific case of social learning in robotics, enables multiple

robots to share learned skills while completing a task. The literature offers various

statements of its benefits. Robots using this type of social learning can reach a

higher performance, an increased learning speed, or both, compared to robots using

individual learning only. No general explanation has been advanced for the difference

in observations, which make the results highly dependent on the particular system

and parameter setting. In this paper, we perform a detailed analysis into the effects

of robot-to-robot learning. As a result, we show that this type of social learning can

reduce the sensitivity of the learning process to the choice of parameters in two ways.

First, robot-to-robot learning can reduce the number of bad performing individuals in

the population. Second, robot-to-robot learning can increase the chance of having a

successful run, where success is defined as the presence of a high performing individual.

Additionally, we show that robot-to-robot learning results in an increased learning speed

for almost all parameter settings. Our results indicate that robot-to-robot learning is a

powerful mechanism which leads to benefits in both performance and learning speed.

Keywords: social learning, robot-to-robot learning, evolutionary robotics, parameter tuning, neural networks,

evolutionary algorithms

1. INTRODUCTION

The widely used definition of social learning reflects animal behavior: social learning is learning
through observation of conspecifics. Considering humans the definition can be extended: social
learning is learning through observation of conspecifics or transferring knowledge through
language. That is, the ability to use language offers a new method, a second tool in the toolbox
of social learning. Regarding robots, we can add a third tool to this toolbox based on the ability
to transfer robot controllers directly from one robot to another. (In common parlance this would
be the robotic equivalent of telepathy.) Thus, the definition of social learning can be broadened
again. If robots are concerned then social learning is learning through observation of conspecifics
or transferring knowledge through language or direct exchange of (parts of) controllers.

In the current paper we focus on the third option for robots, the direct exchange of controllers,
that is a special case of social learning that is only available for robots. To emphasize this we usethe
term robot-to-robot learning.

Consider a collective of autonomous robots in an environment that is not well understood or
modeled at design time. It is not possible to develop and validate adequate robot controllers without
a thorough understanding of the environment, so the robots need to be able to adapt their behavior
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to suit. It is preferable that the robots are capable of learning
autonomously, without the need for centraloversight: such a
centralized scheme implies a single point of failure in the
combined system.

To illustrate our concept of adaptation, consider the controller
of a robot as a process that maps inputs, read from the robot’s
sensors and internal states to outputs, typically actuator and
state settings. Learning can then be defined as any change to
the mapping between inputs and outputs, cf. (Haasdijk et al.,
2013). In such a setting, the robots can learn individually, e.g.,
by encapsulating a self-sufficient learning algorithm within each
robot, and they can learn collectively by sharing knowledge,
called robot-to-robot learning.

Robot-to-robot learning in a robotic collective has been
studied for different machine learning implementations such as
Reinforcement Learning (e.g., Sutton and Barto, 1998; Zhang
et al., 2010; Noble and Franks, 2012; Wiering and van Otterlo,
2012) and Evolutionary Algorithms (EAs) (e.g., Pugh and
Martinoli, 2009; Eiben and Smith, 2015a,b). In this paper,
we consider evolutionary algorithms applied to robotics, i.e.,
Evolutionary Robotics (Nolfi and Floreano, 2000).

There is ample evidence that set-ups, where robots can
share knowledge, outperform otherwise equivalent set-ups where
robots learn in isolation.When robots share knowledge, they
achieve better performance and/or the learning curve is steeper
(Usui and Arita, 2003; Curran and ORiordan, 2007; Perez et al.,
2008; Pugh and Martinoli, 2009; Garca-Sanchez et al., 2012;
Miikkulainen et al., 2012; Tansey et al., 2012; Heinerman et al.,
2015a,b; Jolley et al., 2016). A higher overall performance can be
observed when there is a quality or diversity assessment before
the knowledge is sent or incorporated (Huijsman et al., 2011;
Garca-Sanchez et al., 2012; Heinerman et al., 2015b). Evidence by
Huijsman et al. (2011) and Silva et al. (2015) show that robot-
to-robot learning can linearly decrease learning time, e.g., the
fitness measure that four robots can reach in 2 h can be reached
by eight robots in 1 h when they learn socially. Although there is
evidence that robot-to-robot learning can increase performance
and/or learning speed, no general explanation has been advanced
for the difference in observations. As an example, Usui and
Arita (2003) showed that the speed of adaptation (not the
finalperformance level) improves in hybrid set-ups compared
to purely distributed ones, but that this improvement depends
on the size of the encapsulated population. The authors of
Pugh and Martinoli (2009) also varied the population size but
did not find a significant effect of the population size on the
performance. Because of these contradicting results, it is difficult
to generalize on the benefits of robot-to-robot learning. This
makes the results highly dependent on the particular system and
parameter settings.

In our research, we increase our understanding of robot-to-
robot learning by studying the dependence of the parameter
settings on the benefits of robot-to-robot learning within
one system. First, we observe the performance and learning
speed of anindividual learning robot, learning a foraging task,
when using different parameter settings. Then we compare the
performance and learning speed with a setup where we enable the
exchange of knowledge. This analysis enables us to observe when

robot-to-robot learning leads to particular benefits. As a result,
it brings us closer to understanding how robot-to-robot learning
can improve performance and/or learning speed.

In previous work (Heinerman et al., 2017), we have shown
that the observed advantages of robot-to-robot learning depend
on the quality of the parameter settings of the individual robotic
learning process. In particular, we showed that parameter settings
resulting in a median performance experienced more benefits
from robot-to-robot learning than parameter setting that already
gave a high performance for one robot. As a consequence,
research in robot-to-robot learning must consider the quality
of the used parameter settings, as they can drastically impact
the conclusion.

While this result explains the difference in observations in
the current literature, we discovered an additional benefit of
robot-to-robot learning that we investigate further in this paper.
We show that robot-to-robot learning can reduce the sensitivity
of the learning process to the choice of parameters for the
individual learning process in two ways. First, robot-to-robot
learning can reduce the number of bad performing individuals in
the population within one run. Second, robot-to-robot learning
can increase the chance of having a high performing individual
in the population over multiple runs.

We study robot-to-robot learning in the context of on-
line evolutionary robotics. In terms of the taxonomy defined
by Haasdijk et al. (2012), they are defined as hybrid systems
where robots can adapt their controller individually, but can
also exchange information. The field of evolutionary robotics
originated in the late 1980s and aims to create robotic controllers
with Evolutionary Algorithms (EAs). These algorithms are
inspired by Darwin’s theory of survival of the fittest. In nature,
animals survive and procreate when they are more fit. Similarly,
a robotic controller is tested by observing the behavior of
the robot and is given a corresponding fitness measure. The
higher the fitness, the more chance this controller has to
procreate. Over generations, the quality of the controllers will
improve and lead to robots that are capable of executing a
predefined task properly. The robotic controller that we consider
is a neural network. A neural network is a direct policy that
maps the sensor inputs of the robot to actions. This mapping,
consisting of nodes and connections between the nodes, are
evolved with EAs.

This paper is structured as follows: In section 2 we explain
our method to select parameter settings and we describe
measurements that we use to observe the benefits ofsocial
learning. This approach is independent of the system described
in section 3. We continue with the experimental setup in section
4 and present the results in section 5. An in depth discussion
of the results is given in section 6. Our concluding remarks are
summarized in section 7.

2. PARAMETER SETTINGS AND
MEASUREMENTS

Our implementation of the individual learning process has
21 parameters. These parameters are related to the individual
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learning mechanism of one robot. Depending on the chosen
learning mechanism, the number of parameters can vary. The
approach described in this section is independent of the specific
individual learning mechanism of the robot. The parameters,
of which 2 are boolean and 19 continuous, are presented in
Appendix. Every parameter could be assigned a low, middle
or high value. A combination of all parameters with their
corresponding values is called a configuration.

Testing all possible configurations would require too much
computational power. Therefore, Design of Experiments (DoE)
was used to create the configurations. DoE is an approach
that creates a minimal number of configurations to test while
preserving the possibility to perform statistical analysis on the
data (Montgomery, 2009). The DoE1 gave, for the case at hand
with 19 continuous and 2 boolean parameters, an experimental
design of 50 different configurations.

The configurations provided by the DoE are ranked based
on their quality. The quality of a configuration is defined as the
median performance in the final generation. The performance
of a generation is defined as the median fitness of theindividuals
in that generation. Rank number 1 is the configuration resulting
in the highest quality and rank number 50 is the configuration
resulting in the lowest quality.

Using the median performance measure is the most suitable
measure for online evolutionary roboticsfor two reasons. First,
the distribution of the fitness within one run and over
different runs is very skewed. Second, for on-line evolution,
it is more important that all controllers perform well as the
robots both learn and perform their task at the same time.
Therefore, if we mention performance, either a generation or a
configuration, we always refer to the median performance unless
mentioned otherwise.

For the robot-to-robot learning experiments, we use the best
and median configurations. To avoid confusion, note that this
median is not themedian of multiple data points but based on the
rank of the parameter setting. The best configurations are defined
as the 10 settings that lead to the highest quality (rank 1–10).
The median configurations are defined as the settings resulting
in a median quality (rank 21–30). How robot-to-robot learning is
exactly implemented is explained in section 3.

For a detailed analysis of the effects of robot-to-robot learning,
we also need more detailed measurements for performance
and learning speed. The measures presented here are not new
but they have not (all) been used to study the benefits of
robot-to-robot learning.

For the performance we use the following measures:

Success Rate (SR) The SR is measured by the percentage of the
20 replicate runs that have a controller in the final generation
with good fitness. Agood fitness is a fitness equal to or higher
than 75% of the maximum observed fitness over all runs. The
maximum observed fitness in all runs is 12, resulting in a good
fitness of 9 or higher.
The Success Rate Ratio (SRR) is calculated by dividing the SR
of the robot-to-robot learning experiment by the individual

1created with the help of JMP software SAS Institute Inc, JMP, Version 11.1.0.

learning experiment. An SRR higher than 1 means that robot-
to-robot learning results in more successful runs.
Population Failure (PF) The PF is measured by the median
percentage of bad controllers in the final generation over the
20 replicate runs. A bad performing robot is a robot with a
fitness equal to zero.
The Population Failure Ratio (PFR) is calculated by dividing
the PF of the individual learning experiment by the robot-to-
robot learning experiment. A PFR higher than 1 means that
robot-to-robot learning results in fewer bad performing robots
in the final generation.

Note that these two measures act on a different level. The
SR is calculated over multiple experiments, while a PF can be
calculated for everyexperiment individually. The SR results in
one value while the PF results in a value per experiment, of which
the median is taken.

For the learning speed we use a measure that isolates the
learning speed from the performance level:

Learning Speed (LS) The LS is measured as the numeric
integral of the median performance over time (in a number
of generations) of the 20 replicate runs. The performance is
normalized with respect to the maximum median observed
performance over time. In other words, it is the surface
underthe median performance curve divided by the surface
of a rectangle enclosing the highest median performance
over time.
The Learning Speed Increase (LSI) is calculated by subtracting
the learning speed of the individual learning experiment from
the learning speed of the robot-to-robot learning experiment.
An LSI higher than 0 means that robot-to-robot learning
results in faster learning.

3. SYSTEM DESCRIPTION

Parts of the system described in this section were already
presented in previous work Heinerman et al. (2017). However,
we decided to recite parts to increase the readability of this paper.

3.1. Task, Robot, and Environment
The experiment we chose requires the robots to learn a foraging
task. A foraging task requires the robot to collect pucks and
bring them to the nest located in the center of the arena. The
environment is a square arena as shown in Figure 1. Five pucks
are randomly placed in the arena at the start of a run. Once a
puck is brought to the nest, it is immediately moved to a random
location in the environment. The fitness of each robot is equal
to the number of pucks collected during a trial lasting 1,000
time steps.

The experiments are conducted in simulation using
JBotEvolver (Duarte et al., 2014)2. JBotEvolver is a Java-
based open-source, cross-platform framework for research
and education in Evolutionary Robotics featuring a 2D
differential-drive kinematics engine. The robots in our
experiments simulate an e-puck robot. This robot is a

2The code is available on https://github.com/ci-group/ECAL_SocialLearning.
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FIGURE 1 | The environment with one robot searching for the blue pucks. The

target location is indicated by the gray circle. The dashed line shows an

example trajectory of a robot that picks up a puck to release at the target

location.

small (7 cm) differential drive wheeled mobile robot
equipped with 8 infrared proximity sensors. The range of
these sensors is approximately 10% of the arena width.
Additionally, the robots are equipped with the following
task-specific sensors:

Puck carrying sensor Indicates if the robot is carrying a puck.
The robot can carry one puck at a time;
Puck sensor Indicates the distance to the closest puck within
the 45◦ perception cone of the sensor. The range of this sensor
is approximately 60.
Nest sensor Indicates the distance to the nest if within the
45◦ perception cone of the sensor. The range of this sensor is
approximately 60.

3.2. Controller and Individual Learning
Mechanism
The robot’s controller is an artificial neural network. The neural
network has 11 input and two output nodes. The input nodes
consist of 8 proximity sensors, a nest sensor, a puck sensor, and a
puck carrying sensor; the output nodes provide the right and left
motor speed. A neural network is a direct policy that maps the
sensor inputs of the robot to actions. This mapping, consisting
of nodes and connections between the nodes, are learned with an
evolutionary algorithm.

Individual learning is implemented by an encapsulating, self-
sufficient learning mechanism. The learning mechanism used in
this paper is NEAT (Stanley and Miikkulainen, 2002). NEAT
is an evolutionary algorithm that evolves both the topology

and the connectivity of artificial neural networks. The initial
population is composed of randomly generated feedforward
neural networks without hidden layers. Every neural network
is called an individual. Over time, nodes and connections
can be added to the neural network, including the possibility
of forming recurrent connections. All nodes have sigmoid
activation functions.

Each robot possesses its own instance of NEAT. This means
that each robot has a population of individuals, i.e., a set of
controllers. These controllers are sequentially evaluated directly
on the robot for 1,000 time steps. One time stamp is one
sequence of the neural network where the sensor inputs are
translated to an action. The fitness after these 1,000 time
steps, the number of collected pucks, is stored. This fitness
is used to select individuals for reproduction to create a
new population.

The learning is conducted online, i.e., the robot is not
relocated between the evaluations and each controller is tested
starting from the location reached by the previous one. A
consequence of online learning is that a controller can suffer
from a bad initial position caused by a previous evaluation.
Having to recover from a bad starting position can impact
the fitness of the new controller in a negative way (Bredeche
et al., 2009). In our set-up, the most common example of
a bad starting position is being placed against a wall. To
mitigate the negative effect of a bad starting position, we
reposition the robot to a random location at the beginning
of a controller evaluation when it was driving against the
wall. This is to make sure that the learning does not stagnate
because it is driving into the wall for a sequent number
of evaluations and loses the diversity in the population
of controllers.

3.3. Robot-to-Robot Learning Mechanism
When robot-to-robot learning is applied, every robot has its
own arena as shown in Figure 1. Every robot is learning in
an online fashion, while the robot is performing the task.
Robot-to-robot learning is implemented as follows: first, the
robots sequentially evaluate all controllers in their current
population. Then, the robots exchange information. This
means that the information is sent to another arena where
another robot is located. This is different from having multiple
smaller populations in one robot, because the position of
the robot is a result of all evaluated controllers before. The
robot compares the received controller?s fitness to that of
its own worst controller. The new controller replaces the
worst controller if it is better. The NEAT algorithm uses the
updated list of controllers and fitness values to create the
next generation.

As noted earlier, NEAT can modify the topology of the
neural networks during evolution. Every structural modification
in the network is identified by a unique innovation number to
enable alignment of genomes for recombination purposes. When
implementing NEAT with the possibility to exchange individuals
as described for robot-to-robot learning, care must be taken to
avoid conflicting innovation numbers. In our implementation,
we keep track of a centralized global innovation database. If this
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would not be possible or desirable, one can use a distributed
systems such as odNEAT (Silva et al., 2012) or Gene Clocks
(Fernández Pérez et al., 2015)

Algorithm 1 summarizes the individual and robot-to-robot
learning mechanism in pseudocode.

Algorithm 1: Pseudocode of the algorithm that runs on
every robot

l initialise population of first generation (P1) with
individuals i1, ..., in
while current generation ≤ final generation
for every i in P
evaluate i
store fitness of i

sort the individuals based on fitness (i1 is best)
if robot-to-robot learning?
pick random other robot R
receive it’s best individual r1
if fitness(r1) > fitness(in)
in← r1

create new population

4. EXPERIMENTAL SETUP

We distinguish two different sets of experiments: the individual
learning experiments, also called the baseline experiments,
and the robot-to-robot learning experiments. Robot-to-robot
learning experiments are performed with a group of 2
and 4 robots.

The baseline experiments are the 50 configurations given by
the DoE. They are ranked based on the quality where after the
best configurations (rank 1–10) and the median configurations
(rank 21–30) are chosen to apply robot-to-robot learning too.

For all configurations, we use a fixed number of 20 k fitness
evaluations. The total number of evaluations is the number of
generations times the population size. Because the population
size is a parameter in the configuration, we set the number of
generations accordingly. As a result, 20 k evaluations correspond
to 200 generations for a population size of 100, 334 generations
for a population size of 60 and 1,000 generations for a population
size of 20.

When robot-to-robot learning is applied, the robots have
the same configuration as the one robot setup except for the
population size. The population size for the robot-to-robot
learning setup is the population size from the 1 robot setup
divided by the number of robots to ensure the same number of
evaluations per generation. Thus, if the original setup specifies a
population size of 100, the robot-to-robot learning experiments
use a population size of 50 and 25 for the 2 robots and 4 robot
setup, respectively.

The robots operate in their own arena but they communicate
across arenas. Consequently, the performance of the robot is only
due to its own actions and not influenced by other robots in
the same arena. Removing this inter-robot collision allows for a

better comparison between the individual and the robot-to-robot
learning experiments.

For all experiments, 20 replicate runs are performed with
different random seeds.

5. RESULTS

5.1. Baseline Experiments
The 50 configurations from theDoE are referred to as the baseline
experiments. For the baseline experiments, there is only 1 robot,
and it is learning individually. Figure 2 shows the quality and the
interquartile range3 for all baseline experiments. If the median
of two ranks is equal, the one with the highest value for the
third quartile gets the better ranking. The quality differences
between the configurations are clearly present: the lowest ranked
setting has a quality of 0, while the highest ranked setting
reached a quality of 4.5. The data in Figure 2 confirms that
the configuration, e.g., the values of the parameters, significantly
influence the quality of the individual learning result.

The data in Figure 2 shows the performance at the final
generation for all 50 parameter configurations. It is not clear
whether the performance for all configurations converged
atthis point. To show that the performance has approximately
converged at this point for most parameter configurations,
we observe the increase in performance for all configurations
from 95 to 100% of the evaluation budget. The median of this
increase over the 50 configurations is 0 with an interquartile
range of [0,0.1875], i.e., most of the 50 parameter configurations
converged when they reach 95% of the evaluation budget. These
statistics confirm that we used a sufficient number of evaluations
for our experiments.

5.2. Robot-to-Robot Learning:
Performance
Figure 3 shows the fitness of the individuals at the final
generation for all 20 independent runs and all robot-to-robot
learning experiments. To explain this graph, we start at the first
column (parameter configuration 1) and the first row of the
20 runs for 1 robot. This row, or bar, goes from blue to red,
and actually consists of many dots, where each dot represents
one individual in the final generation and the color represents
the fitness of the individual. The bar consists of 100 dots,
representing the fitness value of the individuals from all robots.

There are groups of 20 bars where each bar represents one
run. The 20 runs are sorted on the sum of the fitnesses of the
individuals. This block of 20 runs is shown for every combination
of rank and the number of robots. The column refers to the rank
of the configuration. Rank 1–10 (best configurations) and 21 to
30 (median configurations) are present. The rows refer to the
number of robots. When using multiple robots, the individuals
of the final generation for all robots are combined and sorted
by fitness.

3The interquartile range fluctuates between configurations. This is due to the

difference in population size. When the population size is small, the interquartile

range is relatively large.
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FIGURE 2 | Median performance with an interquartile range of the baseline

experiments for all DoE parameter settings at the final generation. The y-axis

shows the performance, measured as the median number of collected pucks

in the population. The x-axis shows the rank of the configuration. The results

are compiled over 20 replicate runs.

Figure 3 is an important graph to understand the effect of
robot-to-robot learning. For the baseline experiments, we can
observe the difference between configurations. Looking at the
top row, the individual learning experiments, rank 1 to 10
shows more good performing individuals (red) and fewer bad
performing individuals (blue) compared to rank 21–30. This
is not a surprise since the configuration rank is based on the
median performance of the individuals. In general, the runs with
a high performing individual, have more red and yellow colored
individuals than a run without a good performing individual.
This results in an increase of the median performance measure.

However, an increase of median performing individuals is
not a necessity for an increase in a number of successful runs.
Looking at rank 28, we can clearly see an increase of performance
of the best individuals within a run but not a decrease in
the number of bad performing individuals. Therefore, we can
conclude that the benefits of robot-to-robot learning highly
depend on the particular configuration.

Due to the replacement of the worst performing individual
for the robot-to-robot learning experiments, one might expect
that the number of bad performing individuals decreases. This
effect does happen for some parameter settings, such as setting
24, but not for all. The number of generations, and thus the
number of times you receive the best controller, exceeds the size
of the population. Especially for a population size of 20 (e.g.,
rank 21–25), there are 1,000 generations and thus 1,000 times
to receive the best controller. However, in the final generation
when the population size is 20, there are still bad performing
robots. Therefore, we can say that simply replacing the worst
controller with a betterone is not the reason that there are fewer
badly performing controllers.

Figure 4 summarizes the information from Figure 3 by using
themeasures introduced in section 2. Figures 4A,B show the SRR

and the PFR for the best andmedian configurations for the robot-
to-robot learning experiment with 2 and 4 robots, respectively. A
value higher than 1 means that a benefit due to robot-to-robot
learning is observed for that particular measure.

From Figure 4 we can conclude that the benefits of robot-to-
robot learning are more present for 4 robots than for 2 robots,
indicated by fewer observations below the thicker white lines and
the higher values for both measurements. Furthermore, we can
observe that every configuration can have completely different
benefits. An SRR of 8 can be observed for the 4 robot setup
for rank 25 and 28 while the PFR increases slightly for rank 28
and a lot for rank 25. This is consistent with the observation
of Figure 3.

Besides the influence of the configuration on the benefits of
robot-to-robot learning, the group size also seems of influence.
This can be further clarified when looking at rank 1 in depth.
When applying robot-to-robot learning for 2 robots, the SR
decreases from 50 to 40%while for 4 robots the SR increases from
50 to 75%.

Configuration 29 did not have any successful runs for
the individual learning experiments. For both robot-to-robot
learning experiments, with 2 and 4 robots, there were successful
runs. Therefore, we can conclude that robot-to-robot learning
can reach performance levels unreachable for the individual
learning counterpart. This conclusion has also been presented
in Jolley et al. (2016). Configuration 29 has been excluded from
figure5.2 because the ratio cannot be calculated.

5.3. Robot-to-Robot Learning: Learning
Speed
Figures 5A,B show the LSI when using robot-to-robot learning
for 2 and 4 robots, respectively. A value higher than 0 means
that applying robot-to-robot learning results in faster learning
compared to individual learning.

This graph shows an increased learning speed for most
parameter setting for both 2 and 4 robots, indicated by the LSI
values above 0. Robot-to-robot learning with 4 robots has a
higher increase than robot-to-robot learning with 2 robots. The
LSI for 2 robots correlates with the LSI for 4 robots [Pearson’s
r(20) = 0.47, p = 0.0435]. This indicates that if there is a learning
speed when using 2 robots, this is still also the case for 4 robots.

6. DISCUSSION

In this paper, we performed a detailed analysis into the effects of
robot-to-robot learning. In particular, we investigated the effect
of the parameter settings, or configurations, of the individual
learning mechanism on the benefits of robot-to-robot learning.
The benefits of robot-to-robot learning were measured in three
ways: (1) the success rate, which is the percentage of runs that
have a good controller in the final generation (2) the population
failure, which is the median of the percentage of bad individuals
in the final generation and (3) the learning speed, which is the
numerical integral of the median performance over time.

In previous work Heinerman et al. (2017) we concluded that
configurations leading to a median quality for the individual
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FIGURE 3 | Fitness of the individuals at the final generation for all 20 runs for 1 robot (top), 2 robot (middle) and 4 robots (bottom). The columns refer to the rank of

the configuration (rank 1–10 and 21–30). The 20 runs are sorted on the sum of the fitnesses of the individuals. Within one run, the individuals are sorted on the fitness

of which the color reflects the value. When using multiple robots, the individuals of the final generation for all robots are combined and sorted on fitness. Therefore,

every bar from blue to red actually consists of 100 dots where every dot represents one individual.

FIGURE 4 | Population failure ratio (PFR) (y-axis) and success rate ratio (SRR) (x-axis) for 2 (A) and 4 (B) robots. The color presents the rank of the configuration. A

value higher than 1 means that a benefit is observed when using robot-to-robot learning for that particular measure.

learning process benefit more from robot-to-robot learning. In
that work, we used the mean as the performance measurement.
Due to the more specific measurements in this paper, we can
conclude that the increase of performance of the median quality
configurations is due to the increase in success rate. This can be
seen in Figure 4 where the median parameter settings show a
higher increase in the success rate. As a result, we can conclude
that if the parameter settings are not optimal, individual learning
needs more luck to have a good controller in the final generation.

When we apply robot-to-robot learning this effect is mitigated
with more successful runs as a result.

The parameter configurations impact the conclusion of
the benefits of robot-to-robot learning. This might explain
the contradicting observations in literature. However, we
also have shown that robot-to-robot learning reduces
the sensitivity to the choice of parameters. As a result,
this might mean that even though different parameter
setting has been used in literature which leads to different
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FIGURE 5 | Learning speed increase (LSI) when using robot-to-robot learning with 2 (A) and 4 (B) robots. The LSI is calculated by subtraction the LS of one robot

from the LS when using more robots. The LS is a numerical integral over the median performance over time and therefore one value. A value higher than 0 means that

a benefit in learning speed is observed when using robot-to-robot learning.

results, we could still compare the final performance
in literature.

Additionally, from Figure 4 we conclude that robot-to-robot
learning can reduce the number of bad performing individuals in
the population. This number is important for online evolutionary
robotics because the robots learn while executing a task, i.e., it
is desirable that all robots have a good fitness instead of only
one best.

This paper led to new insights into the effect of robot-to-robot
learning. Robot-to-robot learning can reduce the sensitivity of
the learning process to the choice of parameters in two ways:
increase in the number of successful runs and a decrease of bad
performing individuals. These two effects are similar to the effects
desirable when tuning parameters. When tuning parameters the
goal is to increase the average, median or maximum performance
over all experiments. Preferably, these measures have a low
variability. Increasing the success rate increases the average
and possibly the maximum and median performance measures.
Decreasing the population failure increases the average and
potentially the median performance measure. Therefore,
robot-to-robot learning can potentially reduce parameter
tuning efforts.

We have seen that robot-to-robot learning can result in
different benefits. Some parameter settings experience a small
loss in performance and/or learning speed but most parameter
settings experience a large gain in performance. While having
observed the benefits in more detail, the question remains how
the exchange of information results in these benefits. Due to
the replacement of the worst performing individual for the
robot-to-robot learning experiments, one might expect that
the number of bad performing individuals decreases. But, we
argued that this is not the reason due to the much higher
number of controller exchanges compared to the population
size. We believe it is an interplay between receiving new
knowledge from other robots (resulting from a different search
process) and less aggressive variation operators within one

robot. This leads to more diverse quality solutions without
increasing the effect of variation operators. However, we need
extra data to confirm this hypothesis and this is left for
future work.

Our specific implementation choice of robot-to-robot
learning, has some similarities with parallel EAs and island
models. These are commonly known to increase diversity which
results in an increase in performance (Gordon and Whitley,
1993; Whitley et al., 1999; Alba and Tomassini, 2002; Park and
Ryu, 2010). However, no research explains where the increase
in diversity comes from and how this impacts the performance.
Research in these areas mostly focusses on the decrease in
runtime due to smaller population sizes (Alba and Tomassini,
2002). Measuring the runtime in evolutionary robotics is useless
because the evaluation time of the robot is much larger than
the computational effort. Additionally, the fitness function in
evolutionary robotics is extremely stochastic. Although the
results of both fields cannot be used to interpret each others
work at the moment, we do believe that there are some common
elements in parallel EAs, island models and robot-to-robot
learning in evolutionary robotics. Especially, studying the effect
of the number of parallels/robots on the diversity of the whole
population is of interest to both fields. This will be investigated
in future work.

Other interesting aspects of the benefits of robot-to-
robot learning include the group size and task complexity.
Our results indicate that using 4 robots results in more
benefits than using 2 robots. This could potentially be due
to the total number of controller exchanges between robots
that varies depending on the number of generations. The
influence of the frequency of controller exchanges on the
speed of convergence in robot-to-robot learning can be
taken into account when understanding the scalability of the
group size.

Lastly, we should note that for the robot-to-robot learning
experiments, we used the parameters of the 1 robot setup while
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these parameters might not be optimal for the multiple robot
setups. A multiple robot setup itself can also benefit from
parameter tuning, just as the parameters for the exchange of
knowledge. In future research, we will study the effect of different
parameter settings on the performance of the multi-robot setup.
Additionally, one could change and or adapt the parameter
settings per robot.

7. CONCLUSIONS

In this paper, we investigated the benefits of enabling robots
to share knowledge with others. Existing literature in robot-
to-robot learning typically compares individual learning
with robot-to-robot learning for only one parameter setting.
Our study extended this comparison by using 50 different
parameter settings.

We showed that robot-to-robot learning can reduce the
sensitivity of the learning process to the choice of parameters in
two ways. First, robot-to-robot learning can reduce the number
of bad performing individuals in the population. Second, robot-
to-robot learning can increase the chance of having a successful
run, where success is defined as the presence of a high performing
individual. While some parameter settings experience a small
decrease in performance, most parameter settings benefit greatly
from robot-to-robot learning in terms of performance and/or
learning speed.

Our results indicate that robot-to-robot learning is a powerful
mechanism which leads to benefits in both performance

and learning speed. Additionally, this paper showed the
importance of an in-depth analysis to draw conclusions
that are not possible with aggregated statistics. We hope
to inspire others to use our proposed measurements for
an in-depth analysis of components that have an impact
on the benefits of robot-to-robot learning such as different
tasks, the frequency of exchange, different group sizes and
different environments.
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APPENDIX

Neat Parameters
The NEAT parameters with description and values (low, middle
and high) for the DoE. Low, middle (mid) and high levels are
used for numeric parameters are shown in the table below.
Mutation and crossover parameters

Low Mid High
pXover 0.05 0.20 0.35

chance to apply crossover
pMutation 0.1 0.25 0.4

chance to apply mutation on each node/link
pWeightReplaced 0.0 0.25 0.5

chance to replace weight
maxPerturb 0.25 0.5 0.75

maximum allowed change on weight
pAddLink 0.01 0.05 0.1

chance to add a link
pAddNode 0.01 0.03 0.05

chance to add a node
Species parameters
speciesCount 3 6 9

Maximum number of species.
maxSpeciesAge 6 18 30

maximum age of species
coeffExcess 0.5 1.0 1.5

used for species compatibility score
coeffDisjoint 0.5 1.0 1.5

used for species compatibility score
coeffWeight 0.1 0.4 0.7

used for species compatibility score
threshold 0.3 0.5 0.7

used for species compatibility score
thresholdChange 0.01 0.1 0.2

used to change threshold value
speciesAgeThreshold 0.7 0.75 0.8

percentage of age to count as old
speciesYouthThreshold 0.2 0.25 0.3

percentage of age to count as young
agePenalty 0.5 0.7 0.9

fitness multiplier for old individual
ageBoost 1.1 1.25 1.4

fitness multiplier for young individual
Other parameters
size 20 60 100

population size of one robot
survivalThreshold 0.1 0.45 0.8

top % individuals that can be parents
copyBest TRUE FALSE

clone best individual previous generation
copyBestEver TRUE FALSE

clone best individual so far.
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