11 research outputs found

    Dual-Band RFID Tag Antenna Based on the Hilbert-Curve Fractal for HF and UHF Applications

    Get PDF
    A novel single-radiator card-type tag is proposed which is constructed using a series Hilbert-curve loop and matched stub for high frequency (HF)/ultra high frequency (UHF) dual-band radio frequency identification (RFID) positioning applications. This is achieved by merging the series Hilbert-curve for implementing the HF coil antenna, and square loop structure for implementing the UHF antenna to form a single RFID tag radiator. The RFID tag has directivity of 1.75 dBi at 25 MHz, 2.65 dBi at 785 MHz, 2.82 MHz at 835 MHz and 2.75 dBi at 925 MHz. The tag exhibits circular polarisation with -3 dB axial-ratio bandwidth of 14, 480, 605 and 455 MHz at 25, 785, 835 and 925 MHz, respectively. The radiation characteristics of the RFID tag is quasi-omnidirectional in its two orthogonal planes. Impedance matching circuits for the HF/UHF dual-band RFID tag are designed for optimal power transfer with the microchip. The resulting dual-band tag is highly compact in size and possesses good overall performance which makes it suitable for diverse applications

    Compact Planar Antennas for Beam Steering and RFID Tags

    Get PDF
    The chapter presents innovative planar antennas for beam steering and radio frequency identification (RFID) applications. Beam steering has become vital in commercial wireless communications, including mobile satellite communications where high data rate communication is required. The chapter describes a low-cost beam-steering antenna based on a leaky-wave antenna structure that is capable of steering the main radiation beam of the antenna over a large range from −30° to +15°. Interest in RFID systems operating in the ultrahigh frequency (UHF) is rapidly growing as it offers benefits of long read range and low cost, which make it an excellent system for use in distribution and logistics systems. This chapter presents a technique of overcoming the limitations of conventional HF coils in RFID tags where the total length of the spiral antenna is restricted inside the available area of the tag

    Modulaarinen kehitysalusta langattomille lääketieteellisille anturi-implanteille

    Get PDF
    Implanting medical sensor devices under skin improves the quality of the acquired measurement results, and can greatly increase the comfort for the patient in prolonged measurement. Design of such complex devices and related systems benefits from using a dedicated development platform that represents the functionalities and associated challenges. This work presents the design, implementation and verified performance of a modular platform that can be used in demonstration, development and testing of various functionalities of wireless medical sensor implants. The system is constructed using discrete components and consists of five inter connectable modules, each representing a specific function of the sensor implant system: bio potential measurement front-end module, wireless communication front-end module, clock and power management module, control logic module and external reader module. The implemented system has measurement front-end with an ENOB of 9 bits and configurable structure for the needs of various bio potentials. Wireless data transfer operates at 840-960 MHz with supported data rate up to 640 kbps. The system demonstrates dual carrier operation for separating the power and data transfers. Power can be harvested and clock extracted from 6.75 MHz or 865 MHz radio signals, both radio signals can be generated by the external reader. Control logic is provided with a high-end FPGA evaluation board. The completed platform can be used for developing and testing aspects for novel implanted devices, such as different radio communication schemes, radio antenna options, or controls and algorithms in digital logic.Lääketieteellisten anturien asettaminen ihon alle parantaa biopotentiaalimittauksien tulosten laatua ja pitkäaikaisten mittauksien mukavuutta potilaalle. Näiden monimutkaisten laitteiden suunnittelua voidaan tehostaa käyttämällä apuna sovelluskohtaista kehitysalustaa. Tässä työssä suunnitellaan ja toteutetaan modulaarinen, korkean suorituskyvyn kehitysalusta biopotentiaalia mittaavien langattomien anturi-implanttijärjestelmien eri toiminnallisuuksien esittelyyn, kehitykseen ja testaukseen. Diskreeteillä komponenteilla toteutettu järjestelmä koostuu viidestä moduulista: biopotentiaalien mittausmoduuli, langattoman tiedonvälityksen radiomoduuli, tehon ja kellosignaalin keräysmoduuli, ohjauslogiikkamoduuli, ja kehon ulkopuolinen lukijamoduuli. Kehitysalusta on muokattavissa eri biopotentiaalien mittauksien tarpeisiin. Mittausetupään tehollinen bittimäärä on 9 bittiä. Langatonta tiedonsiirtoa tuetaan 840 - 960 MHz taajuuskaistalla 640 kbps siirtonopeuksiin asti. Järjestelmällä voidaan demonstroida kahden kantoaallon yhtäaikaista käyttämistä, jolloin tehon- ja tiedonsiirto voidaan tarvittaessa erottaa toisistaan. Tehoa voidaan kerätä ja kellosignaaleja muodostaa 6,75 MHz ja 865 MHz taajuuksien radiosignaaleilta, jotka molemmat voidaan luoda hallitusti lukijamoduulilla. Ohjauslogiikka on toteutettu käyttäen ohjelmoitavaa porttimatriisipiiriä. Kehitysalustaa voidaan käyttää uusien implanttijärjestelmien suunnittelussa, esimerkiksi eri tiedonsiirtotapojen, antennirakenteiden, ohjauslogiikan ja digitaalisten algoritmien arvioinnissa

    Development and characterization of subsystems for a 2.45 GHz RFID research environment

    Get PDF
    Nowadays, the Radio Frequency IDentification (RFID) technology is a very fast emerging and developing technology with a wide range of applications in different fields. Due to the technological progress, the number of applications has increased enormously, leading to the creation of many different standards in several distinct frequency bands for supporting these applications. The majority of this standards are not compatible with each other and moreover, there is not an unique UHF band standard worldwide. For this reason, a possible solution to achieve a compatible RFID system around the world is by means of the 2.45 GHz microwave ISM band. More and more this 2.45 GHz RFID band is considered and currently there are systems working at this frequency. This thesis describes the design and the implementation of a frontend for a 2.45 GHz RFID testbed. Inside the document, relevant RFID basics and the assumed regulations are discussed. The system concept designed is explained and selected elements are tested and optimized. The development of the transmitter and receiver board is described and finally for both boards the characterization and the measurements results are shown

    Analyse et exploitation des non linéarités dans les systèmes RFID UHF passifs

    Get PDF
    Powered by the exploding popularity of the Internet-of-Things (IoT), the demand for tagged devices with labels capable to ensure a reliable communication with added functions beyond the identification, such as sensing, location, health-care, among others, is growing rapidly. Certainly this growing is headed by the well-established Radio Frequency Identification (RFID) technology, and the use of wireless low-cost self-powered tags, in other words passive RFID tags, is the most widespread used alternative. In the constant evolution on this field, usually new software treatments are offered at the application layer with the objective to processing data to produce some new information. Further works aimed at improving the physical layer around the tag antenna miniaturization and matching techniques. So far, little or no work had been done on the exploitation of the communication channel, and certainly none has been done on the exploitation of the non-linear behavior of RFID chips.After presenting the RFID technology and phenomena produced by Radio Frequency (RF) non-linear devices, and leaning in some nearby works on the field, the core of this thesis starts by exposing two characterization platforms for the evaluation of non-linear phenomena presented during the reader-tag communication. One is specialized in radiating measurements considering the whole tag (antenna and chip) under test. The other is specialized in conducted measurements directly over RFID chips, allowing performing different parametric studies (power dependency, impedance, harmonic production, sensitivity). The characterization results show that harmonic signals generated from the passive RFID chip carry information.By exploiting the characterization results and to verify the hypothesis of exploitation of non-linearities in RFID, i.e. the use of harmonic signals, the research is pursued by designing, fabricating, and measuring four different configurations of RFID tags. The new RFID tags operate at the fundamental frequency in the UHF band and at its 3^{rd} harmonic in the microwave band. Antenna design policies, fabrication details, and parametric studies on the performance of the new prototypes are presented. The parametric study takes special care in the antenna structure, kind of chip used, received power, and read range.Finally, some alternatives approaches for the exploitation of non-linear effects generated by rectifying devices are presented. Some theoretical aspects and experimental results are discussed linking the passive RFID technology to the theories of Wireless Power Transfer (WPT) and Electromagnetic Energy Harvesting (EEH). The solution takes advantage of the non-linear nature of rectifying elements in order to maximize the RF-to-DC conversion efficiency of EEH devices and increase the read range of passive RFID tags. The solution triggers on the design of a RF multi-device system. The design procedure and tests consider three non-linear phenomena: (1) the impedance power dependency, (2) the harmonic production, and (3) the rectifying dependence on the RF waveform.Avec l'explosion de l'Internet des Objets (IoT), de nouveaux dispositifs permettant de tagguer les objets sont nécessaires afin de permettre non seulement leur identification mais aussi d'assurer des communications fiables et de nouvelles fonctionnalités comme la détection, la localisation ou la capture d'informations. Cette tendance s'appuie sur la technologie bien établie qu'est la radiofréquence par identification (RFID) et donc l'utilisation d'étiquettes (ou tags) faibles coûts et télé-alimentés. Dans ce contexte, de nombreux travaux au niveau de la couche d'application se tournent vers la mise au point de traitements logiciels complémentaires visant à produire de nouveaux types d'information. D'autres travaux visent à améliorer la couche physique avec l'objectif de miniaturiser encore le tag mais aussi de le doter de nouvelles capacités. Jusqu'à présent, il n'existe quasiment pas de travaux concernant la transmission du signal et aucun sur l'exploitation du comportement non-linéaire des puces RFID. Cette thèse vise à étudier les phénomènes non-linéaires produits lors d'une communication RFID.Dans la première partie, deux plateformes de mesure et de caractérisation spécifiques ont été développées : la première vise à observer les signaux au cours d'une communication RFID, et alors caractériser et analyser les effets liés aux phénomènes non linéaires ; la seconde permet d'effectuer différentes mesures directement sur les puces et les caractériser en termes d'impédance, production d'harmoniques et sensibilité. Ces plateformes ont permis : 1) de mettre en évidence que les fréquences harmoniques sont porteuses d'informations qui peuvent être exploitées et même offrir de nouvelles fonctionnalités ; 2) d'obtenir de nombreuses informations sur les propriétés des puces et d'en établir un modèle électrique précis ; 3) de déterminer des critères permettant d'évaluer la performance des tags dans le contexte étudié.Dans la deuxième partie, plusieurs nouveaux tags RFID ont été conçus, fabriqués, mesurés et évalués. Ces nouveaux tags fonctionnent non seulement dans la bande UHF mais aussi sont adaptés à la troisième harmonique dans la bande des microondes. Une méthodologie et des lignes directives d'aide à la conception de ce type de tags ont été établies et s'appuient sur les deux plateformes développées afin de caractériser les différents éléments. Dans un même temps, les effets liés à la fabrication ont aussi été étudiés et des études paramétriques ont permis de mettre en évidence l'effet sur les performances de la géométrie de l'antenne et du type de puce utilisée.Dans une troisième partie, les études se sont focalisées à exploiter les effets non-linéaires des dispositifs de redressement. L'idée générale est de coupler la RFID passive avec les dispositifs de transferts de puissance et de récupération d'énergie avec pour objectifs 1) de maximiser l'efficacité de conversion RF – continu 2) et d'augmenter la distance de lecture des tags passifs. Plusieurs prototypes ont été réalisés et leurs performances ont été démontrées.L'ensemble de ces travaux a mis en évidence un nouveau concept de communication RFID exploitant les non-linéarités générées par les puces RFID. Ce concept ouvre la voie à de nouvelles applications. et a fait l'objet d'une demande de brevet international
    corecore