23 research outputs found

    A Dual intepretation of Standard Constraints in Parametric Scheduling

    Get PDF
    The problem of parametric scheduling in hard real-time systems, ( in the presence of linear relative constraints between the start and execution times of tasks ) was posed in the litreature. In an earlier paper, a polynomial time algorithm is presented for the case when the constraints are restricted to be standard ( defined in paper ) and the execution time vectors belong to an axis-parallel hyper-rectangle. In this paper, we extend their results in two directions. We first present a polynomial time algorithm for the case when the execution time vectors belong to arbitrary convex domains. We then show that the set of standard constraints can be extended to include arbitrary network constraints. Our insights into the problem occur primarily as a result of studying the dual polytope of the constraint system. (Also cross-refernced as UMIACS-TR-2000-11

    A new mixed-integer modeling approach for capacity-constrained continuous-time scheduling problems

    Get PDF
    Nowadays, scheduling and resource management are increasingly important issues for organizations. Indeed, they do not only constitute an underlying necessity to make things work properly within the companies, but are and will always be more critical means to reduce costs and get competitive advantage in the market. Different approaches have been typically employed for these problems during the years. Among the others, linear programming techniques represent a valid tool that, despite applicable only to instances of limited dimension, offers an extremely flexible modeling opportunity, able to produce either optimal or approximate solutions of certified quality. In this spirit, the definition of suitable indicator variables and the use of particular constraints are proposed in the present work, with the aim of providing a useful basis for different mathematical models, taking into account scarce resources and other potential limitations. More in detail, a very well-known problem from the literature, the Resource Constrained Project Scheduling Problem, is investigated, and a new mixed-integer linear formulation is introduced, which treats time as a continuous variable. The considered model presents several advantages from the computational point of view, that are deeply studied and compared with those of one of the best methods recently developed in the same field. Extensive experiments reveal the good performances achieved by the proposed formulation over all the KPIs included in the analysis, thus motivating further applications to derived problems, such as the workforce planning and scheduling framework presented at the end of this dissertation

    Simulation methods for reliability-based design optimization and model updating of civil engineering structures and systems

    Get PDF
    This thesis presents a collection of original contributions pertaining to the subjects of reliability-based design optimization (RBDO) and model updating of civil engineering structures and systems. In this regard, probability theory concepts and tools are instrumental in the formulation of the herein reported developments. Firstly, two approaches are devised for the RBDO of structural dynamical systems under stochastic excitation. Namely, a stochastic search technique is proposed for constrained and unconstrained RBDO problems involving continuous, discrete and mixed discrete-continuous design spaces, whereas an efficient sensitivity assessment framework for linear stochastic structures is implemented to identify optimal designs and evaluate their sensitivities. Moreover, two classes of model updating problems are considered. In this context, the Bayesian interpretation of probability theory plays a key role in the proposed solution schemes. Specifically, contaminant source detection in water distribution networks is addressed by resorting to a sampling-based Bayesian model class selection framework. Furthermore, an effective strategy for Bayesian model updating with structural reliability methods is presented to treat identification problems involving structural dynamical systems, measured response data, and high-dimensional parameter spaces. The approaches proposed in this thesis integrate stochastic simulation techniques as an essential part of their formulation, which allows obtaining non-trivial information about the systems of interest as a byproduct of the solution processes. Overall, the findings presented in this thesis suggest that the reported methods can be potentially adopted as supportive tools for a number of practical decision-making processes in civil engineering.Diese Arbeit stellt eine Sammlung von Beiträgen vor, die sich mit der Reliability-based-Design-Optimization (RBDO) und dem Model updating von Strukturen und Systemen im Bauwesen befassen. In diesem Zusammenhang sind wahrscheinlichkeitstheoretische Konzepte fßr die Formulierung der hier vorgestellten Entwicklungen von entscheidender Bedeutung. Zunächst werden zwei Ansätze fßr eine RBDO von strukturdynamischen Systemen unter stochastischer Anregung entwickelt. Es wird eine stochastische Suchtechnik fßr beschränkte und unbeschränkte RBDO-Probleme vorgeschlagen. Diese beziehen kontinuierliche, diskrete und gemischt diskret-kontinuierliche Designräume ein. Gleichzeitig wird ein effizientes Framework zur Bewertung der Sensitivität lineare stochastische Strukturen implementiert, um optimale Designs zu identifizieren und ihre Sensitivitäten zu bewerten. Darßber hinaus werden zwei Klassen von Problem aus dem Model updating betrachtet. Der Fokus wird hierbei auf die Erkennung von Kontaminationsquellen in Wasserverteilungsnetzen mithilfe eines auf Stichproben basierenden Bayesian-Model-Class-selection-Framework gelegt. Ferner wird eine effektive Strategie zur Bearbeitung von Problemen des Bayesian-Model-updating, die strukturdynamischen Systeme, gemessene Systemantwortdaten und hochdimensionale Parameterräume umfassen, vorgestellt. Die beschriebenen Ansätze verwenden stochastische Simulationstechniken als wesentlicher Bestandteil ihrer Formulierung, wodurch nicht-triviale Informationen ßber betrachtete Systeme als Nebenprodukt der LÜsungsprozesse gewonnen werden kÜnnen. Insgesamt deuten die vorgestellten Ergebnisse dieser Arbeit darauf hin, dass die beschriebenen Methoden potenziell als unterstßtzende Elemente in praktischen Entscheidungsproblemen im Zusammenhang mit Strukturen und Systemen im Bauwesen eingesetzt werden kÜnnen

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Control of a mechanical hybrid powertrain

    Get PDF
    corecore