
A new mixed-integer modeling approach for
capacity-constrained continuous-time scheduling
problems

Scuola di Scienza e Tecnologia dell’informazione e delle comunicazioni

Dottorato di Ricerca in Automatica Bioingegneria e Ricerca Operativa –
XXXI Ciclo

Candidate

Ludovica Maccarrone
ID number 1309929

Thesis Advisor

Prof. Stefano Lucidi

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Automatica Bioingegneria e
Ricerca Operativa

October 2018

Thesis defended on 26 February 2019
in front of a Board of Examiners composed by:

Prof. Giancarlo Bigi, Università di Pisa (chairman)
Prof. Giovanni Sparacino, Università di Padova
Prof. Giovanni Ulivi, Università di Roma Tre

A new mixed-integer modeling approach for capacity-constrained continuous-
time scheduling problems
Ph.D. thesis. Sapienza – University of Rome

© 2018 Ludovica Maccarrone. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: ludovica.maccarrone@uniroma1.it

mailto:ludovica.maccarrone@uniroma1.it

Dedicated to my family.
For their love, support, and

constant encouragement.

v

Abstract

Nowadays, scheduling and resource management are increasingly important issues
for organizations. Indeed, they do not only constitute an underlying necessity to
make things work properly within the companies, but are and will always be more
critical means to reduce costs and get competitive advantage in the market.

Different approaches have been typically employed for these problems during the
years. Among the others, linear programming techniques represent a valid tool that,
despite applicable only to instances of limited dimension, offers an extremely flexible
modeling opportunity, able to produce either optimal or approximate solutions of
certified quality. In this spirit, the definition of suitable indicator variables and
the use of particular constraints are proposed in the present work, with the aim
of providing a useful basis for different mathematical models, taking into account
scarce resources and other potential limitations. More in detail, a very well-known
problem from the literature, the Resource Constrained Project Scheduling Problem,
is investigated, and a new mixed-integer linear formulation is introduced, which treats
time as a continuous variable. The considered model presents several advantages
from the computational point of view, that are deeply studied and compared with
those of one of the best methods recently developed in the same field. Extensive
experiments reveal the good performances achieved by the proposed formulation over
all the KPIs included in the analysis, thus motivating further applications to derived
problems, such as the workforce planning and scheduling framework presented at
the end of this dissertation.

vii

Acknowledgments

Firstly, I would like to express my gratitude to my advisor Prof. Stefano Lucidi for
its guidance during all the last years, for his patience, motivation, and knowledge.
He helped me from the earliest study to the writing of this thesis, supporting my work
with the best suggestions and discussions.

I also sincerely thank ACT-OR and all its staff, for having encouraged me to
start the PhD program and for having inspired this research project.

I wish to say thank you to my colleagues of DIAG, who shared with me this
important experience, full of work days, full of thoughts night, and funny moments.

Last but not least, my special thanks go to Tommaso and to all my family and
friends for their kind and precious support during the last period and during my life
in general.

ix

Contents

Introduction xvii

1 Indicator variables and constraints 1
1.1 Basic notions . 1
1.2 Logical relations between inequality constraints 3
1.3 Indicator variables for inequalities logical relations 8

1.3.1 Introductory example . 9
1.3.2 Important remarks on big-M formulations 12
1.3.3 Indicator variables for the AND logical operation 13
1.3.4 Indicator variables for the OR logical operation 14
1.3.5 Indicator variables for the other logical operations 15

1.4 Indicator variables, logical relations and scheduling 20
1.4.1 Example 1: Single machine scheduling for fresh products jobs 22
1.4.2 Example 2: Scheduling of timetable in a manufacturing cell . 26
1.4.3 Example 3: Costs minimization for two machines subject to

electricity load peaks . 30
1.4.4 Example 4: Scheduling of inspections in a continuous produc-

tion system . 32

2 New inequalities for capacity-constrained scheduling formulations 37
2.1 From disjunctive constraints to their extensions 37

2.1.1 Overlapping variables: γ, γ12 and γ21 41
2.1.2 Sequencing variables: θ, θ12 and θ21 42

2.2 Extension to m activities . 44
2.2.1 Sharing of resources and capacity restrictions 45

2.3 Formulation improvements . 48
2.3.1 Constraints reduction . 49
2.3.2 Variables reduction . 49
2.3.3 Parameters refinement . 54

3 A new formulation for the RCPSP 61
3.1 Literature review . 62
3.2 Our solution approach . 69

3.2.1 A new continuous-time formulation for the RCPSP 69
3.2.2 Computational considerations 70

3.3 The approaches of Kopanos, Kyriakidis, and Georgiadis 79

x Contents

3.4 Models comparison . 83
3.4.1 Similarities and differences between formulations 84
3.4.2 Preliminary computational analysis 94

3.5 Experimental results . 103

4 A new framework for workforce planning and activities scheduling111
4.1 Introduction and motivations . 111
4.2 Main components of the framework 112

4.2.1 Resources . 112
4.2.2 Skills . 112
4.2.3 Activities . 113

4.3 Simulation-based optimization . 113
4.4 Problem statement . 115
4.5 A bilevel programming formulation 117
4.6 The structure of the framework . 119
4.7 Examples of applications . 120

4.7.1 Application 1: Big plant construction 120
4.7.2 Application 2: Software development projects 121
4.7.3 Application 3: Operators allocation in manufacturing and

logistic processes . 122

Conclusions 125

A Detailed results for set j30 of PSPLib 127

B Node logs for an example with 5 activities 133

C Additional graphs of results 137

xi

List of Figures

1.1 Graphical representation of an optimal solution to problem (a). Lines
above the schedule illustrate jobs due intervals. Dashed connectors
highlight earliness/tardiness issues. 25

1.2 Graphical representation of an optimal solution to problem (b). Lines
above the schedule illustrate jobs due intervals. Dashed connectors
highlight earliness/tardiness issues. 25

1.3 Graphical representation of an optimal solution to problem (c). Lines
above the schedule illustrate jobs due intervals. Dashed connectors
highlight earliness/tardiness issues. 25

1.4 Optimal solution for scenario (a), assuming job shop problem data of
Table 1.14. 28

1.5 Optimal solution for scenario (b), assuming job shop problem data of
Table 1.14. 29

1.6 Optimal solution for scenario (c), assuming job shop problem data of
Table 1.14. 30

1.7 Optimal schedule for the two parallel machines. 32
1.8 Optimal solution: first policy is used. 34
1.9 Optimal solution when second policy is forced. 35

2.1 Possible modes of overlapping between two activities with generic
processing times. 39

2.2 Possible dispositions of two activities that do not overlap. 39
2.3 Example of a Gantt chart involving five activities. 45
2.4 Example of a feasible solution subject to a capacity limit of 2 parallel

activities. 47
2.5 Example scheduling representation of 5 activities subject to 2 resource

limitations. 48
2.6 Example of three activities with the same starting time. 54

3.1 Example of a precedence activity-on-node graph. 62
3.2 Possible disposition alternatives for two generic activities j and c. . . 73
3.3 Example of a branching tree generated while solving the simple in-

stance of Table 3.6 using formulation F1. Black and white colors
respectively indicate if the node was created by branching on a θ or
a γ variable. Node labels follow the format: (# fixed θ, # fixed γ,

fractional θ from relaxation
variables - # fixed θ - # fixed γ ,

fractional γ from relaxation
variables - # fixed θ - # fixed γ). 79

xii List of Figures

3.4 Branching trees generated (from left to right) by F1, Kop-CT1-m and
Kop-CT2-m while solving a simple instance with five activities. Black
and white nodes indicate the type of variable selected for branching. 99

3.5 Comparison between the amounts of test problems in each set opti-
mally or non-optimally solved by F1 and Kop-CT1-m. 105

3.6 Amounts of instances in each set optimally solved by both models, by
none of the two, or by one formulation and not by the other (optimal
for F1 and feasible for Kop-CT1-m or optimal for Kop-CT1-m and
feasible for F1). 105

3.7 Distribution of computation times over different ranges for F1 and
Kop-CT1-m, considering only the instances optimally solved among
those of all sets. 106

3.8 Distribution of actual gaps over different ranges for F1 and Kop-CT1-
m, considering only the suboptimal or non-proven optimal instances
among those of all sets. 106

3.9 Percentages of instances solved or not solved to optimality by each
method for each test set, detailed for different ranges of computation
times and actual gaps from the best known solutions. 108

3.10 Average indicator values for all the instances considered. 109

4.1 Activity simulator example model. 114
4.2 Framework structure. 119
4.3 Schematic representation of a typical iteration of the framework. . . 120

B.1 Node log of formulation F1. 133
B.2 Node log of formulation Kop-CT1-m. 134
B.3 Node log of formulation Kop-CT2-m. 135

C.1 Distribution of computation times over different ranges for F1 and
Kop-CT1-m, considering only the instances optimally solved among
those of set j30 of PSPLib. 137

C.2 Distribution of computation times over different ranges for F1 and
Kop-CT1-m, considering only the instances optimally solved among
those of set j60 of PSPLib. 137

C.3 Distribution of computation times over different ranges for F1 and
Kop-CT1-m, considering only the instances optimally solved among
those of Set 1 of RanGen2. 138

C.4 Distribution of computation times over different ranges for F1 and
Kop-CT1-m, considering only the instances optimally solved among
those of Set 2 of RanGen2. 138

C.5 Distribution of computation times over different ranges for F1 and
Kop-CT1-m, considering only the instances optimally solved among
those of Set 3 of RanGen2. 138

C.6 Distribution of computation times over different ranges for F1 and
Kop-CT1-m, considering only the instances optimally solved among
those of Set 4 of RanGen2. 139

List of Figures xiii

C.7 Distribution of computation times over different ranges for F1 and
Kop-CT1-m, considering only the instances optimally solved among
those of set Set 5 of RanGen2. 139

C.8 Distribution of actual gaps over different ranges for F1 and Kop-CT1-
m, considering only the sub-/non-proven optimal instances among
those of set j30 of PSPLib. 139

C.9 Distribution of actual gaps over different ranges for F1 and Kop-CT1-
m, considering only the suboptimal or non-proven optimal instances
among those of set j60 of PSPLib. 140

C.10 Distribution of actual gaps over different ranges for F1 and Kop-CT1-
m, considering only the sub-/non-proven optimal instances among
those of Set 1 of RanGen2. 140

C.11 Distribution of actual gaps over different ranges for F1 and Kop-CT1-
m, considering only the sub-/non-proven optimal instances among
those of Set 2 of RanGen2. 140

C.12 Distribution of actual gaps over different ranges for F1 and Kop-CT1-
m, considering only the sub-/non-proven optimal instances among
those of Set 3 of RanGen2. 141

C.13 Distribution of actual gaps over different ranges for F1 and Kop-CT1-
m, considering only the sub-/non-proven optimal instances among
those of Set 4 of RanGen2. 141

C.14 Distribution of actual gaps over different ranges for F1 and Kop-CT1-
m, considering only the sub-/non-proven optimal instances among
those of Set 5 of RanGen2. 141

xv

List of Tables

1.1 Single-constraint logical implications and corresponding formulation. 3
1.2 g(x) ≤ 0 AND h(x) ≤ 0 truth table. 4
1.3 g(x) ≤ 0 OR h(x) ≤ 0 truth table. 4
1.4 g(x) ≤ 0 XOR h(x) ≤ 0 truth table. 5
1.5 g(x) ≤ 0 NAND h(x) ≤ 0 truth table. 5
1.6 g(x) ≤ 0 NOR h(x) ≤ 0 truth table. 6
1.7 g(x) ≤ 0 XNOR h(x) ≤ 0 truth table. 6
1.8 IF g(x) ≤ 0 THEN h(x) ≤ 0 truth table. 7
1.9 g(x) ≤ 0 BUT-NOT h(x) ≤ 0 truth table. 7
1.10 Logic conditions and corresponding constraints set. 20
1.11 Data for a particular instance with 12 jobs and 3 part types. 23
1.12 Change-dependent setup times for a particular instance with 3 different

part types. 23
1.13 Optimal solutions for problems (a), (b) and (c). 26
1.14 Processing times and sequences for a particular instance with 6 jobs

and 3 stations. 28
1.15 Data and optimal solution for a particular instance with p = 2 and

s = 80. 32

2.1 Possible cases and corresponding values for variables γ, γ12, γ21, as
determined by constraints (2.5)-(2.6), (2.13)-(2.14) and (2.9)-(2.12),
(2.15)-(2.18). 42

2.2 Possible values of variables γ12, γ21, θ12 and θ21 and corresponding
meaning, as determined by constraints (2.9)-(2.12), (2.15)-(2.18). . . 44

2.3 Data used for the example representation of Figure 2.5. 48
2.4 Possible cases and corresponding values of variables γjc, γcj and θjc,

on the basis of constraints (2.29)-(2.32). 52
2.5 Possible cases and corresponding values of variables γjc, γcj and θjc,

on the basis of constraints (2.33)-(2.36). 58

3.1 Feasible values (•) of γjc, γcj and θjc for all starting times alternatives
and all formulations, ignoring resource constraints. 73

3.2 Computational results for F1, F2 and F3 on j30 instances. 74
3.3 Results comparison between formulations F1 and F2 75
3.4 Results comparison between formulations F1 and F3 76

xvi List of Tables

3.5 Computational results for F1, F2 and F3 on j30 instances with CPLEX
advanced methods disabled. 77

3.6 Example data and solution for a simple instance with five activities
and one resource type. 80

3.7 Approximated amounts of variables and constraints for all the Continuous-
Time compact formulations proposed in the literature, considering
m activities, n different resource types, and an average number of
individual resources for each type equal to l. 84

3.8 Number of variables and constraints for formulations F1, Kop-CT1-m
and Kop-CT2-m, considering m activities, n resource types, and |Q|
precedence relations. 91

3.9 Implications brought by the three different sets of constraints, consid-
ering a single pair (1, 2) ∈ Ā2 and all possible cases for the activities
starting times. 91

3.10 Feasible values of (zjc, zcj , xjc, xcj) for Kop-CT1-m and (zjc, zcj , xjc)
for Kop-CT2-m, for all starting times alternatives, ignoring resource
constraints. 93

3.11 Computational results for F1, F1-w, Kop-CT1-m, Kop-CT1-w, Kop-
CT2-m, and Kop-CT2-w on j30 instances. 95

3.12 Results comparison between formulations F1 and Kop-CT1-m 96
3.13 Results comparison between formulations F1 and Kop-CT2-m 97
3.14 Average solving times of root node relaxation for F1, Kop-CT1-m,

and Kop-CT2-m on j30 instances. 98
3.15 Computational results for F1, Kop-CT1-m and Kop-CT2-m on j30

instances with CPLEX advanced methods disabled. 98
3.16 Computational results for F1 and Kop-CT1-m on sets j30, j60, and

sets 1-5 of RanGen2. 104

A.1 Results for F1, Kop-CT1-m, and Kop-CT2-m on each instance of set
j30. 132

xvii

Introduction

It is well-known in the field of operations research and applied mathematics in
general that the same problem can normally be modeled in several ways, and that
distinct methods can often lead to significantly different performances of solution
procedures. Considering this observation with reference to linear programming
techniques implies to recognize that, assuming equivalent conditions and calculation
times, different formulations can obtain very different results, in particular when
integer or binary variables are included. This is one of the reasons why the literature
on ILP and MILP approaches has been proliferating over the years, and undoubtedly
constitutes a fundamental conception at the basis of the work proposed here.

Starting from these considerations, we have posed our attention on a specific
branch of the theory on model building, focusing on the use of logical variables
and indicator constraints, with special regard to their employment in scheduling
problems, which is really widespread.

Indeed, scheduling problems imply the calculation of feasible timetables for
groups of activities. In such situations, many “yes or no” decisions typically have to
be taken. These in general represent the need to avoid conflicts potentially arising
between contending operations, as for example to establish which activity should be
processed first or to determine if a certain allocation is convenient. In particular,
many decisions can be seen as answers related to the use of physical or conceptual
resources that are available in limited quantities. This is for instance the case of
machines, operators, time slots, energy, data storage capacity, computation time,
and so on.

Looking at time management issues from this point of view, it is easy to un-
derstand the theoretical and practical interest behind the study of the so-called
Resource Constrained Project Scheduling Problem (RCPSP) here considered. It
is indeed a generalization of the Job-Shop, Flow-Shop and Open-Shop scheduling
problems famous in production contexts, involving not only the restrictions im-
posed by precedence relationships, but also the constraining effects generated by the
temporary requirement of additional scarce resources.

The RCPSP belongs to the class of NP-hard optimization problems. Never-
theless, it is studied by many researchers for its general structure and interesting
applicability to several circumstances in production planning and software imple-
mentation. Moreover, since also human labor can be identified as a resource, it can
naturally be thought as a model for applications in the fields of project and workforce
management, which are increasingly emerging topics for today’s organizations.

In this dissertation, we present a new continuous time MILP formulation for
the RCPSP and compare it to one of the best methods in the related literature,

xviii Introduction

showing very promising results on a large number of test instances, including the
most broadly used. Indeed, the proposed new model achieves better results in terms
of both computational time spent and solution quality attained.

In the following, each of the above mentioned topics will be investigated in
details. The work is organized as follows: in Chapter 1 the basic building blocks of
any mathematical formulation including binary variables and indicator constraints
are introduced. The aim of such mathematical tools is deeply investigated and
some particular applications to activities scheduling are discussed. In Chapter 2
the analysis is focused on standard modeling techniques for scheduling problems
and especially on their extension to represent more difficult settings where capacity
constraints are present, by means of the basic building blocks introduced in Chapter
1. Chapter 3 constitute the main contribution of this dissertation. After a formal
description of the RCPSP and a comprehensive literature review on the MILP
solution approaches to it, a new formulation, based on the constraints and variables
analyzed in Chapter 2, is proposed. The new formulation is then compared to some
state-of-the-art works both from a formal and numerical point of view. Finally, in
Chapter 4 a potential application of the above proposed new mathematical model to
workforce planning and scheduling problems is presented. It is based on a black-box
framework leveraging a simulation-optimization paradigm.

1

Chapter 1

Indicator variables and
constraints

MILP approaches make frequent use of indicator variables and associated constraints.
They indeed permit to easily model logical connections between different components
of the formulation, thus allowing a great flexibility.

The aim of this chapter is to provide a comprehensive overview of the main
modeling opportunities offered by the employment of these techniques. In particular,
Section 1.1 introduces the basic notions, and Section 1.2 presents the methodologies
to logically connect two general inequality constraints. Then, Section 1.3 links such
logical relations to suitable binary variables. Finally, Section 1.4 focuses on some
applications of previous arguments to scheduling problems.

1.1 Basic notions
In mathematics, inequalities represent conditions that variables, depending on their
values, either satisfy or not. In particular, let us consider a simple optimization
problem in which x ∈ Rn is the decision variable and f : Rn → R is the objective
function. If we include in the formulation a general less-than-or-equal constraint
g(x) ≤ 0, with g : Rn → R, we get the following:

min
x∈Rn

f(x)

g(x) ≤ 0

Here, g(x) ≤ 0 defines the feasible region, i.e. the values of x for which the
inequality is satisfied. If a vector x̄ is such that g(x̄) > 0, then it can not be a
solution for the problem since the purpose of the constraint is just to exclude it from
the possible results.

In some cases, however, formulations involve inequalities not as explicit limitations
of the feasible space, but rather with a role connected to the value of a binary variable,
which is said indicator. Indicator variables have a dual role: on the one hand they
allow to force particular relations to be true when some conditions are met, on the
other they permit to detect if inequalities are satisfied for certain values of problem
main variables.

2 1. Indicator variables and constraints

For example, if in an optimization model we want to indicate that if γ ∈ {0, 1}
is “active” (i.e. γ = 1) then g(x) has to be less than or equal to 0, we may use the
so called big-M formulation and write:

g(x) ≤M(1− γ),

where M is supposed to be a large enough constant such that

g(x) ≤M

is always satisfied in the problem under consideration. This idea has the advantage
of preserving constraint linearity if g is an affine linear function, and allows to simply
express the condition:

γ = 1⇒ g(x) ≤ 0,

or equivalently:
g(x) > 0⇒ γ = 0.

The first implication tells that γ = 1 forces (and indeed it is sufficient to have)
g(x) ≤ 0. The second clarifies the idea behind the term “indicator variable” since
γ “indicates” the status of g(x), in particular taking value 0 when g(x) ≤ 0 is not
satisfied.

Similarly, we may use γ to control the opposite condition, that is:

g(x) ≤ 0⇒ γ = 1,

which is identical to:
γ = 0⇒ g(x) > 0.

This can be expressed considering a very small positive parameter ε and a sufficiently
negative constant m such that the inequality

m < g(x)

is always true in the particular problem under study. Indeed, we can impose (once
again, without introducing any nonlinearity):

mγ + ε ≤ g(x),

where ε is established in accordance with instances considered and has the role of
avoiding issues on the strict inequality g(x) > 0, practically specifying a precision
to be checked (e.g., 10−3). In other words, it transforms the initial conditions in
g(x) ≤ 0⇒ γ = 1 and γ = 0⇒ g(x) ≥ ε.

Thus, γ = 1 is necessary to have g(x) ≤ 0 (it indicates that constraint is satisfied).
If γ = 0, g(x) ≤ 0 has to be false.

Notice that using both the above derived relations, i.e.

mγ + ε ≤ g(x) ≤M(1− γ),

we get a necessary and sufficient condition:

γ = 1⇔ g(x) ≤ 0.

1.2 Logical relations between inequality constraints 3

Condition Equivalent condition Constraints

γ = 1⇒ g(x) ≤ 0 g(x) > 0⇒ γ = 0 g(x) ≤M(1− γ)

g(x) ≤ 0⇒ γ = 1 γ = 0⇒ g(x) > 0 mγ + ε ≤ g(x)

γ = 1⇔ g(x) ≤ 0 γ = 0⇔ g(x) > 0 mγ + ε ≤ g(x) ≤M(1− γ)

γ = 1⇒ g(x) ≥ 0 g(x) < 0⇒ γ = 0 m(1− γ) ≤ g(x)

g(x) ≥ 0⇒ γ = 1 γ = 0⇒ g(x) < 0 g(x) ≤Mγ − ε

γ = 1⇔ g(x) ≥ 0 γ = 0⇔ g(x) < 0 m(1− γ) ≤ g(x) ≤Mγ − ε

γ = 0⇒ g(x) ≤ 0 g(x) > 0⇒ γ = 1 g(x) ≤Mγ

g(x) ≤ 0⇒ γ = 0 γ = 1⇒ g(x) > 0 m(1− γ) + ε ≤ g(x)

γ = 0⇔ g(x) ≤ 0 γ = 1⇔ g(x) > 0 m(1− γ) + ε ≤ g(x) ≤Mγ

γ = 0⇒ g(x) ≥ 0 g(x) < 0⇒ γ = 1 mγ ≤ g(x)

g(x) ≥ 0⇒ γ = 0 γ = 1⇒ g(x) < 0 g(x) ≤M(1− γ)− ε

γ = 0⇔ g(x) ≥ 0 γ = 1⇔ g(x) < 0 mγ ≤ g(x) ≤M(1− γ)− ε

Table 1.1. Single-constraint logical implications and corresponding formulation.

Other possible cases, together with those already described, are briefly summa-
rized in Table 1.1, where for simplicity we consider m+ ε ≤ g(x) ≤M − ε.

This clarifies all the possible ways to link a binary variable to a general inequality
relation. In some cases, however, it could make sense to extend this approach to
consider more than one constraint like g(x) ≤ 0. In particular, it is interesting to
analyze what happens when the inequalities to be linked to the binary variable
become two or more. A single relation as g(x) ≤ 0, indeed, only admits two logical
possibilities: either it is true, or it is false (g(x) > 0 equals to NOT g(x) ≤ 0). When
constraints are two, more options are available, paving the way to several boolean
operations that can benefit of being examined. For this reason, in the following section
we present the possible logical relations between couples of inequality constraints,
while in Section 1.3 we introduce how to link the satisfaction or non-satisfaction of
these relations to suitable indicator variables.

1.2 Logical relations between inequality constraints

Let us consider a variable x ∈ Rn and two general constraints g(x) ≤ 0 and h(x) ≤ 0,
where g : Rn → R and h : Rn → R. If these constraints must be satisfied at the
same time, they can be simply included in the set of conditions defining the solution
space of the problem by writing:

{
g(x) ≤ 0
h(x) ≤ 0

4 1. Indicator variables and constraints

This implies that a solution x′ ∈ Rn is feasible if and only if both g(x′) ≤ 0 and
h(x′) ≤ 0 are true. Using the appropriate boolean operator, we say that

g(x) ≤ 0 AND h(x) ≤ 0

must hold. If we schematically represent this concept, we obtain the truth Table 1.2.

g(x) ≤ 0 h(x) ≤ 0 g(x) ≤ 0 AND h(x) ≤ 0
F F F
F T F
T F F
T T T

Table 1.2. g(x) ≤ 0 AND h(x) ≤ 0 truth table.

A different situation applies when the conditions expressed by the constraints
may be alternative, i.e. when just one of the two inequalities must necessarily be
satisfied (see truth Table 1.3). In this case, a binary variable θ is added to the
problem and the solution space is defined as follows:{

g(x) ≤Mgθ

h(x) ≤Mh(1− θ)
where Mg and Mh are two large constants that constitute the upper bounds

respectively for g(x) and h(x). This formulation preserves linearity if g and h are
linear functions, and allows to indicate that at least one of the two constraints must
be met. Indeed, if θ is equal to 0, g(x) ≤ 0 and the second constraint is relaxed,
otherwise θ is equal to 1 and only h(x) ≤ 0 influences the feasible region. In other
words, this guarantees

g(x) ≤ 0 OR h(x) ≤ 0
to be valid.

g(x) ≤ 0 h(x) ≤ 0 g(x) ≤ 0 OR h(x) ≤ 0
F F F
F T T
T F T
T T T

Table 1.3. g(x) ≤ 0 OR h(x) ≤ 0 truth table.

Notice that while the AND relation could be easily extended to deal with more
than two constraints, simply including the additional inequalities in the formulation,
this is not true for the OR, which would require to introduce other binary variables.
However, for the purpose of this chapter, we will consider only the possible relations
within a couple of constraints, trying to provide a theoretical basis to tackle more
complex situations.

In this respect, we may analyze another logical function that is quite common
between two conditions: the XOR, i.e. the exclusive OR, which forces one and

1.2 Logical relations between inequality constraints 5

exactly one constraint to be true, as shown in Table 1.4. Assuming mg and mh to
be lower bounds for g(x) and h(x),

g(x) ≤ 0 XOR h(x) ≤ 0

can be expressed by the following:
g(x) ≤Mgθ

h(x) ≤Mh(1− θ)
mg(1− θ) + ε ≤ g(x)
mhθ + ε ≤ h(x)

Here, if θ is equal to 0, then mg < g(x) ≤ 0 and 0 < h(x) ≤Mh; otherwise θ is
1, 0 < g(x) ≤Mg and mh < h(x) ≤ 0. In both cases one constraint is satisfied and
the other is not.

g(x) ≤ 0 h(x) ≤ 0 g(x) ≤ 0 XOR h(x) ≤ 0
F F F
F T T
T F T
T T F

Table 1.4. g(x) ≤ 0 XOR h(x) ≤ 0 truth table.

Other common examples of logical relations existing between two conditions are
the complements of those previously listed. In particular, the opposite of the AND
operator is the NAND. Therefore

g(x) ≤ 0 NAND h(x) ≤ 0

indicates that at most one of the constraints has to be valid. It is implied by the
expressions:

{
mg(1− θ) + ε ≤ g(x)
mhθ + ε ≤ h(x)

It may be either g(x) > 0, h(x) > 0 or both; however g(x) ≤ 0 and h(x) ≤ 0 is
not possible, as also reported in Table 1.5.

g(x) ≤ 0 h(x) ≤ 0 g(x) ≤ 0 NAND h(x) ≤ 0
F F T
F T T
T F T
T T F

Table 1.5. g(x) ≤ 0 NAND h(x) ≤ 0 truth table.

6 1. Indicator variables and constraints

The logical NOR is the inverse of the OR (see truth Table 1.6). This means
condition

g(x) ≤ 0 NOR h(x) ≤ 0

implies original constraints (i.e., g(x) ≤ 0 and h(x) ≤ 0) not to be satisfied. There-
fore: {

ε ≤ g(x)
ε ≤ h(x)

g(x) ≤ 0 h(x) ≤ 0 g(x) ≤ 0 NOR h(x) ≤ 0
F F T
F T F
T F F
T T F

Table 1.6. g(x) ≤ 0 NOR h(x) ≤ 0 truth table.

The XNOR operator admits two possibilities: either constraints are both
satisfied or both unsatisfied, which constitutes the opposite of the XOR. In order
to express

g(x) ≤ 0 XNOR h(x) ≤ 0,

the following are used: 
g(x) ≤Mgθ

h(x) ≤Mhθ

mg(1− θ) + ε ≤ g(x)
mh(1− θ) + ε ≤ h(x)

Indeed, if θ is 0, thenmg < g(x) ≤ 0 andmh < h(x) ≤ 0; if θ = 1, 0 < g(x) ≤Mg

and 0 < h(x) ≤Mh. XNOR truth table is given in Table 1.7.

g(x) ≤ 0 h(x) ≤ 0 g(x) ≤ 0 XNOR h(x) ≤ 0
F F T
F T F
T F F
T T T

Table 1.7. g(x) ≤ 0 XNOR h(x) ≤ 0 truth table.

Finally, we consider the last two non-trivial relations that can be imposed between
two general inequalities, which respectively represent the concept of implication and
its complement. When constraints are linked by a relation specifying that if the
first is met then also the second must be satisfied, the IF-THEN operator is used.
Practically, to express

IF g(x) ≤ 0 THEN h(x) ≤ 0,

1.2 Logical relations between inequality constraints 7

it is possible to introduce these inequalities:{
mgθ + ε ≤ g(x)
h(x) ≤Mh(1− θ)

When θ is 0, g(x) > 0 and no limitations affect h(x). Otherwise, if θ = 1,
h(x) ≤ 0 and g(x) is free. Thus the satisfaction of the first constraint implies also
the second to be met since it is not possible to have g(x) ≤ 0 and h(x) > 0 at the
same time (see Table 1.8).

g(x) ≤ 0 h(x) ≤ 0 IF g(x) ≤ 0 THEN h(x) ≤ 0
F F T
F T T
T F F
T T T

Table 1.8. IF g(x) ≤ 0 THEN h(x) ≤ 0 truth table.

The complement of this situation is realized when g(x) ≤ 0 has to be true and
h(x) ≤ 0 false, as reported in Table 1.9. In this case we say that

g(x) ≤ 0 BUT-NOT h(x) ≤ 0

must hold and simply write: {
g(x) ≤ 0
ε ≤ h(x)

g(x) ≤ 0 h(x) ≤ 0 g(x) ≤ 0 BUT-NOT h(x) ≤ 0
F F F
F T F
T F T
T T F

Table 1.9. g(x) ≤ 0 BUT-NOT h(x) ≤ 0 truth table.

Notice that the IF-THEN and theBUT-NOT relations are both non-symmetric
in the sense that constraints, in contrast to all other cases, assume different roles in
defining the feasible region. For example, (IF a THEN b) does not coincide with
(IF b THEN a). It follows that, in general, it would make sense to also describe
the inverse implication. However the result can be banally obtained by substituting
g(x) and h(x) in previous formulation (as well as mg and mh, and Mh and Mg).

In this section, we have only taken into account logical relations between two
general less-than-or-equal constraints g(x) ≤ 0 and h(x) ≤ 0. Before concluding,
let us consider the following remarks to reduce all other cases to those already
addressed:

8 1. Indicator variables and constraints

1. If a constraint is a greater-then-or-equal inequality, g(x) ≥ 0, it is obviously
possible to apply g′(x) = −g(x) and consequently get g′(x) ≤ 0.

2. If a constraint is a strict greater-than inequality, g(x) > 0, it’s complement
is a less-then-or-equal relation, i.e. NOT (g(x) > 0) = g(x) ≤ 0. Therefore, a
different logical operation can be used. In particular:

g(x) > 0 AND h(x) ≤ 0) equals to h(x) ≤ 0 BUT-NOT g(x) ≤ 0;
g(x) > 0 AND h(x) > 0) equals to g(x) ≤ 0 NOR h(x) ≤ 0;
g(x) > 0 OR h(x) ≤ 0) equals to IF g(x) ≤ 0 THEN h(x) ≤ 0;
g(x) > 0 OR h(x) > 0) equals to g(x) ≤ 0 NAND h(x) ≤ 0;
g(x) > 0 XOR h(x) ≤ 0 equals to g(x) ≤ 0 XNOR h(x) ≤ 0;
g(x) > 0 XOR h(x) > 0 equals to g(x) ≤ 0 XOR h(x) ≤ 0;
g(x) > 0 NAND h(x) ≤ 0 equals to IF h(x) ≤ 0 THEN g(x) ≤ 0;
g(x) > 0 NAND h(x) > 0 equals to g(x) ≤ 0 OR h(x) ≤ 0;
g(x) > 0 NOR h(x) ≤ 0 equals to g(x) ≤ 0 BUT-NOT h(x) ≤ 0;
g(x) > 0 NOR h(x) > 0 equals to g(x) ≤ 0 AND h(x) ≤ 0;
g(x) > 0 XNOR h(x) ≤ 0 equals to g(x) ≤ 0 XOR h(x) ≤ 0;
g(x) > 0 XNOR h(x) > 0 equals to g(x) ≤ 0 XNOR h(x) ≤ 0;
IF g(x) > 0 THEN g(x) ≤ 0 equals to g(x) ≤ 0 OR h(x) ≤ 0;
IF g(x) ≤ 0 THEN h(x) > 0 equals to g(x) ≤ 0 NAND h(x) ≤ 0;
IF g(x) > 0 THEN h(x) > 0 equals to IF h(x) ≤ 0 THEN g(x) ≤ 0;
g(x) > 0 BUT-NOT h(x) ≤ 0 equals to g(x) ≤ 0 NOR h(x) ≤ 0;
g(x) ≤ 0 BUT-NOT h(x) > 0 equals to g(x) ≤ 0 AND h(x) ≤ 0;
g(x) > 0 BUT-NOT h(x) > 0 equals to h(x) ≤ 0 BUT-NOT g(x) ≤ 0.

3. If a constraint is a strict less-than inequality, g(x) < 0, both previous observa-
tions need to be considered.

1.3 Indicator variables for inequalities logical relations
In the last section we have seen that, given two generic inequalities, there are several
ways in which they can be logically connected and that each connection can be easily
forced by introducing a set of appropriate constraints.

In some cases, however, the problem is not to limit the feasible space due to an
existing restriction given by different conditions, but rather to identify if a logical
relation holds in order to use this information in other parts of the formulation, as in
different constraints or in the objective function. In other words, it may happen that
a particular relation between constraints g(x) ≤ 0 and h(x) ≤ 0 (such as the AND,
OR, XOR, etc. previously described) has not to be forced, being optional, but just
to be “monitored”, linking it to a binary variable used elsewhere in the model.

In order to clarify this idea, we now introduce a simple example that we will
later exploit for deriving a general formulation strategy.

1.3 Indicator variables for inequalities logical relations 9

1.3.1 Introductory example

Let us consider a small production environment where a single unit of a product p is
manufactured by using 10 units of a raw material r. For technological reasons, there
is a limit on the capacity per period equal to 400 parts. We assume that the supplier
of r has a pricing policy based on the ordered quantity; in particular, we imagine he
offers each unit of r at a cost of 5 dollars if a customer orders less than 1000 pieces,
4 dollars if the quantity is between 1000 and 3000, and only 3 dollars if the request
is strictly higher than 3000 units. Furthermore we suppose the demand curve to
be given by y = 100− 1

5x, where y and x are respectively the selling price and the
quantity of p. Then, assuming to reason for a single period, the optimal choice for
the manufacturer is given by the solution of the following integer quadratic problem
with linear constraints:

max
x,γa,γb,γc

(100− 1
5x)x− 50xγa − 40xγb − 30xγc (1.1)

subject to: maγa ≤ 10x− 1000 (1.2)
mbl

γb +mbl
θ + ε ≤ 1000− 10x (1.3)

mbu(1− θ) + ε ≤ 10x− 3000 (1.4)
mcγc ≤ 3000− 10x (1.5)
x ≤ 400 (1.6)
x ∈ Z+ (1.7)
θ ∈ {0, 1}, γa ∈ {0, 1}, γb ∈ {0, 1}, γc ∈ {0, 1} (1.8)

where ε is a small parameter to avoid strict inequality constraints (practically here
ε ∈ (0, 10) because x is integer), ma ≤ −1000, mbl

≤ −3000− ε, mbu ≤ −3000− ε,
and mc ≤ −1000 .

In order to understand this formulation, notice first of all that solving it is
exactly the same that finding the best solution of the three subproblems obtainable
by limiting the ordered quantity between 0 and 1000, between 1000 and 3000, or
between 3000 and the upper limit (at most 4000 units of r are required due to the
capacity restriction), i.e.:

(a) (b) (c)

max
x∈Z+

(100− 1
5x)x− 50x max

x∈Z+
(100− 1

5x)x− 40x max
x∈Z+

(100− 1
5x)x− 30x

0 ≤ 10x < 1000 1000 ≤ 10x ≤ 3000 3000 < 10x ≤ 4000

It is easy to verify that the maximum profit can be reached when x = 150, that
corresponds to the scenario in which each unit of raw material is bought at 4 dollars
(b), while cases (a) and (c) are dominated.

Following this idea, we can define three binary variables γa, γb and γc such that:

0 ≤ 10x < 1000⇒ γa = 1, (1.9)
1000 ≤ 10x ≤ 3000⇒ γb = 1, (1.10)
3000 < 10x ≤ 4000⇒ γc = 1, (1.11)

10 1. Indicator variables and constraints

and build a unique formulation having (1.1) as objective function.
Since 0 ≤ x ≤ 400 due to (1.6) and (1.7), inequality (1.2) is enough to provide

(1.9), and (1.5) suffices to guarantee (1.11). Condition (1.10) is a little more complex,
but is assured by relations (1.3) and (1.4), where the auxiliary binary variable θ is
used. Indeed, if 100 ≤ x ≤ 300, both right-hand sides of (1.3) and (1.4) become
negative, implying θ = 0 and γb = 1. In all other cases (x < 100 or x > 300) γb
is set to 0 to minimize the objective function, while θ is adjusted to satisfy both
constraints.

Thus relations (1.1)-(1.8) allow to combine sub-problems (a), (b) and (c) in a
single mathematical formulation providing the same optimal solution, i.e.:

x = 150, θ = 0, γa = 0, γb = 1, γc = 0.

Notice here the different roles assumed by binary variables: we may observe
that, once considered x = 150, θ and γb are forced to their value by inequalities
(1.3)-(1.4). Differently, γa and γc do not become 0 due to constraining limitations,
but simply as a consequence of the objective function effect. Indeed, also solution
x = 150, θ = 0, γa = 1, γb = 1, γc = 1 would be feasible for the problem, but it
would provide a lower profit.

To motivate this fact, we point out that (1.2)-(1.5) constitute necessary conditions
to activate γa, γb or γc when x satisfies the corresponding left-hand side among
(1.9)-(1.11). However they are not sufficient, because they do not ensure the opposite
implications.

Nevertheless, in some cases it could be needed to express also (or only) some
conditions linking the activation of an indicator variable to the necessary satisfaction
of particular constraints. For example, considering the same situation as before,
let us now imagine there is another possibility for the manufacturer, who can also
decide to order the overall quantity of raw material r from a different supplier. This
distributor has a fixed price of 3.5 dollars per piece, but for contractual reasons, he
can only conclude agreements for a number of units between 2000 and 3500. In this
case, the problem can be formulated as follows:

max
x,γa,γb,γc,δ

(100− 1
5x)x− (50xγa + 40xγb + 30xγc)(1− δ)− 35xδ (1.12)

subject to: maγa ≤ 10x− 1000 (1.13)
mbl

γb +mbl
θ + ε ≤ 1000− 10x (1.14)

mbu(1− θ) + ε ≤ 10x− 3000 (1.15)
mcγc ≤ 3000− 10x (1.16)
x ≤ 400 (1.17)
2000− 10x ≤Ml(1− δ) (1.18)
10x− 3500 ≤Mu(1− δ) (1.19)
x ∈ Z+ (1.20)
θ ∈ {0, 1}, γa ∈ {0, 1}, γb ∈ {0, 1}, γc ∈ {0, 1}, δ ∈ {0, 1} (1.21)

where Ml ≥ 2000, Mu ≥ 500, and variable δ represents the decision about the
supplier; if δ = 1 the new distributor is chosen, otherwise the initial option is selected

1.3 Indicator variables for inequalities logical relations 11

and δ = 0. This is also confirmed by objective function (1.12), where costs for buying
raw materials from the first or from the second vendor become alternative, being
activated depending on the value of δ.

Linear constraints (1.13)-(1.17) are exactly the same as (1.2)-(1.5), while (1.18)
and (1.19) allow to express condition:

δ = 1⇒ 2000 ≤ 10x ≤ 3500. (1.22)

Indeed, if δ = 1 (i.e. if r is bought from the second supplier), right-hand sides of
(1.18)-(1.19) become 0 and 200 ≤ x ≤ 350; otherwise δ = 0 and restrictions are
relaxed.

It is possible to verify that an optimal solution for this problem is:

x = 200, θ = 0, γa = 0, γb = 1, γc = 0, δ = 1,

which involves to select the second distributor and to buy 2000 pieces of r for the
production of 200 units of p. The same result could also be retrieved by solving
a simple sub-problem representing a fourth scenario (d) to be compared with the
previous three considered, that depicts the hypothetical situation in which only the
second supplier is available, i.e.:

(d)

max
x∈Z+

(100− 1
5x)x− 35x

2000 ≤ 10x ≤ 3500

However, notice once again the convenience of taking into account a single model
formulation instead of several ones to be separately solved. This observation assumes
even more value when the problem, by nature, can not be decomposed in different
sub-problems and thus the use of indicator variables becomes the only way to find the
real optimum. To imagine an example, consider what would happen if suppliers were
not exclusive: in such a case the manufacturer would have to decide two quantities,
y1 and y2, representing the amounts of raw material respectively provided by the
first and the second distributors, subject to y1 + y2 = 10x. This would constraint
the model, making it impossible to separate the problems.

This example should be enough to convince the reader about the utility of using
indicator variables, either forced by or forcing particular inequalities. To continue
our analysis, let us focus on relations (1.14)-(1.15) and (1.18)-(1.19). Referring to
boolean operators introduced in the previous section, we may say they express the
following:

1000 ≤ 10x AND 10x ≤ 3000⇒ γb = 1,
δ = 1⇒ 2000 ≤ 10x AND 10x ≤ 3500,

or equivalently:

1000− 10x ≤ 0 AND 10x− 3000 ≤ 0⇒ γb = 1,

δ = 1⇒ 2000− 10x ≤ 0 AND 10x− 3500 ≤ 0,
where γb is forced to be (i.e. is necessarily) 1 when the left-side AND condition
is satisfied, while δ = 1 forces (i.e. is sufficient to imply) its respective right-side
AND expression to be true.

12 1. Indicator variables and constraints

1.3.2 Important remarks on big-M formulations

In the previous example, we have not only introduced a strategy for modeling logical
implications, but also implicitly suggested a possible way for choosing formulation
parameters ma, mbl

, mbu , mc, Ml, Mu and ε. It is very important to recall,
indeed, that big-M formulations have very well-known advantages, disadvantages
and characteristics that is worth to mention here:

• Linearity: as already noticed, big-M formulations provide a clean and flexible
modeling tool to deal with nonlinearities and logical implications, offering
the opportunity to classify models into common categories (MILP, MIQP)
presenting only linear inequalities. This is really an important aspect from a
practical point of view because linearly-constrained problems are typically the
most spread and easy to tackle with standard solvers.

• Continuous relaxation: it is well-known that big-M constraints have a weak
continuous relaxation. Indeed, depending on the values of coefficients M and
m, relaxed indicator variables might assume fractional values very distant
from their logical counterpart but still sufficient to satisfy problem constraints.
As a consequence, the continuous relaxation value can significantly differ
from the mixed integer optimum, thus disadvantaging branch-and-bound (and
branch-and-cut) methods in their attempt to prune nodes of the search tree.

• Numerical stability: excessive values of indicator constraints constants (i.e. too
largeM and/or too smallm) can influence the performance of solution methods
and even compromise the validity of obtainable results. This occurs in particular
when very small and very large numbers appear in the same constraint, possibly
generating ratios below solvers standard precision. Sometimes the numerical
tolerance of the tool can be adjusted, accepting longer solving times, but often
this is not enough to prevent incorrect solutions.

These observations allow us to list some general remarks to be always considered
when defining parameters of a big-M formulation:

1. The values selected should be realistic: in particular, it is a good practice to
keep the M coefficients as low as possible and the m coefficients as high as
possible.

2. A common mistake is to simply choose a unique positive number for each M
and a unique negative value for each m in the model. However, they can be
individually fixed depending on the constraint in which they are used, possibly
obtaining a better linear relaxation.

3. Whenever a small parameter ε is introduced with the aim of avoiding unnec-
essary strict inequality constraints, it may generate problems related to its
difference in order of magnitude from theM and m parameters absolute values.
In general, it is worth to (i) select a reasonable value for ε, compatibly with
the characteristics of the practical application under study, and (ii) investigate
the possible interactions with model large constants, to avoid numerical issues
involving tools limited precision.

1.3 Indicator variables for inequalities logical relations 13

This completes the description of the well-known aspects to take into account
when modeling logical conditions through big-M formulations. From now on these
concepts will be considered as given. Furthermore, in order to lighten the notation,
we will conventionally use:

• ε > 0 to indicate a generic small parameter fixed according to representation
requirements.

• M > 0 to identify a large enough generic parameter such that

−M + ε ≤ q(x) ≤M − ε

for each possible inequality q(x) ≤ 0 considered.

1.3.3 Indicator variables for the AND logical operation

The example in Section 1.3.1 permits to derive the following:

• If g(x) ≤ 0 and h(x) ≤ 0 are two general inequalities (1000 − 10x ≤ 0 and
10x− 3000 ≤ 0 in the example), γ is a binary variable, and we need to express
the necessary condition

g(x) ≤ 0 AND h(x) ≤ 0⇒ γ = 1,

then two constraints can be used:

−Mγ −Mθ + ε ≤ g(x), (1.23)
−M(1− θ) + ε ≤ h(x), (1.24)

where θ is an auxiliary binary variable.

• Differently, if g(x) ≤ 0 and h(x) ≤ 0 are two general inequalities (2000−10x ≤ 0
and 10x− 3500 ≤ 0 in the example), γ is a binary variable, and we need to
express the sufficient condition

γ = 1⇒ g(x) ≤ 0 AND h(x) ≤ 0,

then we can use the following constraints:

g(x) ≤M(1− γ), (1.25)
h(x) ≤M(1− γ). (1.26)

Of course, if the double implication is required,

g(x) ≤ 0 AND h(x) ≤ 0⇔ γ = 1,

it is possible to combine (1.23)-(1.24) and (1.25)-(1.26), and simply write:

−Mγ −Mθ + ε ≤ g(x) ≤M(1− γ),
−M(1− θ) + ε ≤ h(x) ≤M(1− γ).

14 1. Indicator variables and constraints

Notice that, while inequalities (1.23)-(1.24) allow to only handle cases with two
constraints (here g(x) ≤ 0 and h(x) ≤ 0), (1.25)-(1.26) clearly show the possibility
of extension to consider more general situations. In particular, given k inequalities
g1(x) ≤ 0, g2(x) ≤ 0, ..., gk(x) ≤ 0, it is possible to represent the condition

γ = 1⇒ g1(x) ≤ 0 AND g2(x) ≤ 0 AND ... AND gk(x) ≤ 0

by using the following:

g1(x) ≤M(1− γ),
g2(x) ≤M(1− γ),

...
gk(x) ≤M(1− γ).

1.3.4 Indicator variables for the OR logical operation

Proceeding in a similar way, we could extend previous methodology to consider how
it applies to the OR operator. In some cases, indeed, it could be useful to link the
satisfaction of one among two constraints to the activation of a binary variable. This
can be generalized as follows:

• If g(x) ≤ 0 and h(x) ≤ 0 are two general inequalities, γ is a binary variable,
and we want to express the necessary condition

g(x) ≤ 0 OR h(x) ≤ 0⇒ γ = 1,

then we can use the following constraints:

−Mγ + ε ≤ g(x), (1.27)
−Mγ + ε ≤ h(x). (1.28)

• Differently, if g(x) ≤ 0 and h(x) ≤ 0 are two general inequalities, γ is a binary
variable, and we need to express the sufficient condition

γ = 1⇒ g(x) ≤ 0 OR h(x) ≤ 0,

then two constraints can be used:

g(x) ≤Mθ +M(1− γ), (1.29)
h(x) ≤M(1− θ), (1.30)

where θ is an auxiliary binary variable.

Clearly, to express the double implication

g(x) ≤ 0 OR h(x) ≤ 0⇔ γ = 1,

(1.27)-(1.28) and (1.29)-(1.30) must be combined:

−Mγ + ε ≤ g(x) ≤Mθ +M(1− γ),
−Mγ + ε ≤ h(x) ≤M(1− θ).

1.3 Indicator variables for inequalities logical relations 15

The extension to represent the necessary condition including any number of
inequalities, i.e.

g1(x) ≤ 0 OR g2(x) ≤ 0 OR ... OR gk(x) ≤ 0⇒ γ = 1,

can be easily derived in this way:

−Mγ + ε ≤ g1(x),
−Mγ + ε ≤ g2(x),

...
−Mγ + ε ≤ gk(x).

1.3.5 Indicator variables for the other logical operations

As well as seen for the AND and OR operators, it is of course possible to consider
other types of indicator variables which are linked to the satisfaction of other
logic relations (i.e. XOR, NAND, NOR, XNOR, IF-THEN and BUT-NOT).
However, before entering into details, it is worth to mention a basic result deriving
from boolean algebra.

First we notice that, given three binary variables α, β and γ, the following
relations are always true:

(γ ⇒ NOT α)⇐⇒ γ ≤ 1− α, (1.31)
(γ ⇐ NOT α)⇐⇒ γ ≥ 1− α, (1.32)
(γ ⇔ NOT α)⇐⇒ γ = 1− α, (1.33)

(γ ⇒ α AND β)⇐⇒
{
γ ≤ α,
γ ≤ β,

(1.34)

(γ ⇐ α AND β)⇐⇒ γ ≥ α+ β − 1, (1.35)

(γ ⇔ α AND β)⇐⇒


γ ≤ α,
γ ≤ β,
γ ≥ α+ β − 1,

(1.36)

(γ ⇒ α OR β)⇐⇒ γ ≤ α+ β, (1.37)

(γ ⇐ α OR β)⇐⇒
{
γ ≥ α,
γ ≥ β,

(1.38)

(γ ⇔ α OR β)⇐⇒


γ ≥ α,
γ ≥ β,
γ ≤ α+ β.

(1.39)

Secondly, we recall that sets {AND,NOT} and {OR,NOT} are functionally
complete; this means that any boolean function can be constructed using only the
elements in one of these sets.

By extension, also {AND,OR,NOT} is functionally complete. It follows that
whenever it is necessary to have a binary variable linked to a boolean function
including k inequalities g1(x) ≤ 0, g2(x) ≤ 0, ..., gk(x) ≤ 0, it is possible to:

16 1. Indicator variables and constraints

1. for each i ∈ {1, ..., k}, uniquely bind the satisfaction of constraint gi(x) ≤ 0
to the activation of a boolean variable γi (i.e. gi(x) ≤ 0⇔ γi = 1), using the
relation:

−Mγi + ε ≤ gi(x) ≤M(1− γi);

2. express the boolean function as a combination of operators AND, OR, NOT
and variables γ1, ..., γk;

3. use (1.31)-(1.39) and suitable auxiliary binary variables to convert the AND,
OR, NOT relations into constraints involving also the output binary variable.

For example, consider condition:

g(x) ≤ 0 XOR h(x) ≤ 0⇒ γ = 1. (1.40)

We can first define variables γg and γh, and include constraints:

−Mγg + ε ≤ g(x) ≤M(1− γg), (1.41)
−Mγh + ε ≤ h(x) ≤M(1− γh). (1.42)

These assure γg = 1⇔ g(x) ≤ 0 and γh = 1⇔ h(x) ≤ 0. We can write:

g(x) ≤ 0 XOR h(x) ≤ 0⇔ γg XOR γh

⇔ (γg AND (NOT γh)) OR ((NOT γg) AND γh)
⇒ (γg AND γ̄h) OR (γ̄g AND γh)
⇒ γ1 OR γ2

⇒ γ,

where γ̄g, γ̄h, γ1 and γ2 are binary variables to be introduced together with con-
straints:

γ̄g ≥ 1− γg, (1.43)
γ̄h ≥ 1− γh, (1.44)
γ1 ≥ γg + γ̄h − 1, (1.45)
γ2 ≥ γ̄g + γh − 1, (1.46)
γ ≥ γ1, (1.47)
γ ≥ γ2. (1.48)

Indeed, (1.43)-(1.44) guarantee (see (1.32)):

NOT γg ⇒ γ̄g,

NOT γh ⇒ γ̄h.

Inequalities (1.45) and (1.46) ensure (see (1.35)):

γg AND γ̄h ⇒ γ1,

γ̄g AND γh ⇒ γ̄2.

1.3 Indicator variables for inequalities logical relations 17

Finally, (1.47)-(1.48) imply (see (1.38)):

γ1 OR γ2 ⇒ γ.

Thus, formulation (1.41)-(1.48) allows to express condition (1.40). If instead of
considering this, we needed to represent the opposite implication, i.e.

γ = 1⇒ g(x) ≤ 0 XOR h(x) ≤ 0,

then we could use relations (1.41)-(1.42) along with the following:

γ̄g ≤ 1− γg, (1.49)
γ̄h ≤ 1− γh, (1.50)
γ1 ≤ γg, (1.51)
γ1 ≤ γ̄h, (1.52)
γ2 ≤ γ̄g, (1.53)
γ2 ≤ γh, (1.54)
γ ≤ γ1 + γ2. (1.55)

Here, (1.49) and (1.50) ensure (see (1.31)):

γ̄g ⇒ NOT γg,

γ̄h ⇒ NOT γh.

The four inequalities (1.51)-(1.54) imply (see (1.34)):

γ1 ⇒ γg AND γ̄h,

γ̄2 ⇒ γ̄g AND γh,

while (1.55) guarantees (see (1.37)):

γ ⇒ γ1 OR γ2.

Of course, if the XOR function and the variable γ had to be linked by a double
implication, then the problem could be formulated using (1.41)-(1.55) all together.

This example should suggest that reformulating boolean functions through
simpler operators, which belong to functionally complete sets, is always a possible
strategy to express logical implications. In general, there are many different ways of
modeling the same condition. To give an instance, consider another formulation for
the XOR using the AND, OR and NOT as components:

g(x) ≤ 0 XOR h(x) ≤ 0⇔ γg XOR γh

⇔ (γg OR γh) AND (NOT (γg AND γh)).

The reader can verify that applying this transformation as described above one can
obtain a different model requiring one binary variable less than previous approach.

However, it should be evident that also this second formulation does not necessar-
ily ensure an efficient solution, both in terms of number of variables and constraints.
This is due to the fact that intermediary binaries and expressions must be introduced
to represent components AND, OR and NOT implications. To avoid this, let us
now consider a different method to model the XOR function. In particular:

18 1. Indicator variables and constraints

• If g(x) ≤ 0 and h(x) ≤ 0 are two general inequalities, γ and θ are two binary
variables, and we want to express the necessary condition

g(x) ≤ 0 XOR h(x) ≤ 0⇒ γ = 1,

then the following constraints can be introduced:

h(x) ≤Mθ +Mγ, (1.56)
−Mγ −M(1− θ) + ε ≤ h(x), (1.57)

g(x) ≤Mθ, (1.58)
−M(1− θ) + ε ≤ g(x). (1.59)

• Otherwise, if g(x) ≤ 0 and h(x) ≤ 0 are two general inequalities, γ and θ are
two binary variables, and we need to express the sufficient condition

γ = 1⇒ g(x) ≤ 0 XOR h(x) ≤ 0,

then constraints (1.58)-(1.59) may be used together with the following:

h(x) ≤M(1− θ) +M(1− γ), (1.60)
−M(1− γ)−Mθ + ε ≤ h(x). (1.61)

In order to compare this methodology to the other previously shown, consider
the different possibilities for modeling the double implication:

g(x) ≤ 0 XOR h(x) ≤ 0⇔ γ = 1.

The latter approach would involve to introduce two binary variables, γ and θ, and
six constraints, i.e. (1.56)-(1.61). The previous two alternatives would at least
require twice the number of variables and constraints. However, the choice of the
best modeling strategy is often a complex task related to different aspects of a
MILP formulation, such as the properties of the continuous relaxation and other
computational advantages. This idea will be clarified in Chapter 3, where a practical
comparison between different models will be addressed.

Following similar arguments, we may describe other sets of constraints that allow
to link NAND, NOR, XNOR, IF-THEN and BUT-NOT relations to binary
variables. These are listed in Table 1.10 together with those already derived for the
AND, OR and XOR, and are distinguished by the type of condition to represent
(necessary or sufficient).

Condition Required constraints

A
N
D

g(x) ≤ 0 AND h(x) ≤ 0⇒ γ = 1
−Mγ −Mθ + ε ≤ g(x)

−M(1− θ) + ε ≤ h(x)

g(x) ≤ 0 AND h(x) ≤ 0⇐ γ = 1
g(x) ≤M(1− γ)

h(x) ≤M(1− γ)

1.3 Indicator variables for inequalities logical relations 19

O
R

g(x) ≤ 0 OR h(x) ≤ 0⇒ γ = 1
−Mγ + ε ≤ g(x)

−Mγ + ε ≤ h(x)

g(x) ≤ 0 OR h(x) ≤ 0⇐ γ = 1
g(x) ≤Mθ +M(1− γ)

h(x) ≤M(1− θ)

X
O
R

g(x) ≤ 0 XOR h(x) ≤ 0⇒ γ = 1

h(x) ≤Mθ +Mγ

−Mγ −M(1− θ) + ε ≤ h(x)

g(x) ≤Mθ

−M(1− θ) + ε ≤ g(x)

g(x) ≤ 0 XOR h(x) ≤ 0⇐ γ = 1

h(x) ≤M(1− θ) +M(1− γ)

−M(1− γ)−Mθ + ε ≤ h(x)

g(x) ≤Mθ

−M(1− θ) + ε ≤ g(x)

N
A
N
D g(x) ≤ 0 NAND h(x) ≤ 0⇒ γ = 1

g(x) ≤Mγ

h(x) ≤Mγ

g(x) ≤ 0 NAND h(x) ≤ 0⇐ γ = 1
−M(1− γ)−Mθ + ε ≤ g(x)

−M(1− θ) + ε ≤ h(x)

N
O
R

g(x) ≤ 0 NOR h(x) ≤ 0⇒ γ = 1
g(x) ≤Mθ +Mγ

h(x) ≤M(1− θ)

g(x) ≤ 0 NOR h(x) ≤ 0⇐ γ = 1
−M(1− γ) + ε ≤ g(x)

−M(1− γ) + ε ≤ h(x)

X
N
O
R

g(x) ≤ 0 XNOR h(x) ≤ 0⇒ γ = 1

h(x) ≤M(1− θ) +Mγ

−Mγ −Mθ + ε ≤ h(x)

g(x) ≤Mθ

−M(1− θ) + ε ≤ g(x)

g(x) ≤ 0 XNOR h(x) ≤ 0⇐ γ = 1

h(x) ≤Mθ +M(1− γ)

−M(1− γ)−M(1− θ) + ε ≤ h(x)

g(x) ≤Mθ

−M(1− θ) + ε ≤ g(x)

IF
-T

H
E
N IF g(x) ≤ 0 THEN h(x) ≤ 0⇒ γ = 1

g(x) ≤Mγ

−Mγ + ε ≤ h(x)

IF g(x) ≤ 0 THEN h(x) ≤ 0⇐ γ = 1
h(x) ≤M(1− θ)

−M(1− γ)−Mθ + ε ≤ g(x)

20 1. Indicator variables and constraints

B
U
T
-N

O
T

g(x) ≤ 0 BUT-NOT h(x) ≤ 0⇒ γ = 1
h(x) ≤M(1− θ)

−Mγ −Mθ + ε ≤ g(x)

g(x) ≤ 0 BUT-NOT h(x) ≤ 0⇐ γ = 1
g(x) ≤M(1− γ)

−M(1− γ) + ε ≤ h(x)

Table 1.10. Logic conditions and corresponding constraints set.

1.4 Indicator variables, logical relations and scheduling

In the area of scheduling, the use of indicator variables is really widespread mainly
due to the nature of restrictions that generally influence application contexts, such
as manufacturing and logistic processes.

For this reason, techniques like those described in previous section often offer
interesting modeling possibilities, allowing to introduce particular sets of inequalities
and to represent in this way logical connections between different constraints or
between feasible solutions and the objective function.

To give evidence of this fact and to provide some representative cases, we propose
here several examples.

Common notations will be used from now on. In particular, given a set of m
activities, let A = {1, ..., j, ...,m} be the set of indexes for these activities. For each
j ∈ A we define:

tj : variable starting time of activity j, with tj ≥ 0;

τj : parametric positive quantity indicating processing time of activity j;

σj : parametric positive quantity indicating setup time of activity j;

rj : parametric release date/time for activity j;

dj : parametric due date/time for activity j.

We will consider different possible settings and corresponding constraints. To
generalize, the following types of restrictions will be often used:

Sequence / Precedence constraints: if two activities i and j are such that, for
some reason, i has to be completed before j begins, we impose:

ti + σi + τi ≤ tj .

Of course, if no setup is defined, it becomes:

ti + τi ≤ tj ,

where the left-hand side of the constraint clearly represents activity i completion
time.

1.4 Indicator variables, logical relations and scheduling 21

Disjunctive / Non-overlapping constraints: scheduling problems typically re-
quire to model the fact that two operations can not be simultaneously executed.
This can happen for several reasons, for instance because they use the same
machine, the same unique resource or for other logical causes which exclude
parallelization. In any case, to express the impossibility of overlapping, a
common trick is used. Namely, given two activities i and j, an alternative is
identified: either j starts after the end of i, so i precedes j, or the contrary
is true, thus i follows j. This is probably the most popular example of OR
(practically equivalent to a XOR, since alternatives are exclusive by nature)
linking a couple of inequalities, i.e.:

ti + τi − tj ≤ 0 OR tj + τj − ti ≤ 0.

Recalling also the arguments from previous sections, disjunctive (or non-
overlapping) constraints are given by:

ti + τi − tj ≤M(1− θ),
tj + τj − ti ≤Mθ,

where θ is the binary variable specifying the sequence between the activities; if
θ = 1, then i precedes j and tj ≥ ti+τi, otherwise θ is equal to 0 and condition
ti ≥ tj + τj is implied (i is processed after j is finished). Similarly, when also
setups are involved:

ti + σi + τi − tj ≤M(1− θ),
tj + σj + τj − ti ≤Mθ.

Release date constraints: when an activity j has a minimum starting time (i.e.
release date) rj ≥ 0, we have:

tj ≥ rj .

Otherwise tj ≥ 0 holds.

Due date / Deadline constraints: if activity j has to be completed before a
maximum time (i.e. due date) dj ≥ τj , the following must be satisfied:

tj + τj ≤ dj .

If a setup operation is executed between activity start and processing:

tj + σj + τj + σj ≤ dj .

We implemented all the models in AMPL and solved them using Gurobi optimizer
under default configurations.

22 1. Indicator variables and constraints

1.4.1 Example 1: Single machine scheduling for fresh products jobs

For the first example, let us take into consideration a single machine scheduling
problem where different jobs must be processed to produce different types of parts.
We suppose the set of indexes for jobs is J , the set of parts is P , and Jp indicates
the subset of J allocated to p ∈ P where:⋃

p∈P
Jp = J and

⋂
p∈P

Jp = ∅

Each job j ∈ J requires a processing time τj and a setup. In particular, the setup
time depends on the sequence of parts, such that σpq indicates the amount of time
required to setup the machine from producing part p ∈ P to q ∈ P , and σpp = 0 for
each p ∈ P .

We imagine that jobs are prepared for a single customer, who imposes a due date
dmaxj for each j ∈ J , that is the time in which he agreed to pick up goods. Finished
parts are fresh products: for this reason, they can not be completed too early with
respect to dmaxj , otherwise they risk to expire. We thus assume that a due window
[dminj , dmaxj] is considered for the scheduling of each job completion.

We examine three different scenarios:

(a) Supposing dminj and dmaxj constitute soft restrictions, we minimize the overall
weighted distance of jobs from their due window, i.e.

∑
j∈J

wj
(
(tj + τj − dmaxj)+ + (dminj − tj − τj)+

)
,

where wj represents the weight for job j.

(b) We imagine that early jobs (i.e. jobs completed before dminj) and tardy jobs
(i.e. jobs finished after dmaxj) are stored in a refrigerated area and shipped in a
successive planning period without risk of expiration. However they must be
completed with a maximum tardiness given by a parameter l̄. The objective is
to maximize the overall number of jobs able to meet their due interval.

(c) This case is similar to scenario (b), with an additional restriction: we assume
that, due to technological reasons, no more than ā jobs for part p̄ can be
started during interval (amin, amax). The objective is again the maximization
of on time jobs subject to maximum tardiness l̄.

For this example, we will consider data of Table 1.11, where |J | = 12, |P | = 3,
and |Jp| = 4 for each p ∈ P . Jobs processing times only depend on the part type,
while weights are all equivalent. Setups are given in Table 1.12. We assume l̄ = 120,
p̄ = Z, ā = 2 , amin = 50, and amax = 260.

The first step to model this problem is to impose disjunctive constraints that
avoid the execution of more than one job on the machine at the same time. Therefore,
we define a binary variable ζjk with j ∈ J, k ∈ J and j < k, such that ζjk = 1 if job

1.4 Indicator variables, logical relations and scheduling 23

Job Part τj wj dminj dmaxj

1 X 20 1 60 90
2 X 20 1 190 220
3 X 20 1 120 150
4 X 20 1 200 230
5 Y 16 1 30 50
6 Y 16 1 150 170
7 Y 16 1 190 210
8 Y 16 1 50 70
9 Z 24 1 70 90
10 Z 24 1 20 40
11 Z 24 1 120 140
12 Z 24 1 170 190

Table 1.11. Data for a particular instance with 12 jobs and 3 part types.

from \ to X Y Z
X 0 5 7
Y 6 0 4
Z 5 6 0

Table 1.12. Change-dependent setup times for a particular instance with 3 different part
types.

j precedes job k, and ζjk = 0 otherwise. Then, for each p and q ∈ P we write:

tj + τj + σpq − tk ≤M(1− ζjk) j ∈ Jp, k ∈ Jq, j < k, p 6= q

tk + τk + σqp − tj ≤Mζjk j ∈ Jp, k ∈ Jq, j < k, p 6= q

tj + τj − tk ≤M(1− ζjk) j ∈ Jp, k ∈ Jp, j < k

tk + τk − tj ≤Mζjk j ∈ Jp, k ∈ Jp, j < k

The overall weighted distance of jobs from the due window corresponds to the
weighted sum, for each j ∈ J , of job earliness, defined as (dminj − tj − τj)+, plus job
tardiness, given by (tj + τj − dmaxj)+. Introducing variables e ∈ R|J |+ and l ∈ R|J |+ ,
we can formulate problem (a) by adding the following:

min
∑
j∈J

wj(ej + lj)

ej ≥ dminj − tj − τj j ∈ J
lj ≥ tj + τj − dmaxj j ∈ J

ej ≥ 0 j ∈ J
lj ≥ 0 j ∈ J

If the objective is the maximization of the number of jobs completed during their
due interval, as in case (b), a different approach can be used. A new variable γj may

24 1. Indicator variables and constraints

be defined for each job j ∈ J , such that

γj = 1⇒ dminj ≤ tj + τj ≤ dmaxj ,

or equivalently:

γj = 1⇒ dminj − tj − τj ≤ 0 AND tj + τj − dmaxj ≤ 0.

These conditions are expressed by constraints:

dmin − tj − τj ≤M(1− γj) j ∈ J
tj + τj − dmax ≤M(1− γj) j ∈ J

The objective becomes:
min

∑
j∈J

γj .

Maximum tardiness limitation is enforced by using variable lj (as defined before)
and writing inequalities:

lj ≥ tj + τj − dmaxj j ∈ J
lj ≥ 0 j ∈ J
lj ≤ l̄ j ∈ J

Formulation of scenario (c) requires the additional restriction on some jobs
starting time. For this reason we imagine to have a binary variable δj , ∀ j ∈ Jp̄,
such that:

amin ≤ tj ≤ amax ⇒ δj = 1.

Then, to have no more than ā jobs for part p̄ starting between amin and amax, we
write: ∑

j∈Jp̄

δj ≤ ā.

Condition on δj , for each j ∈ Jp̄, is equivalent to:

amin − tj ≤ 0 AND tj − amax ≤ 0⇒ δj = 1.

Thus, we can simply add the following constraints to the formulation:

−Mθj −Mδj + ε ≤ amin − tj j ∈ J
−M(1− θj) + ε ≤ tj − amax j ∈ J

Notice here the difference between roles of variables γj , ∀ j ∈ J , and δj , ∀ j ∈ Jp̄.
The first assures that the objective function value can only be increased by satisfying
jobs due windows, the second guarantees that the limits on the number of jobs
starting in a given interval is respected. While γj is encouraged by the optimization
process to become 1, δj can possibly be forced to 0 due to the effect of a constraint.
So it is not surprising that conditions

γj = 1⇒ dminj ≤ tj + τj ≤ dmaxj

1.4 Indicator variables, logical relations and scheduling 25

and
δj = 1⇐ amin ≤ tj ≤ amax

have opposite direction, the first expressing that the binary variable is sufficient to
meet the time interval, the second being necessary for it, indeed:

δj = 0⇒ tj < amin OR tj > amax.

Figures 1.1, 1.2, and 1.3 show optimal solutions for problems (a), (b), and (c),
using data of Table 1.11 and 1.12. Corresponding variables are reported in Table
1.13, where jobs completion times are indicated with symbol cj .

Figure 1.1. Graphical representation of an optimal solution to problem (a). Lines above
the schedule illustrate jobs due intervals. Dashed connectors highlight earliness/tardiness
issues.

Figure 1.2. Graphical representation of an optimal solution to problem (b). Lines above
the schedule illustrate jobs due intervals. Dashed connectors highlight earliness/tardiness
issues.

Figure 1.3. Graphical representation of an optimal solution to problem (c). Lines above
the schedule illustrate jobs due intervals. Dashed connectors highlight earliness/tardiness
issues.

In scenario (a) we have: ∑
j∈J

wj
(
l
(a)
j + e

(a)
j

)
= 171,

26 1. Indicator variables and constraints

j t
(a)
j c

(a)
j e

(a)
j l

(a)
j t

(b)
j c

(b)
j γ

(b)
j t

(c)
j c

(c)
j δ

(c)
j γ

(c)
j

1 119 139 0 49 95 115 0 95 115 - 0
2 202 222 0 2 189 209 1 178 198 - 1
3 139 159 0 9 115 135 1 115 135 - 1
4 222 242 0 12 209 229 1 198 218 - 1
5 30 46 0 0 30 46 1 30 46 - 1
6 164 180 0 10 140 156 1 140 156 - 1
7 180 196 0 0 266 282 0 156 172 - 0
8 46 62 0 0 46 62 1 46 62 - 1
9 66 90 0 0 66 90 1 66 90 1 1
10 0 24 0 0 0 24 1 0 24 0 1
11 90 114 6 0 236 260 0 225 249 1 0
12 249 273 0 83 160 184 1 260 284 0 0

Table 1.13. Optimal solutions for problems (a), (b) and (c).

with 6 tardy jobs, 1 early job and only 5 on time. In the second case (b) the number
of jobs able to meet their due interval increases, indeed:∑

j∈J
γ

(b)
j = 9.

However, the overall distance of completion times from due intervals gets worse,
while satisfying the maximum tardiness admitted for each j ∈ J . Third scenario
limits the number of jobs for part C that can be started in the interval (amin, amax)
to 2. For this reason, last job is delayed until 260, becoming tardy. Job 7 is instead
anticipated before its due window, completing too early. The optimal value now is:∑

j∈J
γ

(c)
j = 8.

1.4.2 Example 2: Scheduling of timetable in a manufacturing cell

In this example we consider a job shop manufacturing system consisting of a finite set
of stations S and a finite set of jobs J = {1, 2, ..., n}. Every job i ∈ J is constituted
by different operations Oih to be performed on preassigned stations (h ∈ S), following
a predefined technological sequence Ei = {(h, h′) : h ∈ S, h′ ∈ S,Oih precedes Oih′}.
Processing times for each job i and station h are given by parameters τih.

We assume that the objective is to schedule all daily activities, thus generating a
timetable which concentrates all operations within the eight-hour working day (from
8:00 to 16:00). We investigate three possible scenarios with different minimization
goals:

(a) We assume that working hours are split into two shifts, the first from 8:00
to 12:00 and the second from 12:00 to 16:00. To avoid the transfer of tasks
between operators of different shifts, it is important to minimize the number
of operations which are in progress at shift change, i.e. at 12:00.

1.4 Indicator variables, logical relations and scheduling 27

(b) Here we consider the same division of working hours as previous scenario but
we imagine a different objective: instead of minimizing the number of activities
spread over different shifts, we look at avoiding jobs splitting, thus trying to
concentrate all operations for a job in only one of the two 4-hours slots.

(c) In this scenario we assume a different situation in which shifts are not fixed.
We suppose that the manufacturer can decide in advance to call operators for
two types of employment:

1 Full-time: continued from 8:00 to 16:00, paid a dollars.
2 Part-time: from 9:00 to 13:00, paid b dollars.

The type of employment to choose depends on the working time established
for the station to which operators are assigned. Therefore, if a station h must
be in action from 9:00 to 13:00 (or less) operators working on that station,
which are rh, are paid for a part-time shift, otherwise they are engaged for a
full-time and remain available from 8:00 to 16:00.

Before entering into details of these three scenarios, we recall that typical job
shop constraints can be formulated as follows:

tih + τih ≤ ti′h +M(1− yii′h) i, i′ ∈ J, i < i′, h ∈ S
ti′h + τi′h ≤ tih +Myii′h i, i′ ∈ J, i < i′, h ∈ S

tih + τih ≤ tih′ i ∈ J, (h, h′) ∈ Ei

Where tih indicates the variable starting time of job i on station h and yii′h is
a binary variable that is equal to 1 if job i precedes job i′ on station h and is 0
otherwise (job i′ precedes job i on station h).

Furthermore we introduce release date and due date constraints:

t
ihf

i
≥ 8 i ∈ J

tihl
i

+ τihl
i
≤ 16 i ∈ J

where hfi and hli respectively indicate the first and the last stations in job i predefined
processing sequence.

This formulation can be extended to represent scenarios (a), (b) and (c). In
scenario (a) we want generate a schedule which minimizes the number of operations
that are in progress at 12:00. For this purpose, we define a variable γih ∈ {0, 1} for
all i ∈ J and h ∈ S, and express the objective as:

min
∑
i∈J

∑
h∈S

γih.

Each operation starting time is linked to variable γih through the condition:

tih < 12 AND tih + τih > 12⇒ γih = 1,

i.e. γih is necessarily activated if operation Oih starts before and ends after time
instant 12. The same condition could also be written as:

12− tih ≤ 0 NOR tih + τih − 12 ≤ 0⇒ γih = 1.

28 1. Indicator variables and constraints

Recalling results derived in Section 1.3, this can be expressed by the following
constraints:

12− tih ≤Mθih +Mγih i ∈ J, h ∈ S
tih + τih − 12 ≤M(1− θih) i ∈ J, h ∈ S

Where θih is an auxiliary binary variable defined for each i ∈ J and h ∈ S.
An optimal solution for a simple example with 6 jobs and 3 stations assuming

data in Table 1.14 is given in Figure 1.4. The objective value is 0 since no operations
are in progress when shift changes at 12:00.

job operation 1 operation 2 operation 3
1 A (0.4) −→ B (2.5) −→ C (1.8)
2 B (1.2)
3 C (2.4) −→ B (0.5)
4 A (2.2) −→ B (1.8)
5 C (1.6) −→ B (1.5)
6 C (2.2)

Table 1.14. Processing times and sequences for a particular instance with 6 jobs and 3
stations.

Figure 1.4. Optimal solution for scenario (a), assuming job shop problem data of Table
1.14.

Scenario (b) is similar to the previous one. However, in order to avoid dispersion
of complete jobs over two shifts, only one binary variable for each job i ∈ J is
required. We call this variable δi and express condition

12− t
ihf

i
≤ 0 NOR tihl

i
+ τihl

i
− 12 ≤ 0⇒ δi = 1

by using constraints:

12− t
ihf

i
≤Mβi +Mδi i ∈ J

tihl
i

+ τihl
i
− 12 ≤M(1− βi) i ∈ J

1.4 Indicator variables, logical relations and scheduling 29

where βi is an additional binary variable, for each i ∈ J .
The objective now becomes:

min
∑
i∈J

δi.

Figure 1.5 shows an optimal solution for this problem, using the same data as
before (see Table 1.14). The objective value is 2 due to jobs 1 and 3 which are split
over different shifts. However, notice the improvement with respect to situation in
Figure 1.4, where four jobs began before and finished after 12:00. By postponing
the start of job 4 and anticipating the second operation of job 5, a better solution is
found.

Figure 1.5. Optimal solution for scenario (b), assuming job shop problem data of Table
1.14.

Let us now consider scenario (c). In this case we want to investigate if it is
possible to reduce the working time of particular stations – still respecting the due
dates –, in order to reduce the employment costs. For this purpose we introduce a
binary variable ζh that becomes equal to 1 if a full-time is selected for station h ∈ S.
Then, we write the objective as follows:

min
∑
h∈S

rh[aζh + b(1− ζh)].

To express the relation between variable ζh and operations times, we should consider
if the first activity scheduled on station h starts before 9:00 or the last ends after
13:00 (in these cases we would enforce ζh = 1 because a part-time shift is not feasible).
However, we don’t know a priori the sequence of operations on station h. More
simply, we introduce a condition which depends on all the operations executed on
station h:

t1h < 9 OR t2h < 9 OR ... OR tnh < 9 OR
t1h + τ1h > 13 OR t2h + τ2h > 13 OR ... OR tnh + τnh > 13

}
⇒ ζh = 1.

In other terms, for each job i ∈ J and station h ∈ S we have:

9− tih ≤ 0 NAND tih + τih − 13 ≤ 0⇒ ζh = 1.

30 1. Indicator variables and constraints

These conditions can be expressed by the following constraints:

9− tih ≤Mζh i ∈ J, h ∈ S
tih + τih − 13 ≤Mζh i ∈ J, h ∈ S

Considering once again data from Table 1.14, we provide in Figure 1.6 an example
of solution having assumed:

a = 70, b = 40, rA = rB = rC = 1.

In this case, of course, the result for stations B and C is trivial, since they have a
work load for more than 4 hours. However, the effect of optimization is visible on
station A where job 1 and job 4 are scheduled within the part-time hours 9:00-13:00.
This brings to an overall cost of 180 dollars.

Figure 1.6. Optimal solution for scenario (c), assuming job shop problem data of Table
1.14.

1.4.3 Example 3: Costs minimization for two machines subject to
electricity load peaks

We now consider a simple production center constituted by two identical parallel
machines. Every time a job  flows into this center, it reaches one of the two stations
and queues for being processed. When it comes its turn, a setup of σ minutes is
executed by an operator and then the processing starts, taking τ minutes in total,
where:

• the first 10% of duration τ is executed at a high level of energy,

• the remaining 90% of work is instead low demanding.

We suppose the enterprise pays a small penalty of p dollars every time it exceeds
a given power threshold t, which happens only if both machineries execute high
demanding operations at the same time.

Furthermore we assume the company may either decide to employ only one
operator to execute setups on both stations or to engage another worker to parallelize
processes, having one human assigned to each machine.

The objective is to minimize costs, taking into account that each operator must
be paid s dollars and that jobs have urgent due dates d for  = 1, ...,m.

1.4 Indicator variables, logical relations and scheduling 31

To model the scheduling of jobs over two parallel machines we use the following:

t1 + σ1 + τ1 − t2 ≤M(1− α12) 1, 2 ∈ {1, ...,m}, 2 > 1

t2 + σ2 + τ2 − t1 ≤Mα12 +Mβ12 1, 2 ∈ {1, ...,m}, 2 > 1

β12 + β23 + β13 ≤ 2 1, 2, 3 ∈ {1, ...,m}, 3 > 2 > 1

where α and β are additional binary variables indicating if two different jobs run in
sequence (and the precedence is specified by α) or overlap (stated by β).

Notice that the first two constraints guarantee:

t1 + σ1 + τ1 ≤ t2 NOR t2 + σ2 + τ2 ≤ t1 ⇒ β12 = 1.

In other terms, if 1 and 2 overlap, β12 becomes 1.
Third inequality takes into account that only two machines are available. In

particular, it limits the number of possible two-by-two overlappings in all sets of
three jobs to be at maximum 2. This way no more than two activities can run in
parallel at every time.

Due date constraints are also included, considering both setup and processing
durations:

t1 + σ1 + τ1 ≤ d1 1 ∈ {1, ...,m}

Costs minimization is addressed by the introduction of an objective function
composed of two terms:

min {s(1 + γ) + p
∑

1∈{1,...,m}
2∈{1,...,m}

2>1

ζ12}.

The first term accounts operators salaries, while the second considers penalties to
be paid. Roles of variables γ and ζ12 are defined by the following constraints:

t1 + σ1 − t2 ≤M(1− θ12) 1, 2 ∈ {1, ...,m}, 2 > 1

t2 + σ2 − t1 ≤Mθ12 +Mγ 1, 2 ∈ {1, ...,m}, 2 > 1

t1 + σ1 + 0.1τ1 − t2 − σ2 ≤M(1− δ12) 1, 2 ∈ {1, ...,m}, 2 > 1

t2 + σ2 + 0.1τ2 − t1 − σ1 ≤Mδ12 +Mζ12 1, 2 ∈ {1, ...,m}, 2 > 1

where θ12 and δ12 are auxiliary binary variables.
The first two inequalities guarantee:

t1 + σ1 ≤ t2 NOR t2 + σ2 ≤ t1 ⇒ γ = 1.

Therefore, if setups of two jobs overlap, γ = 1 and two operators are considered in
the objective function.

The other two constraints ensure:

t1 + σ1 + 0.1τ1 ≤ t2 + σ2 NOR t2 + σ2 + 0.1τ2 ≤ t1 + σ1 ⇒ ζ12 = 1,

32 1. Indicator variables and constraints

i.e. if two jobs 1 and 2 are parallelized during their high demanding phase, ζ12
becomes 1 and penalty is added to overall costs.

All necessary limitations have been formulated. Table 1.15 and Figure 1.7 reports
data and results for a particular instance, where p = 2 and s = 80 are assumed.
Objective function value is 164 since two operators and two penalties have to be
paid (γ = 1, ζ12 = 1, ζ56 = 1).

 τ σ d t? t? + σ + τ

1 210 30 300 0 240
2 150 30 500 0 180
3 160 30 500 240 430
4 230 30 500 180 440
5 180 30 650 430 640
6 180 30 650 440 650
7 160 30 950 655 845
8 210 30 1100 845 1085
9 150 30 1100 640 820
10 180 30 1100 820 1030

Table 1.15. Data and optimal solution for a particular instance with p = 2 and s = 80.

Figure 1.7. Optimal schedule for the two parallel machines.

1.4.4 Example 4: Scheduling of inspections in a continuous pro-
duction system

Let us consider a continuous manufacturing environment which is subject to controls
to verify that the system status does not deteriorate over time. To guarantee this,
several checks must be arranged during the scheduling horizon, being sure to respect
some limitations:

1. k controls have to be scheduled in the first N days of production (with N ≥ k),
each one requiring b hours.

2. Controls can not be executed while other activities are processing so they
must fit in the intervals between different activity executions (activities do not
run in parallel due to non-overlapping constraints that we consider already
included in the formulation).

1.4 Indicator variables, logical relations and scheduling 33

3. There are two possible control policies under evaluation. We assume they are
“activated” depending on the value of a variable γ, used somewhere else in the
model:

(a) if γ = 1 the first policy is selected: it is based on the idea that it doesn’t
make sense to plan too close in time inspections, thus a minimum time of
d hours must be guaranteed between the start of two consecutive controls,
where d > b.

(b) if γ = 0 the second policy is chosen: it establishes that at most one
inspection can be started in each date. However, it admits controls to be
less spaced in time over different days, satisfying a minimum distance of
c hours between two starts, with d > c > b.

First requirement is clearly implicated by:

si + b ≤ 24N i = 1, ..., k

where si represents the starting time of control i.
In order to ensure the k inspections not to be parallelized with the m activities,

non-overlapping constraints are introduced:

tj + τj − si ≤M(1− θji) i = 1, ..., k, j = 1, ...,m
si + b− tj ≤Mθji i = 1, ..., k, j = 1, ...,m

where tj is the starting time of activity j and θji is an auxiliary binary variable to
indicate the precedence between activity j and control i.

Let us now consider limitations linked to γ. If the first policy is active (γ = 1),
every pair of controls {i, i′} must be sufficiently spaced, i.e. either control i starts
more than d hours before i′ or the contrary should happen. Using the additional
variable ζii′ , we write constraints:

si + d− si′ ≤M(1− ζii′) i = 1, ..., k, i′ > i

si′ + d− si ≤Mζii′ +M(1− γ) i = 1, ..., k, i′ > i

These guarantee:
γ = 1⇒ si + d ≤ si′ OR si′ + d ≤ si.

The second possibility is more complex to formulate. First of all we observe that,
given a control i, it starts in day n (with n ∈ 1, 2, ..., N) if and only if:

24(n− 1) ≤ si < 24n.

We can therefore introduce binary variables δin such that, for each i = 1, ..., k and
n = 1, ..., N ,

24(n− 1) ≤ si AND si < 24n⇒ δin = 1,

which can also be written as:

24(n− 1)− si ≤ 0 BUT-NOT 24n− si ≤ 0⇒ δin = 1.

34 1. Indicator variables and constraints

To express these conditions we introduce constraints:

−Mδin −Mξin + ε ≤ 24(n− 1)− si i = 1, ..., k, n = 1, ..., N
24n− si ≤M(1− ξin) i = 1, ..., k, n = 1, ..., N

where ξin ∈ {0, 1}k×N are additional variables.
Then, to limit the amount of controls that can be arranged every day to 1 when

the second policy is selected, we write:

k∑
i=1

δin ≤ 1 + (k − 1)γ n = 1, ..., N

Indeed, if γ is equal to 0,
∑k
i=1 δin ≤ 1 must hold in each day n, otherwise inequalities

are relaxed (here k − 1 acts as a big-M coefficient).
As a last step to complete defining this policy, we need to sufficiently separate

inspections. Thus we have (again, βii′ is an auxiliary binary variable to represent
precedences):

si + c− si′ ≤M(1− βii′) i = 1, ..., k, i′ > i

si′ + c− si ≤Mβii′ i = 1, ..., k, i′ > i

Notice it is not necessary to consider how to relax these constraints when γ is not 0,
since first policy, as long as d > c, automatically satisfy these conditions. However,
it could be easily taken into account by adding term +Mγ on the second constraints
right-hand side.

Just to have a visual example of this problem, let us now consider a simple
situation with 5 activities, each one with a processing time of 15 hours. The following
data is assumed:

k = 3, N = 3, b = 3, d = 20, c = 8.

We imagine the function to be minimized is the sum of activities completion times
and γ to be simply decided according to this objective.

An optimal solution is shown in Figure 1.8 where the first policy is selected,
bringing an objective of 248 hours. White boxes represent activities while gray boxes
correspond to inspections.

Figure 1.8. Optimal solution: first policy is used.

Differently, Figure 1.9 reports the optimal schedule that would be obtained if
the second policy was forced by setting γ = 0. Its objective value is 249 hours.

1.4 Indicator variables, logical relations and scheduling 35

Figure 1.9. Optimal solution when second policy is forced.

37

Chapter 2

New inequalities for
capacity-constrained scheduling
formulations

In Chapter 1 we have seen in detail some possible ways to express logical conditions
by introducing particular sets of big-M constraints and using suitable indicator
variables. Furthermore, we provided some explicative examples, with the purpose
of showing how these arguments have relevance in certain application fields and
especially for scheduling problems. Following on from this point, in this chapter
we focus on a specific use of the techniques previously described, in particular by
addressing problems in which resources employed for processing are scarce and
consequently the scheduling of activities is necessarily constrained by availability
issues.

The chapter is organized as follows: in Section 2.1 we introduce the main
concepts and variables used in our work, taking into account only two activities and
showing the differences with standard approaches. In Section 2.2 we extend previous
arguments to m operations, and focus on the modeling of capacity constraints.
Finally, in Section 2.3 we present some modifications to improve the proposed
formulation.

2.1 From disjunctive constraints to their extensions

As already noticed, disjunctive constraints are frequently used in scheduling for-
mulations. Indeed, they allow to model situations in which activities have to be
sequenced, without (or at least not completely) having a predefined chronological
order to respect. This is the case, for example, of different jobs to be processed on
the same machine: either one knows which is the working sequence of the machine,
or a mathematical model with a suitable structure to define precedences and avoid
times overlapping must be built. Practically, let A1 and A2 be two activities and
τ1 and τ2 their respective durations; if a priori we have information that A1 must
precede A2, we can easily express the limitation with:

t1 + τ1 ≤ t2, (2.1)

38 2. New inequalities for capacity-constrained scheduling formulations

where t1 and t2 are the activities variable starting times and the left-hand side of
the constraint represents the completion of A1. Vice versa, if A1 must follow A2, we
obviously have:

t2 + τ2 ≤ t1. (2.2)

However, if the relative order between the activities is not given, disjunctive (or
non-overlapping) constraints can be used, as described in Section 1.4:

t1 + τ1 − t2 ≤M(1− θ), (2.3)

t2 + τ2 − t1 ≤Mθ, (2.4)

with θ being an additional binary variable, such that θ = 1 implicates (2.1) and
θ = 0 involves (2.2).

This idea can clearly be extended to consider more complex situations: let us now
assume that in some cases it is possible to relax the non-parallelization requirement.
So, similarly to what seen in Section 1.3, we may introduce a binary variable γ
that, if equal to 1, allows to ignore scheduling constraints and to eventually execute
activities simultaneously. The following have to be satisfied:

t1 + τ1 − t2 ≤M(1− θ), (2.5)

t2 + τ2 − t1 ≤Mθ +Mγ, (2.6)

which express condition:

t1 + τ1 − t2 > 0 AND t2 + τ2 − t1 > 0⇒ γ = 1 (AND θ = 0),

or equivalently:

t1 + τ1 − t2 ≤ 0 NOR t2 + τ2 − t1 ≤ 0⇒ γ = 1 (AND θ = 0).

Variable γ represents the possibility to parallelize the activities. If A1 and A2
overlap (i.e. t2 < t1 + τ1 and t1 < t2 + τ2), then γ must become equal to 1. However,
γ = 0 reduces (2.5) and (2.6) to disjunctive constraints (2.3) and (2.4).

Similar approaches can be considered to express other types of relations between
activities. Notice that inequalities (2.5) and (2.6) admit activity parallelization
thanks to γ, which is anyway unable to bring any information other than this.
Now we want to introduce a finer concept by moving the focus from the fact that
activities overlap to the way they do. Indeed, also considering only two activities
with generic durations, there are many different modes they may be ordered in time.
This is shown in Figure 2.1. Similarly, Figure 2.2 illustrates all possible cases of
non-parallelization.

In order to explore some interesting properties, we suppose to be interested in
knowing the relative position of an activity with respect to the other activity starting
time. To address this topic, we first need to define the concepts of left-overlapping
and right-overlapping:

Definition 1. Given two activities A1 and A2, having processing times τ1 and τ2
and starting times t1 and t2, we say that activity A1 left-overlaps A2 if and only
if:

t1 ≤ t2 < t1 + τ1.

2.1 From disjunctive constraints to their extensions 39

Figure 2.1. Possible modes of overlapping between two activities with generic processing
times.

Figure 2.2. Possible dispositions of two activities that do not overlap.

Conversely, we say that activity A1 right-overlaps A2 if and only if:

t2 ≤ t1 < t2 + τ2.

Of course the two definitions are related: indeed, if activity A1 left-overlaps A2,
then A2 right-overlaps A1. Furthermore, if activity A1 left-overlaps A2 and A2
left-overlaps A1, then it means that the two activities start at the same time. In a
similar way, if activities A1 and A2 begin simultaneously, then it is possible to say
that they both left- and right-overlap each other.

Referring to Figure 2.1 for a visual example, we have that A1 left-overlaps A2 in
cases (a), (b), (c), (g), (h) and (i) and that A2 left-overlaps A1 in cases (d), (e), (f),
(g), (h) and (i).

These concepts allow to analyze different modeling opportunities. Let us imagine
to know that A2 can not start while A1 is processing (A1 can not left-overlap A2).
In this situation, there are two possibilities: either A1 begins after t2 (i.e. t1 > t2) or

40 2. New inequalities for capacity-constrained scheduling formulations

A1 finishes before (or exactly at) t2 (i.e. t1 + τ1 ≤ t2). This alternative is expressed
by the following two conditions:

t1 + τ1 − t2 ≤M(1− θ12), (2.7)

t2 − t1 ≤Mθ12 − ε, (2.8)

where ε is a small parameter useful to remove the strict inequality and binary
variable θ12 governs the choice between the two available options.

It is worth to notice the similarity between this couple of constraints and relations
(2.3)-(2.4), where we used θ in place of θ12. In particular, it can be trivially derived
that, as far as τ2 is a positive constant greater than ε (as we actually assume), (2.3)
and (2.4) simply implicate (2.7) and (2.8). This makes sense also in more general
terms, since avoiding overlapping (i.e. imposing constraints (2.3)-(2.4)) of course
involves to avoid left-overlapping (i.e. (2.7)-(2.8)).

To further investigate this idea, we may once again consider variable γ as
used in constraints (2.5)-(2.6), i.e. with the role of admitting/forbidding activity
parallelization. Then, we can define variables γ12 and γ21 such that γ12 = 1 means
that A1 can left-overlap A2 and vice versa for γ21 = 1. The following relations are
conceptually true:

γ ≥ γ12,

γ ≥ γ21,

γ ≤ γ12 + γ21.

Indeed, few options are possible:

1. γ12 = 0, γ21 = 0, γ = 0: activities can not overlap.

2. γ12 = 1, γ21 = 0, γ = 1: activity A1 can left-overlap activity A2.

3. γ12 = 0, γ21 = 1, γ = 1: activity A2 can left-overlap activity A1 (A1 can
right-overlap A2).

4. γ12 = 1, γ21 = 1, γ = 1: activities A1 and A2 can overlap and possibly start
at the same time.

In order to practically express the relation between variable γ12 and the activity
starting times, we need to modify constraints (2.7)-(2.8) by adding the term Mγ12,
which allows their relaxation. So we can write:

t1 + τ1 − t2 ≤M(1− θ12), (2.9)

t2 − t1 ≤Mθ12 +Mγ12 − ε. (2.10)

It is easy to verify that here γ12 controls if activity A1 can left-overlap A2.
Indeed, if γ12 = 0, A2 is forced to start before t1 or after t1 + τ1 (i.e., (2.9)-(2.10) are
reduced again to (2.7)-(2.8)); otherwise both constraints can be relaxed by setting
θ12 = 0. Equivalently, if A1 does not left-overlap A2, then γ12 can take any value;
in the opposite case it necessarily becomes equal to 1.

2.1 From disjunctive constraints to their extensions 41

Considering exactly the same logic also for variable γ21, it is possible to write
the following:

t2 + τ2 − t1 ≤M(1− θ21), (2.11)

t1 − t2 ≤Mθ21 +Mγ21 − ε, (2.12)

where variable θ21, similarly to θ12, permits to identify the alternatives when left-
overlapping is not admitted (γ21 = 0).

2.1.1 Overlapping variables: γ, γ12 and γ21

An interesting observation about previous formulations is what is possible to express
by using constraints (2.9)-(2.12) all together. Indeed, by introducing a set of four
different linear inequalities, we may have information (through variables γ12 and
γ21) on the relative position of each activity with respect to the other. If, instead of
(2.9)-(2.12), we had written just two constraints with variable γ, namely (2.5)-(2.6),
we would have been able only to spot the mutual overlapping of activities without
indications on their ordering in time.

This idea probably becomes clearer by extending the role of indicator variables
γ, γ12 and γ21 from only being necessarily activated in case of overlapping to also
be sufficient for this.

In particular, we saw that (2.5)-(2.6) express implication:

t1 + τ1 − t2 ≤ 0 NOR t2 + τ2 − t1 ≤ 0⇒ γ = 1.

If we want to transform this condition in an if-and-only-if and guarantee

t1 + τ1 − t2 ≤ 0 NOR t2 + τ2 − t1 ≤ 0⇔ γ = 1,

we need to add two inequalities:

−M(1− γ) + ε ≤ t1 + τ1 − t2, (2.13)

−M(1− γ) + ε ≤ t2 + τ2 − t1. (2.14)

Similarly, in (2.9)-(2.12), γ12 + γ21 ≥ 1 is a necessary condition for overlapping.
Indeed, two relations are true:

t1 ≤ t2 < t1 + τ1 ⇒ γ12 = 1,

t2 ≤ t1 < t2 + τ2 ⇒ γ21 = 1,

that is:
t1 − t2 ≤ 0 BUT-NOT t1 + τ1 − t2 ≤ 0⇒ γ12 = 1,

t2 − t1 ≤ 0 BUT-NOT t2 + τ2 − t1 ≤ 0⇒ γ21 = 1.

In order to make these conditions also sufficient and guarantee the double
implications

t1 − t2 ≤ 0 BUT-NOT t1 + τ1 − t2 ≤ 0⇔ γ12 = 1,

t2 − t1 ≤ 0 BUT-NOT t2 + τ2 − t1 ≤ 0⇔ γ21 = 1,

42 2. New inequalities for capacity-constrained scheduling formulations

Case γ γ12 γ21 Cases in Figures 2.1-2.2

activities do not overlap 0 0 0 (j),(k),(l),(m)

activities overlap and t1 precedes t2 1 1 0 (a),(b),(c)

activities overlap and t2 precedes t1 1 0 1 (d),(e),(f)

activities overlap and t1 = t2 1 1 1 (g),(h),(i)

Table 2.1. Possible cases and corresponding values for variables γ, γ12, γ21, as determined
by constraints (2.5)-(2.6), (2.13)-(2.14) and (2.9)-(2.12), (2.15)-(2.18).

four constraints must be added to (2.9)-(2.12):

−M(1− γ12) + ε ≤ t1 + τ1 − t2, (2.15)

−M(1− γ12) ≤ t2 − t1, (2.16)

−M(1− γ21) + ε ≤ t2 + τ2 − t1, (2.17)

−M(1− γ21) ≤ t1 − t2. (2.18)

Now that all binary variables have been linked to activities starting times
through necessary and sufficient conditions, it is possible to schematically collect
our findings, as reported in Table 2.1. Here the differences between approaches
in (2.5)-(2.6),(2.13)-(2.14) and in (2.9)-(2.12),(2.15)-(2.18) become evident. Indeed,
paying the cost of having twice the number of constraints and binary variables of the
first, the second formulation allows to distinguish between the four different cases
of Table 2.1. This of course is not possible by using only variable γ which in fact
assumes the same value every time there is overlapping of activities (last three rows
in the table). Referring once again to Figure 2.1, this means that γ = 1 could be
indistinctly associated to any case from (a) to (i).

We will soon clarify how the additional information brought by variables γ12 and
γ21 can be leveraged to efficiently formulate some particular scheduling limitations.
Before, however, it is worth to focus on another important aspect of previous models:
the role of variables θ, θ12 and θ21.

2.1.2 Sequencing variables: θ, θ12 and θ21

Starting from formulation (2.5)-(2.6),(2.13)-(2.14), we notice that, as long as γ is
equal to 1, θ has to be 0. Indeed, (2.5) and (2.13) together give:

−M(1− γ) + ε ≤M(1− θ),

where the left-hand side of inequality is strictly positive.
A similar implication comes out also from relations (2.9)-(2.12),(2.15)-(2.18),

where γ12 = 1 and γ21 = 1 respectively force θ12 and θ21 to 0 (see (2.9) and (2.15)
for θ12 and (2.11) and (2.17) for θ21).

Nevertheless, if in the first formulation γ is 0, θ specifies in which order the
activities are executed (θ = 1 if A1 precedes A2, θ = 0 if A1 follows A2). In other

2.1 From disjunctive constraints to their extensions 43

terms, variable θ indicates “in which direction” parallelization is avoided. Referring
to θ12 and θ21, they express an analogous idea with reference to the definition of
left-overlapping. For example, if γ12 = 0 and θ12 = 0, constraint (2.10) imposes:

t2 < t1,

so A1 can not left-overlap A2 because A2 starts before A1. Vice versa, if γ12 = 0
and θ12 = 1, from (2.9) we have:

t2 ≥ t1 + τ1

and left-overlapping can not happen because A2 waits at least until A1 is completed.
These observations seem to suggest that θ12 and θ21 can express a sort of ordering

between the activities, although not explicit as the one provided by θ. So different
questions may rise: if θ12 can tell if A2 follows A1 and θ21 is close to indicate the
contrary, are they redundant? Can one of the two variables be simply expressed
in terms of the other? In particular, does the transformation θ21 = 1 − θ12 hold?
Unfortunately the answer to all these questions is no, in the formulation considered.
To prove this fact, consider relations (2.9) and (2.11) where we have replaced θ21
with 1− θ12. We get:

t1 + τ1 − t2 ≤M(1− θ12),

t2 + τ2 − t1 ≤Mθ12.

These relations express the alternative:

t1 + τ1 ≤ t2 OR t2 + τ2 ≤ t1,

and this of course has to be avoided since it would again preclude overlapping, that
is the opposite of our initial scope.

In the following, we will propose a trick to make the substitution θ21 = 1− θ12
feasible, giving the opportunity to remove a variable from the formulation and so
modeling the problem in a more efficient way. For the moment, however, let us
postpone this topic to Section 2.3.2 and conclude with some remarks:

• Constraints (2.9) and (2.11) guarantee:

θ12 = 1⇒ t1 + τ1 ≤ t2,

θ21 = 1⇒ t2 + τ2 ≤ t1.

Thus, if θ12 or θ21 is equal to 1, parallelization is not possible, and consequently
γ12 = γ21 = 0 (see sufficient relations (2.15)-(2.18)).

• Variables θ12 and θ21 can not be 1 at the same time.

• If θ12 = 0 and θ21 = 0, at least one between γ12 and γ21 has to be 1, implying
the overlapping of A1 and A2 (see constraints (2.10) and (2.12)).

Table 2.2 summarizes these results.

44 2. New inequalities for capacity-constrained scheduling formulations

γ12 γ21 θ12 θ21 Meaning Cases in Figures 2.1-2.2

0 0
0 1 A2 precedes A1 (k),(m)

1 0 A1 precedes A2 (j),(l)

0 1 0 0 A2 left-overlaps A1 (d),(e),(f)

1 0 0 0 A1 left-overlaps A2 (a),(b),(c)

1 1 0 0 A1 and A2 start at the same time (g),(h),(i)

Table 2.2. Possible values of variables γ12, γ21, θ12 and θ21 and corresponding meaning, as
determined by constraints (2.9)-(2.12), (2.15)-(2.18).

2.2 Extension to m activities
In the previous sections we described the role of each inequality and variable in
formulation (2.9)-(2.12) and (2.15)-(2.18). In order to practically exploit our findings,
we now extend our approach to consider the case in which the activities that must
be scheduled are m, with m > 2.

Formally, we can define a set A = {1, ...,m} of indexes, such that each element
j ∈ A represents a particular non-preemptive activity characterized by a parametric
duration τj > 0 and a variable starting time tj > 0.

In order to study the properties of overlapping in this situation, it still makes
sense to take into account activities two by two. We thus introduce the set containing
all possible activity pairs:

A2 = {{j, c} : j ∈ A, c ∈ A, c 6= j}

Starting from this, we can write constraints (2.9)-(2.12) and (2.15)-(2.18) for
every pair {j, c} ∈ A2 as follows:

tj + τj − tc ≤M(1− θjc), (2.19)
tc − tj ≤Mθjc +Mγjc − ε, (2.20)
tc + τc − tj ≤M(1− θcj), (2.21)
tj − tc ≤Mθcj +Mγcj − ε, (2.22)
−M(1− γjc) + ε ≤ tj + τj − tc, (2.23)
−M(1− γjc) ≤ tc − tj , (2.24)

−M(1− γcj) + ε ≤ tc + τc − tj , (2.25)
−M(1− γcj) ≤ tj − tc, (2.26)

where (2.19)-(2.20) and (2.23)-(2.24) guarantee:

tj ≤ tc < tj + τj ⇔ γjc = 1,

while (2.21)-(2.22) and (2.25)-(2.26) yield:

tc ≤ tj < tc + τc ⇔ γcj = 1.

2.2 Extension to m activities 45

Figure 2.3. Example of a Gantt chart involving five activities.

2.2.1 Sharing of resources and capacity restrictions

Constraints (2.19)-(2.26) suggest a new way of interpreting variables γjc and γcj .
We say that γjc is equal to 1 if and only if activity j left-overlaps activity c. So,
considering a particular activity ̂, it would be possible to determine which are the
activities c ∈ A that start during its processing, simply observing variables γ̂c. But
it is also interesting to look at the same definition from a different perspective: given
an activity ĉ, we may want to take into account those activities j ∈ A that are in
progress at the instant ĉ begins.

This allows to easily model scheduling problems with sharing of resources. Indeed,
finding a feasible schedule means ordering operations and establishing the starting
time for each activity involved. The output, formally represented by a vector t ∈ Rm+ ,
can be naturally displayed in a Gantt chart. An example with five activities is
reported in Figure 2.3 where the importance of variable t ∈ R5

+ is evident, defining
the main instants, together with the activities ending times, in which the status of
the system changes.

From a practical point of view, this can greatly help in checking the feasibility of
a solution, because reduces the problem of satisfying some given constraints over
time to that of controlling them in particular instants of the schedule. For future
reference, consider the example of activities in Figure 2.3 and assume to have written
inequalities (2.19)-(2.26) for each pair {j, c} ∈ A2. The following hold:

• A1 and A4 overlap and start at the same time (γ14 = 1, γ41 = 1);

• A2 left-overlaps A3 (γ23 = 1, γ32 = 0);

• A2 left-overlaps A5 (γ25 = 1, γ52 = 0);

• A3 left-overlaps A5 (γ35 = 1, γ53 = 0);

• all the other pairs of activities {j, c} do not overlap (γjc = γcj = 0).

Single exclusive resource

Figure 2.3 shows different intervals in which activities overlap. During [t1, t1 +
τ1], [t3, t5] and [t2 + τ2, t5 + τ5] two operations run in parallel while in the interval
[t5, t2 + τ2] three activities (i.e. A2, A3 and A5) are simultaneously in process.

If it was necessary to completely avoid parallelization, it would be enough to
impose γjc = 0 and γcj = 0 for each {j, c} ∈ A2, or equivalently:

46 2. New inequalities for capacity-constrained scheduling formulations

∑
{j,c}∈A2

γjc + γcj =
∑
j∈A

∑
c∈A
c 6=j

γjc ≤ 0. (2.27)

Consequently, a feasible solution would sequentialize activities (e.g., t1 = 0,
t4 = t1 + τ1, t2 = t4 + τ4, t3 = t2 + τ2, t5 = t3 + τ3). This situation well represents
the case in which the m activities make use of the same single resource which can
be exclusively allocated to only one operation at a time. A typical example is a
machine for different jobs.

Notice that if in place of formulation (2.19)-(2.26) plus (2.27) we used standard
constraints like (2.5)-(2.6) and (2.13)-(2.14), we would be able to express the same
limitations:

tj + τj − tc ≤M(1− θ̄jc) ∀{j, c} ∈ A2,

tc + τc − tj ≤Mθ̄jc +Mγ̄jc ∀{j, c} ∈ A2,

−M(1− γ̄jc) + ε ≤ tj + τj − tc ∀{j, c} ∈ A2,

−M(1− γ̄jc) + ε ≤ tc + τc − tj ∀{j, c} ∈ A2,∑
{j,c}∈A2

γ̄jc ≤ 0,

where γ̄jc and θ̄jc respectively replace original γ and θ to take into account and
represent every possible pair of activities.

Two resources

Let us now consider a more complex situation and assume to have a constraint
specifying that no more than two activities can be parallelized, for instance because
there is a resource with capacity equal to 2 that must be shared between different
operations. In this case, we can complete formulation (2.19)-(2.26) with the m
additional inequalities: ∑

j∈A
j 6=c

γjc ≤ 1 ∀c ∈ A.

These can be interpreted as follows: given the set of activities A, to verify there
are no more than two activities in process at the same time, it is enough to make a
check for each c ∈ A. Indeed, selected a particular c, the number of activities that
left-overlap c is made available by binary variables γjc; to limit parallelization, it
is possible to simply bound that amount, forcing the sum of γjc (with j 6= c) to be
lower than the maximum admitted, i.e. the capacity minus 1 (one unit of capacity
is considered occupied by activity c).

Since a check is performed for each activity (at every tj , with j ∈ A), that is in
each instant a new overlapping could be generated, this is sufficient to guarantee
feasibility over time. Activities ending times play no role in these inequalities because
they do not create issues in terms of capacity, only freeing resources previously
occupied. Referring to the case of A1 and A2, this is the reason why it is not

2.2 Extension to m activities 47

Figure 2.4. Example of a feasible solution subject to a capacity limit of 2 parallel activities.

necessary to distinguish, for instance, between situations (a),(b) and (c) of Figure
2.1. Indeed they all show the same behavior at t2, equally implying γ12 = 1.

To have a graphic example of how the inclusion of the last constraints can avoid
to simultaneously execute activities A2, A3 and A5 of Figure 2.3, look at Figure
2.4 where A5 has been postponed to satisfy capacity restriction. In particular, the
condition for c = 5,

γ15 + γ25 + γ35 + γ45 ≤ 1,

now holds (γ15 = 0, γ25 = 0, γ35 = 1, γ45 = 0). Before we had γ15 +γ25 +γ35 +γ45 = 2
since γ25 was equal to 1.

If we considered the same limitation using the standard scheduling variable γ̄jc,
the formulation would become more elaborate: indeed, to avoid the parallelization
of more than two operations, it would be necessary to enumerate all possible groups
of three activities, for example A1, A2 and A3, and write for all of them a constraint
of this type:

γ̄12 + γ̄23 + γ̄13 ≤ 2.

The disadvantage of this procedure lies in the fact that, as well as the capacity
and m change, the number of inequalities to be included in the formulation may
increase exponentially, making also impossible to write the model in a compact form.
For example, if the activities are 5 and the capacity is 2, the model requires 10
constraints, i.e. one for each possible combination of 3 over 5 operations. For an
equal capacity and m = 10 the situation worsens, involving 120 relations (in general,

m!
3!(m−3)!). By using capacity limitations as defined in the first approach, only 10
inequalities would be needed, one for each c ∈ A.

General case: non unitary request and different resource types

To definitely extend formulation (2.19)-(2.26) to consider any possibility of restriction
due to scarce resources, two last steps must be taken into account. The first is what
happens if the request of capacity by an activity is not unitary and possibly not
discrete, as for example in the case of energy, where each operation may ask any
predefined quantity between 0 and the total available. The second is how to manage
limitations if more than one type of resource influences the possibility to execute
the activities.

We address both these issues at the same time by introducing a general group of
inequalities, that we call capacity constraints. First of all we define a set R = {1, ..., n}

48 2. New inequalities for capacity-constrained scheduling formulations

representing the indexes of different resource types. Each resource i ∈ R has a fixed
capacity Ci > 0 and each activity j requires rij units of i, where 0 ≤ rij ≤ Ci. Then,
capacity constraints can be written as follows:

ric +
∑
j∈A
j 6=c

rijγjc ≤ Ci ∀c ∈ A,∀i ∈ R. (2.28)

This corresponds to check for each resource and in every activity starting time
that the total availability is not exceeded. The desired limitations can thus be
modeled paying the cost of adding m× n linear inequalities.

A graphic representation of a feasible solution involving 5 activities and 2
resources is show in Figure 2.5. Two charts are used, one for each i ∈ R. Activities
have two significant dimensions: the width, representing the duration τj , and the
height, indicating the resource requirement rij . Parameters considered are reported
in Table 2.3.

Resource type i Ci ri1 ri2 ri3 ri4 ri5

1 2 0 1 1 2 1

2 3 1 2 1 1 3

Table 2.3. Data used for the example representation of Figure 2.5.

Figure 2.5. Example scheduling representation of 5 activities subject to 2 resource
limitations.

2.3 Formulation improvements

In the previous sections we have shown the properties of our proposed formulation,
in particular by highlighting its ability to deal with capacity limitations in a simple

2.3 Formulation improvements 49

way, allowing to model the problem in a compact form and keeping also a reasonable
dimension.

Here, we continue on these arguments and present additional considerations
with the aim of further improving constraints and better addressing the following
chapters.

We will take into account the reduction of constraints (Section 2.3.1) and variables
(Section 2.3.2), and the refinement of parameters (Section 2.3.3).

2.3.1 Constraints reduction

Taking a step back, we briefly recall the role of constraints (2.19)-(2.26) with respect
to binary variables γjc and γcj , for each {j, c} ∈ A2. We have:

• tj ≤ tc < tj + τj ⇒ γjc = 1, due to (2.19)-(2.20);

• tc ≤ tj < tc + τc ⇒ γcj = 1, due to (2.21)-(2.22);

• γjc = 1⇒ tj ≤ tc < tj + τj , due to (2.23)-(2.24);

• γcj = 1⇒ tc ≤ tj < tc + τc, due to (2.25)-(2.26).

The first two represent necessary relations, the third and fourth are instead sufficient
implications.

Let us now consider capacity constraints (2.28): their aim is to limit the number
of overlapping activities over time, such that the maximum availability of each
resource type i ∈ R is never exceeded. They may exclusively have a lowering effect
on variables γjc and γcj since every coefficient rij is assumed nonnegative and the
only way to satisfy conditions eventually unmet is by moving at least one binary
variable from 1 to 0.

This suggests a simple observation: constraints (2.28) do not need the sufficient
implications brought by relations (2.23)-(2.26), which can thus be removed from our
formulation. As a result, we get a model constituted by 4m2 +mn− 4m constraints:
4m(m− 1) from (2.19)-(2.22) and mn from (2.28).

2.3.2 Variables reduction

We have already noticed that, as long as overlapping is not admitted, variables θjc
and θcj assume a role in sequencing activities, indicating the precedence between
operations j and c. We can observe that, if θjc is 1, constraint (2.19) implies
t1 + τ1 ≤ t2, and consequently t1 < t2. Moreover, if γjc = 0 and θjc is 0, it follows
from (2.20) that t1 > t2. On the other hand, if θcj is 1, t2 + τ2 ≤ t1 due to (2.21)
(therefore t2 < t1), while γcj = 0 and θcj = 1 involve t2 > t1 (see (2.22)). In addition,
constraints (2.19) and (2.21) together exclude θjc = θcj = 1.

All these observations suggest two questions:

1. Do θjc and θcj indicate the sequence of activity j and c starting times?

2. Do the variables exactly express opposite meanings? Is it possible for example
to substitute θcj with 1− θjc?

50 2. New inequalities for capacity-constrained scheduling formulations

The answer to these questions is no, but motivates some reasonings to improve
our formulation. Proceeding step by step, we first notice that if we replaced θcj with
1− θjc in constraints (2.19) and (2.21), we would get an undesirable result:

tj + τj − tc ≤M(1− θjc),

tc + τc − tj ≤Mθjc.

Indeed, this would completely exclude overlapping, creating the alternative between
tj + τj ≤ tc (j precedes c) and tc + τc ≤ tj (c precedes j).

In order to overcome this problem and still try to remove unnecessary variables
from our formulation, we consider a trick. First of all, we add the terms Mγjc and
Mγcj to inequalities (2.19) and (2.21) right-hand sides, and rewrite (2.19)-(2.22) as:

tj + τj − tc ≤M(1− θjc) +Mγjc,

tc − tj ≤Mθjc +Mγjc − ε,

tc + τc − tj ≤M(1− θcj) +Mγcj ,

tj − tc ≤Mθcj +Mγcj − ε.

This does not alter the meaning of constraints since we have:

tc ≥ tj BUT-NOT tc ≥ tj + τj ⇒ γjc = 1;

tj ≥ tc BUT-NOT tj ≥ tc + τc ⇒ γcj = 1.

Using now the substitution θcj = 1− θjc, we can write:

tj + τj − tc ≤M(1− θjc) +Mγjc, (2.29)

tc − tj ≤Mθjc +Mγjc − ε, (2.30)

tc + τc − tj ≤Mθjc +Mγcj , (2.31)

tj − tc ≤M(1− θjc) +Mγcj − ε. (2.32)

This formulation is coherent. To prove this, we distinguish case by case depending
on the values of γjc and γcj :

• γjc = 0 and γcj = 0: if overlapping is not admitted, constraints (2.29)-(2.32)
give:

tj + τj − tc ≤M(1− θjc),

tc − tj ≤Mθjc − ε,

tc + τc − tj ≤Mθjc,

tj − tc ≤M(1− θjc)− ε.

There are two possibilities:

1. θjc = 0: in this case the first and the last relations are relaxed, the third
gives

tc + τc ≤ tj ,

and since τc > ε, also the second constraint is met.

2.3 Formulation improvements 51

2. θjc = 1: the two central inequalities are relaxed, the first implicates

tj + τj ≤ tc,

while the fourth is automatically satisfied.

Thus, overlapping is not possible and θjc governs the precedence between
activities j and c.

• γjc = 0 and γcj = 1: in this case constraints (2.29)-(2.32) become:

tj + τj − tc ≤M(1− θjc),

tc − tj ≤Mθjc − ε,

tc + τc − tj ≤Mθjc +M,

tj − tc ≤M(1− θjc) +M − ε.

The last two relations are always relaxed. The other create two alternatives:

1. if θjc = 0, then tc < tj due to the second constraint, and the first is
relaxed.

2. if θjc = 1, first inequality implies tc ≥ tj + τj , and the second is relaxed.

This confirms that j can not left-overlap c (while the contrary may happen),
which is consistent with the values of γjc and γcj .

• γjc = 1 and γcj = 0: this case is specular to the previous one. Constraints
(2.29)-(2.32) imply:

tj + τj − tc ≤M(1− θjc) +M,

tc − tj ≤Mθjc +M − ε,

tc + τc − tj ≤Mθjc,

tj − tc ≤M(1− θjc)− ε.

The first two relations are relaxed, while the others implicate:

1. tj ≥ tc + τc, if θjc = 0.

2. tj < tc, if θjc = 1.

As expected, given γcj = 0, it is not possible for activity c to left-overlap j.

• γjc = 1 and γcj = 1: all constraints are relaxed in such situation, being banally
satisfied for every value of θjc. Solutions with tj = tc are feasible, eventually
admitting j to both left- and right-overlap c.

52 2. New inequalities for capacity-constrained scheduling formulations

γjc γcj θjc Meaning

0 0
0 no overlapping, c precedes j

1 no overlapping, j precedes c

0 1
0 c starts before j

1 no overlapping, j precedes c

1 0
0 no overlapping, c precedes j

1 j starts before c

1 1
0 -

1 -

Table 2.4. Possible cases and corresponding values of variables γjc, γcj and θjc, on the
basis of constraints (2.29)-(2.32).

Thus, formulation (2.29)-(2.32) is equivalent to (2.19)-(2.22), but allows to
remove variable θcj for each {j, c} ∈ A2, resulting in a model with m(m − 1) less
binary variables. From the computational point of view, this can generally contribute
to make the solution process more efficient.

Table 2.4 collects our results. With the exception of the last rows, in which γjc
and γcj are equal to 1 and tj = tc is possible, the following holds:

tj < tc ⇒ θjc = 1,

tc < tj ⇒ θjc = 0.

This is the first step to start looking at θjc as the variable that may govern the
start-to-start sequence between operations j and c, that is the natural extension of
the basic concept of precedence to situations in which activities can be parallelized.

New formulation and capacity constraints

We have just shown a method to make feasible the substitution θcj = 1− θjc, thus
permitting to replace formulation (2.19)-(2.22) with (2.29)-(2.32) for each ordered
pair of activities {j, c}. To complete this topic, we now consider also the capacity
constraints and highlight some interesting aspects deriving from the combined use
of inequalities (2.29)-(2.32) ∀{j, c} ∈ A2 and (2.28).

We start by noticing that this new formulation constitutes a generalization of
inequalities (2.3)-(2.4) for operations A1 and A2. Indeed, if we consider just one
type of resource (R = {1}) with unitary capacity (C1 = 1) and unitary request by
each activity (r11 = 1, r12 = 1), (2.28) becomes:

1 + γ12 ≤ 1,

1 + γ21 ≤ 1.

This implies γ12 = 0 and γ21 = 0. Constraints (2.29)-(2.32) thus give:

2.3 Formulation improvements 53

t1 + τ1 − t2 ≤M(1− θ12),

t2 − t1 ≤Mθ12 − ε,

t2 + τ2 − t1 ≤Mθ12,

t1 − t2 ≤M(1− θ12)− ε.

It is evident that the first and third relations coincide with (2.3)-(2.4) where θ is
replaced by θ12, while the second and fourth inequalities become redundant. This
confirms our idea.

Another interesting aspect of constraints (2.28), used together with (2.29)-(2.32),
is that they explain the important role played by ε in inequalities (2.30) and (2.32).
To understand this, let us first observe that if tj < tc (equivalently tj ≤ tc − ε) or
tj > tc (tj ≥ tc + ε) then (2.30) and (2.32) are not influenced by the presence of
terms −ε and variables θjc, γjc and γcj are fixed according to tj and tc.

This means that the only situation in which ε becomes decisive is when tj = tc
(formally |tj − tc| ≤ ε). Indeed, if tj and tc are equal, there are two possibilities
depending on the value of θjc:

1. θjc = 0: in this case constraint (2.30) imposes γjc = 1 and (2.31) γcj = 1.

2. θjc = 1: (2.32) forces γcj = 1 and (2.29) implies γjc = 1.

Thus ε assures the following:

t1 = t2 ⇒
{
γjc = 1,
γcj = 1.

On the contrary, if the term −ε was removed from (2.30) and (2.32), then it
would hold:

t1 = t2 ⇒ γjc + γcj ≥ 1

(see constraints (2.29) and (2.31)).
This result would undermine the representativity of capacity constraints (2.28).

To prove this fact, let us consider the case of activities in Figure 2.6, having all the
same starting time (t1 = t2 = t3). We suppose that there is only one shared resource
with a total availability of 5 units. Furthermore we assume that each activity has a
request equal to 2.

If we write formulation (2.28)-(2.32) for all involved pairs, we get the following:

t1 + τ1 − t2 ≤M(1− θ12) +Mγ12,

t2 − t1 ≤Mθ12 +Mγ12 − ε,

t2 + τ2 − t1 ≤Mθ12 +Mγ21,

t1 − t2 ≤M(1− θ12) +Mγ21 − ε,

t1 + τ1 − t3 ≤M(1− θ13) +Mγ13,

t3 − t1 ≤Mθ13 +Mγ13 − ε,

54 2. New inequalities for capacity-constrained scheduling formulations

Figure 2.6. Example of three activities with the same starting time.

t3 + τ3 − t1 ≤Mθ13 +Mγ31,

t1 − t3 ≤M(1− θ13) +Mγ31 − ε,

t2 + τ2 − t3 ≤M(1− θ23) +Mγ23,

t3 − t2 ≤Mθ23 +Mγ23 − ε,

t3 + τ3 − t2 ≤Mθ23 +Mγ32,

t2 − t3 ≤M(1− θ23) +Mγ32 − ε,

2 + 2γ21 + 2γ31 ≤ 5,

2 + 2γ12 + 2γ32 ≤ 5,

2 + 2γ13 + 2γ23 ≤ 5.

Observe that solution of Figure 2.6 is not feasible, because the first twelve
inequalities imply γjc = 1 and γcj = 1 for each {j, c} ∈ A2 and therefore capacity
constraints are not satisfied (2 + 2 + 2 = 6 > 5).

However, if we had assumed ε = 0, then the following solution would have met
all inequalities, with t1 = t2 = t3: (γ12 = 1, γ21 = 0, γ13 = 0, γ31 = 1, γ23 = 1,
γ32 = 0, θ12 = 1, θ13 = 0, θ23 = 1). But this would be wrong. This once again
confirms that ε must be a small parameter arbitrarily greater than 0.

2.3.3 Parameters refinement

We have already mentioned the problems which are generally linked to the use of
big-M formulations and the best practices commonly employed in the attempt of
avoiding undesirable side effects. Among them, two are the main guidelines to follow:
(i) keep model coefficients as low as possible and (ii) adapt them to associated
constraints, eventually choosing different constants to appear in different places of
different inequalities.

Taking into account these aspects, we split our discussion into two paragraphs
to separately consider the coefficients of variables γjc or γcj , and those multiplying
θjc or (1− θjc).

2.3 Formulation improvements 55

Coefficients for variables γjc and γcj

We start from the coefficients of overlapping variables, assuming the constants
multiplying θjc and (1 − θjc) maintain generic large values – still referred as M –
able to relax constraints. This is justified by a simple observation: if γjc = 0 and
γcj = 0, inequalities (2.29)-(2.32) take the form of standard disjunctive relations.
This imposes the coefficients of θjc and (1 − θjc) to be big enough to guarantee
feasibility both if θjc = 0 and if θjc = 1 (so they may have to be very large to span
long time horizons).

Let us introduce the following new formulation:

tj + τj − tc ≤M(1− θjc) + (τj − ε)γjc ∀{j, c} ∈ A2, (2.33)
tc − tj ≤Mθjc + εγjc − ε ∀{j, c} ∈ A2, (2.34)

tc + τc − tj ≤Mθjc + τcγcj ∀{j, c} ∈ A2, (2.35)
tj − tc ≤M(1− θjc)− ε ∀{j, c} ∈ A2. (2.36)

It is possible to show that formulation (2.33)-(2.36) is equivalent to (2.29)-(2.32)
for each {j, c} ∈ A2. To prove this, we consider constraints (2.29)-(2.32), where four
different parameters a1, a2, a3, and a4 are used in place of the originalM multiplying
γjc and γcj :

tj + τj − tc ≤M(1− θjc) + a1γjc, (2.37)
tc − tj ≤Mθjc + a2γjc − ε, (2.38)

tc + τc − tj ≤Mθjc + a3γcj , (2.39)
tj − tc ≤M(1− θjc) + a4γcj − ε. (2.40)

If γjc = 0 and γcj = 0 the result is trivial, taking us back to our initial observation:
the terms containing new coefficients disappear from constraints (2.37)-(2.40), which
simply reduce to standard disjunctions, exactly as done by (2.29)-(2.32). It follows
that either j precedes c or c precedes j.

Therefore, we take into account all other cases in which at least one between γjc
and γcj is different from 0:

• γjc = 0 and γcj = 1: since j can not left-overlap c (γjc = 0) we would like to
express the alternative between the following two:

tc < tj , (2.41)

tc ≥ tj + τj . (2.42)
Depending on the value of θjc, we have:

1. θjc = 0: (2.37) and (2.40) are relaxed. (2.38) and (2.39) give:

tc − tj ≤ −ε,

tc − tj ≤ a3 − τc.
The first is equivalent to (2.41). To be sure the second does not influence
this condition, we must have a3 − τc ≥ −ε, thus:

a3 ≥ τc − ε. (2.43)

56 2. New inequalities for capacity-constrained scheduling formulations

2. θjc = 1: (2.38) and (2.39) are relaxed. (2.37) and (2.40) respectively
imply:

tj − tc ≤ −τj ,

tj − tc ≤ a4 − ε.

The first is equivalent to (2.42). To allow this alternative without ties, a4
must satisfy a4 − ε ≥ −τj . Therefore:

a4 ≥ ε− τj . (2.44)

Summarizing, if (2.43) and (2.44) hold, γjc = 0, and γcj = 1, θjc expresses
which of the two alternatives in (2.41)-(2.42) is true.

• γjc = 1 and γcj = 0: two alternatives should be made feasible to avoid c
left-overlaps j:

tj < tc, (2.45)

tj ≥ tc + τc. (2.46)

We have the following, depending on the value of θjc:

1. θjc = 0: (2.37) and (2.40) are relaxed. (2.38) and (2.39) give:

tc − tj ≤ a2 − ε,

tc − tj ≤ −τc.

The second is equivalent to (2.46). In order to avoid influences on this
condition, it should be a2 − ε ≥ −τc, thus:

a2 ≥ ε− τc. (2.47)

2. θjc = 1: (2.38) and (2.39) are relaxed. (2.37) and (2.40) become:

tj − tc ≤ a1 − τj ,

tj − tc ≤ −ε.

The second is equivalent to (2.45), and a1 must satisfy a1 − τj ≥ −ε, i.e.:

a1 ≥ τj − ε. (2.48)

Therefore, if (2.47) and (2.48) hold, γjc = 1, and γcj = 0, θjc permits to
distinguish between the two alternatives in (2.45)-(2.46).

• γjc = 1 and γcj = 1: in this case overlapping is admitted and so there should
not be constraints on activities starting times. We notice that, if θjc = 0:

– (2.37) is relaxed;
– (2.38) gives: tc − tj ≤ a2 − ε;
– (2.39) gives: tc − tj ≤ a3 − τc;
– (2.40) is relaxed;

2.3 Formulation improvements 57

thus:
tc − tj ≤ min(a2 − ε, a3 − τc).

Correspondingly, if θjc = 1:

– (2.37) gives: tc − tj ≥ τj − a1;
– (2.38) is relaxed;
– (2.39) is relaxed;
– (2.40) gives: tc − tj ≥ ε− a4;

thus:
tc − tj ≥ max(τj − a1, ε− a4),

or alternatively:
tc − tj > max(τj − a1, ε− a4)− ε.

Since we want tc − tj to be allowed to vary over R (no constraints on starting
times, considering both cases with θjc = 0 and θjc = 1), we can impose:

min(a2 − ε, a3 − τc) ≥ max(τj − a1, ε− a4)− ε. (2.49)

Combining condition (2.49) with (2.43),(2.44),(2.47) and (2.48), it is possible to
write a system of inequalities in variables a1, a2, a3, and a4:

a1 ≥ τj − ε
a2 ≥ ε− τc
a3 ≥ τc − ε
a4 ≥ ε− τj
a1 + a2 ≥ τj
a2 + a4 ≥ ε
a1 + a3 ≥ τj + τc − ε
a3 + a4 ≥ τc

This system admits infinitely many feasible solutions. Two particular possibilities
are:

1. a1 = M, a2 = M, a3 = M, a4 = M ;

2. a1 = τj − ε, a2 = ε, a3 = τc, a4 = 0.

They respectively constitute the combinations of coefficients used in formulation
(2.29)-(2.32) and in (2.33)-(2.36). Notice that the second satisfies:

min(a2 − ε, a3 − τc) = max(τj − a1, ε− a4)− ε = 0.

Consequently, the following is guaranteed for all possible values of γjc and γcj (see
also inequalities (2.34) and (2.36)):

tc ≤ tj ⇔ θjc = 0.

58 2. New inequalities for capacity-constrained scheduling formulations

γjc γcj θjc Meaning

0 0
0 no overlapping, c precedes j

1 no overlapping, j precedes c

0 1
0 c starts before j

1 no overlapping, j precedes c

1 0
0 no overlapping, c precedes j

1 j starts before c

1 1
0 c starts before or together with j

1 j starts before c

Table 2.5. Possible cases and corresponding values of variables γjc, γcj and θjc, on the
basis of constraints (2.33)-(2.36).

Therefore θjc definitely assumes the role of controlling the start-to-start sequence
between activities j and c. Table 2.5 extends Table 2.4 and reports updated results
on the meaning of variables when new parameters are employed.

It is important to underline that the use of the reduced coefficients just presented
can greatly contribute to speed up classical solvers procedures. We will give evidence
of this fact in the next chapter, where computational results will provide a measure
to substantiate our idea.

Coefficients for θjc and (1− θjc)

Let us now try to improve the constants multiplying θjc and (1− θjc), assuming the
other parameters fixed as in formulation (2.33)-(2.36). We introduce b1, b2, b3 and
b4 in place of M , and consider the following:

tj + τj − tc ≤ b1(1− θjc) + (τ1 − ε)γjc, (2.50)
tc − tj ≤ b2θjc + εγjc − ε, (2.51)

tc + τc − tj ≤ b3θjc + τ2γcj , (2.52)
tj − tc ≤ b4(1− θjc)− ε. (2.53)

We observe that:

1. When γjc = 0 and γcj = 0, θjc decides which activity precedes the other. Both
possibilities must be feasible, therefore:

b1 ≥ tj + τj − tc, (2.54)
b2 ≥ tc − tj + ε, (2.55)
b3 ≥ tc + τc − tj , (2.56)
b4 ≥ tj − tc + ε, (2.57)

for all values of tj and tc.

2.3 Formulation improvements 59

2. Coefficients used for γjc and γcj are all nonnegative. Thus, γjc = 1 and/or
γcj = 1 can only increase the right-hand sides of constraints (2.50)-(2.53). It
follows that no additional conditions may tighten requirements (2.54)-(2.57),
which indeed are the only ones to satisfy.

In order to reduce the values of b1, b2, b3 and b4 from the generic large number
M , we consider the following options, presented in increasing order of detail:

• If a maximum time horizon H is given for the problem, since tj ≥ 0 ∀j ∈ A, it
is possible to use:

b1 = H,

b2 = H − τc + ε,

b3 = H,

b4 = H − τj + ε.

• If activities j and c have release dates rj and rc (nonnegative, 0 by default)
and due dates dj and dc (satisfying dj ≥ max(rj , τj) and dc ≥ max(rc, τc),
possibly set to H or M), one can employ:

b1 = dj − rc,
b2 = dc − τc − rj + ε,

b3 = dc − rj ,
b4 = dj − τj − rc + ε.

• In some cases, activities release times and due dates are not specified. However,
it is possible that a different information is available. For example, if we know
that a certain activity A2 has to necessarily follow another activity A1, we may
assert that its starting time will not surely be smaller than τ1. Similarly, if A3
comes after A2, it will of course satisfy: t3 > τ1 + τ2. This reasoning is valid
also the other way around. If for instance we are aware that the maximum
time horizon is H, and that a given activity A4 precedes another activity A5,
which must be processed before A6 and A7 can start, we may certainly affirm:
t4 ≤ H −max{τ6, τ7} − τ5 − τ4.
We will soon see how this idea is easily generalized to take into account all
the activities and all existing precedence relationships among them. For the
moment, let us only define for every activity j the earliest start time ESj and
the latest start time LSj , such that [ESj , LSj] represents the time window for
activity j to begin (i.e. ESj ≤ tj ≤ LSj). The activity earliest finish time
EFj and its latest finish time LFj can then be simply derived by adding the
quantity τj respectively to ESj and to LSj .
Since ESj ≤ tj ≤ LSj and EFj ≤ tj + τj ≤ LFj for each j ∈ A, parameters
multiplying θjc and (1− θjc) can be fixed in this way:

b1 = LFj − ESc,
b2 = LSc − ESj + ε,

b3 = LFc − ESj ,
b4 = LSj − ESc + ε.

60 2. New inequalities for capacity-constrained scheduling formulations

These techniques are the most commonly used to moderate the sensitivity of
MILP formulations to the large dimensions of big-M parameters in disjunctive
scheduling constraints. Sometimes they are mixed, improved or adapted to be also
valid for particular problems presenting different of the above characteristics or
having special structures, both in terms of constraints and objective function.

In the following chapter we will come back to this topic, presenting an additional
preprocessing step that may further contribute to tight the activities time windows. It
is partially related to the characteristics of the specific problem that we will consider
and for this reason we postpone the discussion until a proper formal introduction
will be given. For the moment, in order to keep the notation simple and avoid
over-detailed models, we generally use time horizon H in place of all parameters b1,
b2, b3 and b4.

61

Chapter 3

A new formulation for the
RCPSP

The resource constrained project scheduling problem (RCPSP) is one of the most
widely studied problems in the context of scheduling (Artigues et al. (2013)). It
consists of determining the starting times for the activities of a project considering
both precedence relations and limited availabily of resources. The objective is to
minimize the total duration of activities, i.e. the project makespan.

Formally, the RCPSP can be described as follows. Givenm different activities and
n distinct resources, let A = {1, ...,m} and R = {1, ..., n} represent the corresponding
sets of indexes. The duration (or processing time) of a generic activity j ∈ A is known
and is denoted by τj . Once started, activities can not be interrupted (preemption
is not allowed). So, if tj represents the variable starting time of j, tj + τj uniquely
identifies the activity completion. Sequence constraints are considered to model
technological finish-to-start precedence relations between couples of activities. These
are given by the set Q of ordered index pairs, such that (j1, j2) ∈ Q means that
activity j2 can not be started before j1 is completed.

Activities require predefined amounts of resources to be processed. Each resource
i ∈ R is said renewable due to the fact that its full capacity, namely Ci, is assumed
constantly available over time. The resource requirements are parameters of the
problem, such that rij represents the number of units of resource i to be occupied
by activity j during its processing, where 0 ≤ rij ≤ ci.

In the standard version of the RCPSP all inputs are considered deterministic
integer-valued. Furthermore, a maximum time horizon H is supposed as given, being
eventually set to the value of a precomputed upper bound or, by default, to the
sum of all tasks durations. The output of the problem is a project schedule, i.e., a
vector of starting times for the activities, such that all precedence relationships are
respected, the total required quantity of each resource does not exceed its prescribed
capacity at any point in time, and the overall makespan is minimized.

Graphically, the project is often associated to an activity-on-node directed
network whose nodes correspond to activities and arcs represent precedence relations
contained in Q. Two dummy nodes, namely 0 and m + 1, are generally added
to the graph, representing the milestones ““project start”” and ““project end””.
These dummy nodes can be seen as activities with zero duration and no resource

62 3. A new formulation for the RCPSP

Figure 3.1. Example of a precedence activity-on-node graph.

requirements, connected to other tasks through additional arcs that make them the
overall start and end points for the project. Since precedence constraints in input
are supposed to be consistent, the network is considered acyclic by nature. As a
result, the minimum project completion time can be determined as the length of
the critical path, i.e., the longest path from 0 to m+ 1, assuming each arc valued
with its destination node processing time. A visual example involving 8 activities is
shown in Figure 3.1, where A0 and A9 are the additional dummy tasks.

Notice that the algorithms for longest path calculation allow to polynomially
compute not only the minimum project makespan, but also the earliest start time
ESj , for each activity j ∈ A. Indeed, every ESj can be set to the length of the
longest path from the start node 0 to j. Furthermore, integrating this method with
one of the many existing heuristics for the RCPSP, it is possible to determine for
each j the latest start time LSj as the makespan upper bound value minus the
length of the longest path from j to the end fictitious node. Then, the activities
earliest finish time EFj and latest finish time LFj are simply derived, bringing to
suitable time-windows that can be used to significantly improve the speed of solution
procedures.

In this chapter we will focus on the mathematical formulation of the RCPSP. In
particular, in Section 3.1 we review the existing literature, with a special attention
to the linear programming approaches proposed over the years. In 3.2 we introduce a
new formulation for the Resource Constrained Project Scheduling Problem based on
the variables and constraints presented in the previous chapter. Section 3.3 recalls
two known approaches in order to use them as a basis for comparison. A critical
analysis on the characteristics of all the considered models is proposed in Section
3.4. Finally, experimental results are provided in 3.5.

3.1 Literature review

The RCPSP is an important and challenging problem both in scheduling research and
in practice. Its applications involve many real-life situations, such as make-to-order
production, construction projects, software development, service centers planning,
etc.

3.1 Literature review 63

The origin of the problem can be found in the field of project management,
and in particular in the Critical Path Method. Indeed, the CPM is one of the
first quantitative approaches to planning and scheduling. It takes into account
only the durations of the activities, implicitly assuming the resources are unlimited.
Extending such methodology, the RCPSP addresses similar issues, but considers the
more realistic scenario in which resources are scarce, negatively influencing project
execution time.

Blazewicz et al. (1983) demonstrated that the RCPSP belongs to the class of
the strongly NP-hard problems, being a generalization of the classical job shop
scheduling problem. Their theoretical conclusion is also confirmed by numerical
evidence. In fact, according to Herroelen (2005), computational results indicate
that exact methods applied to standard test instances (Kolisch and Sprecher (1997))
are unable to solve problems dealing with more than 60 activities. Even more
recent works, such as the one by Kopanos et al. (2014), endorse this idea, showing
considerable performance deterioration when addressing instances of increasing
dimension, e.g. from 30 to 60 or 90 activities.

Due to its complexity, the RCPSP has motivated the study of solution tech-
niques in different directions. Both approximate and exact methods have been
extensively documented in the literature. On the one hand approximate approaches
like heuristics and metaheuristics are able to obtain relatively good results with
few computational requirements, but do not guarantee solutions optimality; on the
other, exact techniques such as linear programming and ad-hoc branch and bound
algorithms are successfully applied to problem instances of limited size, providing
optimal or nearly-optimal certified solutions in a reasonable amount of time.

For an extensive comparison of computational results obtainable by approximate
methods we refer to Hartmann and Kolisch (2000) and Kolisch and Hartmann
(2006). More recent works following different approaches were also proposed (see for
example Chen (2011), Jia and Seo (2013), Zamani (2013), Zheng and Wang (2015),
and Chand et al. (2017)). For the exact solution strategies, specialized branch and
bound procedures were described by Christofides et al. (1987), Demeulemeester and
Herroelen (1992), Brucker et al. (1998), Baptiste and Pape (2000), Dorndorf et al.
(2000), and Laborie (2005), while Koné et al. (2011), Bianco and Caramia (2013)
and Kopanos et al. (2014) presented a detailed analysis on the performances of many
well known linear programming models.

Although mathematical formulations in general cannot compete with the results
of heuristics, metaheuristics and branch and bound algorithms, which are specifically
built to exploit the structure of the problem during the solving steps, they are
particularly interesting for different practical and theoretical reasons. First of
all, compact mathematical models can be simply passed to standard optimization
solvers, which are often the only software available to industrial practitioners, being
consequently subject to continuous improvements. Secondly, they can contribute to
the exploration of new lower bounds and the development of new hybrid approaches,
involving effective constraint programming techniques (see Demassey et al. (2005)).
Moreover, it is important to point out that there are some specific hard instances of
the RCPSP for which linear programming formulations provided on average better
results than specialized search algorithms.

64 3. A new formulation for the RCPSP

Linear programming formulations for the RCPSP

Many authors proposed mathematical formulations for the RCPSP, all believing that
how a model is formulated significantly influences obtainable results, in particular
when integer variables are involved. In the literature, both ILP and MILP approaches
are present in a variety of forms, depending on the different strategies chosen to ex-
press the objective function, the precedence constraints, and the resource constraints.
These linear models can be classified according to two main characteristics:

Time granularity: There are two methods for considering time in RCPSP formula-
tions. These allow to distinguish between Discrete-Time (DT) and Continuous-
Time (CT) models. In DT models, the planning horizon is uniformly divided
into a limited set of time slots, such that activities can start only at the
beginning of one predefined slot. They are often said Time-Indexed due to
the nature of binary variables involved in the formulations. Differently, in CT
models, tasks may be scheduled at any point in time during the interval of
interest, allowing much more modeling flexibility. This is a great advantage
when dealing with RCPSP instances having long or very differentiated activity
durations (see Koné et al. (2011)). However, when resources are very scarce,
Continuous-Time approaches generally perform worse than Discrete-Time
formulations due to their poor LP-relaxation bounds.

Number of variables and constraints: In general, there exist mathematical
models for the RCPSP involving exponential, pseudo-polynomial or poly-
nomial amounts of variables/constraints. Exponential formulations are based
on the idea of using preprocessing procedures to generate subsets of activities
that can be feasibly or unfeasibly parallelized according to their resource
requirements. Such information can then be exploited to introduce suitable
inequalities and/or binary decision variables associated to the calculated sets.
These models generally lead to strong relaxations. However, since the number
of sets resulting from the first phase in theory depends exponentially on m, the
applicability of this type of formulation is restricted to those problem instances
which are highly disjunctive (i.e. where many groups of activities cannot
overlap, as observed by Baptiste and Pape (2000)) or involving relatively few
activities.
In contrast to this type of approach, the other proposed methods do not require
preprocessing logics, thus allowing the solution of problems directly through
standard MILP solver. Among them, there are the formulations requiring a
pseudo-polynomial number of variables and constraints, generally deriving from
Discrete-Time strategies. Indeed, DT models involve time-indexed decision
variables, such that the generic binary xjt indicates a particular status of
activity j at the start (or end) of time slot t. Consequently, the number of 0-1
variables increases with the amount of time intervals considered, and indirectly
with the durations of the particular activities to schedule. In a similar way,
also the amount of constraints is pseudo-polynomial, requiring to guarantee
resource usage feasibility at every time t, with t ∈ {1, 2, ...,H}.
In the attempt to minimize the dimensions of models, and better address
problem instances with long time horizons, different authors proposed compact

3.1 Literature review 65

mathematical formulations for the RCPSP, involving a polynomial number
of variables and constraints. Their modeling approach, which excludes the
use of time-indexed variables, is the point that brought to the origin of the
Continuous-Time models known in the literature.

All the works that have been proposed over the years to solve the RCPSP
through linear programming techniques can be classified according to the above
characteristics, including the first model, formulated by Pritsker et al. in 1969, and
originally addressed to multi-project scheduling. In their Discrete-Time formulation,
the authors introduce a single type of binary variables xjt, such that xjt = 1 if and
only if activity j finishes at time t. Specific constraints guarantee that exactly one
period is selected for the completion of each activity j. An upper limit H on project
maximum duration is assumed available as input. Constraints and variables are
both defined according to the time index t with t ∈ {1, 2, ...,H}, leading to a pure
ILP formulation of pseudo-polynomial size. The objective function can essentially be
written as

∑
t=1,...,H txm+1,t, with xm+1,t, t = 1, ...,H, being the variables associated

to the dummy activity indicating project end.
Following the same approach, Christofides et al. (1987) presented a similar model,

and only reformulated the precedence constraints in a disaggregated form, which
strongly improved relaxation results.

Alvarez-Valdés and Tamarit (1993) proposed a MILP Continuous-Time formula-
tion of the RCPSP, making use of the concept of minimal incompatible sets. These
are the smallest subsets of activities, not linked by any precedence relation, which
could not be parallelized without exceeding the maximum amount of resources
available. Minimal incompatible sets are computed in preprocessing. Then, binary
variables yjk are associated to pairs of activities (j, k), which equal 1 whenever j
is processed before k in the scheduling. In order to avoid resource conflicts, many
inequalities are introduced, forcing at least one precedence relationship (binary equal
to 1) between a pair of activities in every incompatible set I (that is

∑
j∈I,k∈I yjk ≥ 1

for each I). This possibly generates an exponential number of constraints. Tech-
nological sequence restrictions are simply modeled by means of natural starting
time continuous variables tj ∀j ∈ {0, ...,m+ 1}, and the makespan is optimized by
minimizing tm+1. Variables yjk and tj are linked through big-M constraints such
that yjk = 1⇒ tk ≥ tj + τj .

In a complementary way, Mingozzi et al. (1998) proposed a Discrete-Time formu-
lation that, instead of considering forbidden sets of activities, exploits preprocessing
to list all feasible overlapping combinations, i.e. all possible subsets of activities
F1, F2, ..., Fk that can be simultaneously executed without violating resource or
precedence constraints. Boolean variables zht are defined, assuming the value of 1 to
indicate that subset Fh is in progress at time t. Suitable constraints ensure that at
most one set is selected for every t ∈ {1, ...,H}, and that each activity j is processed
for exactly τj periods. The objective function and the precedence constraints are
modeled similarly to Pritsker et al. (1969), using the additional variables xjt. An
exponential number of variables and constraints are required, depending on the
amount of calculated feasible subsets. This limits the applicability of the formulation,
that however produces very strong lower bounds on the makespan.

Different approaches were used by Klein (2000), who introduced three pseudo-

66 3. A new formulation for the RCPSP

polynomial Discrete-Time formulations. The first one is a variant of the model
proposed by Kaplan (1988), originally developed for the case of preemptive activities.
The second and the third are instead based on step binary variables specifying if an
activity j starts (completes) at time period t or earlier (after). The last formulation
is weaker than the others, but presents the advantage of letting the τj eventually be
decision variables and not necessarily fixed parameters.

Artigues et al. (2003) were the first to formulate the RCPSP using a polynomial
number of variables and constraints. Their Continuous-Time model is built on the
idea of resource flow, represented by the variables fjki, which indicate the quantity
of resource i that is directly transferred from activity j to activity k for processing.
Dummy start and end nodes are respectively treated as unique source and sink
for the flow, that is ri,0 = ri,m+1 = Ci. Other two types of variables are defined,
similarly to Alvarez-Valdés and Tamarit (1993): the continuous natural starting time
variables tj and the sequential binary variables yjk, equal to 1 whenever activity
j precedes activity k. This formulation has a poor relaxation due to the presence
of big-M constraints, but is compact and therefore adequate in case of large time
horizons.

The work of Artigues et al. (2003) was studied by Koné et al. (2011), who com-
pared different Discrete-Time and Continuous-Time approaches from the literature,
including two new CT event-based models. Events are significant points in the
schedule which can be selected as start (or end) time for one or more activities. Their
position over the planning horizon is unknown a priori, so a continuous variable te
is introduced to represent the date of each event e, considering that at most m+ 1
variables of this type are needed.

The first formulation, said Start/End or SEE, is a variant of the event-based
formulation proposed by Zapata et al. (2008). It uses two binary variables to indicate
if activities start or complete at given event points, and two continuous variables:
one is te, while the other specifies the amount of resources required immediately
after each event. The second model, known as On/Off or OOE, outperforms the first
one, involving also a smaller number of variables. These are given by the continuous
event dates plus m2 booleans, which equal 1 if an activity j starts, ends or is in
process at event e, and are 0 otherwise.

Since the number of necessary events is limited, these formulations are compact,
and show, as expected, the best results on instances involving long scheduling
horizons or high processing time range. However, they have two disadvantages:
the first is that, although not including big-M constraints, these models provide
low-quality linear relaxations. The second instead concerns the dimension, involving
O(m3) constraints, that makes the solution impractical for high values of m.

Bianco and Caramia (2013) proposed a Discrete-Time formulation, successively
detailed by Naber et al. (2014). Their model is based on the definition of step binary
variables similar to those introduced by Klein (2000) plus additional continuous
variables representing the percentage of activity j that has been performed until
each time interval t. Before starting the activity percentage is set to 0, and becomes
definitely 1 after completion. Authors extensively compared their approach with
others in the literature, showing that their formulation generally outperformed the
others in terms of solution time and quality. This once again proved that the way
constraints and additional redundant variables are introduced and formulated do

3.1 Literature review 67

have significant effects on the efficiency of exact methods.
Inspired by the work of Hartmann (2000), who focused on the similarity between

packing problems and project scheduling models, Jia and Seo (2013) proposed a
Continuous-Time formulation applying the facility layout concept to RCPSP. In
this approach, activities are viewed as rectangular facilities to be arranged in a
limited space which is (n + 1)-dimensional (n for different resource types and 1
for time), without violating precedence relations and capacity constraints. The
presented formulation is obtained by introducing many different variables which
allow to linearize disjunctive inequalities. A further step of constraint reduction is
necessarily added, due to the significant dimensions reached by the model, involving
also big-M inequalities.

One of the most recent comparative studies among MILP and ILP formulations for
the RCPSP was proposed by Kopanos et al. (2014), who evaluated the performance
of several approaches from the literature, including four new models. Among these
four, two are Discrete-Time formulations which use binary variables similar to
those introduced by Pritsker et al. (1969) and Kaplan (1988), with the second
one considering a disaggregated version of precedence constraints, and two are
Continuous-Time models, exploiting the concept of activity overlapping. Different
preprocessing logics are applied, with the aim of simplifying constraints and avoiding
the use of large big-M constants. A detailed computational analysis shows the results
of the approaches considered, and underlines the efficiency of the latter two CT
models, which can either be solved to optimality faster or, if not optimal, attain
better solutions.

Recently, a Continuous-Time formulation for the RCPSP with generalized tempo-
ral constraints (i.e. with minimal and maximal time lags between pairs of activities)
was presented by Varakantham et al. (2016), which employed it as a basis to solve
nondeterministic instances with durational uncertainty. Their theoretical model
is similar to the CT approaches introduced by Kopanos et al. (2014), using the
same starting time and binary indicator variables, connected with big-M inequalities.
Capacity constraints are formulated in a different way through the definition of
additional variables identifying the resource consumption by an activity at the start
of another activity. No computational results are reported for the solution of the
problem in deterministic conditions utilizing standard solvers.

Finally, Rihm and Trautmann (2017) proposed a Continuous-Time formulation
with three minor variants. Their approach consists in modeling resource constraints
through the use of explicit assignment variables that specify which individual resource
units are allocated to each activity. Natural starting time variables tj and sequencing
binary variables yjk are also introduced (linked by big-M inequalities), allowing to
express that if two activities j and k employ the same resource unit, then either j
precedes k (yjk = 1) or the contrary happens (ykj = 1). Modifications include the
elimination of some symmetric solutions from the search space and the simplification
of sequencing constraints for pairs of activities that cannot be processed in parallel.
A comparative analysis with the formulations of Pritsker et al. (1969) and Artigues
et al. (2003) is performed, showing positive results specially for instances of the
RCPSP with very low resource capacities.

This completes the list of works constituting the state of the art for MILP and ILP
approaches to the classical Resource Constrained Project Scheduling Problem. It is

68 3. A new formulation for the RCPSP

important to observe, however, that many variants and extensions of the RCPSP have
been proposed in the literature over the years (see Brucker et al. (1999), Hartmann
and Briskorn (2010), and Schwindt et al. (2015)). Among the others, we can cite the
multi-mode RCPSP (MRCPSP, surveyed by Weglarz et al. (2011)), where activities
can be processed with several possible modes requiring different resource quantities,
the preemptive RCPSP (PRCPSP, introduced by Kaplan (1988)), where activity
preemption is allowed, the stochastic RCPSP (SRCPSP, Herroelen and Leus (2005)),
the RCPSP with generalized precedence constraints (RCPSP/max, Bartusch et al.
(1988)), with consumption and production of resources (RCPSP/CPR, Koné et al.
(2013)), with flexible resource profiles (FRCPSP, Naber and Kolisch (2014)) and the
multi-objective RCPSP (MORCPSP, Ballestín and Blanco (2011)).

Problem instance sets for the RCPSP and its extensions

In line with the high volume of works regarding the RCPSP and the associated
solution methods, a large number of standard instances were proposed in the
literature. Among the most broadly used, there are those that we will consider for
our computational studies and that we rapidly describe here:

PSPLib: these problem instances are described in Kolisch and Sprecher (1997) and
publicly reachable through a website (http://www.om-db.wi.tum.de/psplib/).
They are divided into four sets, varying on the number of activities involved,
i.e., 30, 60, 90 or 120. Each of the first three sets (respectively named j30,
j60 and j90) contains 480 instances, randomly generated in groups of 10, by
considering all the combinations of three indicators: The Network Complexity
NC ∈ {1.5, 1.8, 2.1}, the Resource Factor RF ∈ {0.25, 0.50, 0.75, 1}, and the
Resource Strength RS ∈ {0.2, 0.5, 0.7, 1}. NC represents the average quantity
of non-redundant precedence relationships per activity, RF is the normalized
average number of required resources, and RS indicates the tightness of resource
capacity constraints, with 0 ≤ RS ≤ 1. The set j120, which considers 120
activities and 600 instances, is structured in a similar way, but involves different
levels of RS (in detail, RS ∈ {0.1, 0.2, 0.3, 0.4, 0.5}). Four resource types are
taken into account in all problems. Today, PSPLib is the most famous test
library for the RCPSP.

RanGen2: there are 1800 instances in this set, generated by Vanhoucke et al.
(2008) using the combinations of six topological indicators, different from
those of PSPLib. They are formally split into five groups, containing respec-
tively 900, 180, 240, 240, and 240 test problems. Material is available at
http://www.projectmanagement.ugent.be/research/data/RanGen. Despite
having the same dimensions of j30 (i.e, 30 activities and 4 resource types),
these instances are generally considered more difficult to be solved.

In our computational analysis we will use set RanGen2 and sets j30 and j60 of
PSPLib, performing experiments on a total of 2760 problems.

Additional instances are available at the mentioned websites, involving also larger
test cases and more complicated versions.

3.2 Our solution approach 69

3.2 Our solution approach

As illustrated, many MILP and ILP models for the RCPSP were proposed in the
literature, providing interesting basis for comparison. The extensive experiments
performed by Koné et al. (2011) and Kopanos et al. (2014), in particular, showed
the encouraging results obtained by Continuous-Time models. On the one hand,
Koné et al. (2011) compared their two CT models with the formulations of Pritsker
et al. (1969), Christofides et al. (1987) and Artigues et al. (2003), underlining the
advantages of continuous approaches in solving problem instances with long time
horizons. On the other, Kopanos et al. (2014) evaluated their two discrete-time
and two continuous-time models, using as benchmark the formulations of Koné
et al. (2011) and those previously introduced by Pritsker et al. (1969), Christofides
et al. (1987), Kaplan (1988) (extended by Klein (2000)), Klein (2000) and Artigues
et al. (2003). Collected computational results show their continuous-time models
to perform better than other approaches, further motivating the research in this
direction.

In addition to these considerations, we notice another important practical aspect.
In discrete-time systems, activities may only start and complete at predefined time
points. As a result, processing times are implicitly forced to be discrete, according to
the granularity established for the scheduling horizon. In many cases this assumption
is appropriate, allowing to well represent the actual problem, but there are some
situations for which this setting would lead to unrealistic hypothesis. As an example,
we can cite the industrial application presented by Pinto and Grossmann (1996),
where activity durations vary from 0.783 to 11.250 days. In order to tackle this
class of problems with DT approaches, only two possibilities are available: either
one rounds the processing times of activities, consequently accepting approximate
solutions, or significantly reduces the dimension of time slots, possibly obtaining a
formulation with an impractical number of variables and constraints. By contrast,
CT approaches easily overcome these issues, allowing the definition of compact
models without increments in size.

Considering these observations, we propose in the following a new Continuous-
Time formulation for the RCPSP based on the concepts presented in previous
chapters. Some remarks on the computational behavior of this model are then
analyzed in 3.2.2.

3.2.1 A new continuous-time formulation for the RCPSP

We consider m non-preemptive activities and n different resource types, respectively
represented by the sets of indexes A = {1, ...,m} and R = {1, ..., n}. Let τj be the
duration of a generic activity j ∈ A, Ci be the capacity available for resource i ∈ R,
and rij be the number of units of i required by j to be executed. We define the set
of activity pairs A2 = {{j, c} : j ∈ A, c ∈ A, c 6= j}. Precedence relations are given
as input and considered in the set Q ⊂ A×A. The time horizon is an upper bound
for project makespan and is set by default to the sum of activities processing time
(H =

∑
j∈A τj). We introduce four types of variables:

• tj : starting time of activity j, with tj ≥ 0, ∀ j ∈ A;

70 3. A new formulation for the RCPSP

• w : continuous project makespan, w ≥ 0;

• θjc : binary sequencing variable, ∀ {j, c} ∈ A2;

• γjc, γcj : binary left-overlapping variables, ∀ {j, c} ∈ A2;

Our MILP Continuous-Time formulation is given by the following (F1):

(F1) :

min w (3.1)

w ≥ tj + τj ∀j ∈ A, (3.2)

tc ≥ tj + τj ∀(j, c) ∈ Q, (3.3)

tj + τj − tc ≤ H(1− θjc) + (τj − ε)γjc ∀{j, c} ∈ A2, (3.4)

tc − tj ≤ Hθjc + εγjc − ε ∀{j, c} ∈ A2, (3.5)

tc + τc − tj ≤ Hθjc + τcγcj ∀{j, c} ∈ A2, (3.6)

tj − tc ≤ H(1− θjc)− ε ∀{j, c} ∈ A2, (3.7)

ric +
∑
j∈A
j 6=c

rijγjc ≤ Ci ∀c ∈ A,∀i ∈ R, (3.8)

θjc ∈ {0, 1} ∀{j, c} ∈ A2, (3.9)

γjc ∈ {0, 1} ∀{j, c} ∈ A2, (3.10)

γcj ∈ {0, 1} ∀{j, c} ∈ A2, (3.11)

tj ≥ 0 ∀j ∈ A, (3.12)

w ≥ 0, (3.13)

where ε is a small positive parameter satisfying ε < τj ∀j ∈ A. In particular, being
the durations integer parameters, we may use ε = 0.1.

The objective (3.1) is the minimization of project makespan w, which is defined
by inequalities (3.2). Precedence relations (3.3) assure the activities to be properly
sequenced. Constraints (3.4) and (3.5) together guarantee tj ≤ tc < tj+τj ⇒ γjc = 1,
while (3.6) and (3.7) provide tc ≤ tj < tc + τc ⇒ γcj = 1. Capacity constraints are
given by (3.8), and assure that resource availability limits are never exceeded over
time (i.e. at every activity start). Finally, (3.9)-(3.13) set variables domain.

Observe that inequalities (3.4)-(3.7) make use of the reduced parameters analyzed
in Section 2.3.3, i.e. τj − ε, ε, and τc.

Notice, moreover, that no dummy activities are considered in the formulation,
which involves 3

2m(m− 1) binary variables, m+ 1 continuous variables, and 2m(m−
1) +mn+ 2m+ |Q|+ 1 constraints.

3.2.2 Computational considerations

Formulation (3.1)-(3.13) presents some characteristics able to justify interesting
computational advantages. To show this fact, we take a step back and consider two

3.2 Our solution approach 71

additional models, that do not take into account respectively constraints reduction
and parameters refinement proposed in Sections 2.3.1 and 2.3.3. They are given by:

(F2) :

min w (3.14)

w ≥ tj + τj ∀j ∈ A, (3.15)

tc ≥ tj + τj ∀(j, c) ∈ Q, (3.16)

tj + τj − tc ≤ H(1− θjc) + (τj − ε)γjc ∀{j, c} ∈ A2, (3.17)

tc − tj ≤ Hθjc + εγjc − ε ∀{j, c} ∈ A2, (3.18)

tc + τc − tj ≤ Hθjc + τcγcj ∀{j, c} ∈ A2, (3.19)

tj − tc ≤ H(1− θjc)− ε ∀{j, c} ∈ A2, (3.20)

−H(1− γjc) + ε ≤ tj + τj − tc ∀{j, c} ∈ A2, (3.21)

−H(1− γjc) ≤ tc − tj ∀{j, c} ∈ A2, (3.22)

−H(1− γcj) + ε ≤ tc + τc − tj ∀{j, c} ∈ A2, (3.23)

−H(1− γcj) ≤ tj − tc ∀{j, c} ∈ A2, (3.24)

ric +
∑
j∈A
j 6=c

rijγjc ≤ Ci ∀c ∈ A, ∀i ∈ R, (3.25)

θjc ∈ {0, 1} ∀{j, c} ∈ A2, (3.26)

γjc ∈ {0, 1} ∀{j, c} ∈ A2, (3.27)

γcj ∈ {0, 1} ∀{j, c} ∈ A2, (3.28)

tj ≥ 0 ∀j ∈ A, (3.29)

w ≥ 0. (3.30)

(F3) :

min w (3.31)

w ≥ tj + τj ∀j ∈ A, (3.32)

tc ≥ tj + τj ∀(j, c) ∈ Q, (3.33)

tj + τj − tc ≤ H(1− θjc) +Hγjc ∀{j, c} ∈ A2, (3.34)

tc − tj ≤ Hθjc +Hγjc − ε ∀{j, c} ∈ A2, (3.35)

tc + τc − tj ≤ Hθjc +Hγcj ∀{j, c} ∈ A2, (3.36)

tj − tc ≤ H(1− θjc) +Hγcj − ε ∀{j, c} ∈ A2, (3.37)

ric +
∑
j∈A
j 6=c

rijγjc ≤ Ci ∀c ∈ A, ∀i ∈ R, (3.38)

72 3. A new formulation for the RCPSP

θjc ∈ {0, 1} ∀{j, c} ∈ A2, (3.39)

γjc ∈ {0, 1} ∀{j, c} ∈ A2, (3.40)

γcj ∈ {0, 1} ∀{j, c} ∈ A2, (3.41)

tj ≥ 0 ∀j ∈ A, (3.42)

w ≥ 0, (3.43)

Formulation F2 is equivalent to F1, but involves the additional sufficient con-
straints (3.21)-(3.24), such that double implications hold:

tj ≤ tc < tj + τj ⇔ γjc = 1,

tc ≤ tj < tc + τc ⇔ γcj = 1.

Formulation F3 is identical to F1 where inequalities (3.4)-(3.7) have been substi-
tuted with (3.34)-(3.37). This way the time horizon H is used as multiplier of γjc
and γcj in place of reduced parameters τj − ε, ε, τc, 0.

Although F1, F2 and F3 provide the same optimal value, they can admit different
solutions. In general, given the minimal makespan w∗ ≤ H, the number of distinct
vectors t ∈ Rm such that all constraints of F1, F2, or F3 are satisfied, is equal for
all formulations. However, this is not true for the integer variables. Indeed, if we
indicate with IFx(t, w) the set of feasible values for binary variables γ and θ for
some fixed t and w in a generic formulation Fx (i.e. F1, F2 or F3), we can write the
following:

IF2(t, w) ⊆ IF1(t, w) ⊆ IF3(t, w).

This can be easily shown by ignoring for a moment resource constraints (3.8),
(3.25) and (3.38), and focusing on a single pair of activities {j, c}. If j and c are not
linked by precedence relations (either explicit or induced by the other ordered pairs
in Q), they can generally be scheduled in different ways. We consider the following
alternatives, also depicted in Figure 3.2:

(a) tj + τj ≤ tc;

(b) tj < tc < tj + τj ;

(c) tj = tc;

(d) tc < tj < tc + τc;

(e) tc + τc ≤ tj .

Assuming tj and tc are fixed, only one of these situations can be true. Table
3.1 reports feasible values of γjc, γcj and θjc for each case and each formulation,
supposing capacity constraints have no effect.

Thus, if we consider all pairs {j, c} ∈ A2, assume a given vector t ∈ Rm, and
ignore resource availability limits, we may observe that:

1. F1 admits fewer solutions than F3, due to the use of reduced parameters.

3.2 Our solution approach 73

Figure 3.2. Possible disposition alternatives for two generic activities j and c.

(γjc, γcj , θjc)
(a) (b) (c) (d) (e)

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

(0, 0, 0) • • •
(0, 0, 1) • • •
(0, 1, 0) • • • • •
(0, 1, 1) • •
(1, 0, 0) • •
(1, 0, 1) • • • • •
(1, 1, 0) • • • • • • • • •
(1, 1, 1) • • • • • • •

Table 3.1. Feasible values (•) of γjc, γcj and θjc for all starting times alternatives and all
formulations, ignoring resource constraints.

2. F2 admits fewer solutions than F1 and F3, thanks to the existence of necessary
and sufficient conditions.

3. F2 admits exactly one feasible solution, for the combined effect of reduced
parameters and sufficient constraints. This unique solution is always feasible
also for F1 and F3.

4. F3 possible solutions are the same of F1 plus some additional ones with
γjc = 1, γcj = 1 and different θjc, for at least one pair {j, c} ∈ A2.

5. If a solution is feasible for F1 but not for F2, it certainly has the same value
of θ of the unique F2 solution and at least one pair {j, c} ∈ A2 for which γjc,
γcj , or both are set to 1 instead of 0.

These observations must be reconsidered to take into account resource capacity
limits. We notice that (3.8), (3.25) and (3.38) involve only variables γ, which appear
on the left-hand sides of constraints and are multiplied by nonnegative parameters.
Consequently, the only effect generated from these inequalities can be to lower the
values of γjc and/or γcj , for at least one pair {j, c} ∈ A2. It follows that:

IF2(t, w) ⊆ IF1(t, w) ⊆ IF3(t, w),

and IF2(t, w) = IF1(t, w) = IF3(t, w) for very tight resource constraints.
Furthermore, indicating with DFx the feasible space of the generic formulation

Fx, we can write:
DF2 ⊆ DF1 ⊆ DF3.

74 3. A new formulation for the RCPSP

Indeed, if s = (t, w, γ, θ) is a feasible solution for F2, then s ∈ DF1, since
all constraints in F1 are obviously met. Moreover, s ∈ DF1 implicates s ∈ DF3,
because conditions (3.34)-(3.37) are banally satisfied for s respecting (3.4)− (3.7)
and H ≥ τj ∀j ∈ A.

Experimental results

In general, the fact that the feasible space of a MILP model is tighter than others,
is an advantage for exact solving techniques, which are based on integer variables
branching schemes. However, we can notice that the narrowest formulation, i.e.
F2, involves 2m(m − 1) constraints more than F1 and F3, and this can possibly
compromise expected efficiency. The algorithm will indeed have to inspect a lower
number of nodes, but the time spent to solve the linear relaxation of each node
will probably increase with the amount of inequalities. As a consequence, it is
generally not obvious to understand which is the best choice. For this reason, we
have tested all the proposed formulations on the 480 instances contained in the set
j30 of PSPLib.

The code has been implemented in JAVA using ILOG CPLEX Concert Technology
12.8.0. The experiments are performed under standard configurations on an Intel
Core i7 CPU 5600U 2.60 GHz with 16GB RAM. We have set the time limit for
each problem to 300 CPU seconds. Table 3.2 summarizes our computational results,
where:

Feas.% indicates the percentage of instances that provided a feasible integer solution
(optimal, suboptimal, or non-proven optimal) within the established maximum
time.

Opt.% represents the percentage of instances for which the optimal solution could
be found within the time limit.

Out.Gap% is the average gap of the integer non-proven optimal solutions from the
best lower bounds calculated by the solver during the branching (as output by
CPLEX at computation end).

Act.Gap% specifies the average gap of the integer non-proven optimal solutions
from the actual optimal solutions (available for set j30 of PSPLib).

Time(sec.) is the average number of CPU seconds required by problem instances
solved to proven optimality.

Formulation Feas.% Opt.% Out.Gap% Act.Gap% Time(sec.)

F1 100.00 96.88 14.27 0.96 9.64
F2 100.00 96.25 14.97 0.79 10.88
F3 100.00 91.04 9.67 0.80 11.43

Table 3.2. Computational results for F1, F2 and F3 on j30 instances.

3.2 Our solution approach 75

As shown, F1 has the best performances in terms of optimal solutions found and
computation time spent for the search, while F3 seems to be the worst. Percentage
gaps are different, but are influenced by the results of solutions which could be
proven as optimal by one model and not by another. The same is true also for
the average seconds. Thus, in order to better investigate the differences between
formulations, we propose the detailed analysis of Tables 3.3 and 3.4, where F1 is
independently compared with F2 and F3. The tables are split into four parts to
separately consider the subsets of instances that could be solved to optimality by
both models, by none of the two, or by one formulation and not by the other. The
bottom left corner is always empty because neither F2 nor F3 was able to find the
optimal value of any problem that was not solved by F1.

F2

Optimal Sub/Non-proven optimal

F1

O
pt
im

al

Instances: 462 (96.25%) Instances: 3 (0.62%)

F1:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 8.26
Avg.Nodes: 8864

F1:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 221.70
Avg.Nodes: 335873

F2:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 10.88
Avg.Nodes: 7550

F2:


Out.Gap%: 10.17
Act.Gap%: 0.00
Time(sec.): 300.00
Avg.Nodes: 239877

Su
b/

N
on

-p
ro
ve
n
op

ti
m
al Instances: 0 (0.00%) Instances: 15 (3.13%)

− F1:


Out.Gap%: 14.27
Act.Gap%: 0.96
Time(sec.): 300.00
Avg.Nodes: 261134

− F2:


Out.Gap%: 15.93
Act.Gap%: 0.95
Time(sec.): 300.00
Avg.Nodes: 181207

Table 3.3. Results comparison between formulations F1 and F2

Looking firstly at Table 3.3, we can notice again that formulation F1 reaches
the best results, solving three instances more than F2. When both F1 and F2 find
the optimum, F1 is on average faster than F2 (8.26 vs. 10.88 seconds). When both
methods reach the time limit without proving the optimality, F1 returns a lower
output gap, while the actual gaps are almost the same for F1 and F2. The three
instances solved by F1 but not by F2 prove to be hard: F1 employs on average
221.70 seconds to find the optimal solutions, while F2 achieves the same values

76 3. A new formulation for the RCPSP

without closing the algorithm gap (indeed Out.Gap% is 10.17, but Act.Gap% is
0.00). Another interesting observation is provided by the average number of nodes
visited during the branching (Avg.Nodes), which is always higher for formulation F1
than for F2. On the one hand this is in accord with the fact that F2 faces a feasible
space of lower dimension (when both models find the optimum, Avg.Nodes of F1
is 8864 and Avg.Nodes of F2 is 7550), on the other this evidences that the simplex
solution at each node is faster for F1 (as expected, since the number of constraints is
much smaller). Considering the 15 instances not solved by both methods, F1 visits
about the 150% of nodes visited by F2 in the same amount of time of 300 seconds:
this is probably due to the combined effect of a more efficient branching and a faster
node relaxation computation.

Table 3.4 reports the result of the direct comparison between formulation F1 and
F3. F1 is significantly better than F3, finding the optimum for 28 instances more.
When both methods reach optimality, F3 is considerably slower than F1, visiting
about twice the number of nodes and spending on average the 168% of seconds more
than F1. For the instances which could not be solved by any model the result is
similar, with F1 terminating with better percentage gaps than F3 (14.27 vs. 17.73
for the output gap and 0.96 vs. 1.60 for the actual gap).

F3

Optimal Sub/Non-proven optimal

F1

O
pt
im

al

Instances: 437 (91.04%) Instances: 28 (5.83%)

F1:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 4.26
Avg.Nodes: 5466

F1:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 93.49
Avg.Nodes: 96931

F3:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 11.43
Avg.Nodes: 10983

F3:


Out.Gap%: 5.35
Act.Gap%: 0.37
Time(sec.): 300.00
Avg.Nodes: 231913

Su
b/

N
on

-p
ro
ve
n
op

ti
m
al Instances: 0 (0.00%) Instances: 15 (3.13%)

− F1:


Out.Gap%: 14.27
Act.Gap%: 0.96
Time(sec.): 300.00
Avg.Nodes: 261134

− F3:


Out.Gap%: 17.73
Act.Gap%: 1.60
Time(sec.): 300.00
Avg.Nodes: 214334

Table 3.4. Results comparison between formulations F1 and F3

3.2 Our solution approach 77

Further investigation of performances

Summarizing what said until now, the comparisons provided in Tables 3.3 and
3.4 evidenced the effectiveness of formulation F1 with respect to the alternative
models F2 and F3. In particular, F2 performed slightly worse than F1 due to the
trade-off between the reduction of nodes to be visited and the higher computational
requirement at each node. F3 was instead outperformed by F1 on several aspects.
This suggests that using big-M parameters as small as possible (i.e., τj − ε, ε, τc,
instead of the large H) brings a remarkable effect, that is probably not justified by
the only exclusion of some isomorphic solutions from the feasible region.

To better comprehend the reason of such proved advantage, we further inves-
tigated the behavior of F1 and F3 during the solving procedure. We ran some
additional experiments disabling all the advanced methods provided by CPLEX (i.e.,
preprocessing presolve, heuristics, generation of cuts and dynamic search) in order
to implement classical branch & bound logics. Table 3.5 collects our results that,
although less efficient, still evidence the good performances of the first formulation
with respect to the third one (F1 solves 65 instances more than F3, spending on
average more than 10 seconds less). Also F2 KPIs are reported for completeness.

Formulation Feas.% Opt.% Out.Gap% Act.Gap% Time(sec.)

F1 100.00 91.67 12.83 2.04 15.87
F2 100.00 89.38 12.30 1.89 17.53
F3 100.00 78.13 7.06 1.78 26.14

Table 3.5. Computational results for F1, F2 and F3 on j30 instances with CPLEX advanced
methods disabled.

Once obtained this confirmation, we have analyzed in detail the branching steps
executed by the algorithm when F1 is used. Two are the main observations to report,
which can justify its advantage:

1. When relaxation is solved, in particular at the first node but in general at
every point of the procedure, there is a preference in assigning fractional values
to variables θ rather than to the γ. This is due to the fact that variables γ are
multiplied by small parameters, being at the same time tightened by capacity
constraints (3.8). Differently, variables θ have as coefficients the relative big
number H. It follows that in most cases the linear relaxation can return a
solution which, satisfying inequalities (3.2) and (3.3), has many non-integer
values for the θjc and many zeros among the γjc and γcj . This way the resource
constraints are easily met, and (3.4)-(3.7) are also respected (with several
active) without moving the overlapping variables from 0. It must be considered
indeed that the contribution which could be provided by γjc and γcj to satisfy
(3.4)-(3.7), eventually assuming values close to 1, is often marginal, due to the
influence of reduced multipliers.

2. The above effect is progressively mitigated as the search becomes deeper and
more binaries are fixed (the feasible region gradually shrinks). However, it

78 3. A new formulation for the RCPSP

plays an important role, particularly in the first phases. Indeed, having a
typical relaxation solution the great majority of θjc set to fractional values and
almost all the γjc and γcj equal to 0, the algorithm is automatically driven
to branch first on the sequencing variables. This is advantageous because,
thanks to the use of small coefficients, it contributes to rapidly reduce the
size of the feasible space. For example, if, for a certain pair {j, c}, θjc is fixed
to 1, the big parameter H disappears from the corresponding inequalities
like (3.4) and (3.7); if instead θjc is set to 0, relations (3.5) and (3.6) are
drastically tightened for the considered couple of activities. Thus, two of the
four inequalities regarding pair {j, c} are narrowed at each step, giving a direct
indication to the continuous variables tj and tc. This helps the branching
procedure to find improved lower bounds and to prune suboptimal nodes from
the search. Moreover, assuming the branching on a given θjc happens at a
certain distance from the root node, the corresponding decisions for the γjc
and γcj will probably take place at deeper levels of the tree, where they will
be actually pushed to take a value different from 0 only in case of overlapping
(which is generally possible but less probable that simple sequencing, at least
for not too cumulative instances). As a consequence, additional branchings to
round fractional values of γ can frequently be avoided.

Notice that these considerations do not apply in the same way to formulation
F3. Indeed, being the overlapping variables multiplied by H, it is simpler for the
linear relaxation procedure to find some values for γ which at the same time are (i)
not uniquely zero, (ii) high enough to “help” the θ in satisfying (3.17)-(3.20), and
(iii) sufficiently low to meet resource constraints (3.21). Furthermore, also forcing
the algorithm to branch on θ with higher priority, it is not possible to get the same
tightening effect as for formulation F1 (small parameters are replaced by H), thus
losing the associated benefits.

Figure 3.3 shows the branching tree explored by the algorithm, using formulation
F1, to solve a very simple but representative example involving five activities and
one resource type. Problem data and an optimal solution are reported in Table 3.6.
Nodes in the tree are distinguished by color. The root is gray while children can
either be black or white. Black nodes are obtained from their parent by fixing (to
0 or 1) the value of variable θjc, for a certain pair {j, c} ∈ A2. White nodes are
instead associated to branchings on variables γjc and γcj . Four numbers appear next
to each node: the first two indicate the amounts of components in vectors θ and γ
fixed until the considered point. The others specify the percentages of fractional
values resulting from the solution of linear relaxation respectively associated to θ
or γ. For instance, the node on the extreme left of the figure has 4 variables fixed,
all belonging to the sequencing vector θ. The relaxation is solved considering only
the other variables, which returns a solution composed of 84% integers and 16%
fractional values. Among these, the 8% are non-integer θjc, and 8% non-integer
γjc or γcj . Lower is the percentage of fractional overlapping variables with respect
to the others, higher in general the probability that a θjc is selected for branching
(ignoring selection strategies).

It is evident from this representation that the search is driven by variables θ in
the first decisions (see the black nodes close to the root). Then, as the algorithm

3.3 The approaches of Kopanos, Kyriakidis, and Georgiadis 79

Figure 3.3. Example of a branching tree generated while solving the simple instance of
Table 3.6 using formulation F1. Black and white colors respectively indicate if the
node was created by branching on a θ or a γ variable. Node labels follow the format:
(# fixed θ, # fixed γ, # fractional θ from relaxation

variables - # fixed θ - # fixed γ ,
fractional γ from relaxation

variables - # fixed θ - # fixed γ).

moves toward deeper levels, also variables γ are used to explore the space (look at
white nodes at the end of branches), rapidly leading to fully integer solutions.

In the following, we will come back to this topic to show that the branching
properties of our model constitute a factor of advantage also for comparisons with
the existing literature. We introduce for this purpose the CT formulations proposed
by Kopanos et al. (2014).

3.3 The approaches of Kopanos, Kyriakidis, and Geor-
giadis

As already mentioned in Section 3.1, in 2014, Kopanos, Kyriakidis, and Georgiadis
proposed two Discrete-Time (namely Kop-DT1 and Kop-DT2) and two Continuous-
Time (Kop-CT1 and Kop-CT2) formulations for the RCPSP. They compared their
models with several existing ILP and MILP approaches, underlining the particular
capacity of Kop-CT1 and Kop-CT2 to produce better results and find high quality
solutions, either intended as optimal or very close to optimality.

In order to address a valid comparison with these two CT models, we present
now all the details of their formulation.

Formulation Kop-CT1

Formulation Kop-CT1 uses two types of continuous variables and binary variables.
They are:

• tc : starting time of activity c, with tc ≥ 0, ∀ c ∈ (A ∪ {m+ 1}).

80 3. A new formulation for the RCPSP

Q = {(1, 2)}; C1 = 2;

Activity j τj r1j t∗j θ∗j2 θ∗j3 θ∗j4 θ∗j5 γ∗j1 γ∗j2 γ∗j3 γ∗j4 γ∗j5

1 1 1 9 1 0 0 0 - 0 1 0 0
2 2 1 10 - 0 0 0 0 - 0 0 0
3 3 1 9 - - 0 0 1 1 - 0 0
4 4 2 5 - - - 0 0 0 0 - 0
5 5 2 0 - - - - 0 0 0 0 -

Table 3.6. Example data and solution for a simple instance with five activities and one
resource type.

• fc : finishing time of activity c, with fc ≥ 0, ∀ c ∈ (A ∪ {m+ 1}).

• xcj : binary variable to define the sequence between any pair of activities (c, j).
If c and j cannot be processed in parallel, then xcj = 1⇔ fc ≤ tj . Otherwise,
xcj = 1⇔ tc ≤ tj with c < j, and xcj = 1⇔ tc < tj with c > j.

• zjc : binary variable indicating the relation between the finishing time of
activity j and the start of activity c, such that: fj > tc ⇒ zjc = 1. If fj ≤ tc,
then zjc can either be 0 or 1. The zjc were originally called “overlapping”
variables by Kopanos, Kyriakidis, and Georgiadis, but we avoid this name in
order to avoid confusion with our variable γ.

The sets for the indexes of variables xcj and zjc are different and are determined
after a preprocessing phase. They are described below the formulation, which is
given by the following:

(Kop-CT1) :

min fm+1 (3.44)

fc = tc + τc ∀c ∈ (A ∪ {m+ 1}), (3.45)

fc ≤ tj ∀(c, j) ∈ (A× (A ∪ {m+ 1})) : (c, j) ∈ K, (3.46)

fc ≤ tj + (LFc − ESj)xjc ∀(c, j) ∈ S : c 6= j, (3.47)

xcj + xjc = 1 ∀(c, j) ∈ (B \K ′) : c > j, (3.48)

tj ≤ tc + (LSj − ESc)xcj ∀(c, j) ∈ P : c > j, (3.49)

tc + λ ≤ tj + (LSc − ESj + λ)xjc ∀(c, j) ∈ P : c > j, (3.50)

fj − tc ≤ (LFj − ESc)zjc ∀(c, j) ∈ P : c 6= j, (3.51)

ric +
∑

j 6=c : rij>0
(c,j)∈P

rij(zjc − xcj) ≤ Ci ∀c ∈ A, ∀i ∈ R : ric > 0, (3.52)

xcj ≤ zjc ∀(c, j) ∈ P : c 6= j, (3.53)

xjc = 1 ∀(c, j) ∈ P, c 6= j : LSj < ESc, (3.54)

3.3 The approaches of Kopanos, Kyriakidis, and Georgiadis 81

tc ≥ 0 ∀c ∈ (A ∪ {m+ 1}), (3.55)

fc ≥ 0 ∀c ∈ (A ∪ {m+ 1}), (3.56)

xcj ∈ {0, 1} ∀(c, j) ∈ (B \K ′) : c 6= j, (3.57)

zjc ∈ {0, 1} ∀(c, j) ∈ P : c 6= j, (3.58)

where:

• ESc, LSc, EFc, and LFc are parameters representing the earliest and latest
start and end times (generically said time-windows) for each activity c ∈ A.
They are computed in preprocessing using the critical path method and
a parallel scheduling heuristic with two competing rules for upper bound
calculation.

• λ is a small positive parameter, with 0 < λ < 1 for integer activity durations.

• K, K ′, S, P , B, and G are sets of activities pairs to be calculated before
running the model. In particular:

B contains pairs of activities (c, j) ∈ A×A which share at least one resource
of the same type.

G is composed of pairs of activities (c, j) ∈ B that cannot overlap due to
resource limitations, i.e. because ric + rij > Ci for at least one resource
type i ∈ R.

K consists of pairs of activities (c, j) ∈ A×A for which precedence is known
because (c, j) belongs to the transitive closure of Q or because LFc ≤ ESj .

K ′ includes the pairs of activities (c, j) ∈ K and their symmetrical (j, c). No
binary variables xcj , zcj , and zjc are considered for pairs in this set.

S is given by G \K ′. It contains pairs of activities that cannot be executed in
parallel due to their excessive resource requirements, excluding those with
known sequence relations. Variables zcj and zjc are not defined for pairs in
this set.

P can be calculated as B \ (G ∪ K ′). It includes pairs of activities that
can overlap. All binary variables (xcj , zcj , and zjc) are defined for pairs
(c, j) ∈ P .

In formulation Kop-CT1, the makespan is optimized by minimizing the finishing
time of the dummy activity m+ 1 (see objective (3.44)), assumed to be a successor
for all the other activities of the project. Equations (3.45) set the connection between
activities finishing and starting time. Inequalities (3.46) impose precedence relations,
while (3.47) are standard disjunctive constraints for activities that cannot be pro-
cessed in parallel. Equations (3.48) state that one and exactly one among xcj and xjc
must be 1. Constraints (3.49)-(3.51) are defined for all pairs of activities subject to
possible overlapping and contribute to specify the meaning of the considered binary
variables. If tj > tc, then xcj = 1, and if fj > tc, then zjc = 1. Moreover, if two
activities start at the same time (tc = tj), parameter λ assures that the precedence
is arbitrarily given to the activity with the lower index (i.e., xjc = 1 and xcj = 0

82 3. A new formulation for the RCPSP

for j < c). Resource capacity limitations for every resource i ∈ R are modeled by
inequalities (3.52), where the nonnegative term (zjc − xcj) is used to identify the
activities j which are in progress at time instant tc, for each activity c ∈ A. Indeed,
zjc − xcj = 1 if and only if zjc = 1 and xcj = 0. This is necessarily implicated by
tj < tc < fj when c < j, and by tj ≤ tc < fj when c > j. It follows that resource
conflicts involving two or more activities that start at the same time are actually
caught by the inequalities corresponding to the equivalent-start activity having the
higher index. Conditions (3.53) and (3.54) are already implicated by (3.45) and
(3.49)-(3.51), but help in tightening the feasible region. Finally, (3.55)-(3.58) define
variables domain.

Formulation Kop-CT2

The second formulation proposed by Kopanos et al. (2014) can be obtained from
Kop-CT1 using the substitution xcj = 1− xjc for c > j, previously considered by
constraint (3.48). In this way, the number of precedence variables x is reduced by
one half. Employing the same notation as before, Kop-CT2 can be written as follows:

(Kop-CT2) :

min fm+1 (3.59)

fj = tj + τj ∀j ∈ (A ∪ {m+ 1}), (3.60)

fj ≤ tc ∀(j, c) ∈ (A× (A ∪ {m+ 1})) : (j, c) ∈ K, (3.61)

fj ≤ tc + (LFj − ESc)(1− xjc) ∀(c, j) ∈ S : c > j, (3.62)

fc ≤ tj + (LFc − ESj)xjc ∀(c, j) ∈ S : c > j, (3.63)

tj ≤ tc + (LSj − ESc)(1− xjc) ∀(c, j) ∈ P : c > j, (3.64)

tc + λ ≤ tj + (LSc − ESj + λ)xjc ∀(c, j) ∈ P : c > j, (3.65)

fj − tc ≤ (LFj − ESc)zjc ∀(c, j) ∈ P : c 6= j, (3.66)

ric +
∑

j<c : rij>0
(c,j)∈P

rij(zjc + xjc − 1) +
∑

j>c : rij>0
(c,j)∈P

rij(zjc − xcj) ≤ Ci

∀c ∈ A,∀i ∈ R : ric > 0, (3.67)

xjc ≤ zcj ∀(c, j) ∈ P : c > j, (3.68)

1− xjc ≤ zjc ∀(c, j) ∈ P : c > j, (3.69)

xjc = 1 ∀(c, j) ∈ P, c > j : LSj < ESc, (3.70)

tc ≥ 0 ∀c ∈ (A ∪ {m+ 1}), (3.71)

fc ≥ 0 ∀c ∈ (A ∪ {m+ 1}), (3.72)

xjc ∈ {0, 1} ∀(c, j) ∈ (B \K ′) : c > j, (3.73)

zjc ∈ {0, 1} ∀(c, j) ∈ P : c 6= j, (3.74)

where:

3.4 Models comparison 83

• (3.59)-(3.61) are exactly the same as (3.44)-(3.46).

• (3.62)-(3.63) are equivalent to (3.47), with the substitution xcj = 1− xjc.

• (3.64) corresponds to (3.49), with xcj = 1− xjc.

• (3.65)-(3.66) are the same as (3.50)-(3.51).

• (3.67) is equivalent to (3.52), written in a different way to apply the substitution
xcj = 1− xjc.

• (3.68)-(3.69) correspond to (3.53), with xcj = 1− xjc.

• (3.70) imposes the same condition of (3.54) for the remaining variables (having
c > j).

3.4 Models comparison

The aim of this section is to give evidence of the efficiency of our new proposed
model, also providing a valid comparison with the existing literature. In particular,
our study tries to look at the problem from different points of view, finally analyzing
the computational results obtained by our formulation when compared with the
approaches of Kopanos et al. (2014) just introduced.

In general, there are several reasons that motivate our choice to use models
Kop-CT1 and Kop-CT2 as a basis for comparison. First of all, they are Continuous-
Time formulations, as the one proposed in this work. Consequently, they can
theoretically be applied in the same contexts, having the common advantages of
allowing to model situations in which the activity durations are arbitrarily large and
possibly non-integer valued, without incurring into excessive problem dimensions
and approximation errors. Moreover, in the study of Kopanos et al. (2014), authors
extensively compared their results with those of almost all existing CT and DT
models from the literature, thus proving the good performances obtained by their
approaches, and in particular by formulations Kop-CT1 and Kop-CT2. They were
the latest to present such a comprehensive computational analysis for the RCPSP
and also for this reason we refer to their work as a valid benchmark for comparison.

Among the more recent proposals, only Rihm and Trautmann (2017) experi-
mentally validated their MILP approach, reporting the differences of results with
the two (one DT and one CT) state-of-the-art models of Pritsker et al. (1969) and
Artigues et al. (2003). Their assignment-based formulation shows good performances
for instances of the RCPSP with long time horizons or particularly tight resource
limitations, but is generally overcome by the model of Pritsker et al. (1969) on the
standard j30 and j60 problem sets of PSPLib. This is probably caused by the relative
high number of decision variables required to represent the explicit assignment of
individual resources to activities.

Indeed, it must be noticed that formulations involving a lower amount of variables
often (but not always) reveal also better performances, due to the reduced size of the
tree to be potentially explored by the branching procedures. Considering problem
dimensions, models Kop-CT1 and Kop-CT2 undoubtedly constitute a valid option

84 3. A new formulation for the RCPSP

compared to the other Continuous-Time compact formulations from the literature,
as briefly summarized in Table 3.7.

Formulation
Number of Continuous Binary
constraints variables variables

Artigues et al. (2003) O(m3 +m2n) O(m2n) O(m2)

Koné et al. (2011) O(m3 +mn) O(m) O(m2)

Jia and Seo (2013) O(m2n) O(m2n) O(m2n)

Kopanos et al. (2014) O(m2 +mn) O(m) O(m2)

Varakantham et al. (2016) O(m2n) O(m2n) O(m2)

Rihm and Trautmann (2017) O(lm2n) O(m) O(m2 + lmn)

Table 3.7. Approximated amounts of variables and constraints for all the Continuous-Time
compact formulations proposed in the literature, considering m activities, n different
resource types, and an average number of individual resources for each type equal to l.

In addition, we conclude by observing the last two interesting aspects of addressing
a comparison with the work of Kopanos et al. (2014). The first is the theoretical
possibility to consider the case of continuously divisible resources, as for example
energy, liquids, raw materials, etc... Formulations Kop-CT1 and Kop-CT2 would
in general be applicable to these situations, but the same would not be true for
the assignment-based model of Rihm and Trautmann (2017). Secondly, we dispel a
doubt which has maybe caught the attention of the reader: our new formulation
and those proposed by Kopanos et al. have some similarities. We thus try to exploit
this fact to compare the models in detail, show the main differences, and evidence
the strengths of our proposal.

This section is articulated in two parts: the first (3.4.1) is mainly focused on the
theoretical aspects, the second (3.4.2) on the practical implications.

3.4.1 Similarities and differences between formulations

The first evident difference between our proposed formulation and those of Kopanos
et al. is that F1 does not require any initial procedure and can thus be directly
passed to a standard solver for solution, while Kop-CT1 and Kop-CT2 involve
two preprocessing phases respectively for the calculation of time-windows and
the generation of suitable sets of activity pairs. Although these techniques may
significantly contribute to improve the achievable performances, reducing the number
of variables, constraints and the feasible region of the problem, on the other hand
they make the solution process more complex, involving the development of several
pieces of code (i.e., for critical path method, upper bounding heuristics, and sets
computation) in addition to the classical model formulation.

The main scope of our work is to present a new general mathematical model for
the RCPSP to be easily passed to commercial solvers for solution. In this spirit,
we think that the best way to provide a valid comparison with the literature is

3.4 Models comparison 85

to consider the absence of preprocessing logics as a common requirement. For
this reason, we propose two modifications to the formulations of Kopanos et al.,
namely Kop-CT1-m and Kop-CT2-m, which exclude time-windows and specific sets
computations. We will use these simplified models in place of the original ones for
our theoretical and practical analysis.

However, before starting a detailed comparison, we add the last important
consideration. It is possible to verify that both the preprocessing approaches proposed
by Kopanos et al., could be equivalently applied to our formulation, offering an
opportunity of further improvements. In particular, the use of precalculated sets
of pairs could reduce the number of variables and constraints in formulations F1
proportionally to Kop-CT1 and Kop-CT2. Activities time-windows, instead, could
be used to reduce the coefficients H in F1 as they actually avoid big-M parameters
in the models of Kopanos et al.. In this case, however, there is not an obvious
expectation of the different impacts on the models under study. For this reason and
for further addressing a valid comparison, in Section 3.4.2 we will also provide the
results of some runs executed for all models considering the activities time-windows
(i.e., the quantities ESc, LSc, EFc, and LFc, for each activity c ∈ A) as known.

Modified formulations Kop-CT1-m and Kop-CT2-m

In order to simplify the original Kop-CT1 and Kop-CT2 and propose two compact
self-contained formulations, we make different assumptions. These can be interpreted
as “worst case” adaptations of the models, since they correspond to the conditions
which would eventually be met when preprocessing procedures failed to provide any
consistent contribution to reduce the problem size. In particular, we consider the
following:

• B = A×A.

• G = Ø.

• K = Q ∪ (A× {m+ 1}).

• K ′ = Ø.

• S = Ø.

• P = A×A.

• LS1 − ES2 = H, ∀(1, 2) ∈ A×A.

• LS1 − ES2 + λ = H, ∀(1, 2) ∈ A×A.

• LF1 − ES2 = H, ∀(1, 2) ∈ A×A.

• In general ric ≥ 0, with few/no cases satisfying ric = 0, ∀c ∈ A, i ∈ R.

86 3. A new formulation for the RCPSP

Formulations Kop-CT1-m and Kop-CT2-m consequently become:

(Kop-CT1-m) :

min fm+1 (3.75)

fc = tc + τc ∀c ∈ (A ∪ {m+ 1}), (3.76)

fc ≤ tj ∀(c, j) ∈ Q ∪ (A× {m+ 1}), (3.77)

xcj + xjc = 1 ∀(c, j) ∈ (A×A), c > j, (3.78)

tj ≤ tc +Hxcj ∀(c, j) ∈ (A×A) : c > j, (3.79)

tc + λ ≤ tj +Hxjc ∀(c, j) ∈ (A×A) : c > j, (3.80)

fj − tc ≤ Hzjc ∀(c, j) ∈ (A×A) : c 6= j, (3.81)

ric +
∑
j∈A
j 6=c

rij(zjc − xcj) ≤ Ci ∀c ∈ A, ∀i ∈ R, (3.82)

xcj ≤ zjc ∀(c, j) ∈ (A×A) : c 6= j, (3.83)

tc ≥ 0 ∀c ∈ (A ∪ {m+ 1}), (3.84)

fc ≥ 0 ∀c ∈ (A ∪ {m+ 1}), (3.85)

xcj ∈ {0, 1} ∀(c, j) ∈ (A×A) : c 6= j, (3.86)

zjc ∈ {0, 1} ∀(c, j) ∈ (A×A) : c 6= j. (3.87)

(Kop-CT2-m) :

min fm+1 (3.88)

fj = tj + τj ∀j ∈ (A ∪ {m+ 1}), (3.89)

fj ≤ tc ∀(j, c) ∈ Q ∪ (A× {m+ 1}), (3.90)

tj ≤ tc +H(1− xjc) ∀(c, j) ∈ (A×A) : c > j, (3.91)

tc + λ ≤ tj +Hxjc ∀(c, j) ∈ (A×A) : c > j, (3.92)

fj − tc ≤ Hzjc ∀(c, j) ∈ (A×A) : c 6= j, (3.93)

ric +
∑
j∈A
j<c

rij(zjc + xjc − 1) +
∑
j∈A
j>c

rij(zjc − xcj) ≤ Ci

∀c ∈ A,∀i ∈ R, (3.94)

xjc ≤ zcj ∀(c, j) ∈ (A×A) : c > j, (3.95)

1− xjc ≤ zjc ∀(c, j) ∈ (A×A) : c > j, (3.96)

tc ≥ 0 ∀c ∈ (A ∪ {m+ 1}), (3.97)

fc ≥ 0 ∀c ∈ (A ∪ {m+ 1}), (3.98)

xjc ∈ {0, 1} ∀(c, j) ∈ (A×A) : c > j, (3.99)

zjc ∈ {0, 1} ∀(c, j) ∈ (A×A) : c 6= j. (3.100)

3.4 Models comparison 87

where we consider H =
∑
j∈A τj . Observe once again the relation between Kop-CT1-

m and Kop-CT2-m, where the second is essentially a transformation of the first one
where equation (3.78) is used to eliminate m(m−1)

2 variables from the problem.

Connections between variables

Looking at formulation F1, Kop-CT1-m, and Kop-CT2-m together, we can immedi-
ately notice the similarity between the resource capacity constraints (3.8), (3.82),
and (3.94). Writing these inequalities for a generic activity 2 ∈ A and resource type
i ∈ R, we respectively get:

ri2 +
∑
1∈A
1 6=2

ri1γ12 ≤ Ci,

ri2 +
∑
1∈A
1 6=2

ri1(z12 − x21) ≤ Ci,

ri2 +
∑
1∈A
1<2

ri1(z12 + x12 − 1) +
∑
1∈A
1>2

ri1(z12 − x21) ≤ Ci.

Observing that the set of unordered pairs A2 = {{2, 1} : 2 ∈ A, 1 ∈ A, 2 6= 1}
can be converted into the set of ordered pairs

Ā2 = {(1, 2) ∈ (A×A) : 1 < 2}

without modifying the structure of formulation F1, the above inequalities suggest,
for each (1, 2) ∈ Ā2, the equivalences (that will be proved to be wrong)

γ12 = z12 − x21 , (3.101)

γ21 = z21 − x12 , (3.102)

among F1 and Kop-CT1-m, and

γ12 = z12 + x12 − 1, (3.103)

γ21 = z21 − x12 , (3.104)

among formulations F1 and Kop-CT2-m.
Furthermore, if we write constraints (3.7) and (3.80) for the generic pair (1, 2) ∈

Ā2, we obtain:

t2 − t1 ≤ H(1− θ21)− ε,

t2 + λ ≤ t1 +Hx12 .

Since in model Kop-CT1-m x12 = 1 − x21 due to equation (3.78), the previous
become:

t2 − t1 ≤ H(1− θ21)− ε,

t2 − t1 ≤ H(1− x21)− λ.

88 3. A new formulation for the RCPSP

Feasibly assuming λ = ε (e.g., 0.1), this suggests the equivalences

θ21 = x21 , (3.105)

θ21 = 1− x12 , (3.106)

among formulations F1 and Kop-CT1-m, and

θ21 = 1− x12 , (3.107)

among models F1 and Kop-CT2-m.
Using equations (3.101)-(3.102), (3.105)-(3.106) into Kop-CT1-m or (3.103)-

(3.104), (3.107) into Kop-CT2-m, allows to evidence important details. Indeed, if the
above substitutions brought to analogous constraints in the three formulations, we
would actually be able to prove their theoretical equivalence. Otherwise, looking at
the models after these linear transformations, we can easily notice some significant
similarities and differences.

In the following, we will only make this analysis for comparing formulation F1
with Kop-CT2-m. Indeed, a similar study including Kop-CT1-m would simply lead
to equivalent results, due to the correspondence of the two models. Combining
(3.103), (3.104), and (3.107) we will practically consider the following conversions,
for each pair (1, 2) ∈ Ā2:

x12 = 1− θ21 , (3.108)

z12 = γ12 + θ21 , (3.109)

z21 = γ21 − θ21 + 1. (3.110)

Connections between constraints

Before showing the common aspects of F1 and Kop-CT2-m, we write the mathemat-
ical models in a more convenient form, using set Ā2 and updated indexes:

(F1) :

min w (3.111)

w ≥ t1 + τ1 ∀1 ∈ A, (3.112)

t2 ≥ t1 + τ1 ∀(1, 2) ∈ Q, (3.113)

t2 + τ2 − t1 ≤ H(1− θ21) + (τ2 − ε)γ21 ∀ (1, 2) ∈ Ā2, (3.114)

t1 − t2 ≤ Hθ21 + εγ21 − ε ∀ (1, 2) ∈ Ā2, (3.115)

t1 + τ1 − t2 ≤ Hθ21 + τ1γ12 ∀ (1, 2) ∈ Ā2, (3.116)

t2 − t1 ≤ H(1− θ21)− ε ∀ (1, 2) ∈ Ā2, (3.117)

ri2 +
∑
1∈A
1 6=2

ri1γ12 ≤ Ci ∀2 ∈ A,∀i ∈ R, (3.118)

θ21 ∈ {0, 1} ∀ (1, 2) ∈ Ā2, (3.119)

3.4 Models comparison 89

γ21 ∈ {0, 1} ∀ (1, 2) ∈ Ā2, (3.120)

γ12 ∈ {0, 1} ∀ (1, 2) ∈ Ā2, (3.121)

t1 ≥ 0 ∀1 ∈ A, (3.122)

w ≥ 0, (3.123)

(Kop-CT2-m) :

min fm+1 (3.124)

f1 = t1 + τ1 ∀1 ∈ (A ∪ {m+ 1}), (3.125)

f1 ≤ t2 ∀(1, 2) ∈ Q ∪ (A× {m+ 1}), (3.126)

t1 − t2 ≤ H(1− x12) ∀ (1, 2) ∈ Ā2, (3.127)

t2 − t1 ≤ Hx12 − λ ∀ (1, 2) ∈ Ā2, (3.128)

f1 − t2 ≤ Hz12 ∀ (1, 2) ∈ Ā2, (3.129)

f2 − t1 ≤ Hz21 ∀ (1, 2) ∈ Ā2, (3.130)

ri2 +
∑
1∈A
1<2

ri1(z12 + x12 − 1) +
∑
1∈A
1>2

ri1(z12 − x21) ≤ Ci

∀2 ∈ A,∀i ∈ R, (3.131)

x12 ≤ z21 ∀ (1, 2) ∈ Ā2, (3.132)

1− x12 ≤ z12 ∀ (1, 2) ∈ Ā2, (3.133)

t1 ≥ 0 ∀1 ∈ (A ∪ {m+ 1}), (3.134)

f1 ≥ 0 ∀1 ∈ (A ∪ {m+ 1}), (3.135)

x12 ∈ {0, 1} ∀ (1, 2) ∈ Ā2, (3.136)

z12 ∈ {0, 1} ∀ (1, 2) ∈ Ā2, (3.137)

z21 ∈ {0, 1} ∀ (1, 2) ∈ Ā2. (3.138)

It is easy to see that (3.111)-(3.113) are equivalent to (3.124)-(3.126), where the
second employ m+ 1 continuous variables m+ 1 equality constraints more than the
first ones. Indeed we have

fm+1 = tm+1 + τm+1 = tm+1 = w,

and considering the transformation (3.125) into (3.126), inequalities (3.112)-(3.113)
are evidently the same of (3.126).

Moreover, substituting f1 = t1 + τ1 for each 1 ∈ A (from equation (3.125)),
constraints (3.127)-(3.130) become:

t1 − t2 ≤ H(1− x12) ∀ (1, 2) ∈ Ā2,

t2 − t1 ≤ Hx12 − λ ∀ (1, 2) ∈ Ā2,

t1 + τ1 − t2 ≤ Hz12 ∀ (1, 2) ∈ Ā2,

90 3. A new formulation for the RCPSP

t2 + τ2 − t1 ≤ Hz21 ∀ (1, 2) ∈ Ā2,

and considering (3.108)-(3.110):

t1 − t2 ≤ Hθ21 ∀ (1, 2) ∈ Ā2, (3.139)

t2 − t1 ≤ H(1− θ21)− λ ∀ (1, 2) ∈ Ā2, (3.140)

t1 + τ1 − t2 ≤ Hθ21 +Hγ12 ∀ (1, 2) ∈ Ā2, (3.141)

t2 + τ2 − t1 ≤ H(1− θ21) +Hγ21 ∀ (1, 2) ∈ Ā2. (3.142)

Inequalities (3.140) are equivalent to (3.117) assuming λ = ε, while (3.139), (3.141)
and (3.142) are respectively similar to (3.115), (3.116) and (3.114), where for each
(1, 2) ∈ Ā2:

• the right-hand side of (3.139) lacks the term εγ21 − ε;

• the variable γ12 on the right-hand side of (3.141) is multiplied by H and not
by the reduced parameter τ1 ;

• the variable γ21 on the right-hand side of (3.142) is multiplied by H and not
by the reduced parameter τ2 − ε;

Resource capacity constraints (3.118) and (3.131) are expressed exactly in the
same way, considering transformations (3.108)-(3.110). Indeed:

ri2 +
∑
1∈A
1<2

ri1(z12 + x12 − 1) +
∑
1∈A
1>2

ri1(z12 − x21)

= ri2 +
∑
1∈A
1<2

ri1γ12 +
∑
1∈A
1>2

ri1γ12

= ri2 +
∑
1∈A
1 6=2

ri1γ12 (3.143)

Finally, tightening inequalities (3.132)-(3.133) are only present in formulation Kop-
CT2-m. Their equivalent in terms of variables θ21 , γ21 , γ12 would simply give,
for each (1, 2) ∈ Ā2:

1− θ21 ≤ γ21 − θ21 + 1,

1− 1 + θ21 ≤ γ12 + θ21 ,

that is, γ21 ≥ 0 and γ12 ≥ 0, already considered in (3.120)-(3.121).

Main differences between the formulations

Thanks to the above analysis, we can now gather our previous observations and list
the main differences among formulations F1, Kop-CT1-m and Kop-CT2-m.

3.4 Models comparison 91

Formulation
Number of Continuous Binary
constraints variables variables

F1 2m2 +mn+ |Q|+ 1 m+ 1 3
2m(m− 1)

Kop-CT1-m 7
2m

2 +mn+ 1
2m+ |Q|+ 3 2m+ 2 2m(m− 1)

Kop-CT2-m 3m2 +mn+m+ |Q|+ 3 2m+ 2 3
2m(m− 1)

Table 3.8. Number of variables and constraints for formulations F1, Kop-CT1-m and
Kop-CT2-m, considering m activities, n resource types, and |Q| precedence relations.

Number of variables and constraints: the number of variables and constraints
for each model are reported in Table 3.8. Overall, formulation F1 is that with
the smaller dimensions, having, as expected, the same amount of 0-1 variables
than Kop-CT2-m and 1

2m(m− 1) less than Kop-CT1-m.

Role of binary variables in resource capacity constraints: Table 3.9 consid-
ers a single pair (1, 2) ∈ Ā2, and summarizes, for each possible disposition
of activities starting time, the implications brought by the three sets of con-
straints:

• (3.114)-(3.117): included in F1;
• (3.127)-(3.130): included in Kop-CT2-m;
• (3.139)-(3.142): from Kop-CT2-m, using substitutions (3.108)-(3.110);

Case (3.114)-(3.117) (3.139)-(3.142) (3.127)-(3.130)

t1 + τ1 < t2 ⇒
{
θ21 = 0 ⇒

{
θ21 = 0 ⇒

{
x12 = 1
z21 = 1

t2 + τ2 < t1 ⇒
{
θ21 = 1 ⇒

{
θ21 = 1 ⇒

{
x12 = 0
z12 = 1

t1 < t2 < t1 + τ1 ⇒
{
γ12 = 1
θ21 = 0

⇒
{
γ12 = 1
θ21 = 0

⇒


x12 = 1
z12 = 1
z21 = 1

t2 < t1 < t2 + τ2 ⇒
{
γ21 = 1
θ21 = 1

⇒
{
γ21 = 1
θ21 = 1

⇒


x12 = 0
z12 = 1
z21 = 1

t1 = t2 ⇒


γ12 = 1
γ21 = 1
θ21 = 0

⇒
{
γ12 = 1
θ21 = 0

⇒


x12 = 1
z12 = 1
z21 = 1

Table 3.9. Implications brought by the three different sets of constraints, considering a
single pair (1, 2) ∈ Ā2 and all possible cases for the activities starting times.

92 3. A new formulation for the RCPSP

The first four rows in the table confirm the similarities between F1 and Kop-
CT2-m. Indeed, (3.114)-(3.117) assure the same implications of (3.139)-(3.142),
which are obviously compatible with (3.127)-(3.130). However, when t1 = t2
(see the fifth case), the implications are not equivalent, due to the difference
between constraint (3.115) and (3.139) (indeed the additional term εγ21 − ε
in (3.115) guarantees also γ21 = 1).
This generates two important considerations: the first is that, also ignoring for
a moment the coefficients of binary variables, equations (3.108)-(3.110) do not
permit a direct transformation of F1 in Kop-CT2-m (and Kop-CT1-m) and
vice versa. Secondly we notice that, since in the last case (t1 = t2) constraints
(3.114)-(3.117) and (3.127)-(3.130) give

γ21 6= z21 − x12 ,

also resource capacity constraints have a different interpretation.
To clarify this fact, we assume there is a pair of activities (1, 2) ∈ Ā2 which
start at the same time (i.e., t1 = t2). If we write constraint (3.118) for a
certain resource i ∈ R and for both the activities 1 and 2, we get:

ri1 +
∑

∈A,  6=1
riγ1 ≤ Ci,

ri2 +
∑

∈A,  6=2
riγ2 ≤ Ci.

Since γ1 = γ2 for each  ∈ A\{1, 2}, and γ21 = γ12 = 1, these inequalities
are completely equivalent.
If we now do the same step for constraint (3.131), we obtain:

ri1 +
∑

∈A, <1
ri(z1 + x1 − 1) +

∑
∈A, >1

ri(z1 − x1) ≤ Ci,

ri2 +
∑

∈A, <2
ri(z2 + x2 − 1) +

∑
∈A, >2

ri(z2 − x2) ≤ Ci.

Here we have 
z1 + x1 − 1 = z2 + x2 − 1  < 1 < 2

z1 − x1 = z2 + x2 − 1 1 <  < 2

z1 − x1 = z2 − x2 1 < 2 < 

but
0 = z21 − x12 6= z12 + x12 − 1 = 1.

It follows that the two capacity constraints are not equivalent. In particular,
the first does not consider (wrongly) the resources of type i used by activity
2, since z21 − x12 = 0. However, everything is taken into account by the
second inequality, which is tighter, having z12 + x12 − 1 = 1.
The same argument is also valid when the activities that start at the same
time are three or more. Among these, only the activity with the highest

3.4 Models comparison 93

index effectively tights the problem, taking into account the capacity of re-
sources occupied by the all the other operations, and thus modeling availability
constraints.

This also explains why for formulations Kop-CT1-m and Kop-CT2-m having
ordered pairs of indexes is essential (while formulation F1 is independent from
the ordering).

Tightening constraints and integer feasible solutions: Formulations Kop-CT1-
m and Kop-CT2-m, differently form F1, include tightening constraints (respec-
tively (3.132)-(3.133) and (3.83)) which directly link the binary variables of
the problem. Thanks to these inequalities, some non-integer solutions are cut
off from the linear relaxation of the problem, assuring the same 0-1 feasible
points for variables x and z. Table 3.10 considers a single pair of activities
(j, c) ∈ Ā2 and summarizes the integer feasible values for models Kop-CT1-m
and Kop-CT2-m for each disposition of the starting times, ignoring resource
capacity limitations. Comparing this table with Table 3.1, it can be noticed
that F1 in general admits more 0-1 solutions than Kop-CT1-m/Kop-CT2-m,
although possibly reduced by resource availability constraints.

fj ≤ tc tj < tc ≤ fj tj = tc tc < tj ≤ fc fc ≤ tj

Kop-CT1-m
(0,1,1,0) (1,1,1,0) (1,1,1,0) (1,1,0,1) (1,0,0,1)
(1,1,1,0) (1,1,0,1)

Kop-CT2-m
(0,1,1) (1,1,1) (1,1,1) (1,1,0) (1,0,0)
(1,1,1) (1,1,0)

Table 3.10. Feasible values of (zjc, zcj , xjc, xcj) for Kop-CT1-m and (zjc, zcj , xjc) for
Kop-CT2-m, for all starting times alternatives, ignoring resource constraints.

Coefficients of binary variables: As already observed analyzing inequalities
(3.139)-(3.142), it is not possible to directly derive the reduced coefficients of
formulation F1 (which multiply γ12 and γ21 in constraints (3.114)-(3.117))
by simply applying the substitutions (3.108)-(3.110) and (3.125) into (3.127)-
(3.130). This brings out an important difference able to produce significant
computational discrepancies, as we will show in the following.

Notice in addition that this fact is independent from the type of parameters used
as big-M in formulations Kop-CT1-m and Kop-CT2-m. Indeed, constraints
(3.127)-(3.130) are affected by our choice of substituting the original values
computable through preprocessing with the general upper bound H, but a
similar result would have been obtained also by using LS1 − ES2 , LS1 −
ES2 + λ, LF1 − ES2 for all pairs (1, 2) ∈ A×A.

Nevertheless, in order to analyze the sensitivity of formulations F1, Kop-CT1-m
and Kop-CT2-m to these parameters, we introduce the following additional
variations to the models:

94 3. A new formulation for the RCPSP

F1-w: equivalent to F1, where constraints (3.4)-(3.7) are replaced by:

tj + τj − tc ≤ (LFj − ESc)(1− θjc) + (τj − ε)γjc ∀{j, c} ∈ A2,

tc − tj ≤ (LSc − ESj + ε)θjc + εγjc − ε ∀{j, c} ∈ A2,

tc + τc − tj ≤ (LFc − ESj)θjc + τcγcj ∀{j, c} ∈ A2,

tj − tc ≤ (LSj − ESc)(1− θjc)− ε ∀{j, c} ∈ A2,

θjc = 1 ∀{j, c} ∈ A2 : LSj < ESc.

Kop-CT1-w: equivalent to Kop-CT1-m, where constraints (3.79)-(3.81) are
replaced by:

tj ≤ tc + (LSj − ESc)xcj ∀(c, j) ∈ (A×A) : c > j,

tc + λ ≤ tj + (LSc − ESj + λ)xjc ∀(c, j) ∈ (A×A) : c > j,

fj − tc ≤ (LFj − ESc)zjc ∀(c, j) ∈ (A×A) : c 6= j,

xjc = 1 ∀(c, j) ∈ (A×A), c 6= j : LSj < ESc.

Kop-CT2-w: equivalent to Kop-CT2-m, where constraints (3.91)-(3.93) are
replaced by:

tj ≤ tc + (LSj − ESc)(1− xjc) ∀(c, j) ∈ (A×A) : c > j,

tc + λ ≤ tj + (LSc − ESj + λ)xjc ∀(c, j) ∈ (A×A) : c > j,

fj − tc ≤ (LFj − ESc)zjc ∀(c, j) ∈ (A×A) : c 6= j,

xjc = 1 ∀(c, j) ∈ (A×A), c > j : LSj < ESc.

To compute the parameters ESj , LSj and LFj for each activity j ∈ A we use
for all formulations the critical path method combined with the serial schedule
generation scheme heuristic from Kelley (1963).

3.4.2 Preliminary computational analysis

In previous sections, we have considered different mathematical formulations for
the RCPSP, including some relevant modifications. Here we take into account six
of them in order to conduct some preliminary experiments on the test set j30 of
PSPLib, validate the results, and analyze in detail some important aspects of their
experimental behavior. The final aim of this investigation is indeed to provide a
comprehensive overview of the performances reachable by the different modeling
possibilities encountered so far, motivating also our choice of the formulations
to further compare in Section 3.5, where we extend our study to additional test
instances.

We thus start examining the following models: F1, Kop-CT1-m, Kop-CT2-m,
F1-w, Kop-CT1-w, and Kop-CT2-w. The results obtained on set j30, containing
480 instances, are reported in Table 3.11, where the same KPIs of Table 3.2 are
used. As before, the experiments are performed on an Intel Core i7 CPU 5600U 2.60

3.4 Models comparison 95

Formulation Feas.% Opt.% Out.Gap% Act.Gap% Time(sec.)

F1 100.00 96.88 14.27 0.96 9.64
F1-w 100.00 96.25 13.38 1.07 9.16

Kop-CT1-m 100.00 91.25 15.18 2.03 9.94
Kop-CT1-w 99.79 91.88 16.30 2.19 11.54
Kop-CT2-m 100.00 91.25 15.23 1.97 12.16
Kop-CT2-w 99.79 91.25 15.99 2.02 11.21

Table 3.11. Computational results for F1, F1-w, Kop-CT1-m, Kop-CT1-w, Kop-CT2-m,
and Kop-CT2-w on j30 instances.

GHz with 16GB RAM, running ILOG CPLEX Concert Technology 12.8.0. under
standard configurations, with a time limit of 300 CPU seconds.

As evident, the performances of F1 and F1-w are comparable, and both produce
better solutions than Kop-CT1-m, Kop-CT1-w, Kop-CT2-m, and Kop-CT2-w, which
have similar scores. The use of preprocessing to calculate activities time-windows
partially increases the number of optimal solutions found by Kop-CT1-w, although
makes it impossible to find a feasible point for a particular instance running Kop-CT1-
w or Kop-CT2-w (notice that in theory a feasible solution is available, being the one
calculated by the upper bounding heuristic). Differently, F1-w provides few optima
less than F1, and this is probably due to the different branching behavior induced
by the use of lower coefficients for variables θ. Indeed as θjc “loses some power”
in satisfying constraints (3.4)-(3.7), variables γjc and γcj will be more encouraged
to take non-zero values in the relaxation, assuming a higher importance in the
branching and thus modifying the performances of the algorithm (see observations in
the last part of Section 3.2.2). This is however a tricky issue, that naturally brings
to the interrogative on which are the best values for big-M parameters, being both
sufficiently high to stimulate particular algorithmic actions and reasonably small
to avoid numerical problems. In any case, such discussions are merely technical,
relatively significant, and not in line with the scope of our work. For this reason,
we prefer to continue our analysis, assuming H =

∑
j∈A τj (as in formulations F1,

Kop-CT1-m, and Kop-CT2-m) is a good enough value, and to only investigate
models that do not involve preprocessing procedures.

Thus, focusing on the direct comparison of formulation F1 with Kop-CT1-m and
Kop-CT2-m, we can observe the outputs in Tables 3.12 and 3.13, which in general
reveal similar results (for instance detailed outputs, see Appendix A). Notice that
both models Kop-CT1-m and Kop-CT2-m find the optimum for 438 test instances,
but not exactly the same. All of these are easily solved by F1, spending on average
respectively less than one half and less than one third of the time employed by the
others. Also the 15 problems for which no one method could prove the optimality
before the time limit confirm the good performances of F1, being the one with the
lowest gaps (output by CPLEX and actual, with respect to the known optima).
Moreover, the instances optimally solved by F1 but not by Kop-CT1-m/Kop-CT2-m
in both cases return an average computation time of about 100 second for F1 and an

96 3. A new formulation for the RCPSP

Kop-CT1-m

Optimal Sub/Non-proven optimal

F1

O
pt
im

al
Instances: 438 (91.25%) Instances: 27 (5.62%)

F1:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 4.12
Avg.Nodes: 4533

F1:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 99.24
Avg.Nodes: 115456

Kop-CT1-m:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 9.94
Avg.Nodes: 5996

Kop-CT1-m:


Out.Gap%: 9.87
Act.Gap%: 1.57
Time(sec.): 300.00
Avg.Nodes: 130100

Su
b/

N
on

-p
ro
ve
n
op

ti
m
al Instances: 0 (0.00%) Instances: 15 (3.13%)

− F1:


Out.Gap%: 14.27
Act.Gap%: 0.96
Time(sec.): 300.00
Avg.Nodes: 261134

− Kop-CT1-m:


Out.Gap%: 24.73
Act.Gap%: 2.87
Time(sec.): 300.00
Avg.Nodes: 112056

Table 3.12. Results comparison between formulations F1 and Kop-CT1-m

output gap of approximately 10% for the other formulations (with Act.Gap%=1.57
for Kop-CT1-m, and Act.Gap%=1.23 for Kop-CT2-m).

Looking at the number of nodes visited by the algorithms in each situation, we
may notice that F1 in general needs to explore fewer directions than Kop-CT1-m
and Kop-CT2-m to prove the optimality of the solutions. In accordance with this,
when instances can not be solved, F1 visits more than twice the number of nodes
examined by Kop-CT1-m and almost three times that of Kop-CT2-m in the same
amount of time of 300 seconds, finally reaching an actual gap under the 1%. This
evidences the influence of three interrelated aspects:

1. Probably due to the lower number of variables and constraints, formulation F1
in general finds the optimal solution of nodes relaxation faster. This is also
confirmed by Table 3.14, which reports the average amounts of milliseconds
required by each method to solve the relaxed problems at the root for the
instances in set j30.

2. The particular structure of formulation F1 enables a more effective branching
than those of formulations Kop-CT1-m and Kop-CT2-m. We have already

3.4 Models comparison 97

Kop-CT2-m

Optimal Sub/Non-proven optimal

F1

O
pt
im

al

Instances: 438 (91.25%) Instances: 27 (5.62%)

F1:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 4.01
Avg.Nodes: 4288

F1:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 100.99
Avg.Nodes: 119429

Kop-CT2-m:


Out.Gap%: 0.00
Act.Gap%: 0.00
Time(sec.): 12.16
Avg.Nodes: 6468

Kop-CT2-m:


Out.Gap%: 10.14
Act.Gap%: 1.23
Time(sec.): 300.00
Avg.Nodes: 109000

Su
b/

N
on

-p
ro
ve
n
op

ti
m
al Instances: 0 (0.00%) Instances: 15 (3.13%)

− F1:


Out.Gap%: 14.27
Act.Gap%: 0.96
Time(sec.): 300.00
Avg.Nodes: 261134

− Kop-CT2-m:


Out.Gap%: 24.39
Act.Gap%: 3.30
Time(sec.): 300.00
Avg.Nodes: 97335

Table 3.13. Results comparison between formulations F1 and Kop-CT2-m

observed in previous sections how F1 allows to obtain good algorithmic perfor-
mances, encouraging the search in specific directions and quickly tightening
the feasible region through the use of reduced parameters. In the following, we
will try to further investigate this fact also providing an insight into a direct
comparison among different methods.

3. As a result of the preceding point, F1 normally reaches deep layers of the
search tree sooner than other formulations. Nodes in these domains have a
high number of binary variables fixed to 0 or 1, and for this reason permit
an even faster solution of linear relaxation problems. This way the positive
effect is propagated through the branches, consistently improving the overall
exploration.

Before continuing our investigation of performances, we provide the last data
point to support our analysis and assess the validity of the results. Table 3.15
reports the outputs obtained by running the same type of experiments on set j30 for
Kop-CT1-m and Kop-CT2-m, disabling – as done for formulations F1, F2 and F3 –
all the advanced procedures automatically used by CPLEX to speed up the solution
process. The results for F1 are reported again for a direct comparison.

98 3. A new formulation for the RCPSP

Formulation Time (milliseconds)

F1 8.09
Kop-CT1-m 26.73
Kop-CT2-m 9.90

Table 3.14. Average solving times of root node relaxation for F1, Kop-CT1-m, and
Kop-CT2-m on j30 instances.

Formulation Feas.% Opt.% Out.Gap% Act.Gap% Time(sec.)

F1 100.00 91.67 12.83 2.04 15.87
Kop-CT1-m 100.00 81.25 15.79 0.95 17.21
Kop-CT2-m 100.00 78.54 19.59 0.80 23.25

Table 3.15. Computational results for F1, Kop-CT1-m and Kop-CT2-m on j30 instances
with CPLEX advanced methods disabled.

Comparison between branching properties

As said, formulation F1 has the most efficient algorithmic behavior among methods
compared. To provide an intuitive idea of the reason, we consider again the simple
example involving five activities proposed in Section 3.2.2. The branching trees
explored by F1, Kop-CT1-m and Kop-CT2-m are shown in Figure 3.4, where
black nodes and white nodes are respectively associated to decisions regarding the
sequencing variables (θ for F1 and x for Kop-CT1-m and Kop-CT2-m) or the other
binaries (γ for F1 and z for Kop-CT1-m and Kop-CT2-m). The original node logs
used to build the figure are reported in Appendix B for completeness.

Although this representation can only statically illustrate the decisions taken
by the algorithms in a single and extremely simple case, it is able to provide an
insight into the logical steps followed by each approach. Starting from the root and
proceeding toward the leaves, it is clear that, while F1 automatically prioritizes fixing
variables θ, Kop-CT1-m and Kop-CT2-m alternate between x and z (remember
that Kop-CT1-m has twice as many x variables as Kop-CT2-m). This happens
regardless of the variable selection strategy employed, being a consequence of the
type of solutions found to optimize the linear relaxation of nodes. For example, the
optimal (γ, θ), (z1, x1), (z2, x2) (respectively for F1, Kop-CT1-m and Kop-CT2-m)
at the root nodes are given by the following:

γ =


- 0 0 0 0
0 - 0 0 0
0 0 - 0 0
0 0 0 - 0
0 0 0 0 -

 θ =


- - - - -

0.2 - - - -
0.2 0.13 - - -
0.27 0.2 0.27 - -
0.33 0.27 0.33 0.33 -



3.4 Models comparison 99

Figure 3.4. Branching trees generated (from left to right) by F1, Kop-CT1-m and Kop-
CT2-m while solving a simple instance with five activities. Black and white nodes
indicate the type of variable selected for branching.

z1 =


- 0 0.07 0.07 0.07
1 - 0.2 0.2 0.2
1 0.93 - 0.2 0.2

0.93 0.8 0.8 - 0.27
0.93 0.8 0.8 0.73 -

 x1 =


- 1 1 0.93 0.93
0 - 0.93 0.8 0.8
0 0.07 - 0.8 0.8

0.07 0.2 0.2 - 0.73
0.07 0.2 0.2 0.27 -



z2 =


- 0.91 0.99 0.75 0.99

0.21 - 1 1 1
0.2 0.12 - 0.99 0.91
0.27 0.19 0.27 - 0.67
0.33 0.25 0.33 0.33 -

 x2 =


- 0.09 0.01 0.25 0.01
- - 0 0 0
- - - 0.01 0.09
- - - - 0.33
- - - - -


where values are rounded at the second decimal place for simplicity.
In Section 3.2.2 we have already observed that formulation F1 can easily find a

solution for the relaxations, possibly setting the θ variables to fractional values and
many γ to 0. This indeed allows to satisfy all inequalities linking t, θ and γ, without
generating conflicts on the resources limited capacities. The preceding solution seems
to confirm this idea.

Differently from F1, Kop-CT1-m and Kop-CT2-m admit many fractional values
among both variables z and x. This of course depends on the characteristics of the
multidimensional feasible region, which however is really hard to visualize. Thus,
in order to give an idea, we can just make some intuitive observations. Let us
momentarily consider only one pair of activities (c, j) ∈ Ā2, and write inequalities

100 3. A new formulation for the RCPSP

(3.76),(3.78)-(3.81),(3.83) of formulation Kop-CT1-m without integrality constraints.
We get:

fj = tj + τj , (3.144)

fc = tc + τc, (3.145)

xcj = 1− xjc, (3.146)

tj − tc ≤ Hxcj , (3.147)

tc − tj + λ ≤ Hxjc, (3.148)

fj − tc ≤ Hzjc, (3.149)

fc − tj ≤ Hzcj , (3.150)

xjc ≤ zcj , (3.151)

xcj ≤ zjc. (3.152)

Independently from the starting and finish time of the activities, exactly one of
the left-hand sides of (3.147) and (3.148), and at least one among those of (3.149)
and (3.150) are strictly positive. Consequently, the values of at least two or three
of the binary variables on the right-hand sides need to be greater than zero. In
particular, constraints (3.146), (3.151)-(3.152) impose that if xcj < 1 then xjc > 0
and zcj > 0, and if xjc < 1 then xcj > 0 and zjc > 0. We can distinguish two cases:

1. If activities c and j have starting and ending times such that they are sequenced
(i.e., fc ≤ tj or fj ≤ tc), either 0 < xjc ≤ zcj or 0 < xcj ≤ zjc. In this situation
a feasible integer solution obviously exists. For example, if c precedes j,
it is possible to set xjc = 0, xcj = 1, zjc = 1, zcj = 0, and if j precedes c,
xjc = 1, xcj = 0, zjc = 0, zcj = 1. This happens for instance to activities 1
and 2 in the example, since they are connected by the precedence relation
(1, 2) ∈ Q.

2. If activities c and j overlap, then the situation is different because both (3.149)
and (3.150) have positive left-hand sides. Consequently, zjc > 0, zcj > 0,
and at the same time xjc + xcj = 1 due to (3.146). So one could imagine
two integer solutions, compatibly with the starting times of the activities:
(xjc = 0, xcj = 1, zjc = 1, zcj = 1) or (xjc = 1, xcj = 0, zjc = 1, zcj = 1).
However, as long as the resource constraints have some tightening effect, these
solutions are difficultly feasible. Indeed if we write inequalities (3.82) for
activities c and j, and every resource i ∈ R, we obtain:

ric +
∑
h∈A
h6=c

rih(zhc − xch) ≤ Ci ∀i ∈ R,

rij +
∑
h∈A
h6=j

rih(zhj − xjh) ≤ Ci ∀i ∈ R.

In the first summation we have the terms rij(zjc − xcj), in the second the
terms ric(zcj − xjc). In order not to overcome the maximum capacities, they

3.4 Models comparison 101

have to be someway balanced with all the corresponding nonnegative terms
of all the pairs of activities for each type of resource. It follows that setting
zjc = 1, xcj = 0, so rij(zjc−xcj) = rij (or zcj = 1, xjc = 0, with ric(zcj−xjc) =
ric), may in general be a strategy for some overlapping activity pairs, but
would force some others to give fractional values to many (or all) of their
associated binary variables. To make an example, supposing that solution
(xjc = 0.5, xcj = 0.5, zjc = 0.5, zcj = 0.5) satisfies all (3.147)-(3.150), it involves
rij(zjc − xcj) = 0 and ric(zcj − xjc) = 0, which allows to completely avoid
resource conflicts for the considered pair.

These two cases summarily describe the type of solution which one could expect from
the linear relaxation at the root or, considering the associated effects, at every node
of the branching tree where some binary variables still need to be fixed. However, an
important aspect has to be taken into account before completing this analysis, which
is connected to the quality of the linear relaxation. Model F1 and Kop-CT1-m, as all
the Continuous-Time approaches in the literature, provide poor relaxation bounds
(possibly equal to the length of the critical path, ignoring resource constraints). This
is basically a consequence of the previous observations, which indeed bring to values
of binary variables rather distant from 0 or 1, being anyway able to satisfy indicator
constraints. Looking at this fact exactly from the opposite point of view, we can
notice the following. When the linear relaxation is solved at the root node – if
the problem is not trivial – it provides an optimal non-integer solution with value
LBr. This is the smallest lower bound achievable at every node, since no binary
variables are fixed. In other terms LBr ≤ LBnb

for each node nb in the branching
tree. Similarly, if a node ncb derives from a parent npb , of course LBnp

b
≤ LBnc

b
. So

we can generally assert that, going from the root toward the leaves of the tree, the
optimized project makespan resulting from problem relaxations can only increase.
Imagining the representation of this idea on a Gantt chart, we may visualize two
diverging situations:

At the root, the makespan is very low. The sequence relations are respected, but
resource limited capacities do not effectively constraint the disposition of
activities over time. Consequently, many pairs (c, j) overlap, falling within
the second of the cases previously considered, and thus generating different
fractional values.

At deeper nodes, the makespan is higher. This is a consequence of the increasing
power of resource constraints, which are able to avoid some unfeasible activities
parallelizations, having some binary variables fixed. Many pairs (c, j) must be
necessarily sequenced, thus increasing the number of possibly integer solutions
to the linear relaxation.

The aim of these observations is to try a generalization of some tricky aspects that
however significantly depend on the type of instance considered. In the example
with five activities provided above, only one precedence relation linked the variable
starting time, thus permitting a very cumulative solution to the initial relaxation
(indeed LBr = 5, with t1 = t3 = t4 = t5 = 0 and t2 = 1). If more sequence
constraints were involved, we could probably expect to get less fractional values

102 3. A new formulation for the RCPSP

for the binary variables, but in any case distributed among both the z and x. For
instance, consider the following solutions found for the relaxation of the root nodes,
including into Q the additional pair (2, 3):

γ =


- 0 0 0 0
0 - 0 0 0
0 0 - 0 0
0 0 0 - 0
0 0 0 0 -

 θ =


- - - - -

0.2 - - - -
0.4 0.33 - - -
0.27 0.2 0.07 - -
0.33 0.27 0.13 0.33 -



z1 =


- 0 0 0.07 0.07
1 - 0 0.2 0.2
1 1 - 0.4 0.4

0.93 0.8 0.6 - 0.27
0.93 0.8 0.6 0.73 -

 x1 =


- 1 1 0.93 0.93
0 - 1 0.8 0.8
0 0 - 0.6 0.6

0.07 0.2 0.4 - 0.73
0.07 0.2 0.4 0.27 -



z2 =


- 0.93 0.6 0.84 0.99

0.2 - 0.73 1 1
0.4 0.33 - 1 1
0.27 0.2 0.07 - 0.67
0.33 0.27 0.13 0.33 -

 x2 =


- 0.07 0.4 0.16 0.01
- - 0.27 0 0
- - - 0 0
- - - - 0.33
- - - - -


This again confirms the difference between F1 and Kop-CT1-m/Kop-CT2-m.

Notice indeed that – although not addressed here – arguments similar to those
considered for Kop-CT1-m could be tentatively sketched also for formulation Kop-
CT2-m, taking into account the modified expression of resource constraints, where
variable xjc (with j < c) appears not once but twice with different weights and
opposite signs.

Observe that the fact that the relaxed version of a formulation admits many
integers, by itself, does not constitute an advantage for the branching, or at least
not in the first phases, when some fractional values are anyway returned and the
search keeps going on. This brings us to the main important difference among our
approach and the other models considered.

As already observed, formulation F1 generally works as follows: given a pair
(c, j), the variable which is most likely selected for the first branching among those
associated to such pair is θcj , being probably fractional. Whether θcj is fixed to
0 or to 1, two constraints (among the four (3.4)-(3.7)) are immediately tightened,
leaving to γcj and γjc the final possibility to further influence the feasible space for
the activities starting times. In particular, having a typical relaxation solution a
considerable number of γ set to 0, if c and j have not to be parallelized, it is in
general simple for F1 to return a solution with integer γcj and γjc, and specifically
γcj = 0, γjc = 0. Moreover, γcj and γjc will really need to be moved from 0 only if
tc = tj . All these aspects positively affect the branching procedure, which can thus
be completed relatively fast.

The same considerations do not apply to Kop-CT1-m/Kop-CT2-m. Indeed, due
to the characteristics of the optimal solutions provided by the continuous relaxation
of nodes, the branching decisions can generally be taken both on variables of type z
or x. If for example, considering formulation Kop-CT1-m and a given pair (c, j), xcj

3.5 Experimental results 103

is fixed to 0 or 1, then also the xjc and one among zcj and zjc are necessarily forced
to take an integer value (due to (3.78) and (3.83)), which is the best case. Since
two of these three binaries equal 1 and multiply a big number, only one constraint
among (3.79) and (3.80) is effectively tightened (i.e., the one involving the x which
is set to 0). The remaining variable z could eventually generate another branching
in case of overlapping between c and j, otherwise can be feasibly set to 0 by the
relaxation, which is convenient. Differently, when zcj or zjc are fixed as first, there
are two possibilities. If for example zcj = 0 is set, the situation is similar to the
previous case because also the xcj and xjc automatically become integer. However a
successive branching on variable zjc is expected because zcj = 0 and zjc = 0 are not
possible together, and so zjc needs to move closer to 1, while resource constraints
in general try to lower its value, potentially generating fractional quantities. The
worst case anyway happens when a variable z is set to 1. In this situation no other
binaries are necessarily forced to 0 or 1, and constraints (3.81) do not tight the
feasible region. Thus the search continues fixing a different variable without any
additional information.

Although these observations clearly simplify the real complexity of the branching
procedure, considering only one pair of activities and no interactions with the others,
they anyway provide an insight into some possible reasons why F1 produces better
performances than Kop-CT1-m. In this respect, notice that similar arguments could
be also derived for formulation Kop-CT2-m, taking of course into account the reduced
number of variables x. This may lead to different selections of the variables used for
branching at the first steps, potentially influencing the performance of the method.
Indeed, in general there is not an evident reason to justify an experimental difference
between Kop-CT1-m and Kop-CT2-m. Kopanos et al. (2014) in their work affirmed
Kop-CT1 obtained better results than Kop-CT2. Actually, these formulations seem
to perform similarly, with a slight advantage for the first one. We think that the
different behavior can probably derive from the choice of the first variables used for
branching. Having Kop-CT2-m twice as many z variables as x, the probability to
prioritize fixing z increases, which generally leads to less efficient steps.

3.5 Experimental results

Starting from the results obtained in the previous section, we further investigated the
performances of our proposed formulation, considering 2280 additional test problems:
1800 of set RanGen2 (split into Set 1, Set 2, Set 3, Set 4 and Set 5) with 30 activities,
and 480 of set j60 of PSPLib with 60 activities. Model Kop-CT1-m is also included
for comparison. Everything was implemented in JAVA using ILOG CPLEX Concert
Technology 12.8.0 under standard configurations. The experiments were performed
on an Intel Core i7 CPU 5600U 2.60 GHz with 16GB RAM, limiting the time for
each instance to 300 CPU seconds.

Table 3.16 lists our results, where all the measures are calculated as in preceding
testings with the exception of Act.Gap%, that indicates the average gap of the
integer suboptimal or non-proven optimal solutions from the best known solution
available.

Figure 3.5 directly compares the amounts of instances optimally solved by

104 3. A new formulation for the RCPSP

Set Formulation Feas.% Opt.% Out.Gap% Act.Gap% Time(sec.)

j30
F1 100.00 96.88 14.27 0.96 9.64

Kop-CT1-m 100.00 91.25 15.18 2.03 9.94

j60
F1 100.00 74.17 24.02 9.53 21.29

Kop-CT1-m 100.00 69.17 28.06 17.84 30.77

Set 1
F1 100.00 75.44 25.70 3.82 13.65

Kop-CT1-m 100.00 66.78 33.57 10.33 14.19

Set 2
F1 100.00 60.56 23.57 3.98 12.38

Kop-CT1-m 100.00 53.33 33.74 9.35 27.43

Set 3
F1 100.00 91.67 11.79 1.16 16.73

Kop-CT1-m 100.00 86.25 18.15 2.98 19.52

Set 4
F1 100.00 69.58 26.92 4.38 7.06

Kop-CT1-m 100.00 62.50 34.07 10.24 15.63

Set 5
F1 100.00 72.50 19.82 2.89 7.41

Kop-CT1-m 100.00 67.08 30.38 8.45 19.49

Table 3.16. Computational results for F1 and Kop-CT1-m on sets j30, j60, and sets 1-5 of
RanGen2.

formulations F1 and Kop-CT1-m for each set, showing the dominance of the first
model. In order to understand how the optimal solutions are distributed among the
different approaches, Figure 3.6 must be considered. It basically divides the test
problems of every set into four groups on the basis of the exit status provided by the
algorithms. The most numerous groups are those composed of instances that were
solved to optimality by both F1 and Kop-CT1-m, while only in two cases (in Set 3)
Kop-CT1-m could return optimal solutions that were not found (or not certified as
optimal) by F1. This means that in general F1 is able to solve the same problems
as Kop-CT1-m plus some additional ones.

Figures 3.7 and 3.8 respectively compare the performances of the formulations in
case of proved optimality or not. In particular, Figure 3.7 considers for each model
the instances in all test sets for which the optimal solution was found, and shows
the distribution of computation times over different ranges. More than the 35% of
problems solved by F1 required less than 0.3 seconds, while Kop-CT1-m generally
needs more time. For example, 19.85% of the optimal instances for Kop-CT1-m
employ more than 20 seconds, while the same value for F1 is only 12.53%. Similar
observations come out from Figure 3.8 where only the instances that reached the
time limit without proving the optimality are considered, and the ranges refer to
the actual gaps from the best known values. More than 50% of problems returned a
solution with a gap lower than 4% for F1, while only 30% of the instances processed
by Kop-CT1-m produced a gap under this threshold. To reach the 50% it is necessary
to also include the ranges of (4%-6%] and (6%-8%]. Moreover, a significant difference

3.5 Experimental results 105

Figure 3.5. Comparison between the amounts of test problems in each set optimally or
non-optimally solved by F1 and Kop-CT1-m.

Figure 3.6. Amounts of instances in each set optimally solved by both models, by none of
the two, or by one formulation and not by the other (optimal for F1 and feasible for
Kop-CT1-m or optimal for Kop-CT1-m and feasible for F1).

106 3. A new formulation for the RCPSP

appears on the right side of the graph, in particular for gaps over 20% (1.69% of
incidence for F1 vs. 14.71% for Kop-CT1-m). Separated charts of results like 3.7 and
3.8 for each test set are provided in Appendix C, bringing to analogous conclusions.

Figure 3.7. Distribution of computation times over different ranges for F1 and Kop-CT1-m,
considering only the instances optimally solved among those of all sets.

Figure 3.8. Distribution of actual gaps over different ranges for F1 and Kop-CT1-m,
considering only the suboptimal or non-proven optimal instances among those of all sets.

Figure 3.9 constitutes a summary for the previous considerations, showing for
each set and each formulation the percentage of instances:

• solved to optimality in less than 1 second;

• solved to optimality in more than 1 second and less than 50 seconds;

• solved to optimality in more than 50 seconds and less than 300 seconds;

• not optimally solved providing a solution equivalent to the best known;

• not optimally solved with an actual gap from the best known solution lower
than 3%;

3.5 Experimental results 107

• not optimally solved with an actual gap from the best known solution higher
than 3%.

Finally, Figure 3.10 collects the average values of the KPIs over all the test sets.

108 3. A new formulation for the RCPSP

Figure 3.9. Percentages of instances solved or not solved to optimality by each method for
each test set, detailed for different ranges of computation times and actual gaps from
the best known solutions.

3.5 Experimental results 109

Figure 3.10. Average indicator values for all the instances considered.

111

Chapter 4

A new framework for workforce
planning and activities
scheduling

In this chapter, we extend the arguments previously addressed to provide an example
of application of the MILP formulation proposed for the Resource Constrained
Project Scheduling Problem.

Sections 4.1 and 4.2 are devoted to the introduction of the framework and its
main components. Section 4.3 presents the main simulation-optimization aspects.
The formal statement of the problem is provided in Section 4.4, and a bilevel
programming formulation is proposed in Section 4.5. The framework structure is
outlined in Section 4.6, while Section 4.7 concludes the chapter with three example
applications.

4.1 Introduction and motivations

Nowadays, a key success factor for many large enterprises is the ability to properly
manage labor cost and timetables. This is the reason why workforce planning and
scheduling tools are now getting more and more developed.

Two are the typical issues arising in such applications: the first is related to the
medium and long-term goal of estimating the amount of workers that the company
will require in future periods. The second, mostly linked to short-term operations,
involves the assignment of human resources to activities in order to meet deadlines
and industrial plans.

In practice, to conduct a complete analysis and evaluate the effectiveness of a
solution both time and financial objectives must be taken into account, considering
not only the need of minimizing durations and delays but also the ability to limit
the required budgets. The result is a trade-off problem which looks at the same time
at avoiding resource underutilization and incapacity to comply with due dates.

In the following, we present a new approach to solve the workforce scheduling
problem in complex applicative contexts such as manufacturing and logistics, char-
acterized by the simultaneous processing of several activities, the occupation of wide
areas, the coexistence of independent workloads, the use of advanced machineries

112 4. A new framework for workforce planning and activities scheduling

and, above all, the employment of different types of operators, having various abilities
and experience levels.

Standard approaches usually address this issue by defining distinct planning,
scheduling and allocation problems. However, within the considered context, the
problem of providing the right number of workers with the right skills at the right
time is inherently linked to the schedule of the activities. For this reason, we
rather propose a strategy to tackle all these aspects together, taking into account a
reasonable time horizon. As a result, we obtain a large problem requiring not only
a suitable representation of processes complexity, but also a feasible assignment of
operators to tasks and an optimized activities scheduling.

In what follows, the structure of the problem is formalized and a specialized
simulation-based optimization framework is proposed.

4.2 Main components of the framework

In general, our framework applies to systems where one or more processes are
executed. Roughly, a process can be described in terms of three basic definitions:
the resources employed, the skills required and the component activities.

4.2.1 Resources

By resource we mean any operator, means of transport, machine, equipment, etc.
that is scarce in nature and necessary for some operations. In particular, we refer to
the concept of renewable resources, used in the literature to indicate that a specified
number of units or quantity is available in every period. In other terms, resources
as manpower and machines have a limited initial capacity which is continuously
"renewed" during the project without the possibility to be exceeded at any time.
In contrast, nonrenewable resources have a given capacity whose consumption is
limited within the entire planning horizon. Typical examples are the raw materials
for a production lot or the budget for a project.

In the following, we will not directly take into account nonrenewable resources;
the motivation for that is not only justified by a speculative initial choice, since the
analysis and solution of problems with renewable or non-renewable resources have
different theoretical bases, but it derives also from practical reasons. Indeed, the
applications considered for the development of our work mainly focus on workforce
planning decisions, thus identifying the resources as humans, that are by definition
classifiable as renewable.

Anyway, it is also worth to notice that the results provided by our approach could
be easily extended to any kind of renewable resource, irrespective of considering
people or things. For this reason in what follows without loss of generality we will
refer to either operators, machines or other resources indistinguishably.

4.2.2 Skills

Especially when considering humans - but by extension even when dealing with an
advanced machinery, for example - it is possible to list the tasks that each type of
operator/resource is able to perform. In other words, in order to enable a feasible

4.3 Simulation-based optimization 113

allocation, it is important to express a form of compatibility between resources and
operations. We enclose this idea in the concept of skill: if an operator/machine/object
has different skills and, among them, the skill k, this means that he/it can be assigned
to every activity requiring (also) that particular ability.

Skills can be therefore used to characterize resource types. For example, given
two different resources having exactly the same skills, two possibilities are available
in the decision process: the first is two consider them separately for the assignment,
the second is to group them in a unique set (or type) and to admit a partial allocation
that does not exceed the overall capacity of 2.

4.2.3 Activities

We are now able to introduce the last basic notion: the activity, representing any
non-interruptible operation requiring time and resources to be completed. Activities
have a duration (or processing time) and may be subject to release date and due
date limits, representing organizational and strategical restrictions to be satisfied by
the variable starting times. Furthermore they may be linked by some precedence
constraints that are due to technological requirements and that specify which are
the sequence relations among different activities.

From a scheduling point of view, activities may be considered mutually exclusive
or not; this depends on their way of requiring resources. In particular, we say
that a resource is exclusive when its overall capacity is exclusively occupied by an
activity at a time for its entire duration. Examples are a specific engineer signing a
project, a dedicated space for shipbuilding or a particular unit in a single machine
configuration. Conversely, the electrical power in a factory, the operators in a call
center or the parallel machines in a manufacturing environment are nonexclusive
resources, since they have a capacity that can be shared between different actors at
the same time.

The same argument applies also when taking into account the concept of skill.
Generally speaking, we will assume that an activity can employ a certain amount
of a resource capacity to cover a given skill request. Then, we will say that the
use of resources is exclusive if it necessarily implies the entire capacity occupation,
irrespective of involved skills.

4.3 Simulation-based optimization
From what just said, processes are sequences of activities requiring particular skills
to be performed. Operators may have one or more skills and can be split in different
sets representing resource types. Each type contains resources that are equally able
in executing tasks and that singularly contribute in defining a common capacity for
the set. Starting from this, operators of a certain type can be selected and allocated
to activities to take on a role that is consistent with one of their skills.

About allocation quantities, a basic assumption of our approach is that the
number of resources and skills required is not fixed and therefore there exist many
feasible combinations of operators guaranteeing the completion of an activity. In
particular, allowing to vary the workforce assignments between a lower and an upper
limit, we evidently admit variability to operations processing times. Such aspect

114 4. A new framework for workforce planning and activities scheduling

heavily characterizes our procedure. Assuming it is not possible to derive analytic
functions expressing the link between allocated skills and time to complete the
activities, we have based our solution method on the use of a set of ad hoc simulators,
having as input a vector of worker availabilities and as output a duration estimate.
Figure 4.1 shows an example of an activity simulator: in correspondence of different
resources and skills assignments the system returns different processing times.

Figure 4.1. Activity simulator example model.

Notice that this methodology has several advantages in terms of adaptability to
represent real processes. In fact, the use of simulation on one hand makes it possible
to model even extremely complex activities, on the other allows to develop a really
flexible approach, able to use exactly the same paradigm in very different cases.

Therefore, whether it is very simple calculations or intricate time-consuming sim-
ulations, the optimization engine can neglect the details and the peculiar complexity
of specific cases, only providing a feasible assignment of resources and waiting for a
feedback reporting the time required in that configuration.

Nevertheless, it is worth to consider the significant effects that the outlined
approach has on the problem to be solved. In particular, some observations can be
made:

• The use of simulations makes the problem analytically unresolvable and not
treatable by the usual optimization techniques. In reality this comment hides
two assumptions that are true in the vast majority of real applications: firstly
that a complete enumeration of all operator-skill-activity assignments would be
practically impossible; secondly that, even in those cases where the number of
combinations is limited, it would not be practical to execute all the simulations
in a preprocessing phase, due to their expensive computational cost.

• The decision process can be defined as a black-box optimization process where
simulators are the “black boxes”, whose internal structure is theoretically
unknown to the optimizer. It follows from this that solving algorithms must
be able to work with an almost null or only partial knowledge of the problem
structure, facing in practice the challenge of finding an optimal solution without
taking advantage of analytical search methods and optimality test criteria.

• In general, few hypotheses can be made. This is a further consequence of the use
of simulators, due to the undetermined form of functions they mimic. However,
while maintaining a generic definition of the goals to be optimized, it is still
possible to draw some non-unrealistic assumptions about the mathematical

4.4 Problem statement 115

structure of the problem under consideration. For example, we can generally
suppose that:

(a) all other inputs being fixed, increasing the number of operators of a
certain type assigned to a given activity contributes to reduce the required
processing time;

(b) too high allocations of resources or too long process durations imply
excessive costs or unfeasible solutions. Thus, two opposite effects always
appear in the objective function or in the constraints. The result is
a simulation-optimization problem facing a typical trade-off between
different goals. On the one hand it aims at reducing the employment
cost, minimizing the number of necessary skilled operators, on the other,
it encourages an optimal activities scheduling, trying to parallelize the
tasks and decrease the overall completion time.

4.4 Problem statement
In order to introduce the general mathematical formulation we have developed for
this problem, we first need to list some basic definitions.

We will consider m non-preemptive activities indexed by the set

A = {1, ..., j, ...,m}.

Each activity is characterized by a variable continuous-valued processing time.
Furthermore a release date rj and a due date dj are defined for the j-th activity.
Both rj and dj are real nonnegative parameters, eventually set to zero and infinity
to relax the restrictions.

The set of indexes for the n resources considered is given by

R = {1, ..., i, ..., n}.

Then we consider p different skills. Let

S = {1, ..., k, ..., p}

be the associated set of indexes.
We define V as the set of non-parallelizzable activity index pairs, that is all the

combinations of two activities that for some reason cannot be executed at the same
time, e.g. because they have a logical conflict or because they use the same machine,
space, or other exclusive resource that is not worth to explicitly consider in the
model.

Precedence relations are given by the set Q of ordered index pairs, such that
(1, 2) ∈ Q means that the execution of activity 2 must start after the end of
activity 1. These predefined sequences are supposed consistent with each other.

Our problem formulation involves three main types of decision variables. First,
the total number of operators made available for each resource type is represented by
a vector y ∈ Nn, such that yi denotes the availability of resource i. Second, integer
variables xijk are required to indicate the number of workers of type i assigned

116 4. A new framework for workforce planning and activities scheduling

to activity j to cover the request of skill k. Finally, the starting-time continuous
variables tj are introduced for each activity j, thus making the scheduling possible.

We assume all variables to be nonnegative. Furthermore, for every triple (i, j, k)
we bound xijk between a lower (lijk) and an upper (uijk) limit, indicating the
minimum and maximum requirements of resource i with skill k for activity j.
Similarly, we denote by li and ui (with 0 ≤ li ≤ ui) the limits for variable yi, and by
lj , uj , ljk, ujk, lij and uij respectively the minimum and maximum requirements for
each activity, activity-skill or for each resource-activity.In addition, lik and uik allow
to control the amount of resources of type i assigned to tasks involving skill k.

All the previous restrictions can be used to specify logical or physical constraints,
and respectively have zero and infinity as default values.

Ultimately, minding our assumption on the dependence among operators as-
signments and time to complete the activities, we can identify the output of the
j-th simulator with the symbol τj(x·j·) = φj(x1j1, .., xijk, .., xnjp), so expressing
the processing time of activity j as an unknown function of the variable resource
allocations.

Starting from these definitions and formally indicating with A(t) the set of
activities in process at time t, a conceptual formulation of the problem can be
written as follows:

min
x,y,t

f(x, y, t) (4.1)

s.t. lijk ≤ xijk ≤ uijk i ∈ R, j ∈ A, k ∈ S, (4.2)

li ≤ yi ≤ ui i ∈ R, (4.3)

lj ≤
∑
i∈R

∑
k∈S

xijk ≤ uj j ∈ A, (4.4)

lij ≤
∑
k∈S

xijk ≤ uij i ∈ R, j ∈ A, (4.5)

ljk ≤
∑
i∈R

xijk ≤ ujk j ∈ A, k ∈ S, (4.6)

lik ≤
∑
j∈A

xijk ≤ uik i ∈ R, k ∈ S, (4.7)

max
j∈A

∑
k∈S

xijk ≤ yi ≤
∑
j∈A

∑
k∈S

xijk i ∈ R, (4.8)

τj(x·j·) = φj(x1j1, .., xijk, .., xnjp) j ∈ A, (4.9)

rj ≤ tj ≤ dj − τj(x·j·) j ∈ A, (4.10)

t2 ≥ t1 + τ1(x·1·) (1, 2) ∈ Q, (4.11)

t1 ≥ t2 + τ2(x·2·) ∨ t2 ≥ t1 + τ1(x·1·) {1, 2} ∈ V, (4.12)∑
j∈A(t)

∑
k∈S

xijk ≤ yi i ∈ R, (4.13)

yi ∈ N i ∈ R, (4.14)

xijk ∈ N i ∈ R, j ∈ A, k ∈ S, (4.15)

4.5 A bilevel programming formulation 117

tj ∈ R+ j ∈ A. (4.16)

The objective function is expressed in a generic form by (4.1), involving all the
variables x, y, t. Constraints (4.2) and (4.3) are the bounds for variables xijk and yi.
Expressions (4.4), (4.5) and (4.6) represent limits on the overall amount of resources
respectively for each activity, for each resource type and activity, and for each activity
and skill. Relations (4.7) allow to govern the type of tasks assigned to the different
resources, restricting the amounts of activity assignments requiring particular skills.
Constraints (4.8) express two concepts: the availability of operators of type i must
be (i) enough to guarantee that each activity can be independently executed (e.g., if
scheduled in sequence with the others), and (ii) not more than the total amount
of resources that would be needed if all the activities were parallelized. Equations
(4.9) bring processing time simulations into the formulation. Constraints (4.10) give
release date and deadlines limits, while inequalities (4.11) describe the precedence
relations between activities. The disjunctive expressions in (4.12) ensure that pairs of
activities belonging to V are not executed at the same time, in particular specifying
that either activity 1 starts after the end of activity 2 or the opposite. Constraints
(4.13) indicate only the conceptual relation between available and allocated operators,
i.e. the sum of resources which are busy at a certain generic time t cannot exceed
the total number of workers, for each type i ∈ R. This purely descriptive form can
be converted in a MILP structure, paying the cost of introducing a (finite) large
number of constraints depending on m and n. Finally, (4.14)-(4.16) define problem
variables.

4.5 A bilevel programming formulation

The presence of simulators naturally imposes to split the solving procedure into
different parts. This is the reason why we formalize the problem in a bilevel
programming formulation, which has as upper-level and lower-level objectives two
generic functions. Their global effect can be thought of as the combination of two
conflicting components: the first accounting for the workforce cost, the second
expressing a time objective. As an example of this trade-off, we can consider a
situation where variables yi are, at the same time, pushed down to lower salaries
expenses, and pushed up to relax resource constraints and obtain better results
in activities scheduling, improving, for example, the overall makespan, the sum of
projects completion times or the average finish time of activities.

The following formulation is proposed:

min
x,y,τ,t,δ,γ,θ

f1(x, y, τ, t, δ, γ, θ) (4.17)

s.t. lijk ≤ xijk ≤ uijk i ∈ R, j ∈ A, k ∈ S, (4.18)

li ≤ yi ≤ ui i ∈ R, (4.19)

lj ≤
∑
i∈R

∑
k∈S

xijk ≤ uj j ∈ A, (4.20)

lij ≤
∑
k∈S

xijk ≤ uij i ∈ R, j ∈ A, (4.21)

118 4. A new framework for workforce planning and activities scheduling

ljk ≤
∑
i∈R

xijk ≤ ujk j ∈ A, k ∈ S, (4.22)

lik ≤
∑
j∈A

xijk ≤ uik i ∈ R, k ∈ S, (4.23)

∑
k∈S

xijk ≤ yi i ∈ R, j ∈ A, (4.24)

yi ≤
∑
j∈A

∑
k∈S

xijk i ∈ R, (4.25)

τj = φj(x1j1, .., xijk, .., xnjp) j ∈ A, (4.26)

yi ∈ N i ∈ R, (4.27)

xijk ∈ N i ∈ R, j ∈ A, k ∈ S, (4.28)

τj ∈ R+ j ∈ A, (4.29)

(t, δ, γ, θ) ∈ arg min
t,δ,γ,θ

f2(t, δ, γ, θ) (4.30)

s.t. rj ≤ tj ≤ dj − τj j ∈ A, (4.31)

t2 ≥ t1 + τ1 (1, 2) ∈ Q, (4.32)

t1 + τ1 − t2 ≤M(1− δ12) {1, 2} ∈ V, (4.33)

t2 + τ2 − t1 ≤Mδ12 {1, 2} ∈ V, (4.34)∑
k∈S

xi1k +
∑
2∈A
2 6=1

∑
k∈S

xi2kγ12 ≤ yi i ∈ R, 1 ∈ A, (4.35)

t1 + τ1 − t2 ≤M(1− θ12) + (τ1 − ε)γ12 {1, 2} ∈ A2, (4.36)

t2 − t1 ≤Mθ12 + εγ12 − ε {1, 2} ∈ A2, (4.37)

t2 + τ2 − t1 ≤Mθ12 + τ2γ21 {1, 2} ∈ A2, (4.38)

t1 − t2 ≤M(1− θ12)− ε {1, 2} ∈ A2, (4.39)

θ12 ∈ {0, 1} {1, 2} ∈ A2, (4.40)

γ12 ∈ {0, 1} {1, 2} ∈ A2, (4.41)

γ21 ∈ {0, 1} {1, 2} ∈ A2, (4.42)

δ12 ∈ {0, 1} {1, 2} ∈ V, (4.43)

tj ∈ R+ j ∈ A, (4.44)

where:

• M is a large constant (e.g., M =
∑
j∈A τj);

• ε is a small parameter (e.g., ε = 10−(ν̄+1), with ν̄ = min{ν ∈ N : 10ντj ∈
N, ∀ j ∈ A});

• A2 = {{1, 2} : 1 ∈ A, 2 ∈ A, 1 6= 2}.

4.6 The structure of the framework 119

In this formulation, constraints (4.24)-(4.25) coincide with (4.8), inequalities
(4.33)-(4.34) express (4.12), and (4.35)-(4.39) assure (4.13).

Notice that if f2(t, δ, γ, θ) is a linear function – that is the case of many typical
scheduling objectives – the inner formulation results to be a MILP model. Thus,
depending on the size of the instance considered, it can be exactly (or approximately,
if a gap greater than 0 is admitted) solved with standard branch and bound techniques,
as well as separately tackled with ad-hoc heuristic procedures.

4.6 The structure of the framework

Our solution framework is composed of three main nested blocks, as shown in
Figure 4.2. The most external one is a black-box optimization formulation working
on variables yi and xijk, subject to constraints (4.18)-(4.25) and (4.27)-(4.28). Its
objective function, denoted by f̃ , has the structure of (4.17) and is calculated every
time from the results of inner blocks.

Figure 4.2. Framework structure.

In turn, the second module, represented by the resource constrained scheduling
formulation given by (4.30)-(4.44), is (approximately) solved at every iteration,
immediately after the execution of the third block, that takes the xijk as inputs, runs
a parallel simulation for each activity j, and returns the processing times τj . If a

120 4. A new framework for workforce planning and activities scheduling

feasible solution of the inner scheduling model does not exist for certain assignments
of resources (or if it is not found within a predefined time limit), a message must be
sent to the outer block, which automatically generates a new proposal to be tested.

Figure 4.3 provides a schematic representation of a typical iteration of the solving
procedure.

Figure 4.3. Schematic representation of a typical iteration of the framework.

4.7 Examples of applications

Some examples of applications of the proposed framework are provided in this section.
They present simplified versions of the real restrictions influencing each case, but
allow to clarify the modeling flexibility offered by the combination of simulation and
optimization tools in a single black-box framework.

4.7.1 Application 1: Big plant construction

Big plant construction projects may be influenced by many elements of uncertainty
and variability. A possible option to try managing the associated risks is to use
simulators able to take into account such disturbing effects and provide as output
high-fidelity estimates and/or worst-case results for each activity. In this way, the
tool can be employed to establish the right number of operators of each type that
would be necessary for the entire period, determining also their tasks assignments.
In general, the skills are not relevant in these decisions, which only depend on the
available resource types. Many precedence relations and some conflicts are defined
between the activities, due to the complexity of the processes considered. A simple
prototype of data for illustration is given by the following:

• |A| = m;

• |R| = n;

• |S| = 1;

• |Q| = q > 0;

• |V | = v > 0;

4.7 Examples of applications 121

• lik = li = 0, uik = ui =∞,∀i ∈ R;

• lijk = lij ≥ 0, uijk = uij ≥ lij ,∀i ∈ R,∀j ∈ A;

• ljk = lj ≥ 0, ujk = uj ≥ lj , ∀j ∈ A;

• rj ≥ 0, dj =∞, ∀j ∈ A;

• f2 = makespan;

• f1 = makespan
∑
i∈R

ciyi, with ci > 0 representing the cost per period of each

resource of type i ∈ R.

4.7.2 Application 2: Software development projects

There are some contexts in which the skills involved are fundamental for the execution
of tasks, that may be performed in several ways. An example is the development of
complex pieces of software, subject to tightening due dates. In such a case, resource
types generally coincide with particular individuals which are assumed to be known
at the start of the planning horizon. Different activities requiring many skills are
involved and some sequence constraints are defined. Simulators can be used to model
the particular abilities of workers as well as their actual availability during each day.
The objectives may be many. For instance, to keep as low as possible the (weighted)
quantity of personnel allocated to the project while meeting all the due dates, one
could consider:

• |A| = m;

• |R| = n;

• |S| = p;

• |Q| = q > 0;

• |V | = 0;

• li = 0, ui = 1,∀i ∈ R (since resource types are single individuals, yi ∈ {0, 1});

• lijk = 0, uijk = 1,∀i ∈ R,∀j ∈ A,∀k ∈ S (since resource types are single
individuals, xijk ∈ {0, 1});

• lij = 0, uij = 1, ∀i ∈ R,∀j ∈ A;

• lj ≥ 0, uj ≥ lj ,∀j ∈ A;

• ljk ≥ 0, ujk ≥ ljk, ∀j ∈ A,∀k ∈ S;

• lik ≥ 0, uik ≥ lik,∀i ∈ R,∀k ∈ S (for example, lik = 1 to assign at least a task
requiring skill k to resource i);

• rj = 0, ∀j ∈ A;

• dj <∞, for some j ∈ A;

122 4. A new framework for workforce planning and activities scheduling

• f2 =
∑
j∈A

tj ;

• f1 =
∑
i∈R

wiyi, with wi representing the weight of resource i ∈ R.

4.7.3 Application 3: Operators allocation in manufacturing and
logistic processes

Manufacturing and logistic processes are naturally characterized by a typical com-
plexity which is due to many coexisting aspects. In such fields the estimations of
workloads are often really difficult to be addressed, and in several cases practically
impossible through the use of standard tools only. The development of suitable
simulation models able to reproduce the reality and predict the required processing
times frequently offers a valid answer in these contexts. Thus, assuming to have the
opportunity to simulate many different scenarios for each activity, corresponding
to distinct allocations of operators to tasks, it is possible to perform an extensive
“what-if” analysis which does not only evaluate the best configuration for a particular
process, but considers the entire system and balances the needs in order to find a
solution which is acceptable in general. For example, if several activities are subject
to deadlines (referred as d̄j , ∀j ∈ A, to be distinguished by the mandatory due dates
dj), the objective could realistically be to minimize the overall tardiness, taking into
account every process and properly distributing the available operators of each type,
supposed known a priori and denoted by ni,∀i ∈ R. The input data in this case
would involve:

• |A| = m;

• |R| = n;

• |S| = p;

• |Q| = q ≥ 0;

• |V | = v ≥ 0;

• li = ui = ni > 0, ∀i ∈ R;

• lijk ≥ 0, uijk ≥ lijk, ∀i ∈ R,∀j ∈ A, ∀k ∈ S;

• lij ≥ 0, uij ≥ lij , ∀i ∈ R,∀j ∈ A;

• lj ≥ 0, uj ≥ lj ,∀j ∈ A;

• ljk ≥ 0, ujk ≥ ljk,∀j ∈ A,∀k ∈ S;

• ljk ≥ 0, ujk ≥ ljk,∀j ∈ A,∀k ∈ S;

• rj ≥ 0,∀j ∈ A;

• dj <∞, for some j ∈ A;

• f2 =
∑
j∈A

max{0, tj + τj − d̄j};

4.7 Examples of applications 123

• f1 =
∑
i∈R

∑
j∈A

∑
k∈S

cijkxijkτj + ρ
∑
j∈A

max{0, tj + τj − d̄j}, where the first term

represents an estimation of the allocation cost and the second is the overall
tardiness, multiplied by a general scaling factor ρ.

125

Conclusions

In this dissertation we presented a new mixed-integer linear formulation for the
RCPSP. The proposed model was compared to one of the best state-of-the-art
methods from the literature, outperforming it on all the experiments and on all the
KPIs considered.

The new formulation avoids the discretization of time, which is treated as a
continuous variable. This on the one hand permits to write the model in a compact
form to be directly passed to standard solvers, on the other allows to deal with
problem instances where activity durations and resource requirements are possibly
non-integer valued, without incurring into approximation errors or excessive modeling
sizes.

Binary indicator variables are defined to identify the overlapping of activities
and their sequence. The interconnection between these variables and the associated
big-M constraints is deeply analyzed and studied in order to get insights on the
reasons why such good performance is achieved on standard instances.

Furthermore, a potential application to workforce planning and scheduling
problems is presented as a black-box simulation-optimization approach, which
employs suitable simulators to flexibly model complex activities, and involves the
definition of a bilevel programming formulation to address conflicting time-cost
objectives at the same time.

Three main future research directions are envisaged for this work. The first is
intended to further investigate the performance of the proposed mathematical model,
with a particular focus to more difficult and larger instances of the RCPSP. It is true,
indeed, that MILP approaches are by nature subject to computational limitations.
However, different improving steps can be conceived, as the introduction of suitable
preprocessing techniques to tighten constraints and reduce the number of variables.

A second opportunity is offered by the willing to fully leverage the new modeling
approach presented in the second chapter of this dissertation, with the aim of
applying it to extensions of the RCPSP and other important problems characterized
by availability constraints.

Last but not least, the simulation-optimization framework proposed in Chapther
4 will be further developed and tested. The aim is to extend it to fully represent more
complex situations and to employ it as a decision support tool in real applications.

127

Appendix A

Detailed results for set j30 of
PSPLib

The results obtained by formulations F1, Kop-CT1-m, and Kop-CT2-m on each
instance of set j30 of PSPLib are reported in the table. For every method, there are
listed:

• the output status;

• the objective value;

• the computation time in seconds;

• the output gap provided by CPLEX;

• the actual gap from the optimum;

• the number of nodes visited.

instance F1 Kop-CT1-m Kop-CT2-m
1 1 Opt 43 0.14 0 0 0 Opt 43 1.36 0 0 1076 Opt 43 1.72 0 0 1103
1 2 Opt 47 0.84 0 0 555 Opt 47 1.34 0 0 1120 Opt 47 3.23 0 0 3066
1 3 Opt 47 0.56 0 0 232 Opt 47 0.9 0 0 742 Opt 47 1.19 0 0 540
1 4 Opt 62 0.76 0 0 303 Opt 62 3.95 0 0 4668 Opt 62 5.37 0 0 2595
1 5 Opt 39 0.97 0 0 655 Opt 39 2.79 0 0 2893 Opt 39 1.76 0 0 1023
1 6 Opt 48 0.62 0 0 465 Opt 48 1.11 0 0 789 Opt 48 1.58 0 0 750
1 7 Opt 60 0.48 0 0 103 Opt 60 0.7 0 0 18 Opt 60 0.72 0 0 92
1 8 Opt 53 0.13 0 0 0 Opt 53 0.25 0 0 0 Opt 53 0.23 0 0 0
1 9 Opt 49 1.43 0 0 1840 Opt 49 2.03 0 0 2322 Opt 49 3.6 0 0 3891
1 10 Opt 45 0.78 0 0 658 Opt 45 1.23 0 0 922 Opt 45 1.78 0 0 1312
2 1 Opt 38 0.59 0 0 122 Opt 38 0.51 0 0 0 Opt 38 1.34 0 0 561
2 2 Opt 51 0.8 0 0 480 Opt 51 0.53 0 0 119 Opt 51 1.73 0 0 1118
2 3 Opt 43 0.12 0 0 0 Opt 43 0.23 0 0 0 Opt 43 0.23 0 0 0
2 4 Opt 43 0.59 0 0 73 Opt 43 0.53 0 0 12 Opt 43 0.75 0 0 0
2 5 Opt 51 0.36 0 0 0 Opt 51 0.65 0 0 148 Opt 51 0.84 0 0 153
2 6 Opt 47 0.39 0 0 0 Opt 47 0.47 0 0 0 Opt 47 1 0 0 154
2 7 Opt 47 0.7 0 0 63 Opt 47 0.39 0 0 0 Opt 47 1.48 0 0 747
2 8 Opt 54 0.41 0 0 0 Opt 54 0.78 0 0 24 Opt 54 1.55 0 0 1148
2 9 Opt 54 0.7 0 0 215 Opt 54 1.06 0 0 750 Opt 54 1.09 0 0 399
2 10 Opt 43 0.89 0 0 458 Opt 43 0.73 0 0 254 Opt 43 1.23 0 0 805
3 1 Opt 72 0.34 0 0 0 Opt 72 0.3 0 0 0 Opt 72 0.37 0 0 0
3 2 Opt 40 0.53 0 0 70 Opt 40 1.36 0 0 0 Opt 40 0.61 0 0 155
3 3 Opt 57 0.55 0 0 0 Opt 57 0.37 0 0 0 Opt 57 0.61 0 0 6
3 4 Opt 98 0.28 0 0 0 Opt 98 0.3 0 0 0 Opt 98 0.33 0 0 0
3 5 Opt 53 0.55 0 0 206 Opt 53 0.64 0 0 42 Opt 53 0.97 0 0 289
3 6 Opt 54 0.48 0 0 123 Opt 54 0.39 0 0 0 Opt 54 0.61 0 0 17
3 7 Opt 48 0.56 0 0 178 Opt 48 0.44 0 0 9 Opt 48 0.53 0 0 0
3 8 Opt 54 0.47 0 0 34 Opt 54 0.34 0 0 0 Opt 54 0.67 0 0 56
3 9 Opt 65 0.55 0 0 440 Opt 65 0.66 0 0 289 Opt 65 1 0 0 536
3 10 Opt 59 0.55 0 0 411 Opt 59 0.36 0 0 8 Opt 59 0.58 0 0 165
4 1 Opt 49 0.17 0 0 0 Opt 49 0.2 0 0 0 Opt 49 0.2 0 0 0
4 2 Opt 60 0.23 0 0 0 Opt 60 0.2 0 0 0 Opt 60 0.67 0 0 190
4 3 Opt 47 0.52 0 0 213 Opt 47 0.27 0 0 0 Opt 47 0.48 0 0 0

128 A. Detailed results for set j30 of PSPLib

4 4 Opt 57 0.14 0 0 0 Opt 57 0.19 0 0 0 Opt 57 0.19 0 0 0
4 5 Opt 59 0.5 0 0 0 Opt 59 1.19 0 0 0 Opt 59 0.38 0 0 0
4 6 Opt 45 0.17 0 0 0 Opt 45 0.23 0 0 0 Opt 45 0.2 0 0 0
4 7 Opt 56 0.45 0 0 88 Opt 56 0.25 0 0 0 Opt 56 0.47 0 0 0
4 8 Opt 55 0.34 0 0 0 Opt 55 0.22 0 0 0 Opt 55 0.17 0 0 0
4 9 Opt 38 0.14 0 0 0 Opt 38 0.23 0 0 0 Opt 38 0.22 0 0 0
4 10 Opt 48 0.36 0 0 0 Opt 48 0.38 0 0 0 Opt 48 0.55 0 0 0
5 1 Opt 53 2.37 0 0 3696 Opt 53 8.7 0 0 4173 Opt 53 9.36 0 0 3750
5 2 Opt 82 2.76 0 0 4447 Opt 82 15.44 0 0 6135 Opt 82 13.9 0 0 5213
5 3 Opt 76 5.4 0 0 3954 Opt 76 36.32 0.01 0 12745 Opt 76 32.4 0 0 9715
5 4 Opt 63 16.68 0 0 17514 Opt 63 30.78 0 0 10892 Opt 63 45.3 0 0 13500
5 5 Opt 76 2.36 0 0 3871 Opt 76 11.75 0 0 5533 Opt 76 9.75 0 0 3623
5 6 Opt 64 4.2 0 0 3651 Opt 64 24.29 0 0 11859 Opt 64 13.39 0 0 6236
5 7 Opt 76 8.71 0 0 7097 Opt 76 79.31 0 0 19323 Opt 76 60.04 0 0 15285
5 8 Opt 67 9.27 0 0 9209 Opt 67 28.14 0 0 10236 Opt 67 40.19 0 0 15752
5 9 Opt 49 3.6 0 0 2548 Opt 49 10.12 0 0 5052 Opt 49 16.16 0 0 6179
5 10 Opt 70 2.04 0 0 2133 Opt 70 7.63 0 0 3569 Opt 70 10.33 0 0 3839
6 1 Opt 59 4.66 0 0 3897 Opt 59 9.19 0 0 4996 Opt 59 14.82 0 0 7975
6 2 Opt 51 2.61 0 0 2617 Opt 51 4.06 0 0 2983 Opt 51 8.53 0 0 4996
6 3 Opt 48 3.31 0 0 2902 Opt 48 2.65 0 0 2612 Opt 48 2.09 0 0 1514
6 4 Opt 42 3.95 0 0 3680 Opt 42 5.02 0 0 3365 Opt 42 9.17 0 0 4767
6 5 Opt 67 8.49 0 0 19224 Opt 67 3.92 0 0 4593 Opt 67 3.49 0 0 3454
6 6 Opt 37 1.51 0 0 1257 Opt 37 2.96 0 0 3210 Opt 37 2.28 0 0 1546
6 7 Opt 46 1.26 0 0 1732 Opt 46 1.48 0 0 1619 Opt 46 2.51 -2.17 0 2525
6 8 Opt 39 4.13 0 0 3625 Opt 39 7.05 0 0 4561 Opt 39 4.99 0 0 2789
6 9 Opt 51 0.72 0 0 392 Opt 51 1.28 0 0 1014 Opt 51 2.64 0 0 2421
6 10 Opt 61 3.82 0 0 3804 Opt 61 6.02 0 0 3783 Opt 61 6.18 0 0 3584
7 1 Opt 55 0.52 0 0 234 Opt 55 2.03 0 0 0 Opt 55 1.03 0 0 170
7 2 Opt 42 0.95 0 0 783 Opt 42 0.36 0 0 0 Opt 42 0.41 0 0 0
7 3 Opt 42 1.12 0 0 1201 Opt 42 1 0 0 141 Opt 42 1.39 0 0 606
7 4 Opt 44 0.92 0 0 746 Opt 44 1.34 0 0 12 Opt 44 1.31 0 0 288
7 5 Opt 44 1.42 0 0 1757 Opt 44 2.46 0 0 2308 Opt 44 1.44 0 0 191
7 6 Opt 35 0.69 0 0 156 Opt 35 1.76 0 0 0 Opt 35 1.12 0 0 0
7 7 Opt 50 0.17 0 0 0 Opt 50 0.39 0 0 0 Opt 50 0.34 0 0 0
7 8 Opt 44 0.55 0 0 147 Opt 44 1.76 0 0 607 Opt 44 1.79 0 0 1458
7 9 Opt 60 0.69 0 0 284 Opt 60 1.12 0 0 775 Opt 60 1.44 0 0 1025
7 10 Opt 49 0.8 0 0 724 Opt 49 1.81 0 0 1600 Opt 49 3.01 0 0 2184
8 1 Opt 44 0.51 0 0 72 Opt 44 0.8 0 0 0 Opt 44 0.66 0 0 0
8 2 Opt 51 0.42 0 0 20 Opt 51 0.59 0 0 0 Opt 51 0.59 0 0 0
8 3 Opt 53 0.61 0 0 193 Opt 53 0.52 0 0 0 Opt 53 0.69 0 0 0
8 4 Opt 48 0.45 0 0 0 Opt 48 0.56 0 0 0 Opt 48 0.94 0 0 0
8 5 Opt 58 0.53 0 0 0 Opt 58 0.86 0 0 0 Opt 58 0.7 0 0 9
8 6 Opt 47 0.53 0 0 178 Opt 47 0.59 0 0 28 Opt 47 0.81 0 0 0
8 7 Opt 41 0.56 0 0 81 Opt 41 0.31 0 0 0 Opt 41 0.31 0 0 0
8 8 Opt 51 0.45 0 0 0 Opt 51 0.64 0 0 7 Opt 51 0.92 0 0 113
8 9 Opt 39 0.58 0 0 149 Opt 39 0.44 0 0 0 Opt 39 1.08 0 0 43
8 10 Opt 67 0.2 0 0 0 Opt 67 0.3 0 0 0 Opt 67 0.67 0 0 8
9 1 Opt 83 13.38 0 0 14503 Feas 83 300 6.02 0 79809 Feas 83 300 9.64 0 98365
9 2 Feas 92 300 11.96 0 301317 Feas 94 300 29.79 2.17 110220 Feas 94 300 29.86 2.17 103901
9 3 Opt 68 18.16 0 0 18083 Feas 72 300 16.67 5.88 61590 Opt 68 183.15 0 0 47670
9 4 Opt 71 34.09 0 0 40451 Feas 72 300 2.78 1.41 82714 Feas 72 300 4.17 1.41 67375
9 5 Opt 70 4.2 0 0 4404 Opt 70 11.95 0 0 5233 Opt 70 21.03 0 0 7745
9 6 Opt 59 55.44 0 0 52944 Feas 59 300 3.39 0 106375 Opt 59 283.72 0 0 91219
9 7 Opt 63 20.09 0 0 10852 Feas 63 300 9.52 0 75679 Feas 63 300 7.1 0 60976
9 8 Opt 91 43.18 0 0 58787 Opt 91 197.82 0 0 118930 Opt 91 251.74 0 0 94380
9 9 Opt 63 28.14 0 0 35090 Opt 63 234.16 0 0 76645 Feas 64 300 9.37 1.59 80022
9 10 Opt 88 31.21 0 0 31002 Feas 88 300 10.23 0 77904 Opt 88 234.42 0 0 67395

10 1 Opt 42 3.34 0 0 3818 Opt 42 2.06 0 0 838 Opt 42 2.68 0 0 2522
10 2 Opt 56 6.36 0 0 6808 Opt 56 13.51 0 0 9336 Opt 56 11.51 0 0 8592
10 3 Opt 62 10.53 0 0 7588 Opt 62 42.71 0 0 22942 Opt 62 17.3 0 0 8742
10 4 Opt 58 5.46 0 0 6109 Opt 58 7.96 0 0 5470 Opt 58 7.75 0 0 3750
10 5 Opt 41 5.32 0 0 4701 Opt 41 22.23 0 0 12409 Opt 41 8.91 0 0 5412
10 6 Opt 44 7.16 0 0 6408 Opt 44 95.94 0 0 32922 Opt 44 192.44 0 0 68998
10 7 Opt 49 2.2 0 0 2531 Opt 49 6.33 0 0 3461 Opt 49 4.38 0 0 2598
10 8 Opt 54 22.7 0 0 22646 Opt 54 15.05 0 0 9085 Opt 54 45.94 0 0 11514
10 9 Opt 49 0.64 0 0 240 Opt 49 1.26 0 0 618 Opt 49 2.78 0 0 1691
10 10 Opt 41 19.55 0 0 10513 Opt 41 44.87 0 0 20745 Opt 41 117.36 0 0 41172
11 1 Opt 54 3.92 0 0 5446 Opt 54 4.35 0 0 3879 Opt 54 5.02 0 0 4228
11 2 Opt 56 3.57 0 0 4086 Opt 56 4.31 0 0 2886 Opt 56 7.36 0 0 6136
11 3 Opt 81 0.34 0 0 0 Opt 81 1.5 0 0 0 Opt 81 1.56 0 0 720
11 4 Opt 63 1.54 0 0 2877 Opt 63 0.81 0 0 346 Opt 63 3.48 0 0 2437
11 5 Opt 49 5.2 0 0 4671 Opt 49 8.05 0 0 5989 Opt 49 5.88 0 0 5067
11 6 Opt 44 1.7 0 0 1159 Opt 44 2.31 0 0 928 Opt 44 3.82 0 0 3149
11 7 Opt 36 4.02 0 0 3681 Opt 36 6.27 0 0 5189 Opt 36 4.7 0 0 2805
11 8 Opt 62 0.76 0 0 623 Opt 62 6.63 0 0 4841 Opt 62 6.76 0 0 4196
11 9 Opt 67 0.42 0 0 124 Opt 67 0.98 0 0 605 Opt 67 1.31 0 0 431
11 10 Opt 38 0.16 0 0 0 Opt 38 0.41 0 0 0 Opt 38 1.23 0 0 0
12 1 Opt 47 0.53 0 0 160 Opt 47 0.42 0 0 0 Opt 47 0.47 0 0 0
12 2 Opt 46 0.56 0 0 219 Opt 46 0.44 0 0 0 Opt 46 0.42 0 0 0
12 3 Opt 37 0.47 0 0 11 Opt 37 1.65 0 0 0 Opt 37 1.05 0 0 0
12 4 Opt 63 0.51 0 0 247 Opt 63 0.37 0 0 0 Opt 63 0.64 0 0 0
12 5 Opt 47 0.59 0 0 284 Opt 47 0.72 0 0 0 Opt 47 0.69 0 0 0
12 6 Opt 53 0.22 0 0 0 Opt 53 0.98 0 0 200 Opt 53 1.15 0 0 327
12 7 Opt 55 0.69 0 0 296 Opt 55 0.69 0 0 49 Opt 55 0.89 0 0 0
12 8 Opt 35 0.77 0 0 128 Opt 35 0.39 0 0 0 Opt 35 0.37 0 0 0
12 9 Opt 52 0.64 0 0 27 Opt 52 1.15 0 0 40 Opt 52 0.94 0 0 0
12 10 Opt 57 0.42 0 0 0 Opt 57 0.83 0 0 0 Opt 57 0.94 0 0 0
13 1 Feas 60 300 16.8 3.45 131359 Feas 61 300 27.7 5.17 87892 Feas 63 300 28.41 8.62 48444
13 2 Feas 63 300 20.09 1.61 283764 Feas 66 300 31.67 6.45 74370 Feas 67 300 36.14 8.06 55780
13 3 Feas 76 300 8.42 0 291628 Feas 76 300 23.86 0 105987 Feas 79 300 26.58 3.95 72695
13 4 Opt 72 286.04 0.01 0 468467 Feas 73 300 9.59 1.39 118846 Feas 72 300 8.33 0 132398

129

13 5 Feas 69 300 23.04 2.99 102413 Feas 72 300 32.28 7.46 56222 Feas 72 300 32.23 7.46 64014
13 6 Feas 65 300 23.92 1.56 207386 Feas 66 300 26.62 3.13 79153 Feas 67 300 30.35 4.69 60907
13 7 Feas 77 300 6.17 0 240037 Feas 80 300 22.3 3.9 129702 Feas 79 300 20.25 2.6 92418
13 8 Opt 106 263.45 0 0 398594 Feas 114 300 32.12 7.55 99515 Feas 113 300 36.95 6.6 87669
13 9 Opt 71 110.43 0.01 0 101833 Feas 73 300 11.56 2.82 141997 Feas 72 300 11.11 1.41 131065
13 10 Feas 64 300 4.37 0 238526 Feas 65 300 16.92 1.56 146584 Feas 64 300 9.37 0 81324
14 1 Opt 50 35.88 0 0 34180 Opt 50 47.66 0 0 24427 Opt 50 60.18 0 0 49384
14 2 Opt 53 96.71 0 0 40467 Feas 54 300 7.31 1.89 82161 Feas 54 300 7.41 1.89 57752
14 3 Opt 58 10.65 0 0 9811 Opt 58 65.24 0 0 44560 Opt 58 50.12 0 0 34236
14 4 Opt 50 193.08 0 0 138270 Feas 50 300 2 0 246400 Feas 50 300 2 0 129594
14 5 Opt 52 8.21 0 0 8323 Opt 52 14.51 0 0 11330 Opt 52 19.86 0 0 16553
14 6 Opt 35 16.1 0 0 10307 Opt 35 15.54 0 0 8523 Opt 35 71.21 0 0 34400
14 7 Opt 50 231.19 0 0 53507 Feas 51 300 5.88 2 104867 Feas 50 300 4 0 90495
14 8 Opt 54 1.2 0 0 1945 Opt 54 2.48 0 0 3289 Opt 54 1.93 0 0 1767
14 9 Opt 46 79.97 0 0 70244 Opt 46 129.57 0 0 82207 Feas 47 300 6.38 2.17 162295
14 10 Opt 61 9.92 0 0 26185 Opt 61 4.91 0 0 7713 Opt 61 4.95 0 0 5513
15 1 Opt 46 0.8 0 0 380 Opt 46 0.79 0 0 242 Opt 46 1.03 0 0 0
15 2 Opt 47 0.7 0 0 416 Opt 47 0.78 0 0 0 Opt 47 0.87 0 0 403
15 3 Opt 48 0.97 0 0 1427 Opt 48 0.72 0 0 141 Opt 48 2.15 0 0 1898
15 4 Opt 48 0.53 0 0 133 Opt 48 0.41 0 0 0 Opt 48 0.87 0 0 0
15 5 Opt 58 75.71 0 0 37040 Opt 58 73.24 0 0 56086 Opt 58 123.71 0 0 46071
15 6 Opt 67 0.61 0 0 411 Opt 67 1.08 0 0 645 Opt 67 1.83 0 0 1271
15 7 Opt 47 0.69 0 0 654 Opt 47 1.4 0 0 1035 Opt 47 1.67 0 0 892
15 8 Opt 50 1.53 0 0 1796 Opt 50 1.31 0 0 788 Opt 50 2.56 0 0 1735
15 9 Opt 54 0.64 0 0 308 Opt 54 1.45 0 0 1047 Opt 54 2.47 0 0 2278
15 10 Opt 65 0.37 0 0 248 Opt 65 4.91 0 0 5214 Opt 65 1.54 0 0 885
16 1 Opt 51 0.34 0 0 0 Opt 51 0.62 0 0 0 Opt 51 1.17 0 0 256
16 2 Opt 48 0.59 0 0 351 Opt 48 0.36 0 0 0 Opt 48 1.06 0 0 452
16 3 Opt 36 0.13 0 0 0 Opt 36 0.22 0 0 0 Opt 36 0.36 0 0 0
16 4 Opt 47 0.4 0 0 0 Opt 47 0.34 0 0 0 Opt 47 0.62 0 0 4
16 5 Opt 51 0.36 0 0 0 Opt 51 0.34 0 0 0 Opt 51 0.69 0 0 0
16 6 Opt 51 0.39 0 0 0 Opt 51 0.47 0 0 0 Opt 51 0.67 0 0 48
16 7 Opt 34 0.14 0 0 0 Opt 34 0.33 0 0 0 Opt 34 0.34 0 0 0
16 8 Opt 44 0.37 0 0 0 Opt 44 0.9 0 0 0 Opt 44 0.98 0 0 248
16 9 Opt 44 0.45 0 0 0 Opt 44 0.45 0 0 0 Opt 44 0.94 0 0 465
16 10 Opt 51 0.65 0 0 309 Opt 51 0.5 0 0 0 Opt 51 1.29 0 0 612
17 1 Opt 64 1.87 0 0 3301 Opt 64 3.4 0 0 3426 Opt 64 4.85 0 0 5440
17 2 Opt 68 0.34 0 0 0 Opt 68 0.36 0 0 0 Opt 68 0.47 0 0 179
17 3 Opt 60 0.16 0 0 0 Opt 60 0.22 0 0 0 Opt 60 0.2 0 0 0
17 4 Opt 49 0.75 0 0 1226 Opt 49 0.87 0 0 636 Opt 49 0.81 0 0 488
17 5 Opt 47 1.18 0 0 1803 Opt 47 0.81 0 0 458 Opt 47 1.75 0 0 1971
17 6 Opt 63 0.14 0 0 0 Opt 63 0.23 0 0 0 Opt 63 0.2 0 0 0
17 7 Opt 57 1.08 0 0 1506 Opt 57 0.83 0 0 693 Opt 57 1.5 0 0 1208
17 8 Opt 61 0.14 0 0 0 Opt 61 0.58 0 0 130 Opt 61 0.92 0 0 396
17 9 Opt 48 0.61 0 0 188 Opt 48 0.81 0 0 408 Opt 48 0.98 0 0 859
17 10 Opt 66 0.13 0 0 0 Opt 66 0.2 0 0 0 Opt 66 0.2 0 0 0
18 1 Opt 53 0.14 0 0 0 Opt 53 0.39 0 0 0 Opt 53 0.73 0 0 36
18 2 Opt 55 0.14 0 0 0 Opt 55 0.22 0 0 0 Opt 55 0.2 0 0 0
18 3 Opt 56 0.47 0 0 62 Opt 56 0.36 0 0 0 Opt 56 0.42 0 0 0
18 4 Opt 70 0.12 0 0 0 Opt 70 0.3 0 0 0 Opt 70 0.3 0 0 0
18 5 Opt 52 0.42 0 0 167 Opt 52 0.41 0 0 0 Opt 52 0.81 0 0 0
18 6 Opt 62 0.98 0 0 1251 Opt 62 0.59 0 0 291 Opt 62 0.86 0 0 240
18 7 Opt 48 0.16 0 0 0 Opt 48 0.25 0 0 0 Opt 48 0.22 0 0 0
18 8 Opt 52 0.16 0 0 0 Opt 52 0.23 0 0 0 Opt 52 0.23 0 0 0
18 9 Opt 47 0.14 0 0 0 Opt 47 0.42 0 0 0 Opt 47 0.23 0 0 0
18 10 Opt 49 0.83 0 0 925 Opt 49 0.53 0 0 0 Opt 49 0.8 0 0 332
19 1 Opt 40 0.48 0 0 154 Opt 40 1.76 0 0 0 Opt 40 0.81 0 0 187
19 2 Opt 58 0.36 0 0 0 Opt 58 0.27 0 0 0 Opt 58 0.37 0 0 0
19 3 Opt 83 0.28 0 0 8 Opt 83 0.33 0 0 0 Opt 83 0.39 0 0 0
19 4 Opt 39 0.13 0 0 0 Opt 39 0.19 0 0 0 Opt 39 0.22 0 0 0
19 5 Opt 48 0.17 0 0 0 Opt 48 0.53 0 0 109 Opt 48 0.22 0 0 0
19 6 Opt 49 0.16 0 0 0 Opt 49 0.2 0 0 0 Opt 49 0.22 0 0 0
19 7 Opt 57 0.38 0 0 1 Opt 57 0.39 0 0 0 Opt 57 0.61 0 0 0
19 8 Opt 55 0.55 0 0 259 Opt 55 1.9 0 0 0 Opt 55 0.56 0 0 0
19 9 Opt 38 0.13 0 0 0 Opt 38 0.25 0 0 0 Opt 38 0.22 0 0 0
19 10 Opt 47 0.14 0 0 0 Opt 47 0.27 0 0 0 Opt 47 0.22 0 0 0
20 1 Opt 57 0.3 0 0 0 Opt 57 0.25 0 0 0 Opt 57 0.3 0 0 0
20 2 Opt 70 0.33 0 0 12 Opt 70 0.23 0 0 0 Opt 70 0.41 0 0 0
20 3 Opt 49 0.16 0 0 0 Opt 49 0.22 0 0 0 Opt 49 0.16 0 0 0
20 4 Opt 43 0.11 0 0 0 Opt 43 0.22 0 0 0 Opt 43 0.2 0 0 0
20 5 Opt 61 0.13 0 0 0 Opt 61 0.23 0 0 0 Opt 61 0.2 0 0 0
20 6 Opt 51 0.16 0 0 0 Opt 51 0.22 0 0 0 Opt 51 0.19 0 0 0
20 7 Opt 42 0.33 0 0 0 Opt 42 0.22 0 0 0 Opt 42 0.2 0 0 0
20 8 Opt 51 0.16 0 0 0 Opt 51 0.16 0 0 0 Opt 51 0.19 0 0 0
20 9 Opt 41 0.16 0 0 0 Opt 41 0.3 0 0 0 Opt 41 0.19 0 0 0
20 10 Opt 37 0.14 0 0 0 Opt 37 0.25 0 0 0 Opt 37 0.2 0 0 0
21 1 Opt 84 1.39 0 0 2420 Opt 84 6.99 0 0 3979 Opt 84 4.49 0 0 2905
21 2 Opt 59 2.65 0 0 4614 Opt 59 6.65 0 0 4332 Opt 59 7.64 0 0 2853
21 3 Opt 76 1.01 0 0 1057 Opt 76 7.04 0 0 4253 Opt 76 5.71 0 0 4235
21 4 Opt 70 3.23 0 0 3410 Opt 70 11.7 0 0 6050 Opt 70 13.77 0.01 0 8396
21 5 Opt 55 1.64 0 0 2643 Opt 55 5.83 0 0 3829 Opt 55 11.23 0 0 6286
21 6 Opt 76 2.21 0 0 4430 Opt 76 8.35 0 0 5056 Opt 76 10.98 0 0 4061
21 7 Opt 65 5.62 0 0 9436 Opt 65 11.34 0 0 6497 Opt 65 12.23 0 0 5793
21 8 Opt 62 1.23 0.01 0 2491 Opt 62 11.23 0 0 6847 Opt 62 10.28 0 0 4931
21 9 Opt 69 1.89 0 0 3018 Opt 69 14.54 0 0 7202 Opt 69 19.02 0 0 7064
21 10 Opt 69 1.37 0 0 2463 Opt 69 5.16 0 0 5654 Opt 69 5.52 0 0 2929
22 1 Opt 42 2.18 0 0 4374 Opt 42 1.78 0 0 1918 Opt 42 1.04 0 0 578
22 2 Opt 45 0.13 0 0 0 Opt 45 0.67 0 0 0 Opt 45 1.31 0 0 1002
22 3 Opt 63 0.5 0 0 119 Opt 63 2.17 0 0 2050 Opt 63 1.39 0 0 1054
22 4 Opt 42 2 0 0 2975 Opt 42 2.28 0 0 2801 Opt 42 2.04 0 0 1791
22 5 Opt 52 1.62 0 0 2493 Opt 52 2.53 0 0 1731 Opt 52 4.45 0 0 3804

130 A. Detailed results for set j30 of PSPLib

22 6 Opt 52 3.01 0 0 2500 Opt 52 4.54 0 0 3036 Opt 52 4.09 0 0 2969
22 7 Opt 60 3.68 0 0 4584 Opt 60 5.63 0 0 4109 Opt 60 4.91 0 0 2934
22 8 Opt 55 9.16 0 0 6773 Opt 55 55.22 0 0 21884 Opt 55 21.06 0 0 10778
22 9 Opt 76 0.31 0 0 0 Opt 76 0.56 0 0 10 Opt 76 0.58 0 0 11
22 10 Opt 55 2.92 0 0 2577 Opt 55 4.79 0 0 3570 Opt 55 4.1 0 0 2740
23 1 Opt 63 0.59 0 0 361 Opt 63 0.62 0 0 0 Opt 63 0.53 0 0 0
23 2 Opt 53 0.37 0 0 0 Opt 53 0.5 0 0 0 Opt 53 0.55 0 0 0
23 3 Opt 46 0.58 0 0 461 Opt 46 0.56 0 0 96 Opt 46 1.39 0 0 652
23 4 Opt 65 0.64 0 0 551 Opt 65 1.29 0 0 1455 Opt 65 1.33 0 0 806
23 5 Opt 52 0.51 0 0 156 Opt 52 0.72 0 0 9 Opt 52 0.97 0 0 43
23 6 Opt 48 0.19 0 0 0 Opt 48 1.19 0 0 828 Opt 48 0.69 0 0 354
23 7 Opt 60 0.16 0 0 0 Opt 60 1.14 0 0 1083 Opt 60 1.64 0 0 1274
23 8 Opt 48 0.76 0 0 732 Opt 48 0.41 0 0 0 Opt 48 0.55 0 0 0
23 9 Opt 63 0.64 0 0 479 Opt 63 1.25 0 0 1215 Opt 63 1.2 0 0 327
23 10 Opt 61 0.13 0 0 0 Opt 61 0.25 0 0 0 Opt 61 0.22 0 0 0
24 1 Opt 53 0.34 0 0 0 Opt 53 0.31 0 0 0 Opt 53 0.22 0 0 0
24 2 Opt 58 0.36 0 0 19 Opt 58 0.38 0 0 0 Opt 58 0.59 0 0 129
24 3 Opt 69 0.28 0 0 0 Opt 69 0.34 0 0 0 Opt 69 0.23 0 0 0
24 4 Opt 53 0.38 0 0 0 Opt 53 0.42 0 0 0 Opt 53 0.62 0 0 0
24 5 Opt 51 0.45 0 0 14 Opt 51 0.36 0 0 0 Opt 51 0.84 0 0 340
24 6 Opt 56 0.39 0 0 0 Opt 56 0.5 0 0 0 Opt 56 0.55 0 0 0
24 7 Opt 44 0.17 0 0 0 Opt 44 0.31 0 0 0 Opt 44 0.25 0 0 0
24 8 Opt 38 0.17 0 0 0 Opt 38 0.33 0 0 0 Opt 38 0.25 0 0 0
24 9 Opt 43 0.14 0 0 0 Opt 43 0.36 0 0 0 Opt 43 0.25 0 0 0
24 10 Opt 53 0.34 0 0 0 Opt 53 0.36 0 0 0 Opt 53 0.7 0 0 0
25 1 Opt 93 67.47 0 0 105564 Feas 95 300 8.42 2.15 115709 Feas 94 300 10.64 1.08 129588
25 2 Opt 75 39.44 0 0 51258 Feas 75 300 7.97 0 123007 Feas 75 300 7.9 0 90576
25 3 Opt 76 98.06 0.01 0 92031 Feas 76 300 15.9 0 87113 Feas 77 300 15.02 1.32 87895
25 4 Opt 81 55.66 0 0 78383 Feas 83 300 13.25 2.47 145502 Feas 83 300 16.53 2.47 155675
25 5 Opt 72 81.65 0.01 0 125001 Feas 72 300 5.42 0 172341 Feas 72 300 9.72 0 147274
25 6 Opt 58 39.9 0 0 38512 Feas 60 300 15 3.45 84266 Feas 58 300 10.34 0 71554
25 7 Opt 95 12.56 0 0 13997 Opt 95 121.12 0 0 40320 Opt 95 193.5 0 0 49065
25 8 Opt 69 13.48 0 0 12870 Opt 69 146.89 0 0 58002 Opt 69 148.86 0 0 26461
25 9 Opt 84 6.8 0 0 6425 Opt 84 39.7 0 0 13220 Opt 84 38.33 0.01 0 15941
25 10 Opt 58 5.35 0 0 5877 Opt 58 35.43 0 0 19635 Opt 58 16.19 0 0 9942
26 1 Opt 59 0.16 0 0 0 Opt 59 2.65 0 0 2425 Opt 59 0.76 0 0 0
26 2 Opt 40 0.53 0 0 113 Opt 40 1.09 0 0 266 Opt 40 0.94 0 0 19
26 3 Opt 58 0.83 0 0 987 Opt 58 1.26 0 0 926 Opt 58 3.1 0 0 2994
26 4 Opt 62 2.76 0 0 3378 Opt 62 2.43 0 0 3537 Opt 62 4.2 0 0 3257
26 5 Opt 74 0.89 0 0 1475 Opt 74 4.4 0 0 3591 Opt 74 5.4 0 0 2951
26 6 Opt 53 23.43 0 0 35525 Opt 53 19.72 0 0 17728 Opt 53 12.7 0 0 9500
26 7 Opt 56 1.12 0 0 1331 Opt 56 0.5 0 0 0 Opt 56 0.89 0 0 0
26 8 Opt 66 0.58 0 0 300 Opt 66 2.7 0 0 2604 Opt 66 3.15 0 0 2488
26 9 Opt 43 10.81 0 0 10781 Opt 43 14.13 0 0 11052 Opt 43 52.74 0 0 25475
26 10 Opt 49 3.1 0 0 3372 Opt 49 4.95 0 0 3921 Opt 49 6.07 0 0 3868
27 1 Opt 43 0.16 0 0 0 Opt 43 0.3 0 0 0 Opt 43 0.55 0 0 0
27 2 Opt 58 0.56 0 0 263 Opt 58 0.67 0 0 186 Opt 58 0.65 0 0 121
27 3 Opt 60 0.59 0 0 220 Opt 60 0.61 0 0 47 Opt 60 0.77 0 0 114
27 4 Opt 64 0.36 0 0 102 Opt 64 0.34 0 0 0 Opt 64 0.25 0 0 0
27 5 Opt 49 0.14 0 0 0 Opt 49 0.34 0 0 0 Opt 49 0.31 0 0 0
27 6 Opt 59 0.75 0 0 1086 Opt 59 0.44 0 0 0 Opt 59 0.26 0 0 0
27 7 Opt 49 1.29 0 0 2267 Opt 49 2.56 0 0 3353 Opt 49 2.98 0 0 3526
27 8 Opt 66 0.48 0 0 210 Opt 66 1.03 0 0 83 Opt 66 0.84 0 0 0
27 9 Opt 55 1.14 0 0 2035 Opt 55 1.03 0 0 186 Opt 55 1.53 0 0 950
27 10 Opt 62 0.47 0 0 295 Opt 62 0.61 0 0 0 Opt 62 0.7 0 0 31
28 1 Opt 69 0.28 0 0 0 Opt 69 0.66 0 0 50 Opt 69 0.67 0 0 0
28 2 Opt 57 0.45 0 0 15 Opt 57 0.44 0 0 0 Opt 57 0.73 0 0 180
28 3 Opt 40 0.44 0 0 109 Opt 40 0.58 0 0 150 Opt 40 1.34 0 0 378
28 4 Opt 49 0.52 0 0 253 Opt 49 0.33 0 0 0 Opt 49 0.31 0 0 0
28 5 Opt 73 0.33 0 0 44 Opt 73 0.52 0 0 0 Opt 73 0.59 0 0 0
28 6 Opt 55 0.31 0 0 0 Opt 55 0.34 0 0 0 Opt 55 0.25 0 0 0
28 7 Opt 48 0.19 0 0 0 Opt 48 0.38 0 0 0 Opt 48 0.33 0 0 0
28 8 Opt 53 0.14 0 0 0 Opt 53 0.34 0 0 0 Opt 53 0.28 0 0 0
28 9 Opt 62 0.39 0 0 6 Opt 62 0.36 0 0 0 Opt 62 0.27 0 0 0
28 10 Opt 59 0.47 0 0 233 Opt 59 0.47 0 0 0 Opt 59 0.45 0 0 0
29 1 Opt 85 161.15 0 0 262904 Feas 87 300 4.6 2.35 155395 Feas 87 300 10.1 2.35 84165
29 2 Opt 90 183.83 0.01 0 209664 Feas 91 300 14.07 1.11 113937 Feas 93 300 17.63 3.33 88031
29 3 Feas 78 300 21.18 0 200546 Feas 80 300 29.59 2.56 99375 Feas 80 300 29.69 2.56 79619
29 4 Feas 104 300 10.58 0.97 397608 Feas 104 300 21.25 0.97 106501 Feas 104 300 18.08 0.97 91885
29 5 Opt 98 33.4 0 0 45682 Feas 99 300 6.06 1.02 154964 Feas 99 300 11.11 1.02 114169
29 6 Feas 92 300 15.37 0 227086 Feas 95 300 28.03 3.26 83160 Feas 94 300 25.43 2.17 131206
29 7 Feas 74 300 5 1.37 399564 Feas 74 300 9.46 1.37 157701 Feas 73 300 10.96 0 135246
29 8 Feas 82 300 19.13 2.5 149568 Feas 84 300 27.18 5 108715 Feas 85 300 27.06 6.25 82597
29 9 Opt 97 115.61 0 0 140559 Feas 102 300 23.53 5.15 112154 Feas 101 300 19.8 4.12 81860
29 10 Opt 76 3.28 0 0 7270 Opt 76 82.73 0 0 60822 Opt 76 56.74 0.01 0 27714
30 1 Opt 47 11.67 0 0 8238 Opt 47 29.83 0 0 23277 Opt 47 39.91 0 0 19317
30 2 Opt 68 43.9 0 0 34106 Opt 68 104.36 0 0 52815 Opt 68 149.98 0 0 49391
30 3 Opt 55 32.4 0 0 27812 Opt 55 36.72 0 0 27190 Opt 55 20.11 0 0 24263
30 4 Opt 53 17.64 0 0 16917 Opt 53 22.57 0 0 12662 Opt 53 12.92 0 0 9662
30 5 Opt 54 5.85 0 0 6698 Opt 54 6.72 0 0 6277 Opt 54 13.93 0 0 6939
30 6 Opt 62 56.68 0 0 18515 Opt 62 38.73 0 0 21911 Opt 62 39.02 0 0 29691
30 7 Opt 68 5.85 0 0 5385 Opt 68 10.37 0 0 7515 Opt 68 21.22 0 0 12164
30 8 Opt 46 39.69 0 0 41674 Feas 46 300 2.17 0 251738 Opt 46 183.71 0 0 147695
30 9 Opt 46 69.73 0 0 31681 Opt 46 60.37 0 0 45024 Opt 46 122.02 0 0 62514
30 10 Opt 53 66.91 0 0 44540 Opt 53 68.23 0 0 55199 Opt 53 93.65 0 0 54733
31 1 Opt 43 0.48 0 0 113 Opt 43 0.53 0 0 0 Opt 43 1.01 0 0 0
31 2 Opt 63 0.56 0 0 331 Opt 63 0.58 0 0 0 Opt 63 0.92 0 0 193
31 3 Opt 58 0.59 0 0 317 Opt 58 0.48 0 0 0 Opt 58 1.29 0 0 0
31 4 Opt 50 0.53 0 0 232 Opt 50 0.48 0 0 0 Opt 50 1.08 0 0 591
31 5 Opt 52 3.07 0 0 2878 Opt 52 3.62 0 0 3133 Opt 52 6.05 0 0 4501
31 6 Opt 53 0.78 0 0 500 Opt 53 0.8 0 0 241 Opt 53 0.95 0 0 28

131

31 7 Opt 61 0.19 0 0 0 Opt 61 0.42 0 0 0 Opt 61 0.5 0 0 0
31 8 Opt 58 0.81 0 0 747 Opt 58 2 0 0 2182 Opt 58 2.25 0 0 1635
31 9 Opt 50 15.13 0 0 16524 Opt 50 37.67 0 0 49512 Opt 50 51.14 0 0 52558
31 10 Opt 55 31.33 0 0 21852 Opt 55 68.48 0 0 53516 Opt 55 183.88 0 0 181255
32 1 Opt 61 0.31 0 0 0 Opt 61 0.37 0 0 0 Opt 61 0.78 0 0 253
32 2 Opt 60 0.37 0 0 0 Opt 60 0.25 0 0 0 Opt 60 0.31 0 0 0
32 3 Opt 57 0.53 0 0 172 Opt 57 0.23 0 0 0 Opt 57 0.36 0 0 0
32 4 Opt 68 0.25 0 0 0 Opt 68 0.36 0 0 0 Opt 68 0.3 0 0 0
32 5 Opt 54 0.39 0 0 0 Opt 54 0.31 0 0 0 Opt 54 0.3 0 0 0
32 6 Opt 44 0.16 0 0 0 Opt 44 0.19 0 0 0 Opt 44 0.31 0 0 0
32 7 Opt 35 0.17 0 0 0 Opt 35 0.33 0 0 0 Opt 35 0.28 0 0 0
32 8 Opt 54 0.34 0 0 0 Opt 54 0.33 0 0 0 Opt 54 0.69 0 0 0
32 9 Opt 65 0.36 0 0 0 Opt 65 0.33 0 0 0 Opt 65 0.52 0 0 0
32 10 Opt 51 0.48 0 0 129 Opt 51 0.38 0 0 0 Opt 51 0.3 0 0 0
33 1 Opt 65 0.19 0 0 0 Opt 65 0.75 0 0 432 Opt 65 0.72 0 0 393
33 2 Opt 60 0.5 0 0 459 Opt 60 0.48 0 0 22 Opt 60 0.64 0 0 309
33 3 Opt 55 0.16 0 0 0 Opt 55 0.44 0 0 0 Opt 55 0.59 0 0 87
33 4 Opt 77 0.38 0 0 112 Opt 77 0.39 0 0 11 Opt 77 0.52 0 0 4
33 5 Opt 53 0.14 0 0 0 Opt 53 0.75 0 0 140 Opt 53 0.59 0 0 253
33 6 Opt 59 0.36 0 0 111 Opt 59 0.39 0 0 0 Opt 59 0.62 0 0 189
33 7 Opt 58 0.13 0 0 0 Opt 58 0.2 0 0 0 Opt 58 0.23 0 0 0
33 8 Opt 61 0.52 0 0 0 Opt 61 0.47 0 0 77 Opt 61 0.62 0 0 178
33 9 Opt 65 0.61 0 0 643 Opt 65 0.59 0 0 121 Opt 65 1 0 0 695
33 10 Opt 53 0.16 0 0 0 Opt 53 0.23 0 0 0 Opt 53 0.2 0 0 0
34 1 Opt 68 0.48 0 0 130 Opt 68 0.34 0 0 12 Opt 68 0.47 0 0 0
34 2 Opt 44 0.13 0 0 0 Opt 44 0.28 0 0 0 Opt 44 0.19 0 0 0
34 3 Opt 69 0.11 0 0 0 Opt 69 0.3 0 0 0 Opt 69 0.38 0 0 0
34 4 Opt 67 0.11 0 0 0 Opt 67 0.19 0 0 0 Opt 67 0.2 0 0 0
34 5 Opt 63 0.36 0 0 16 Opt 63 0.38 0 0 0 Opt 63 0.45 0 0 1
34 6 Opt 52 0.31 0 0 0 Opt 52 0.34 0 0 0 Opt 52 0.41 0 0 47
34 7 Opt 58 0.48 0 0 425 Opt 58 0.37 0 0 0 Opt 58 0.61 0 0 35
34 8 Opt 58 0.41 0 0 0 Opt 58 0.44 0 0 247 Opt 58 0.67 0 0 343
34 9 Opt 60 0.16 0 0 0 Opt 60 0.3 0 0 0 Opt 60 0.23 0 0 0
34 10 Opt 47 0.14 0 0 0 Opt 47 0.22 0 0 0 Opt 47 0.2 0 0 0
35 1 Opt 57 0.14 0 0 0 Opt 57 0.22 0 0 0 Opt 57 0.19 0 0 0
35 2 Opt 53 0.11 0 0 0 Opt 53 0.22 0 0 0 Opt 53 0.19 0 0 0
35 3 Opt 60 0.11 0 0 0 Opt 60 0.2 0 0 0 Opt 60 0.19 0 0 0
35 4 Opt 50 0.14 0 0 0 Opt 50 0.36 0 0 0 Opt 50 0.61 0 0 0
35 5 Opt 60 0.13 0 0 0 Opt 60 0.23 0 0 0 Opt 60 0.16 0 0 0
35 6 Opt 58 0.14 0 0 0 Opt 58 0.31 0 0 0 Opt 58 0.41 0 0 0
35 7 Opt 61 0.14 0 0 0 Opt 61 0.33 0 0 0 Opt 61 0.31 0 0 0
35 8 Opt 63 0.3 0 0 66 Opt 63 0.2 0 0 0 Opt 63 0.19 0 0 0
35 9 Opt 59 0.26 0 0 0 Opt 59 0.27 0 0 0 Opt 59 0.31 0 0 9
35 10 Opt 59 0.17 0 0 0 Opt 59 0.23 0 0 0 Opt 59 0.42 0 0 0
36 1 Opt 66 0.13 0 0 0 Opt 66 0.22 0 0 0 Opt 66 0.2 0 0 0
36 2 Opt 44 0.16 0 0 0 Opt 44 0.23 0 0 0 Opt 44 0.19 0 0 0
36 3 Opt 61 0.14 0 0 0 Opt 61 0.2 0 0 0 Opt 61 0.19 0 0 0
36 4 Opt 59 0.13 0 0 0 Opt 59 0.16 0 0 0 Opt 59 0.17 0 0 0
36 5 Opt 64 0.14 0 0 0 Opt 64 0.23 0 0 0 Opt 64 0.2 0 0 0
36 6 Opt 46 0.11 0 0 0 Opt 46 0.23 0 0 0 Opt 46 0.19 0 0 0
36 7 Opt 56 0.14 0 0 0 Opt 56 0.16 0 0 0 Opt 56 0.16 0 0 0
36 8 Opt 63 0.14 0 0 0 Opt 63 0.16 0 0 0 Opt 63 0.16 0 0 0
36 9 Opt 59 0.17 0 0 0 Opt 59 0.27 0 0 0 Opt 59 0.22 0 0 0
36 10 Opt 59 0.12 0 0 0 Opt 59 0.17 0 0 0 Opt 59 0.19 0 0 0
37 1 Opt 79 1.81 0 0 3611 Opt 79 7.5 0 0 5404 Opt 79 5.62 0 0 3187
37 2 Opt 69 1.39 0 0 2638 Opt 69 6.35 0 0 5344 Opt 69 4.7 0 0 6665
37 3 Opt 81 1.72 0 0 2641 Opt 81 7.47 0 0 4716 Opt 81 9.39 0 0 6205
37 4 Opt 83 3.2 0 0 7374 Opt 83 7.13 0 0 4402 Opt 83 8.94 0 0 4968
37 5 Opt 80 2.39 0 0 5392 Opt 80 2.5 0 0 3592 Opt 80 1.95 0 0 2352
37 6 Opt 73 1.01 0 0 1605 Opt 73 1.95 0 0 2328 Opt 73 1.9 0 0 2378
37 7 Opt 92 4.9 0 0 6152 Opt 92 26.85 0 0 14020 Opt 92 28.28 0 0 16729
37 8 Opt 72 0.83 0 0 627 Opt 72 3.95 0 0 2690 Opt 72 2.9 0 0 3671
37 9 Opt 57 1.08 0 0 1518 Opt 57 4.38 0 0 6400 Opt 57 4.07 0 0 5296
37 10 Opt 81 2.12 0 0 5366 Opt 81 6.05 0 0 5360 Opt 81 7.27 0 0 5909
38 1 Opt 48 1.34 0 0 2728 Opt 48 1.92 0 0 2998 Opt 48 2.6 0 0 4036
38 2 Opt 54 0.5 0 0 0 Opt 54 0.73 0 0 662 Opt 54 1.11 0 0 740
38 3 Opt 59 0.64 0 0 668 Opt 59 1.65 0 0 1882 Opt 59 1.64 0 0 1687
38 4 Opt 59 0.19 0 0 0 Opt 59 1.15 0 0 1187 Opt 59 0.92 0 0 835
38 5 Opt 71 0.75 0 0 1129 Opt 71 1.36 0 0 1776 Opt 71 2.2 0 0 2799
38 6 Opt 63 0.16 0 0 0 Opt 63 0.34 0 0 0 Opt 63 0.23 0 0 0
38 7 Opt 65 0.72 0 0 954 Opt 65 0.89 0 0 919 Opt 65 1.67 0 0 845
38 8 Opt 61 0.51 0 0 344 Opt 61 0.94 0 0 792 Opt 61 1.09 0 0 638
38 9 Opt 63 0.78 0 0 932 Opt 63 2.43 0 0 2942 Opt 63 1.79 0 0 2078
38 10 Opt 60 0.67 0 0 749 Opt 60 1.33 0 0 1600 Opt 60 1.3 0 0 1618
39 1 Opt 55 0.44 0 0 48 Opt 55 0.44 0 0 0 Opt 55 0.34 0 0 0
39 2 Opt 54 0.14 0 0 0 Opt 54 0.33 0 0 0 Opt 54 0.22 0 0 0
39 3 Opt 54 0.53 0 0 453 Opt 54 0.59 0 0 0 Opt 54 0.62 0 0 472
39 4 Opt 53 0.16 0 0 0 Opt 53 0.28 0 0 0 Opt 53 0.27 0 0 0
39 5 Opt 55 0.14 0 0 0 Opt 55 0.25 0 0 0 Opt 55 0.23 0 0 0
39 6 Opt 69 0.37 0 0 216 Opt 69 0.28 0 0 0 Opt 69 0.81 0 0 540
39 7 Opt 56 0.44 0 0 17 Opt 56 0.5 0 0 3 Opt 56 1.05 0 0 723
39 8 Opt 67 0.5 0 0 175 Opt 67 0.33 0 0 0 Opt 67 0.27 0 0 0
39 9 Opt 64 0.51 0 0 280 Opt 64 0.65 0 0 534 Opt 64 0.66 0 0 106
39 10 Opt 60 0.41 0 0 88 Opt 60 0.53 0 0 3 Opt 60 1.08 0 0 622
40 1 Opt 51 0.22 0 0 0 Opt 51 0.36 0 0 0 Opt 51 0.25 0 0 0
40 2 Opt 56 0.17 0 0 0 Opt 56 0.25 0 0 0 Opt 56 0.23 0 0 0
40 3 Opt 57 0.19 0 0 0 Opt 57 0.33 0 0 0 Opt 57 0.25 0 0 0
40 4 Opt 57 0.14 0 0 0 Opt 57 0.23 0 0 0 Opt 57 0.33 0 0 0
40 5 Opt 65 0.12 0 0 0 Opt 65 0.34 0 0 0 Opt 65 0.2 0 0 0
40 6 Opt 60 0.16 0 0 0 Opt 60 0.27 0 0 0 Opt 60 0.23 0 0 0
40 7 Opt 46 0.16 0 0 0 Opt 46 0.27 0 0 0 Opt 46 0.27 0 0 0

132 A. Detailed results for set j30 of PSPLib

40 8 Opt 57 0.12 0 0 0 Opt 57 0.3 0 0 0 Opt 57 0.23 0 0 0
40 9 Opt 64 0.16 0 0 0 Opt 64 0.25 0 0 0 Opt 64 0.22 0 0 0
40 10 Opt 51 0.16 0 0 0 Opt 51 0.25 0 0 0 Opt 51 0.25 0 0 0
41 1 Opt 86 2.59 0 0 5753 Opt 86 7.54 0 0 4868 Opt 86 15.09 0 0 8899
41 2 Opt 89 12.98 0 0 21490 Opt 89 100.93 0 0 45668 Opt 89 198.01 0 0 148514
41 3 Opt 85 4.07 0 0 5350 Opt 85 21.62 0 0 13195 Opt 85 20.4 0 0 11333
41 4 Opt 78 9.69 0 0 11031 Opt 78 83.98 0 0 41710 Opt 78 60.51 0 0 28168
41 5 Opt 99 2.98 0 0 7460 Opt 99 36.57 0 0 21838 Opt 99 18.84 0 0 11629
41 6 Opt 103 89.39 0.01 0 164689 Feas 103 300 4.66 0 205483 Feas 103 300 2.91 0 224370
41 7 Opt 92 6.79 0 0 9855 Opt 92 68.03 0 0 41782 Opt 92 76.16 0.01 0 63075
41 8 Opt 88 22.92 0 0 32887 Opt 88 148.82 0 0 60980 Feas 88 300 7.17 0 77652
41 9 Opt 92 121.15 0 0 342706 Opt 92 61.78 0 0 33147 Opt 92 39.28 0 0 24113
41 10 Opt 99 123.04 0 0 222311 Feas 99 300 7.98 0 112674 Feas 99 300 5.96 0 164666
42 1 Opt 58 0.94 0 0 1595 Opt 58 0.53 0 0 0 Opt 58 0.23 0 0 0
42 2 Opt 50 7.22 0 0 7986 Opt 50 5.26 0 0 6859 Opt 50 5.76 0 0 4742
42 3 Opt 60 4.1 0 0 5103 Opt 60 8.38 0 0 5733 Opt 60 6.12 0 0 4084
42 4 Opt 49 8.07 0 0 7524 Opt 49 11.37 0 0 7536 Opt 49 17.27 0 0 8833
42 5 Opt 52 0.86 0 0 1236 Opt 52 1.81 0 0 1242 Opt 52 3.21 0 0 3847
42 6 Opt 66 2.53 0 0 4112 Opt 66 2.74 0 0 3645 Opt 66 3.68 0 0 2746
42 7 Opt 66 1.09 0 0 1455 Opt 66 0.89 0 0 695 Opt 66 1.81 0 0 2190
42 8 Opt 82 0.69 0 0 578 Opt 82 2.76 0 0 3817 Opt 82 4.13 0 0 2716
42 9 Opt 60 4.32 0 0 5697 Opt 60 5.66 0 0 6323 Opt 60 9.3 0 0 7611
42 10 Opt 75 0.44 0 0 185 Opt 75 0.58 0 0 0 Opt 75 0.95 0 0 658
43 1 Opt 55 4.06 0 0 5525 Opt 55 4.62 0 0 3917 Opt 55 6.66 0 0 5877
43 2 Opt 43 0.12 0 0 0 Opt 43 0.37 0 0 0 Opt 43 0.25 0 0 0
43 3 Opt 57 1.43 0 0 2266 Opt 57 2.73 0 0 2873 Opt 57 4.63 0 0 3805
43 4 Opt 67 0.5 0 0 283 Opt 67 0.66 0 0 110 Opt 67 1.97 0 0 2401
43 5 Opt 64 2.96 0 0 3587 Opt 64 3.67 0 0 3930 Opt 64 5.37 0 0 3794
43 6 Opt 58 1.18 0 0 2374 Opt 58 0.84 0 0 804 Opt 58 1.34 0 0 1137
43 7 Opt 52 0.76 0 0 820 Opt 52 0.47 0 0 0 Opt 52 0.45 0 0 0
43 8 Opt 62 0.25 0 0 0 Opt 62 1.72 0 0 2141 Opt 62 3.39 0 0 4986
43 9 Opt 57 3.43 0 0 7517 Opt 57 4.35 0 0 6007 Opt 57 4.57 0 0 5735
43 10 Opt 60 1.25 0 0 2703 Opt 60 2 0 0 2869 Opt 60 1.98 0 0 2824
44 1 Opt 50 0.34 0 0 0 Opt 50 0.55 0 0 90 Opt 50 0.58 0 0 0
44 2 Opt 54 0.16 0 0 0 Opt 54 0.36 0 0 0 Opt 54 0.25 0 0 0
44 3 Opt 51 0.38 0 0 0 Opt 51 0.25 0 0 0 Opt 51 0.25 0 0 0
44 4 Opt 57 0.14 0 0 0 Opt 57 0.31 0 0 0 Opt 57 0.33 0 0 0
44 5 Opt 55 0.19 0 0 0 Opt 55 0.37 0 0 0 Opt 55 0.27 0 0 0
44 6 Opt 56 0.28 0 0 0 Opt 56 0.22 0 0 0 Opt 56 0.23 0 0 0
44 7 Opt 42 0.17 0 0 0 Opt 42 0.38 0 0 0 Opt 42 0.27 0 0 0
44 8 Opt 49 0.28 0 0 0 Opt 49 0.33 0 0 0 Opt 49 0.27 0 0 0
44 9 Opt 64 0.14 0 0 0 Opt 64 0.22 0 0 0 Opt 64 0.2 0 0 0
44 10 Opt 63 0.16 0 0 0 Opt 63 0.33 0 0 0 Opt 63 0.28 0 0 0
45 1 Opt 82 49.2 0 0 65741 Feas 82 300 12.6 0 157415 Feas 84 300 12.27 2.44 98795
45 2 Feas 125 300 16.43 0 390950 Feas 125 300 22.15 0 182892 Feas 125 300 19.83 0 242620
45 3 Opt 92 3.54 0 0 4604 Opt 92 19.95 0 0 11129 Opt 92 34.63 0.01 0 27033
45 4 Opt 84 17.3 0 0 14784 Opt 84 31.12 0 0 20381 Opt 84 76.78 0 0 53144
45 5 Opt 86 4.81 0 0 6484 Opt 86 23.63 0 0 21130 Opt 86 52.51 0 0 33865
45 6 Feas 129 300 11.63 0 355254 Feas 129 300 22.17 0 152365 Feas 129 300 21.66 0 117374
45 7 Opt 101 11.36 0 0 15238 Opt 101 102.55 0.01 0 71971 Opt 101 127.95 0.01 0 102852
45 8 Opt 94 11.71 0.01 0 19287 Opt 94 129.15 0 0 98088 Opt 94 66.55 0 0 51932
45 9 Opt 82 13.96 0 0 16366 Opt 82 156.22 0 0 104629 Opt 82 146.72 0.01 0 78581
45 10 Opt 90 60.81 0 0 112745 Opt 90 245.39 0 0 191695 Feas 90 300 6.67 0 136543
46 1 Opt 59 16.75 0 0 20035 Opt 59 13.68 0 0 14175 Opt 59 28.45 0 0 27417
46 2 Opt 67 41.15 0 0 31878 Opt 67 35.51 0 0 30140 Opt 67 27.47 0 0 22355
46 3 Opt 65 29.31 0 0 29512 Opt 65 67.28 0 0 54660 Opt 65 79.97 0 0 61494
46 4 Opt 64 5.3 0 0 7143 Opt 64 3.87 0 0 5003 Opt 64 6.79 0 0 6891
46 5 Opt 57 2.2 0 0 3529 Opt 57 3.98 0 0 3835 Opt 57 4.23 0 0 3092
46 6 Opt 59 33.09 0 0 40179 Opt 59 42.89 0 0 45038 Opt 59 49.22 0 0 42178
46 7 Opt 59 148.62 0.01 0 104372 Feas 60 300 7.9 1.69 243132 Feas 59 300 3.39 0 92184
46 8 Opt 58 45.05 0.01 0 25827 Opt 58 7.58 0 0 6542 Opt 58 20.08 0 0 13358
46 9 Opt 49 5.57 0 0 5711 Opt 49 4.32 0 0 4209 Opt 49 9.69 0 0 7585
46 10 Opt 55 63.65 0 0 27374 Opt 55 59.3 0 0 32868 Opt 55 73.04 0 0 31920
47 1 Opt 58 0.16 0 0 0 Opt 58 0.3 0 0 0 Opt 58 0.23 0 0 0
47 2 Opt 59 0.47 0 0 0 Opt 59 0.45 0 0 0 Opt 59 1.05 0 0 1097
47 3 Opt 55 0.9 0 0 956 Opt 55 1.14 0 0 1422 Opt 55 1.33 0 0 746
47 4 Opt 49 1.56 0 0 2510 Opt 49 2.43 0 0 4647 Opt 49 3.15 0 0 4919
47 5 Opt 47 3.28 0 0 3543 Opt 47 3.12 0 0 2948 Opt 47 5.88 0 0 3643
47 6 Opt 53 5.43 0 0 6718 Opt 53 3.74 0 0 5374 Opt 53 3.59 0 0 3293
47 7 Opt 66 13.93 0 0 47803 Opt 66 3.14 0 0 5170 Opt 66 4.73 0 0 5165
47 8 Opt 48 0.19 0 0 0 Opt 48 0.25 0 0 0 Opt 48 0.28 0 0 0
47 9 Opt 65 0.62 0 0 793 Opt 65 0.31 0 0 0 Opt 65 0.39 0 0 0
47 10 Opt 60 42.77 0 0 58890 Opt 60 42.64 0 0 55999 Opt 60 24.27 0 0 35358
48 1 Opt 63 0.25 0 0 0 Opt 63 0.22 0 0 0 Opt 63 0.36 0 0 0
48 2 Opt 54 0.28 0 0 0 Opt 54 0.36 0 0 0 Opt 54 0.56 0 0 37
48 3 Opt 50 0.34 0 0 0 Opt 50 0.25 0 0 0 Opt 50 0.28 0 0 0
48 4 Opt 57 0.39 0 0 109 Opt 57 0.27 0 0 0 Opt 57 0.23 0 0 0
48 5 Opt 58 0.44 0 0 37 Opt 58 0.48 0 0 44 Opt 58 1.05 0 0 1010
48 6 Opt 58 0.34 0 0 0 Opt 58 0.27 0 0 0 Opt 58 0.23 0 0 0
48 7 Opt 55 0.4 0 0 133 Opt 55 0.27 0 0 0 Opt 55 0.22 0 0 0
48 8 Opt 44 0.16 0 0 0 Opt 44 0.2 0 0 0 Opt 44 0.22 0 0 0
48 9 Opt 59 0.33 0 0 0 Opt 59 0.28 0 0 0 Opt 59 0.27 0 0 0
48 10 Opt 54 0.33 0 0 0 Opt 54 0.33 0 0 0 Opt 54 0.27 0 0 0

Table A.1. Results for F1, Kop-CT1-m, and Kop-CT2-m on each instance of set j30.

133

Appendix B

Node logs for an example with 5
activities

Here we report the node logs of the formulations F1, Kop-CT1-m and Kop-CT2-m
for the example introduced in Section 3.2.2. These logs were used to build the
branching trees in Figure 3.4.

Figure B.1. Node log of formulation F1.

134 B. Node logs for an example with 5 activities

Figure B.2. Node log of formulation Kop-CT1-m.

135

Figure B.3. Node log of formulation Kop-CT2-m.

137

Appendix C

Additional graphs of results

The additional graphs of results, which are structured as those in Figures 3.7 and
3.8, and which separately consider the instances in each test set, are reported here.

Figure C.1. Distribution of computation times over different ranges for F1 and Kop-CT1-m,
considering only the instances optimally solved among those of set j30 of PSPLib.

Figure C.2. Distribution of computation times over different ranges for F1 and Kop-CT1-m,
considering only the instances optimally solved among those of set j60 of PSPLib.

138 C. Additional graphs of results

Figure C.3. Distribution of computation times over different ranges for F1 and Kop-CT1-m,
considering only the instances optimally solved among those of Set 1 of RanGen2.

Figure C.4. Distribution of computation times over different ranges for F1 and Kop-CT1-m,
considering only the instances optimally solved among those of Set 2 of RanGen2.

Figure C.5. Distribution of computation times over different ranges for F1 and Kop-CT1-m,
considering only the instances optimally solved among those of Set 3 of RanGen2.

139

Figure C.6. Distribution of computation times over different ranges for F1 and Kop-CT1-m,
considering only the instances optimally solved among those of Set 4 of RanGen2.

Figure C.7. Distribution of computation times over different ranges for F1 and Kop-CT1-m,
considering only the instances optimally solved among those of set Set 5 of RanGen2.

Figure C.8. Distribution of actual gaps over different ranges for F1 and Kop-CT1-m,
considering only the sub-/non-proven optimal instances among those of set j30 of PSPLib.

140 C. Additional graphs of results

Figure C.9. Distribution of actual gaps over different ranges for F1 and Kop-CT1-m,
considering only the suboptimal or non-proven optimal instances among those of set j60
of PSPLib.

Figure C.10. Distribution of actual gaps over different ranges for F1 and Kop-CT1-m,
considering only the sub-/non-proven optimal instances among those of Set 1 of RanGen2.

Figure C.11. Distribution of actual gaps over different ranges for F1 and Kop-CT1-m,
considering only the sub-/non-proven optimal instances among those of Set 2 of RanGen2.

141

Figure C.12. Distribution of actual gaps over different ranges for F1 and Kop-CT1-m,
considering only the sub-/non-proven optimal instances among those of Set 3 of RanGen2.

Figure C.13. Distribution of actual gaps over different ranges for F1 and Kop-CT1-m,
considering only the sub-/non-proven optimal instances among those of Set 4 of RanGen2.

Figure C.14. Distribution of actual gaps over different ranges for F1 and Kop-CT1-m,
considering only the sub-/non-proven optimal instances among those of Set 5 of RanGen2.

143

Bibliography

Alvarez-Valdés, R. and J. M. Tamarit (1993). The project scheduling polyhedron:
Dimension, facets and lifting theorems. European Journal of Operational Re-
search 67 (2), 204 – 220.

Artigues, C., S. Demassey, and E. Neron (2013). Resource-constrained project
scheduling: models, algorithms, extensions and applications. John Wiley & Sons.

Artigues, C., P. Michelon, and S. Reusser (2003). Insertion techniques for static and
dynamic resource-constrained project scheduling. European Journal of Operational
Research 149 (2), 249 – 267.

Ballestín, F. and R. Blanco (2011). Theoretical and practical fundamentals for
multi-objective optimisation in resource-constrained project scheduling problems.
Computers & Operations Research 38 (1), 51 – 62.

Baptiste, P. and C. L. Pape (2000). Constraint propagation and decomposition
techniques for highly disjunctive and highly cumulative project scheduling problems.
Constraints 5 (1), 119–139.

Bartusch, M., R. H. Möhring, and F. J. Radermacher (1988). Scheduling project
networks with resource constraints and time windows. Annals of Operations
Research 16 (1), 199–240.

Bianco, L. and M. Caramia (2013). A new formulation for the project scheduling prob-
lem under limited resources. Flexible Services & Manufacturing Journal 25 (1/2),
6 – 24.

Blazewicz, J., J. Lenstra, and A. Kan (1983). Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics 5 (1), 11
– 24.

Brucker, P., A. Drexl, R. Möhring, K. Neumann, and E. Pesch (1999). Resource-
constrained project scheduling: Notation, classification, models, and methods.
European Journal of Operational Research 112 (1), 3 – 41.

Brucker, P., S. Knust, A. Schoo, and O. Thiele (1998). A branch and bound algorithm
for the resource-constrained project scheduling problem1supported by the deutsche
forschungsgemeinschaft, project ‘komplexe maschinen-schedulingprobleme’.1. Eu-
ropean Journal of Operational Research 107 (2), 272 – 288.

144 Bibliography

Chand, S., H. K. Singh, and T. Ray (2017). A heuristic algorithm for solving resource
constrained project scheduling problems. In 2017 IEEE Congress on Evolutionary
Computation (CEC), pp. 225–232.

Chen, R.-M. (2011). Particle swarm optimization with justification and designed
mechanisms for resource-constrained project scheduling problem. Expert Systems
with Applications 38 (6), 7102 – 7111.

Christofides, N., R. Alvarez-Valdés, and J. Tamarit (1987). Project scheduling
with resource constraints: A branch and bound approach. European Journal of
Operational Research 29 (3), 262 – 273.

Demassey, S., C. Artigues, and P. Michelon (2005). Constraint-propagation-based
cutting planes: An application to the resource-constrained project scheduling
problem. INFORMS Journal on Computing 17 (1), 52–65.

Demeulemeester, E. and W. Herroelen (1992). A branch-and-bound procedure
for the multiple resource-constrained project scheduling problem. Management
Science 38 (12), 1803–1818.

Dorndorf, U., E. Pesch, and T. Phan-Huy (2000). A branch-and-bound algorithm
for the resource-constrained project scheduling problem. Mathematical Methods
of Operations Research 52 (3), 413–439.

Hartmann, S. (2000). Packing problems and project scheduling models: an integrating
perspective. Journal of the Operational Research Society 51 (9), 1083–1092.

Hartmann, S. and D. Briskorn (2010). A survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of Operational
Research 207 (1), 1 – 14.

Hartmann, S. and R. Kolisch (2000). Experimental evaluation of state-of-the-art
heuristics for the resource-constrained project scheduling problem. European
Journal of Operational Research 127 (2), 394 – 407.

Herroelen, W. (2005). Project scheduling - theory and practice. Production and
Operations Management 14 (4), 413–432.

Herroelen, W. and R. Leus (2005). Project scheduling under uncertainty: Survey
and research potentials. European Journal of Operational Research 165 (2), 289 –
306.

Jia, Q. and Y. Seo (2013). Solving resource-constrained project scheduling problems:
Conceptual validation of flp formulation and efficient permutation-based abc
computation. Computers & Operations Research 40 (8), 2037 – 2050.

Kaplan, L. A. (1988). Resource-constrained project scheduling with preemption of
jobs. Ph. D. thesis, University of Michigan.

Kelley, J. (1963). The critical path method: Resources planning and scheduling.
Industrial Scheduling 13, 347 – 365.

Bibliography 145

Klein, R. (2000). Project scheduling with time-varying resource constraints. Inter-
national Journal of Production Research 38 (16), 3937–3952.

Kolisch, R. and S. Hartmann (2006). Experimental investigation of heuristics
for resource-constrained project scheduling: An update. European Journal of
Operational Research 174 (1), 23 – 37.

Kolisch, R. and A. Sprecher (1997). Psplib - a project scheduling problem library:
Or software - orsep operations research software exchange program. European
Journal of Operational Research 96 (1), 205 – 216.

Koné, O., C. Artigues, P. Lopez, and M. Mongeau (2011). Event-based milp models
for resource-constrained project scheduling problems. Computers & Operations
Research 38 (1), 3 – 13.

Koné, O., C. Artigues, P. Lopez, and M. Mongeau (2013). Comparison of mixed
integer linear programming models for the resource-constrained project scheduling
problem with consumption and production of resources. Flexible Services and
Manufacturing Journal 25 (1), 25–47.

Kopanos, G. M., T. S. Kyriakidis, and M. C. Georgiadis (2014). New continuous-
time and discrete-time mathematical formulations for resource-constrained project
scheduling problems. Computers & Chemical Engineering 68, 96 – 106.

Laborie, P. (2005). Complete mcs-based search: Application to resource constrained
project scheduling. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence, IJCAI’05, San Francisco, CA, USA, pp. 181–186. Morgan
Kaufmann Publishers Inc.

Mingozzi, A., V. Maniezzo, S. Ricciardelli, and L. Bianco (1998). An exact algo-
rithm for the resource-constrained project scheduling problem based on a new
mathematical formulation. Management Science 44 (5), 714–729.

Naber, A. and R. Kolisch (2014). Mip models for resource-constrained project
scheduling with flexible resource profiles. European Journal of Operational Re-
search 239 (2), 335 – 348.

Naber, A., R. Kolisch, L. Bianco, and M. Caramia (2014). The resource-constrained
project scheduling model of bianco and caramia: Clarifications and an alternative
model formulation. Flexible Services and Manufacturing Journal 26 (3), 454–459.

Pinto, J. and I. Grossmann (1996). A continuous time milp model for short term
scheduling of batch plants with pre-ordering constraints. Computers & Chemical
Engineering 20, S1197 – S1202.

Pritsker, A. A. B., L. J. Waiters, and P. M. Wolfe (1969). Multiproject scheduling with
limited resources: A zero-one programming approach. Management Science 16 (1),
93–108.

Rihm, T. and N. Trautmann (2017). An assignment-based continuous-time milp
model for the resource-constrained project scheduling problem. In Industrial

146 Bibliography

Engineering and Engineering Management (IEEM), 2017 IEEE International
Conference on, pp. 35–39. IEEE.

Schwindt, C., J. Zimmermann, et al. (2015). Handbook on Project Management and
Scheduling. Springer.

Vanhoucke, M., J. Coelho, D. Debels, B. Maenhout, and L. V. Tavares (2008). An
evaluation of the adequacy of project network generators with systematically
sampled networks. European Journal of Operational Research 187 (2), 511 – 524.

Varakantham, P., N. Fu, and H. C. Lau (2016). A proactive sampling approach
to project scheduling under uncertainty. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI’16, pp. 3195–3201. AAAI Press.

Weglarz, J., J. Józefowska, M. Mika, and G. Waligóra (2011). Project scheduling
with finite or infinite number of activity processing modes - a survey. European
Journal of Operational Research 208 (3), 177 – 205.

Zamani, R. (2013). A competitive magnet-based genetic algorithm for solving the
resource-constrained project scheduling problem. European Journal of Operational
Research 229 (2), 552 – 559.

Zapata, J. C., B. M. Hodge, and G. V. Reklaitis (2008). The multimode resource
constrained multiproject scheduling problem: Alternative formulations. AIChE
Journal 54 (8), 2101–2119.

Zheng, X.-L. and L. Wang (2015). A multi-agent optimization algorithm for resource
constrained project scheduling problem. Expert Systems with Applications 42 (15),
6039 – 6049.

	Introduction
	Indicator variables and constraints
	Basic notions
	Logical relations between inequality constraints
	Indicator variables for inequalities logical relations
	Introductory example
	Important remarks on big-M formulations
	Indicator variables for the AND logical operation
	Indicator variables for the OR logical operation
	Indicator variables for the other logical operations

	Indicator variables, logical relations and scheduling
	Example 1: Single machine scheduling for fresh products jobs
	Example 2: Scheduling of timetable in a manufacturing cell
	Example 3: Costs minimization for two machines subject to electricity load peaks
	Example 4: Scheduling of inspections in a continuous production system

	New inequalities for capacity-constrained scheduling formulations
	From disjunctive constraints to their extensions
	Overlapping variables: , 12 and 21
	Sequencing variables: , 12 and 21

	Extension to m activities
	Sharing of resources and capacity restrictions

	Formulation improvements
	Constraints reduction
	Variables reduction
	Parameters refinement

	A new formulation for the RCPSP
	Literature review
	Our solution approach
	A new continuous-time formulation for the RCPSP
	Computational considerations

	The approaches of Kopanos, Kyriakidis, and Georgiadis
	Models comparison
	Similarities and differences between formulations
	Preliminary computational analysis

	Experimental results

	A new framework for workforce planning and activities scheduling
	Introduction and motivations
	Main components of the framework
	Resources
	Skills
	Activities

	Simulation-based optimization
	Problem statement
	A bilevel programming formulation
	The structure of the framework
	Examples of applications
	Application 1: Big plant construction
	Application 2: Software development projects
	Application 3: Operators allocation in manufacturing and logistic processes

	Conclusions
	Detailed results for set j30 of PSPLib
	Node logs for an example with 5 activities
	Additional graphs of results

