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Abstract

This thesis presents a collection of original contributions pertaining to the subjects of reliability-

based design optimization (RBDO) and model updating of civil engineering structures and systems.

In this regard, probability theory concepts and tools are instrumental in the formulation of the herein

reported developments. Firstly, two approaches are devised for the RBDO of structural dynami-

cal systems under stochastic excitation. Namely, a stochastic search technique is proposed for

constrained and unconstrained RBDO problems involving continuous, discrete and mixed discrete-

continuous design spaces, whereas an efficient sensitivity assessment framework for linear stochas-

tic structures is implemented to identify optimal designs and evaluate their sensitivities. Moreover,

two classes of model updating problems are considered. In this context, the Bayesian interpretation

of probability theory plays a key role in the proposed solution schemes. Specifically, contami-

nant source detection in water distribution networks is addressed by resorting to a sampling-based

Bayesian model class selection framework. Furthermore, an effective strategy for Bayesian model

updating with structural reliability methods is presented to treat identification problems involving

structural dynamical systems, measured response data, and high-dimensional parameter spaces.

The approaches proposed in this thesis integrate stochastic simulation techniques as an essential

part of their formulation, which allows obtaining non-trivial information about the systems of in-

terest as a byproduct of the solution processes. Overall, the findings presented in this thesis suggest

that the reported methods can be potentially adopted as supportive tools for a number of practical

decision-making processes in civil engineering.

Keywords: Reliability-based design optimization; Bayesian model updating; Structural dynamics;

Water distribution networks; Contaminant source detection; Advanced simulation methods
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Kurzfassung

Diese Arbeit stellt eine Sammlung von Beiträgen vor, die sich mit der Reliability-based-Design-

Optimization (RBDO) und dem Model updating von Strukturen und Systemen im Bauwesen be-

fassen. In diesem Zusammenhang sind wahrscheinlichkeitstheoretische Konzepte für die For-

mulierung der hier vorgestellten Entwicklungen von entscheidender Bedeutung. Zunächst wer-

den zwei Ansätze für eine RBDO von strukturdynamischen Systemen unter stochastischer An-

regung entwickelt. Es wird eine stochastische Suchtechnik für beschränkte und unbeschränkte

RBDO-Probleme vorgeschlagen. Diese beziehen kontinuierliche, diskrete und gemischt diskret-

kontinuierliche Designräume ein. Gleichzeitig wird ein effizientes Framework zur Bewertung

der Sensitivität lineare stochastische Strukturen implementiert, um optimale Designs zu identi-

fizieren und ihre Sensitivitäten zu bewerten. Darüber hinaus werden zwei Klassen von Problem

aus dem Model updating betrachtet. Der Fokus wird hierbei auf die Erkennung von Kontami-

nationsquellen in Wasserverteilungsnetzen mithilfe eines auf Stichproben basierenden Bayesian-

Model-Class-selection-Framework gelegt. Ferner wird eine effektive Strategie zur Bearbeitung

von Problemen des Bayesian-Model-updating, die strukturdynamischen Systeme, gemessene Sys-

temantwortdaten und hochdimensionale Parameterräume umfassen, vorgestellt. Die beschriebe-

nen Ansätze verwenden stochastische Simulationstechniken als wesentlicher Bestandteil ihrer For-

mulierung, wodurch nicht-triviale Informationen über betrachtete Systeme als Nebenprodukt der

Lösungsprozesse gewonnen werden können. Insgesamt deuten die vorgestellten Ergebnisse dieser

Arbeit darauf hin, dass die beschriebenen Methoden potenziell als unterstützende Elemente in prak-

tischen Entscheidungsproblemen im Zusammenhang mit Strukturen und Systemen im Bauwesen

eingesetzt werden können.

Keywords: Reliability-based-Design-Optimization; Bayesian-Model-updating; Strukturdynamik;

Wasserverteilungsnetze; Kontaminationsquellendetektion; Simulationsmethoden
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Chapter 1

Introduction

1.1 Motivation

Civil engineering structures and systems are a crucial component of modern human environments.

Bridges, water supply systems, tunnels, buildings, retaining walls, highways, sewage systems,

dams, and a plethora of other complex and large-scale engineered systems constitute a fundamen-

tal part of the contemporary landscape and, furthermore, play an essential role in enabling societal

and economic development. One of the distinctive features of this class of systems is their per-

manent exposure to natural and anthropogenic actions [1–5]. Thus, the conditions in which they

operate and the state of their components are impossible to predict exactly, i.e., they are inherently

subject to uncertainty. Such uncertainties must be appropriately considered not only to achieve

cost-effective and safe designs but also for the repair, maintenance and enhancement of civil engi-

neering structures and systems over their lifetime [6–10]. This is especially relevant considering

the broad implications that the related decision-making processes have from social, economical,

technical, and environmental perspectives [11–18].

Diverse uncertainty representation methods have been developed to aid general decision-making

processes [19]. In the context of civil engineering, even though non-probabilistic methodologies

have been proposed [20, 21], the prevalent uncertainty quantification approach corresponds to the

use of probability theory concepts and tools [6, 22–26]. Within this framework, pertinent character-

istics of the system of interest are modeled in a probabilistic manner. These comprise, for instance,

mechanical properties [27–29], component states [30, 31], operational conditions [32, 33], external

excitations [34–39], etc. Such a formulation enables, in turn, a variety of engineering analyses

1
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including probabilistic performance evaluation [40–44], reliability assessment [45–48], stochastic

response determination [49–51], probabilistic failure analysis [52], Bayesian model updating [53–

57], optimal placement of measurement devices [58, 59], design optimization [60–64], sensitivity

analysis [65–68], etc. In this regard, closed-form solutions and approximate analytical techniques

can be applied with satisfactory accuracy in certain cases [6, 69–79]. Nevertheless, the imple-

mentation of probabilistic approaches often relies on stochastic simulation methods [80, 81] to

treat general problems involving complex black-box computational models, such as those usually

adopted for the analysis of civil engineering structures and systems.

Direct Monte Carlo simulation (MCS) is perhaps the most well-known stochastic simulation ap-

proach [80]. The method relies on the generation of samples of the input random quantities accord-

ing to their probability distribution. Then, the numerical model under consideration is evaluated for

each of them in order to obtain the corresponding realizations of the responses of interest, which

are ultimately aggregated to approximate diverse probabilistic measures. Despite its robustness and

simplicity, this straightforward approach may face some difficulties in certain cases. For instance,

the analysis of rare events can lead to an excessive or even prohibitive number of samples, espe-

cially when the numerical cost of a single model evaluation is considerable [82]. Furthermore, if

a mechanism to generate independent samples according to the target distribution is not available,

the implementation of direct MCS becomes unfeasible [80, 83]. The previous challenges have mo-

tivated the development of advanced simulation techniques [84–86] based on, e.g., Markov chain

Monte Carlo (MCMC) [81, 87–89]. These specialized strategies can draw samples from complex

target distributions for which no closed-form expressions are available. Moreover, they are gener-

ally robust to the complexity of the model adopted to represent the system of interest, and usually

prove more efficient than direct MCS. In consequence, they have been adopted an efficacious and

flexible alternative to address a number of practical applications; see, e.g., [90–100]. Thus, based on

the above discussion, it can be argued that advanced simulation techniques offer appealing features

for the implementation of probabilistic approaches in the context of civil engineering structures and

systems.
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Attention is directed to two broad subjects within the previous framework. The first corresponds to

reliability-based design optimization (RBDO) [101, 102]. In this setting, reliability is adopted as a

probabilistic measure of the system performance when its behavior is characterized as acceptable

(safe) or unacceptable (failed) [22]. Such a measure is employed to quantify the plausibility of the

system satisfying certain design conditions given the probabilistic characterization of its properties

and external loadings. Thus, this class of formulations provides a realistic and rational framework

for civil engineering design in which the unavoidable uncertainties arising in the characterization

of the system of interest and their effect on performance requirements can be explicitly accounted

for during the decision-making process [7]. While this approach has been demonstrated in several

applications (see, e.g., [101, 103–110]), one important topic pertains to the RBDO of structural dy-

namical systems under stochastic excitations [111]. By adopting this perspective, structural design

processes are furnished with the versatile framework of stochastic processes to represent uncertain

environmental actions [34, 112–114] and to assess their effect on the system response. In addi-

tion, the second subject under consideration corresponds to model updating [86], which aims to

update the characteristics of a certain computational model based on measurements. The outcomes

of this procedure plays an instrumental role in a number of applications including robust response

prediction, structural health monitoring, system control, etc. A well-established solution frame-

work to this end corresponds to Bayesian model updating [53, 54]. Instead of obtaining a single

updated model, this formulation yields a full probabilistic distribution of models that is consistent

with available measurement data and prior engineering knowledge [115]. Such information pro-

vides valuable insight for data-driven decision making, which is particularly relevant in view of the

contemporary advent and proliferation of sensor technologies [116].

In this thesis, an effort is made to address a number of challenges in the context of RBDO and

model updating of civil engineering structures and systems. Specifically, the focus of the herein

reported developments is on three topics. The first pertains to the RBDO of structural dynamical

systems under stochastic excitation, whose main challenges and solution approaches are presented

in Section 1.2. The other two topics are associated with model updating problems in civil engi-
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neering, which correspond to the treatment of contaminant detection problems in water distribution

networks (WDNs) and the identification of complex structural dynamical models. A concise de-

scription of these problems is given in Section 1.3 followed by a brief review of Bayesian model

updating procedures. Then, Section 1.4 states the specific objectives of this thesis, while the cor-

responding developments to achieve them are summarized in Section 1.5. Finally, Section 1.6

outlines the content of the subsequent chapters.

1.2 Reliability-based design optimization

One of the pivotal tasks of civil engineering is to design safe and cost-effective structures not only

as part of public infrastructure, but also to satisfy industrial, commercial and private users’ needs.

Mathematical programming plays an instrumental role to this end, whereby structures are required

to be optimum in terms of a given criterion while complying with a set of design requirements

related to certain loading conditions [117]. Within this context, it is vital to incorporate all relevant

uncertainties into the corresponding optimization problems in an appropriate manner, since neglect-

ing them can be substantially detrimental to the performance of final designs [118]. In this regard,

dynamical loads associated with, e.g., wind effects, earthquakes or sea waves [1–3], are particularly

relevant due to their significant effect on structural responses and the impossibility of accurately

predicting them. To characterize such loads in a probabilistic setting, the use of stochastic excitation

models constitutes a well-established and versatile approach [34–36, 39, 114, 119, 120]. Moreover,

as already pointed out, RBDO formulations enable a rational and sound theoretical framework in

which the system uncertainties and their interaction with performance requirements can be explic-

itly accounted for during decision-making processes [7, 101, 111].

This thesis focuses on the RBDO of structural dynamical systems under stochastic excitation. Sec-

tion 1.2.1 formulates the class of problems of interest, while Section 1.2.2 discusses the challenges

to solve them. Then, state-of-the-art solution techniques are described in Sections 1.2.3 to 1.2.5.

Some additional remarks are given in Section 1.2.6.
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1.2.1 Problem formulation

The class of RBDO problems of interest can be stated as

min
x

c(x)

s.t. rj(x) ≤ 0, j = 1, . . . , nr

gj(x) ≤ 0, j = 1, . . . , ng

x ∈ X ⊂ Rnx

(1.1)

where x = [x1, . . . , xnx ]T ∈ X ⊂ Rnx is the vector of nx design variables (discrete and/or con-

tinuous), c(x) is the objective function, rj(x) ≤ 0, j = 1, . . . , nr, represent nr requirements on

the system reliability, and gj(x) ≤ 0, j = 1, . . . , ng, constitute ng standard constraints. The set X

comprises the possible values for the design variables. For each continuous design variable xi, the

side constraints are given by xL
i ≤ xi ≤ xR

i , where xL
i and xR

i denote its lower and upper bound,

respectively. Further, for each discrete variable xi a finite set of possible values Xi is defined

such that xi ∈ Xi. The objective function c(x) can quantify construction costs, structural perfor-

mance, users’ comfort, expected repair costs, etc. In addition, the reliability constraints rj(x) ≤ 0,

j = 1, . . . , nr, define performance requirements in terms of failure probability measures, whereas

the standard constraints gj(x) ≤ 0, j = 1, . . . , ng, relate to design restrictions for which no struc-

tural reliability assessment is needed. Therefore, the evaluation of the latter can be regarded as

relatively inexpensive. Finally, it is noted that failure probabilities can be involved in the definition

of the objective and/or constraint functions in Eq. (1.1).

Structural dynamical systems under stochastic excitation

The structures of interest can be modeled as a multi-degree-of-freedom system that satisfies

Mü(t) + Cu̇(t) + Ku(t) + kNL (u(t), u̇(t), y(t)) = f(t) (1.2)
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where u(t) denotes the displacement vector, kNL(u(t), u̇(t), y(t)) the vector of nonlinear restor-

ing forces, y(t) the state variables of the nonlinear components, and f(t) the stochastic excitation

vector. The matrices M, C, and K describe the mass, damping, and stiffness of the system, re-

spectively. In addition, the evolution of y(t) depends on an appropriate nonlinear model. Thus, the

equation for the evolution of y(t) and Eq. (1.2) constitute a coupled system of nonlinear equations

whose solution relies, in practice, on complex black-box computational procedures.

Based on Eqs. (1.1) and (1.2), it is seen that the above formulation is quite general in the sense

that it allows addressing diverse design problems [101, 104]. In this context, representative ap-

plications include the mitigation of seismic pounding risk between buildings [121] and the design

of fluid filled tanks [122], wind-excited cable-stayed masts [123], high-rise buildings [124–126],

large-scale linear systems [127, 128], and nonlinear devices for seismic protection [110]. Finally,

it is noted that the previous formulation can be also extended to a multi-objective optimization

framework [129, 130].

First-passage failure probabilities

In the context of structural systems under stochastic excitation, the probability that certain require-

ments are not fulfilled within a certain reference period, T , constitutes a useful measure of structural

performance [85]. This quantity is referred to as first-passage probability and can be construed as

a measure of the plausibility of unacceptable structural behavior [71]. In this framework, consider

a vector z ∈ Z ⊂ Rnz comprising the random variables representing both the stochastic excitation

and the uncertain model parameters. The corresponding multivariate probability density function

(PDF) is denoted by q(z|x), that is, z ∼ q(z|x). It is noted that this PDF can depend on the

design variables x; otherwise, the random variables are simply distributed as z ∼ q(z). Then, a

first-passage failure event, F , is defined as [131]

F = {d(x, z) > 1} (1.3)
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d(x, z) = max
t∈[0,T ]

max
ℓ=1,...,nh

|hℓ(t; x, z)|
h∗

ℓ

(1.4)

where d(x, z) is the so-called normalized demand function. In Eq. (1.4), hℓ(t; x, z), ℓ = 1, . . . , nh,

denote the nh response functions of interest, whereas h∗
ℓ > 0, ℓ = 1, . . . , nh, represent the corre-

sponding thresholds. These time-dependent responses are obtained from the solution of Eq. (1.2).

Then, the first-passage failure probability function PF (x) is given by

PF (x) =
∫

d(x,z)>1
q(z|x)dz =

∫
z∈Z

IF (x, z)q(z|x)dz (1.5)

where IF (x, z) is the indicator function, with IF (x, z) = 1 if d(x, z) > 1 and IF (x, z) = 0

otherwise. For the type of systems of interest, z usually comprises a large number of components

to represent the stochastic excitation. In particular, nz is often in the order of tens, hundreds, or

thousands [34, 114, 120]. Thus, Eq. (1.5) constitutes a high-dimensional integral whose evaluation

at each design becomes a computationally challenging task [71, 82, 84].

Reliability assessment techniques

Even though some simplified solution strategies have been proposed to compute first-passage prob-

abilities in certain cases [131, 132], the evaluation of PF (x) commonly relies on stochastic sim-

ulation techniques for realistic and practical applications [82, 84, 85]. Some of these techniques

include, e.g., subset simulation [133–136], importance sampling [137], line sampling [138], the

domain decomposition method (DDM) [139], directional importance sampling (DIS) [140], and

the probability density evolution method (PDEM) [141, 142]. Regardless of their efficiency, the

use of these sampling strategies may still require a significant number of system evaluations (in the

order of hundreds or thousands) and, in addition, the corresponding estimates present an inherent

level of variability [7, 84].
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1.2.2 Challenges and classification of solution approaches

Based on the preceding discussion, three main challenges can be identified in the solution of

Eq. (1.1). First, failure probability estimation at any given candidate design during the optimization

process involves, in principle, a large number of dynamic analyses whose computational efforts can

be significant [85]. Second, sampling-based estimates inherently possess a variability level that can

be detrimental to the effectiveness of standard optimization routines [143]. Finally, it is generally

not straightforward to estimate the sensitivities of failure probability functions in a sufficiently ac-

curate manner [65, 144]. All the previous aspects must be properly addressed by RBDO approaches

to obtain meaningful results [111].

Several approaches have been developed for the RBDO of structural dynamical systems under

stochastic excitation. These can be classified according to the search strategy and the type of infor-

mation required during the solution process in three general categories [111], namely, sequential

optimization methods (see Section 1.2.3), stochastic search-based techniques (see Section 1.2.4),

and schemes based on augmented reliability spaces (see Section 1.2.5).

1.2.3 Sequential optimization methods

Sequential optimization schemes are iterative techniques in which, during each iteration, a sub-

optimization problem is constructed based on surrogates for the failure probability functions [101].

Such a problem is generally solved by means of standard search techniques to obtain a new can-

didate solution in a numerically tractable fashion, and the procedure is repeated until a certain

convergence criterion is met. In general, these methods require full reliability assessment at rel-

atively few designs during the entire design process. Different choices for the failure probability

surrogate have been adopted in this context, which are briefly described in the following.
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Exponential-type of approximations

This class of approaches has been demonstrated in RBDO problems where failure probability func-

tions appear only in the constraints. As originally proposed in [145], each sub-optimization prob-

lem is constructed using a linear approximation, around the current candidate solution, for the

logarithm of the failure probability function in terms of the design variables. That is,

PF (x) ≈ P̃F (x; xk) = exp
(

a0 +
nx∑
i=1

ai(xi − xk
i )
)

(1.6)

where P̃F (x; xk) is the current approximation of the failure probability function, xk is the current

candidate solution and ai, i = 0, 1, . . . , nx, are polynomial coefficients. Move limits on the design

variables are imposed to control the approximation quality.

Different strategies have been devised to compute the polynomial coefficients. In [145], a scheme

based on nx + 1 direct evaluations of PF (x) around xk is considered together with an importance

sampling technique [137] for linear structures. This approach is extended in [66] to uncertain

linear systems by approximating the modal properties in terms of a convex linearization scheme

[146, 147] to evaluate PF (x). Alternatively, the method introduced in [148] determines the sought

coefficients by matching the average and first-order moments of PF (x) and P̃F (x; xk) in a region

Ωk around xk, i.e.,

mk,0
PF

= 1
|Ωk|

∫
Ωk

P̃F (x; xk)dx, mk,i
PF

= 1
|Ωk|

∫
Ωk

xiP̃F (x; xk)dx, i = 1, . . . , nx (1.7)

where |Ωk| is the hyper-volume of Ωk; mk,0
PF

is the average of PF (x) over Ωk; mk,i
PF

, i = 1, . . . , nx,

are the first-order moments of PF (x) over Ωk; and P̃F (x) is given by Eq. (1.6). A single simulation

run in the augmented space of random and design variables (see Section 1.2.5) is required to esti-

mate mk,0
PF

and mk,i
PF

, i = 1, . . . , nx. Lastly, the approach presented in [149] exploits reliability sen-

sitivity information to construct the linear expansion, namely, the coefficients ai, i = 0, 1, . . . , nx,

are selected to ensure that the estimates of the first-order derivatives of PF (x) with respect to the
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design variables match those of P̃F (x; xk) in Eq. (1.6).

Convex and conservative approximations

A convex linearization strategy [146] is adopted in [150]. At each iteration, all problem functions

are approximated around the current candidate design in terms of direct and reciprocal variables.

This leads to simple explicit algebraic sub-optimization problems, which can be efficiently solved

using readily available methods [146]. In particular, each function in Eq. (1.1), say f(x), is ap-

proximated around the current candidate design xk as

f(x) ≈ f̃(x; xk) = f(xk) +
∑
(i+)

∂f(xk)
∂xi

(xi − xk
i ) +

∑
(i−)

∂f(xk)
∂xi

xk
i

xi

(xi − xk
i ) (1.8)

where
∑

(i+) and
∑

(i−) indicate summation over the variables belonging to the groups (i+) and (i−),

respectively. Group (i+) contains the variables for which ∂f/∂xi > 0, and group (i−) includes the

remaining variables. This expansion corresponds to a linearization in terms of the direct variables

(xi) for group (i+) and of the reciprocal variables (1/xi) for group (i−). Some of the attractive

features of this scheme pertain to its convexity, separability, and conservatism [146]. Moreover,

additional conservatism can be enforced by including second-order terms in Eq. (1.8) [151].

The practical implementation of Eq. (1.8) requires estimating failure probabilities and their deriva-

tives. To this end, linear approximations for the logarithm of the failure probability functions

are adopted in [150, 152], whereas a two-level approximation scheme within subset simulation

[153, 154] is considered in [151, 155, 156]. Alternatively, the change of probability measure tech-

nique [48] together with the PDEM [141, 142] are implemented in [157]. Finally, mixed discrete-

continuous RBDO problems are addressed in [151, 152] by resorting to a dual formulation that

fully exploits the separability of the corresponding sub-optimization problems.
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A threshold-based local approximation

An approach that utilizes some of the advantageous features of subset simulation [133, 134] is

proposed in [158]. In this setting, a local approximation of PF (x) is constructed by reusing the

reliability analysis results at the previous candidate solution xk. First, the normalized demand

function is approximated as

d(x, z) ≈ d̃(x, z) = d(xk, z) +
nx∑
i=1

δi(xi − xk
i ) (1.9)

where the coefficients δi, i = 1, . . . nx, are computed by means of a least squares fit strategy [158].

Then, the failure probability function is approximated as

PF (x) = P [d(x, z) ≥ 1] ≈ P

[
d(xk, z) ≥ 1−

nx∑
i=1

δi(xi − xk
i )
]

(1.10)

which is evaluated in terms of the complementary cumulative distribution function estimate at the

previous candidate design [134]. In other words, each sub-optimization problem approximates

PF (x) as the failure probability at xk associated with the threshold (1 − ∑nx
i=1 δi(xi − xk

i )). To

control the quality of the approximations, move limits on the design variables are implemented.

Any suitable technique can be adopted to solve the resulting sub-optimization problem.

Line search methods

Line search methods [143] encompass appealing features to address the class of problems of inter-

est. In this regard, as initially suggested in [153, 154], each optimization cycle requires evaluating

failure probabilities only along the search direction. Thus, one-dimensional surrogates for the fail-

ure probability function can be formulated instead of nx-dimensional ones. That is,

PF (xk + τvk) ≈ P̃F (τ ; xk) (1.11)
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where τ ≥ 0 is the step size along the search direction vk. In general, the following steps are

carried out during each optimization cycle [159]. First, a search direction is identified using in-

formation on the problem functions and their sensitivities [143]. Next, one-dimensional failure

probability surrogates are established along the search direction. A surrogate model that uses in-

formation on the failure probability functions and their directional derivatives [160] is adopted in

[153, 154], although alternative metamodels can be implemented as well. Finally, a new candidate

solution is identified by means of a line search procedure. During this process, additional fail-

ure probability evaluations are performed, which are utilized to adaptively improve the quality of

the surrogates. This approach has been successfully applied in the RBDO of complex structural

systems equipped with nonlinear dissipation devices [153, 154, 159], in reliability-based multiob-

jective problems [161] together with a compromise programming formulation [130], and in design

problems incorporating reduced-order models [162] based on substructure coupling for dynamic

analysis [163, 164].

Reliability sensitivity assessment is instrumental in the implementation of line search methods. To

perform this task, the approaches presented in [153, 154, 161, 165] adopt a two-level approxima-

tion scheme [158] that requires a single run of subset simulation [133] plus some additional struc-

tural analyses. An alternative strategy is presented in [166] by resorting to the PDEM [141, 142],

metamodels at the structural response level, and finite differences. Lastly, a sensitivity assessment

framework for linear stochastic structures [140, 167] is implemented in [168] (see Chapter 5).

Multi-level approximation schemes

The optimization techniques proposed in [125, 127, 169, 170], which focus on the RBDO of uncer-

tain linear systems, adopt different surrogate models to approximate, in a simultaneous manner, the

peak responses, failure probability functions, and second-order statistics of the system responses.

First, the peak responses are approximated either in terms of peak factors [125], the so-called auxil-

iary variable vector approach [127], or distributions parametrized in terms of second-order statistics

[170]. A second approximation level is introduced for cases involving multiple responses of inter-
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est, where failure probability is assumed to be proportional to the sum of the component-level

failure probabilities [170] or, alternatively, the so-called inverse reliability constraints are approxi-

mated using kriging metamodels [169]. The resulting sub-optimization problem explicitly depends

on the second-order statistics of the responses of interest. For their evaluation, a third level of ap-

proximation is considered by using direct MCS results obtained at the previous candidate design

(see, e.g., [169, 170]). In general, these methods have successfully addressed RBDO problems in-

volving high-dimensional design spaces and multiple constraints. Nevertheless, it is noted that their

formulation and implementation relies on explicit heuristic approximations for the characteristics

of the stochastic system response, and thus, their accuracy cannot be ensured for general cases.

Heuristic approach based on operator norm optimization

Failure probability minimization of linear structural systems subject to Gaussian excitation is ad-

dressed in [171, 172] by means of a decoupling strategy. In this case, the system response at any

given instant can be expressed as a linear combination of the basic random variables z. Therefore,

h̃(x, z) = Ã(x)z (1.12)

where h̃(x, z) ∈ RnhnT contains the nh normalized responses of interest evaluated at nT dis-

crete time instants, and Ã(x) ∈ RnhnT ×nz is a matrix constructed in terms of response thresholds,

Karhunen-Loève representations, and the adopted integration rule for the equation of motion. The

induced (p1, p2)-norm of this matrix is given by

∥Ã(x)∥p1,p2 = sup
z ̸=0

∥Ã(x)z∥p1

∥z∥p2

= sup
z ̸=0

∥h̃(x, z)∥p1

∥z∥p2

(1.13)

where ∥ · ∥pi
denotes the Lpi

-norm of a vector (i = 1, 2). In particular, the values p1 = ∞ and

p2 = 2 are adopted. The key idea is to employ the operator norm in Eq. (1.13) as a proxy for

the failure probability function, PF (x). Thus, the design that minimizes ∥Ã(x)∥∞,2, which can be

identified through a standard nonlinear optimization problem, is assumed to minimize PF (x).
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1.2.4 Stochastic search-based techniques

Randomized search in the design space is known to be an effective strategy to escape local optima

[173] and, in the context of RBDO, it generally reduces the impact of the variability of failure

probability estimates on optimization procedures [7]. Nevertheless, this strategy commonly faces

challenges related to the computational efforts required in its application. Several stochastic opti-

mization methods based on advanced simulation techniques have been proposed to solve Eq. (1.1),

whose formulation mainly relies on simulated annealing concepts [174].

Asymptotically independent Markov sampling

The asymptotically independent Markov sampling method for global optimization (AIMS-OPT)

[175] has been proposed for finding the minimum of the failure probability function, PF (x). Since

such a problem is equivalent to maximizing exp(−PF (x)/T ) for any given temperature T > 0

[174], and artificially treating the design variables as random, an auxiliary (non-normalized) distri-

bution is defined as

pT (x) ∝ exp
(
−PF (x)

T

)
UX(x), T > 0 (1.14)

where UX(x) is a uniform distribution over the set X = {x ∈ Rnx : xL
i ≤ xi ≤ xU

i , i =

1, . . . , nx}. It is noted that the distribution becomes uniform over the search space for arbitrar-

ily high temperatures, i.e., limT →∞ pT (x) = UX(x). Furthermore, as T decreases, more proba-

bility mass is concentrated around the designs that maximize exp(−PF (x)/T ). In the limit case,

limT →0 pT (x) = UX∗
PF

(x), where X∗
PF

is the optimal solution set. Hence, samples generated ac-

cording to pT (x), T → 0, will be in a vicinity of X∗
PF

with very high probability. By sampling from

a sequence of tempered distributions {pTj
(x), j = 0, 1, . . .} with monotonically decreasing tem-

peratures∞ = T0 > T1 > · · · > Tj > · · · , such that Tj → 0 as j →∞, a transition is established

from a uniform distribution over the initial search space to a distribution densely concentrated near

the optimal solution set. To perform this task, the MCMC method proposed in [176] is adopted. In

general, AIMS-OPT relies on local exploration in neighborhoods of the samples generated at the
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previous annealing level, which has attractive parallelization properties [175].

A transitional Markov chain Monte Carlo-based approach

The approach proposed in [177] addresses cost minimization considering a single reliability con-

straint, i.e., PF (x) ≤ P ∗
F , standard constraints, and deterministic linear structural systems under

Gaussian excitation. In this case, a (non-normalized) target distribution is defined as

pT (x) ∝ UXaux(x) exp
(
− ln(c(x)/c0)

T

)
, T → 0 (1.15)

where c0 is a scaling factor and UXaux(x) is a uniform distribution over the set

Xaux = {x ∈ X ⊂ Rnx : PF (x) ≤ P ∗
F ∧ gj(x) ≤ 0, j = 1, . . . , ng} (1.16)

To generate samples from the target distribution limT →0 pT (x), the transitional Markov chain

Monte Carlo (TMCMC) method [178, 179] is adopted (see Section 1.3.4). A sequence of dis-

tributions associated with temperatures∞ = T0 > T1 > · · · > Tm → 0 is introduced. The initial

samples, which uniformly populate Xaux, are generated as samples conditional on the auxiliary

failure event F̃ = {PF (x) ≤ P ∗
F} with the design variables uniformly distributed over the set satis-

fying the deterministic constraints. To this end, subset simulation [133, 134] is used. For efficient

reliability assessment, the DDM [139] is implemented with adaptive sample sizes [177].

Two-phase Bayesian model updating framework

The approach presented in [180–184] addresses constrained and unconstrained RBDO problems

involving continuous, discrete, and mixed discrete-continuous design variables (see Chapters 2 to

4). Similar to [175, 177], an auxiliary (non-normalized) distribution is introduced as

pT (x) ∝ UXfeasible(x) exp
(
−c(x)

T

)
, T > 0 (1.17)



CHAPTER 1. INTRODUCTION 16

where UXfeasible(x) is a uniform distribution over the feasible design space

Xfeasible = {x ∈ X : rj(x) ≤ 0, j = 1, . . . , nr ∧ gk(x) ≤ 0, k = 1, . . . , ng} (1.18)

It is noted that limT →∞ pT (x) = UXfeasible(x), whereas samples following the distribution pT (x),

T → 0, will densely populate a vicinity of the optimal solution set X∗
c . Thus, the original RBDO

problem in Eq. (1.1) can be interpreted as a Bayesian model updating problem with prior distribu-

tion UXfeasible(x) and (non-normalized) likelihood function limT →0 exp(−c(x)/T ) [183].

Samples following the target posterior distribution limT →0 pT (x) are retrieved using the TMCMC

method [178, 179] with temperatures∞ = T0 > T1 > · · · > Tm → 0. To obtain the initial set of

samples, which follows UXfeasible(x), an auxiliary optimization problem is introduced as

minx h(x) = max
{
0, g1(x), . . . , gng(x), r1(x), . . . , rnr(x)

}
s.t. x ∈ X

(1.19)

with corresponding optimal solution set X∗
h = Xfeasible [180, 183]. Since Eq. (1.19) involves only

side constraints on the design variables, the TMCMC method can be directly applied to generate

uniformly distributed feasible designs [181]. This leads to a two-phase strategy in which the same

sampling technique is implemented to explore the feasible and optimal solution sets in a sequential

manner [183]. For improved efficiency, kriging-based adaptive metamodels have been used to

approximate the failure probability functions [180, 181, 184].

1.2.5 Schemes based on augmented reliability spaces

An alternative framework for the solution of Eq. (1.1) relies on the so-called augmented reliability

problem [67, 185]. In this setting, the design variables x are artificially treated as random, i.e.,

x ∼ p(x), where p(x) is usually taken as a uniform distribution over the design space. Then, the



CHAPTER 1. INTRODUCTION 17

probability of the failure event F in the augmented reliability space ⟨x,θ⟩ is given by

P (F ) =
∫

x∈Rnx

∫
θ∈Rnθ

IF (x,θ)q(θ|x)p(x)dθdx (1.20)

According to Bayes’ theorem [23], the failure probability function PF (x) can be written as

PF (x) = P (F |x) = P (F )p(x|F )
p(x) (1.21)

where p(x|F ) is the marginal distribution of x conditioned on F . Further, if p(x) = UX(x), then

PF (x) ∝ p(x|F ). Based on Eq. (1.21), the failure probability function PF (x) can be equivalently

expressed in terms of the conditional marginal PDF p(x|F ). The approaches reported in this sub-

section take advantage of this basic relationship to decouple the original RBDO problem.

Stochastic subset optimization

Stochastic subset optimization (SSO) is an iterative approach introduced in [186, 187] for global

reliability optimization. In this framework, each iteration shrinks the search domain to reduce its

average failure probability value as follows. First, a total of NT failure samples in the ⟨x,θ⟩-space

are generated using MCMC techniques, where x is uniformly distributed over the current search

space X̂ ⊂ X. Then, a class S̆ of admissible subsets in X̂ is defined with specified characteristics

such as, e.g., size or shape. Finally, the search region is updated as

X̂← argmin
S∈S̆

NS

VS

(1.22)

where NS is the number of failure samples in S, and VS is the volume of S. This non-smooth

optimization problem is solved using any suitable method (e.g., [188]). According to [189], the

appropriate definition of the admissible subsets remains one of the main challenges in SSO, espe-

cially for higher dimensions and disjoint regions. Generally, hyper-rectangles and hyper-ellipses

with adjustable ratio between dimensions have been implemented [186, 187]. The SSO method has
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been demonstrated in cases involving a relatively small number of design variables [190, 191].

Non-parametric stochastic subset optimization

The non-parametric stochastic subset optimization (NP-SSO) method [192–194] is an extension

of SSO to account for reliability constraints. Instead of using parametrized subsets to shrink the

search space, NP-SSO focuses on the estimation of the marginal PDF p(x|F ) using boundary-

corrected kernel density estimation (KDE) methods [195–198]. Rejection sampling [81] is adopted

to generate the independent and identically distributed (i.i.d.) failure samples required by KDE

methods. An iterative scheme is implemented in which regions with smaller failure probability

values are identified using several soft-computing techniques [199–202]. For constrained RBDO

problems, an additional refinement stage is introduced to improve the accuracy of the resulting

surrogate for PF (x) near the boundaries of the feasible design space [194]. Although NP-SSO

circumvents some of the difficulties arising in the SSO method, the robustness of KDE approaches

for density fitting decreases in high dimensions [203]. Thus, the range of applications of NP-SSO

seems to be somewhat limited in terms of the number of design variables.

Approach based on partitioned design space

The iterative approach proposed in [204] aims to obtain a surrogate for the failure probability

function in terms of a partitioning of the design space. During each iteration, a number of samples

within the current subspace are first obtained. Using these samples, the marginal PDF of the design

variables conditioned on failure is approximated in terms of second-order polynomials [205, 206],

based on which a new subspace is identified. Ultimately, a failure probability surrogate is obtained

for each partition rather than for the entire design space [204]. The method has been demonstrated

in reliability-constrained cost minimization problems involving relatively low-dimensional design

spaces.



CHAPTER 1. INTRODUCTION 19

Maximum entropy-based method

A strategy based on the maximum entropy (ME) method (see, e.g., [207, 208]) is proposed in [209]

for cost minimization under a single reliability constraint. Specifically, ME estimation under first

moment constraints is implemented to approximate p(x|F ) over the entire design space as

p(x|F ) ≈ p̃(x|F ) = exp
(
−α− λT x

)
(1.23)

where α and λ = ⟨λ1, . . . , λnx⟩T are obtained based on available failure samples [209, 210]. Subset

simulation [133, 134] is implemented to obtain the required failure samples and to estimate P (F ) ≈

P̂ (F ). Based on p̃(x|F ) and P̂ (F ), an approximation of PF (x) is constructed following Eq. (1.21).

Further, a three-step strategy is formulated to account for the variability in P̂ (F ), α and λ. First,

suitable confidence intervals (CIs) are defined for these parameters [209–211]. Then, a set of

explicit sub-optimization problems are solved, where each of them corresponds to a realization of

P̂ (F ), α and λ drawn from their CIs. Finally, the best design among the resulting solutions is

identified using a screening procedure. According to [209], the performance of the approach is

expected to decrease for failure probability functions with a strongly nonlinear behavior.

Scheme based on equivalent safety-factor constraints

Equivalent safety-factor constraints are proposed in [212] to replace the original reliability con-

straints and transform the RBDO problem into a standard nonlinear optimization problem. Such

equivalent constraints are given by η∗
j d̄j(x) ≤ 1, j = 1, . . . , nr, where η∗

j ≥ 1 is the designated

safety factor and d̄j(x) > 0 is a user-defined auxiliary demand function. Furthermore, the func-

tional relationship between safety factor and target reliability level is given by [212]

P
[
dj(x,θ)− η∗

j d̄j(x) > 0
]

= P ∗
Fj
⇐⇒ P

[
dj(x,θ)
d̄j(x)

> η∗
j

]
= P ∗

Fj
(1.24)
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Based on Eq. (1.24), the values of η∗
j , j = 1, . . . , nr, can be estimated using, e.g., sampling tech-

niques. Direct MCS and parallel subset simulation [213] can be implemented in the augmented

reliability space to obtain all safety factors simultaneously [212]. The scheme has been applied to

cases involving relatively few design variables.

1.2.6 Remarks

A brief overview of state-of-the-art methods for the RBDO of structural systems under stochastic

excitation has been presented in this section. These approaches have been demonstrated in a variety

of problems, including complex finite element models and nonlinear structural systems. In this

regard, methods for optimal design in stochastic structural dynamics seem to be applicable not

only to academic problems, but also to practical engineering design situations.

Following the above presentation, it is noted that the approaches described in this section encom-

pass different advantages and difficulties. Sequential optimization approaches (see Section 1.2.3)

are generally more efficient and have been demonstrated in higher-dimensional design spaces, al-

though their usually local nature may not be appropriate for some types of problems. Alternatively,

while stochastic search-based techniques (see Section 1.2.4) offer a flexible solution treatment

which is suitable for problems involving multiple optima, they may be computationally intensive

and may face some challenges in high-dimensional design spaces. Lastly, schemes based on aug-

mented reliability spaces (see Section 1.2.5) allow fully decoupling the RBDO problem, but they

have been mostly demonstrated in cases with relatively few design variables. Therefore, the most

appropriate method for each particular problem must be carefully chosen. To this end, some rele-

vant aspects that may be considered include the characteristics of the design vector (dimensionality

and discrete/continuous nature), possibility of having multiple optima, linearity of the structural

system, available computational resources, and the role of the failure probability functions (as ob-

jective and/or constraint functions).

The previous discussion suggests that computational aspects play a key role in designing civil engi-
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neering structures. In this regard, further developments in certain areas can lead to general advance-

ments in the RBDO of structural dynamical systems under stochastic excitation. These include,

indicatively, the implementation of general surrogate modeling techniques for mixed discrete-

continuous spaces, the synergetic integration of novel stochastic simulation methods for reliability

and sensitivity assessment with suitable optimization procedures, and the formulation of special-

ized parallelization strategies. Furthermore, specific enhancements can be envisaged for each of

the herein described types of RBDO methods in order to extend their applicability and improve

their efficiency [111]. By addressing the previous challenges, adequate final designs can be estab-

lished and, more importantly, valuable insight can be obtained to assist complex decision-making

processes in civil engineering practice.

1.3 Model updating

Civil engineering structures and systems are characterized, as previously discussed, by a constant

and typically uncontrolled exposure to their environment. Diverse processes such as, e.g., compo-

nent deterioration, natural hazards and anthropogenic events, can affect the performance of these

systems to a significant extent. In this regard, due to the impossibility of accurately predicting such

phenomena, assessing the actual state of civil engineering structures and systems based on available

data is of paramount importance [18, 214–216]. Moreover, the revolutionary increase in informa-

tion sharing, data availability and computational capabilities experienced over the last decades has

facilitated the collection, transmission and processing of measurements to an unprecedented level

[116]. This is evidenced, e.g., by the implementation of supervisory control and data acquisition

(SCADA) systems [217, 218] and contemporary structural monitoring procedures [25, 58]. Such

scenario provides unique opportunities for the development of effective data-driven strategies to-

wards the lifelong management of civil engineering assets.

Model updating is a particularly attractive tool for system identification based on available data, as

it allows integrating engineering models and measurements to gain insight into the actual system
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state (e.g., [219]). Nevertheless, modeling and monitoring processes in civil engineering are inher-

ently uncertain due to diverse factors including, for instance, lack of information, complexity of

the underlying system physics, potential sensor malfunctioning, inability to forecast environmental

processes, and inaccuracies in data processing routines [24, 86, 220]. Taking these uncertainties

into account has been widely acknowledged as critical in the formulation and implementation of

meaningful model updating procedures [55, 221]. In this regard, Bayesian model updating ap-

proaches [7, 24, 53–55, 115, 222] enable a rigorous theoretical framework for model updating with

explicit uncertainty treatment. By resorting to the interpretation of probability as a measure of the

plausibility of a given hypothesis [23, 223], these procedures ultimately yield an updated proba-

bilistic distribution of models that is consistent with available data and prior knowledge [115].

In this thesis, attention is directed to two classes of model updating problems. These correspond to

contaminant source detection in WDNs (see Section 1.3.1) and the identification of complex struc-

tural dynamical systems (see Section 1.3.2). Bayesian model updating, which plays an instrumental

role in the development of the herein proposed approaches, is concisely formulated in Section 1.3.3.

Some pertinent solution techniques for Bayesian model updating problems are briefly described in

Section 1.3.4. Finally, Section 1.3.5 provides some general remarks.

1.3.1 Contaminant source detection in water distribution networks

Water distribution networks are regarded as critical infrastructure systems due to the societal and

industrial dependence on their performance [16]. Thus, it is pivotal to ensure the efficiency, reliabil-

ity, and robustness in their operation. Nevertheless, these increasingly interwoven, large-scale and

complex hydraulic systems are constantly prone to performance-detrimental disturbances driven by

uncontrollable external factors [220]. Examples of these disturbances include leakage [224–226],

component failure [30, 227], unauthorized demand [228], sabotage [5], and contamination [229].

In this regard, developing effective data-driven methodologies to identify WDN disturbances con-

stitutes a crucial task from economical, technical, environmental and public health perspectives
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[230, 231]. In particular, and given the high susceptibility of public health to the quality of drink-

ing water [231], the accurate and timely identification of contaminant intrusion is a highly relevant

goal to ensure water safety in distribution systems. Hence, one of the topics addressed in this the-

sis corresponds to contaminant source detection [4], which entails characterizing the source of an

unwanted substance based on available measurements.

From a broad perspective, available disturbance detection methodologies for WDNs can be cate-

gorized in hardware-based, data-driven, and model-based approaches. Hardware-based approaches

pinpoint disturbance locations using application-specific techniques [232–234] which, despite a

high effectiveness level, may be time-consuming, labor-intensive, and expensive [235]. Alterna-

tively, data-driven and model-based detection approaches use measurements to characterize system

perturbations via computational procedures [236, 237]. While data-driven methods focus on distin-

guishing abnormal behavior directly from sensor records [237], model-based techniques compare

available measurements with model predictions to identify network disturbances [238–241]. The

latter encompass attractive features pertaining to their ability to integrate historical data records,

engineering knowledge and the underlying physics of the WDN in a unified formulation.

Some model updating techniques for contaminant source detection rely on direct optimization pro-

cedures [241, 242]. In these methods, the aim is to identify the single contaminant outline that

provides the best match between sensor measurements and model predictions [238–240, 243, 244].

Nevertheless, since the underlying physics of contaminant propagation through WDNs usually

leads to different contaminant outlines yielding very similar predictions at the measurement points,

the solution of the related optimization problem is generally non-unique. Further, the inherent

uncertainties involved in the modeling and monitoring processes of WDNs give rise to uncertain

data and model predictions [32, 46, 245, 246] which, in turn, commonly yield ill-posed and ill-

conditioned inverse problems. By adopting a fully probabilistic treatment of contaminant source

detection problems, Bayesian approaches have been recently developed in order to address the

previous challenges. These include, indicatively, belief propagation methods [247], the use of beta-
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binomial conjugate distributions [75], real-time updating approaches [248], backward probabilis-

tic modeling techniques [73], Bayesian belief network formulations [249, 250], MCMC methods

[251–253], and an approach based on Bayesian model class selection [254] (see Chapter 6). Over-

all, the previous techniques present different scopes, advantages and limitations, and they have been

applied to diverse contaminant source detection problems with various levels of effectiveness.

1.3.2 Model updating of complex structural dynamical systems

Current computational capabilities have enabled the use of high-fidelity structural dynamical mod-

els in routine engineering analyses, e.g., [219, 255–258]. Moreover, the ever-growing availability

of sensors is expected to propel an increase in the overall amount of dynamical response measure-

ments [116]. Thus, it can be argued that the lifelong management of civil engineering assets can be

substantially benefitted in the near future by the development of methodologies to evaluate the state

of complex structural dynamical systems based on available data [214, 259, 260]. This translates,

in practice, to solving high-dimensional inverse problems with inherently uncertain measurements

and response predictions. To this end, a fully probabilistic Bayesian formulation constitutes a suit-

able and flexible framework for the explicit treatment of such uncertainties [24, 261, 262].

Notwithstanding the relevance of high-dimensional Bayesian updating of involved structural dy-

namical models using measured response data, relatively few contributions have addressed this

class of problems. In this regard, the sampling-based techniques presented in [263, 264] rely on

auxiliary dynamic systems to establish the transition mechanism in a MCMC framework. That is,

fictitious dynamical systems are employed to explore the posterior distribution of the model pa-

rameters. These methods have proved quite effective in high-dimensional identification problems,

although their implementation faces practical issues associated with the calibration of the algorithm

parameters and the need for accurate sensitivity information [265, 266]. Alternative, the approach

presented in [267] considers an effective implementation of reliability methods to explore the pos-

terior distribution (see Chapter 7). Additional techniques that have been proposed include subspace



CHAPTER 1. INTRODUCTION 25

identification methods [268] and Kalman-filtering-based techniques [269]. From a general perspec-

tive, the previous approaches have been applied in different types of structural systems with various

levels of success, and they offer diverse advantages and limitations. However, it is believed that

more developments are needed in this area to improve the effectiveness of identification procedures

in the context of complex structural dynamical systems.

1.3.3 Bayesian model updating framework

Following the presentation in Sections 1.3.1 and 1.3.2, it is seen that Bayesian model updating is

instrumental in the formulation of the contributions presented in this thesis. Thus, the main aspects

of Bayesian model updating are briefly described in the following.

Consider a probabilistic model class M , which comprises a set of models M(θ) parameterized

according to the set of random variables θ ∈ Θ ⊂ Rnθ , and available measurement data D ob-

tained from the system of interest [115]. In the context of civil engineering structures and systems,

the model class allows incorporating assumptions about the underlying physics of the system, a

probabilistic measure of the resemblance between measurements and predictions, and a probability

distribution that represents the prior state of knowledge about the model parameters θ [53, 54].

In general, these parameters can be associated with, e.g., physical characteristics of the system,

probabilistic properties of the system response, or both [53–55].

Bayesian model updating procedures aim to obtain revised probabilistic information about the sys-

tem state based on available data [24], which in turn enables updated predictions of, e.g., the system

response [263, 267] or its reliability [215, 270]. Specifically, the goal of this class of approaches

is to characterize the posterior (updated) PDF of the model parameters θ, which is denoted by

p(θ|M, D). Further, according to Bayes’ theorem, this distribution is given by [23, 53]

p(θ|M, D) = p(D|M,θ)p(θ|M)
P (D|M) (1.25)
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where p(θ|M) is the prior PDF, p(D|M,θ) is the likelihood function, and P (D|M) is the so-called

evidence for the model class M . In this setting, the prior distribution represents the initial or prior

belief about the distribution of θ, whereas the likelihood function quantifies the plausibility of

observing the data D given the model M(θ). Moreover, the evidence is given by

P (D|M) = Ep(θ|M) [p(D|M,θ)] =
∫
θ∈Θ

p(D|M,θ)p(θ|M)dθ (1.26)

where Ep(θ|M)[·] denotes expectation with respect to the prior PDF. Thus, from a Bayesian perspec-

tive [23], P (D|M) represents the prior robust probability of the hypothesis that measurements D

are obtained from the model class M . The evaluation of Eq. (1.26), which is generally not straight-

forward, is instrumental in the implementation of, e.g., Bayesian model class selection [271] and

model averaging [272].

Likelihood function

The definition of the likelihood function is a central element of Bayesian model updating formu-

lations [53, 55, 115]. In general, as already pointed out, the likelihood function p(D|M,θ) can be

construed as a measure of the plausibility of obtaining the set of measurements D for a given model

M(θ). For civil engineering structures and systems, such a measure is commonly formulated in

terms of the so-called prediction errors, that is, the differences between available measurements and

model predictions [53]. In this regard, it is assumed that the available data D comprise nd measure-

ments associated with different channels of measurements and different time instants, which are

contained in a vector d∗ ∈ Rnd . The corresponding predictions associated with the model M(θ)

are denoted by d(θ) ∈ Rnd , whose computation often relies on complex black-box computational

procedures. Then, the vector e(θ) ∈ Rnd comprising the prediction errors for all measurement

channels and time instants is defined as [53, 221]

e(θ) = y∗ − y(θ) (1.27)
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In Eq. (1.27), the measurements y∗ deviate from the actual system responses as a result of, e.g.,

measurement noise, whereas the predictions y(θ) cannot perfectly reproduce the actual system

behavior due to, for instance, modeling assumptions and numerical accuracy. Then, the likelihood

function p(D|M,θ) is established by assigning a distribution to the prediction errors in Eq. (1.27).

Typically, a zero-mean normal distribution with covariance matrix Σ is adopted, that is,

p(D|M,θ) = det(2πΣ)− 1
2 exp

(
−1

2 [y∗ − y(θ)]T Σ−1 [y∗ − y(θ)]
)

(1.28)

which corresponds to the maximum entropy distribution for a given mean and covariance matrix

[23]. A diagonal covariance matrix comprising the prediction error variances is often assumed,

although alternative formulations can be used as well [55]. Furthermore, parameters associated

with the probabilistic description of the prediction errors can be also included in the set of model

parameters. For example, the covariance matrix in Eq. (1.28) can be taken as Σ = Σ(θ).

Extension to multiple probabilistic model classes

The previous formulation can be extended to consider a set of NM probabilistic model classes

M = {Mk, k = 1, . . . , NM} (1.29)

where Mk corresponds to the set of parametrized models Mk(θk) with θk ∈ Θk ⊂ Rnθk [271]. The

corresponding posterior probabilities are given by

P (Mk|M, D) = P (D|M, Mk)P (Mk|M)∑NM
l=1 P (D|M, Ml)P (Ml|M)

, k = 1, . . . , NM (1.30)

where P (Mk|M) and P (D|M, Mk) denote, respectively, the prior probability and the evidence of

model class Mk. In this setting, P (Mk|M) measures how plausible is the k-th probabilistic model

in the absence of data. Often, an uninformative prior state of knowledge is assumed regarding these

probabilities and, thus, P (Mk|M) = 1/NM , k = 1, . . . , NM . Further, the evidences P (D|M, Mk),
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k = 1, . . . , NM , are computed according to Eq. (1.26), which constitutes a challenging task in

practical applications [178].

The set M comprises various hypothesis about the system of interest in terms of, e.g., different

assumptions about the underlying physics of the system, alternative definitions of the likelihood

function, or diverse parametrization schemes. In this setting, Bayesian model class selection [271]

aims to identify the most plausible model class based on the available measurement data. Such

a model yields the highest posterior probability according to Eq. (1.30) and, therefore, it can be

interpreted as the most likely hypothesis about the system of interest based on available data. Al-

ternatively, the entire set of model classes can be employed in a model averaging treatment [272] to

make predictions about the system of interest that are consistent with the different hypothesis and

available measurements.

1.3.4 Solution methods for Bayesian model updating problems

Closed-form expressions for p(θ|M, D) in Eq. (1.25) are not generally available for practical prob-

lems. Thus, solution schemes for Bayesian model updating problems aim to characterize the pos-

terior distribution either with explicit approximations or in terms of a set of posterior samples.

To construct explicit approximations for the posterior distribution, Laplace’s method of asymptotic

approximation is usually adopted [53]. In this framework, the posterior distribution is approximated

by a multi-dimensional Gaussian distribution centred at the most probable value of the model pa-

rameters. This generally requires identifying the point in the model parameter space that yields

the maximum likelihood value and, in addition, to evaluate the Hessian matrix of the likelihood

function at that point [53, 215, 273]. As a byproduct of these computations, an approximation of

the evidence can be also obtained. Such techniques usually yield satisfactory accuracy for large

amounts of data and globally identifiable models [215, 245, 271, 273, 274]. Nevertheless, their

implementation faces some challenges in problems with insufficient data or in unidentifiable cases

[54, 275]. In these scenarios, the posterior PDF tends to be not very peaked, flat, or multimodal,
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which in turn makes the validity of asymptotic approximation assumptions doubtful.

A more general approach for Bayesian model updating corresponds to the use of simulation tech-

niques to obtain samples consistent with the posterior distribution. Standard methods, such as direct

MCS [80] and rejection sampling [276], are usually not applicable in practical situations. Hence,

MCMC methods [81] are commonly adopted to devise sampling-based Bayesian model updating

techniques. In this setting, samples are generated by simulating a Markov chain whose stationary

state matches a target distribution such as, e.g., the posterior distribution. In the following, pertinent

state-of-the-art sampling-based Bayesian model updating methods are briefly summarized.

Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm [88, 89] is possibly the most popular MCMC method.

In order to generate a Markov chain with stationary distribution equal to, e.g., p(θ|M, D), the

following procedure is considered. To transition from the current state, θl, to the next state, θl+1, a

candidate sample θc is first generated from a proposal distribution π∗(θc|θl). Then, the next state

of the Markov chain is selected as

θl+1 =


θc, with probability α

θl, with probability 1− α
(1.31)

where the acceptance probability α is given by

α = min
{

1,
p(θc|M)p(D|M,θc)
p(θl|M)p(D|M,θl)

π∗(θl|θc)
π∗(θc|θl)

}
(1.32)

It can be shown that the above procedure yields the target distribution independent of the choice of

the proposal distribution [89, 277]. Nevertheless, the definition of π∗(·|·) has a critical impact on

the performance of the M-H algorithm. While this method is relatively simple to implement and

has been demonstrated in diverse model updating applications [99, 251, 278–281], it can present

difficulties in certain cases, including very peaked or multimodal posterior distributions [178, 263].
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Furthermore, the evidence in Eq. (1.26) cannot be directly estimated with this approach.

Transitional Markov chain Monte Carlo

The TMCMC method, initially proposed in [178], is a widely used sampling technique for Bayesian

model updating. Following some of the ideas presented in [282], a sequential sampling strategy is

adopted to achieve a gradual transition from the prior to the posterior distribution. Specifically, a

sequence of non-normalized intermediate distributions is defined as

pj(θ) ∝ p(θ|M)p(D|M,θ)αj , j = 0, . . . , m (1.33)

where the exponents αj conform a monotonically increasing sequence such that 0 = α0 < · · · <

αm = 1. Hence, the samples at the initial stage (j = 0) follow the prior distribution, whereas

posterior samples are obtained at the final stage (j = m). During the j-th stage of the method, sam-

ples following the intermediate distribution pj(θ) are generated using MCMC [81]. In particular, a

number of independent Markov chains are generated using the traditional M-H algorithm [88, 89],

where the corresponding initial states are samples selected from the previous stage using impor-

tance sampling and resampling concepts [178]. The exponents αj , j = 0, . . . , m, are adaptively

chosen to achieve a smooth transition between consecutive distributions. In addition, an estimate

of the evidence can be obtained as a byproduct of the sampling process [178, 179].

Several applications have demonstrated the effectiveness and robustness of the TMCMC method

[93, 95, 283–285]. Further, the annealing nature of the approach [174] and its parallelization fea-

tures enable efficient implementation strategies [286–288]. Nevertheless, the method may not be

suitable to address problems involving high-dimensional parameter spaces [179].

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [265, 289] relies on an auxiliary conservative Hamiltonian sys-

tem [290] to establish the transition mechanism in a MCMC framework. Specifically, the model
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parameters θ ∈ Rnθ play the role of position variables, whereas an auxiliary vector p ∈ Rnθ of mo-

mentum variables is introduced. Although alternative formulations have been proposed [291–293],

the Hamiltonian H(θ, p) is typically defined as [265]

H(θ, p) = − ln p(θ|D, M) + 1
2pTM−1p (1.34)

where M ∈ Rnθ×nθ is a symmetric positive-definite matrix. It can be shown that θ and p are

statistically independent, p follows a zero-mean Gaussian distribution with covariance matrix M,

and θ ∼ p(θ|M, D) [294]. The trajectory of the auxiliary system (θ, p) is determined by

dθ

dt
= ∂H

∂p
(1.35)

dp
dt

= −∂H

∂θ
(1.36)

The HMC method is implemented as follows. First, an initial system state is defined in terms of the

current value of θ and an independent realization of p. Then, Eqs. (1.35) and (1.36) are solved to

determine the system trajectory using, e.g., the leapfrog algorithm [265, 295]. Finally, the system

state at a user-defined time instant tf defines a candidate sample that is either accepted or rejected.

Diverse applications, including high-dimensional cases, have demonstrated the capabilities of the

HMC method [94, 263, 296, 297]. Nevertheless, some of its implementation challenges relate to

the need for sensitivity information and the appropriate definition of the algorithm parameters.

Bayesian model updating with structural reliability methods

Bayesian model updating with structural reliability methods (BUS) relies on the formulation of

an equivalent reliability problem [298]. By introducing a uniform random variable u ∈ [0, 1], a

reliability problem can be defined in terms of an auxiliary failure event FD as

FD = {u < c p(D|M,θ)} , θ ∼ p(θ|M) (1.37)
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where the so-called likelihood multiplier c > 0 must satisfy the inequality [276]

c ≤ L−1
max =

(
sup
θ∈Θ

p(D|M,θ)
)−1

(1.38)

From Eqs. (1.37) and (1.38), it can be shown that p(θ|FD) = p(θ|M, D) and P (D) = c−1P (FD),

where P (FD) is the probability of FD [298]. Thus, sampling from the posterior distribution

p(θ|M, D), which has an unknown shape, is restated as sampling from a distribution with known

shape but unknown support, i.e., the conditional marginal distribution p(θ|FD). This insight en-

ables, in principle, the entire battery of structural reliability methods as potential solution tech-

niques for Bayesian model updating problems. Furthermore, since dimension sustainability and

application robustness are well-recognized features of sampling-based reliability methods [82, 84],

BUS can be an attractive choice for complex identification problems involving high-dimensional

parameter vectors.

Diverse applications of BUS have demonstrated its effectiveness; see, e.g., [47, 299–302]. In this

regard, the choice of the likelihood multiplier is a crucial aspect. While selecting a value such that

c > L−1
max leads to a truncated version of the posterior distribution [303], too small values for c

can lead to extremely rare failure events. This parameter can be defined a priori [298] and further

complemented by post-processing the resulting failure samples [303], or adaptively chosen during

the sampling process [267, 304, 305]. Nevertheless, depending on the quality of the available data,

the auxiliary failure domain can present a complex geometry or a very small failure probability.

1.3.5 Remarks

Contaminant source detection in WDNs and the identification of complex structural dynamical

systems constitute relevant and challenging tasks in the context of civil engineering structures and

systems. In this regard, Bayesian model updating represents a suitable methodology, whereby a

rigorous probabilistic framework is adopted for characterizing the unavoidable modeling and mea-

surement uncertainties arising in practical scenarios. While sampling-based approaches can be



CHAPTER 1. INTRODUCTION 33

viewed as versatile and robust solution techniques, the choice of a particular method is problem-

dependent. Some of the relevant features to select a sampling technique comprise the quality and

amount of measurement data, the need for estimating the evidence, the feasibility of computing

sensitivity measures, available computational resources, the possibility of having a multimodal pos-

terior distribution, and the number of model parameters. Thus, it can be argued that further research

is needed to furnish effective solution schemes for the herein discussed challenges. Specifically,

sound theoretical formulations must be complemented with efficient numerical implementation

strategies to yield meaningful identification results in practical scenarios. Developments in this

direction can have a beneficial impact on the data-driven management of civil engineering assets

over their lifetime, which can subsequently enhance their efficiency, reliability, and robustness.

1.4 Aims and objectives

This thesis aims to develop effective strategies to address a number of challenges pertaining to

the fields of RBDO and model updating of civil engineering structures and systems. In particu-

lar, the focus is on the specific topics of RBDO of structural dynamical systems under stochastic

excitation, contaminant source detection in WDNs, and model updating of involved structural dy-

namical systems. Due to the complexity of these systems, the extension and synergetic integration

of stochastic simulation methods play an instrumental role in the formulation and implementation

of the herein presented developments. Following the previous presentation, six specific objectives

are formulated.

• Reliability-based design optimization:

1. To formulate a stochastic search-based method for constrained RBDO problems involv-

ing structural dynamical systems under stochastic excitation.

2. To extend the method developed in Objective No. 1 to general constrained engineering

design problems, including mixed discrete-continuous design spaces.
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3. To devise efficient implementation strategies of the stochastic search-based technique

for constrained and unconstrained RBDO problems involving continuous, discrete, or

mixed discrete-continuous design variables and realistic structural dynamical models

under stochastic excitation.

4. To develop an efficient reliability sensitivity assessment framework, in the context of

linear structural dynamical systems under Gaussian loading, in order to solve con-

strained RBDO problems and assess the sensitivity of final designs.

• Model updating:

5. To formulate a sampling-based Bayesian model class selection approach for the solution

of contaminant source detection problems in WDNs.

6. To develop an effective sampling-based BUS approach for structural dynamical systems

involving high-dimensional parameter spaces and measured response data.

1.5 Contributions

This thesis encompasses six original contributions corresponding to the six specific objectives

stated in Section 1.4. These contributions are summarized in the following.

1.5.1 Reliability-based design optimization

Two-phase stochastic optimization technique

The first contribution relates to the development of a stochastic optimization approach to address

the constrained RBDO of structural dynamical systems under stochastic excitation (see Objective

No. 1). Building on the concept of simulated annealing, the constrained optimization problem

is restated as an equivalent Bayesian model updating problem. Specifically, a two-phase solution

strategy is proposed. Phase I generates uniformly distributed feasible designs, while Phase II ul-
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timately populates a vicinity of the optimum solution set. In both phases, the transitional Markov

chain Monte Carlo method is implemented. Numerical results indicate that the approach can effec-

tively handle RBDO problems involving complex nonlinear structural models. The key findings of

this study are reported in [181] and presented in Chapter 2.

An extension of the first contribution is introduced to address a class of constrained design opti-

mization problems, including mixed discrete-continuous design spaces (see Objective No. 2). The

method does not require special constraint-handling techniques, and relatively few user-defined pa-

rameters are needed. Numerical results indicate that the approach constitutes a flexible, efficient

and competitive optimization technique for the type of problems under consideration, including

cases with multiple local optima, complex feasible design spaces, and discontinuous feasible re-

gions. These results are published in [183] and included in Chapter 3.

The third contribution encompasses efficient implementation strategies, in the context of the two-

phase optimization method, to address the RBDO of structural dynamical systems under stochas-

tic excitation (see Objective No. 3). Adaptive sampling techniques are implemented for mixed

discrete-continuous design variables, and an adaptive surrogate strategy that fully exploits the an-

nealing nature and parallelization features of the method is adopted to approximate first-passage

probabilities. Three application examples involving realistic structural models under stochastic

excitation, which have been borrowed from [180–182], demonstrate the performance of the opti-

mization method. The key aspects of the development are reported in [184] and in Chapter 4.

Sensitivity assessment of optimum designs

The fourth reported contribution entails the extension of directional importance sampling, a simu-

lation technique tailored to linear structural systems under Gaussian excitation, as a reliability sen-

sitivity assessment framework in the context of RBDO and optimum design sensitivity assessment

(see Objective No. 4). Numerical results indicate that the proposed approach provides a potentially

useful tool to address a practical class of design optimization problems. The main features of this



CHAPTER 1. INTRODUCTION 36

approach are presented in [168] and in Chapter 5.

1.5.2 Model updating

Bayesian model class selection for contaminant source detection

The fifth contribution of this thesis proposes a simulation-based Bayesian model class selection

framework to address contaminant source detection problems in WDNs (see Objective No. 5).

Specifically, each potential source location is represented as a model class whose corresponding

parameters characterize the starting time and intensity of the contamination event. To perform

the required calculations, the TMCMC method is appropriately integrated with a suitable WDN

simulator. Then, the model class with the highest posterior probability is interpreted as the most

plausible source location. Numerical results suggest that the method can provide relevant informa-

tion for decision making even in cases involving relatively scarce and noisy measurements. The

key aspects of this development are reported in [254] and included in Chapter 6.

BUS for structural dynamical systems with high-dimensional parameter spaces

In the sixth contribution, an effective implementation of BUS is developed for problems involving

structural dynamical systems, measured response data, and relatively high-dimensional parameter

spaces (see Objective No. 6). An adaptive strategy to define the equivalent failure event is pro-

posed, which circumvents the need for prior knowledge on the maximum of the likelihood function,

whereas parametric reduced-order models are integrated for an efficient numerical implementation.

The main outcomes of the study are presented in [267] and in Chapter 7.

1.6 Structure of the thesis

This thesis is composed of eight chapters, including six independent research articles related to the

six contributions discussed in Section 1.5. Specifically, the developments reported for RBDO prob-
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lems involving structural dynamical systems under stochastic excitation are presented in Chapters 2

to 5, while Chapters 6 and 7 report those pertaining to model updating problems.

Chapter 1 has an introductory role, provides a general description of the problems of interest and

briefly summarizes their key aspects. Further, it states the objectives of the thesis and the corre-

sponding contributions reported in the subsequent chapters.

Chapter 2 presents a two-phase stochastic search technique to address RBDO problems involving

structural dynamical systems under stochastic excitation, which relies on the formulation of an

equivalent Bayesian model updating problem and a pertinent MCMC method.

Chapter 3 generalizes the two-phase optimization method to address a class of constrained engi-

neering design problems, including mixed discrete-continuous design spaces.

Chapter 4 focuses on implementation strategies to improve the numerical efficiency of the two-

phase optimization technique towards the solution of RBDO problems involving structural dynam-

ical systems under stochastic excitation.

Chapter 5 presents a strategy for the efficient RBDO and optimum design sensitivity analysis of

stochastic linear structures. This relies on the combination of a sensitivity assessment framework

enabled by a specialized sampling technique with pertinent gradient-based solution schemes.

Chapter 6 proposes a Bayesian model class selection approach to address contaminant source de-

tection problems in WDNs, which is solved by means of an advanced simulation method.

Chapter 7 addresses Bayesian model updating of complex structural dynamical systems involving

high-dimensional parameter spaces and measured response data. An effective implementation of a

sampling-based reliability method is formulated to this end.

Chapter 8 provides some concluding remarks and discusses potential topics for future research.
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Abstract: This contribution presents a general approach for solving structural design problems for-

mulated as a class of nonlinear constrained optimization problems. A Two-Phase approach based

on Bayesian model updating is considered for obtaining the optimal designs. Phase I generates

samples (designs) uniformly distributed over the feasible design space, while Phase II obtains a set

of designs lying in the vicinity of the optimal solution set. The equivalent model updating problem

is solved by the transitional Markov chain Monte Carlo method. The proposed constraint-handling

approach is direct and does not require special constraint-handling techniques. The population-

based stochastic optimization algorithm generates a set of nearly optimal solutions uniformly dis-

tributed over the vicinity of the optimal solution set. The set of optimal solutions provides valuable

sensitivity information. In addition, the proposed scheme is a useful tool for exploration of com-

plex feasible design spaces. The general approach is applied to an important class of problems.

Specifically, reliability-based design optimization of structural dynamical systems under stochastic

excitation. Numerical examples are presented to evaluate the effectiveness of the proposed design

scheme.
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2.1 Introduction

Structural optimization by means of mathematical programming techniques has been widely ac-

cepted as a viable tool for engineering design. The majority of engineering problems involve con-

strained optimization. The problem is generally that of minimizing a cost function or maximizing a

utility function. The constraints are generally those on resources or demand levels. Thus, the opti-

mal design can be regarded as the best feasible design according to a preselected quantitative mea-

sure of effectiveness. Due to the practical importance of this class of problems, the development of

efficient constrained optimization algorithms has been an important area of research in engineering

design [117, 306]. Generally, constrained optimization algorithms are based on standard optimiza-

tion schemes or stochastic search algorithms. Though, traditional algorithms are well documented

in the literature and extensively used in engineering design, final solutions or designs are usually

local optima. In this regard, several global optimization algorithms have been devised, including

genetic algorithms, simulated annealing, multi-start algorithms, ant colony optimization, particle

swarm optimization, annealing evolutionary stochastic approximation Monte Carlo, etc. [174, 307–

310]. One important issue associated with constrained optimization is constraint-handling [311–

313]. A number of strategies have been suggested in the context of specific stochastic optimization

algorithms such as evolutionary algorithms [314], simulated annealing [315], particle swarm op-

timization [316], and subset simulation-based algorithm [317]. Although the previous stochastic

optimization algorithms have been applied in a number of constrained optimization problems, there

is still room for further developments in this area, specially when dealing with involved structural

models and complex systems.

In the previous context, it is the objective of this contribution to present a framework for solving

structural design problems formulated as nonlinear constrained optimization problems. First, the
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optimization problem is set into the framework of a Two-Phase Bayesian model updating prob-

lem. Phase I generates designs uniformly distributed over the feasible design space, while Phase

II obtains a set of designs lying in the vicinity of the optimal solution set. The corresponding

Bayesian model updating problem is solved by the transitional Markov chain Monte Carlo method

[178, 179]. The methodology can efficiently explore the sensitivity of final designs and constraints

with respect to the design variables in the vicinity of the optimal design. The proposed constraint-

handling approach is direct and does not require special constraint-handling techniques. Actually,

the same framework for obtaining samples in the vicinity of the optimal solution set is used for

obtaining samples in the feasible design space. The proposed Two-Phase approach can be viewed

as a generalization of the work presented in [180]. In that work, an optimization scheme was

proposed for solving unconstrained optimization problems with applications to performance-based

design. Moreover, this work can be interpreted as an additional area of application of simulation-

based Bayesian model updating techniques. Though the proposed approach can handle general

constrained optimization problems, the focus of this contribution is on the reliability-based design

optimization of structural dynamical systems under stochastic excitation. It is noted that solving

this class of problems involves estimating the system reliability at different designs during the op-

timization process which is well-known to be very challenging. Then, an efficient and effective

solution of this class of problems is important from the practical viewpoint.

The organization of the paper is as follows. Section 2 describes the class of nonlinear constrained

optimization problems to be considered in the present contribution. The main ideas of the proposed

Two-Phase scheme are discussed in Section 3. Several aspects associated with the implementation

of the proposed optimization scheme are addressed in Section 4. Four numerical examples are

provided in Section 5. The paper closes with some conclusions and future research efforts.
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2.2 Description of the problem

Consider the following inequality-constrained non-linear optimization problem

min
x

c(x)

s.t. ri(x) ≤ 1, i = 1, . . . , nr

x ∈ X

(2.1)

where x ∈ X ⊂ Rnd , xi, i = 1, . . . , nd, is the vector of design variables with side constraints

xl
i ≤ xi ≤ xu

i , c(x) is the objective or cost function, and ri(x) ≤ 1, i = 1, . . . , nr are general

design constraints. Note that in the present formulation the set of design variables are assumed to

be continuous. The objective function c(x) can be defined in terms of initial, construction, repair

or downtime costs, structural weight, general cost functions, expected performance measures, etc.

Moreover, the constraints may be associated with design requirements such as geometric condi-

tions, material cost components, demand levels, design specifications characterized by means of

different performance measures, including reliability measures. Thus, the above formulation is

quite general since different optimization formulations can be considered.

2.3 Optimization strategy

2.3.1 Basic background

An approach based on the transitional Markov chain Monte Carlo method (TMCMC) [178, 286]

is considered for solving the constrained optimization problem. The TMCMC method, which

corresponds to a class of sequential particle filter methods, has proved to be quite effective in

a number of Bayesian model updating problems [24, 25, 115, 162, 178]. In fact, this sampling

method is capable of populating the region of interest even in challenging model updating problems.

In what follows, and for completeness, some of the fundamental ideas of the TMCMC method are
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reviewed. In this context, it is assumed that the structural model is characterized in terms of a

set of model parameters θ. The objective of Bayesian model updating is to estimate the posterior

probability density function of θ, fD(θ), given some data D. The method relies on the construction

of a series of non-normalized intermediate distributions, fDj
(θ), defined as

fDj
(θ) ∝ lD(θ)αj f(θ), j = 0, 1, . . . , M (2.2)

where lD(θ) represents the likelihood of observing the data D for a given value of the model

parameters θ, f(θ) is the prior distribution representing the initial belief or information about the

distribution of θ, and αj is a parameter that increases monotonically with j such that α0 = 0, and

αM = 1. In the first step (j = 0), the samples are generated from the prior distribution, while in

the last stage (j = M ) the samples are asymptotically distributed as fD(θ). Due to the nature and

annealing property of the TMCMC method, the samples at the last stage of the updating process

tend to maximize the likelihood function lD(θ). This feature of the TMCMC method establishes

a connection between Bayesian model updating problems and the solution of the optimization

problem defined in Eq. (2.1). In what follows, such connection is discussed in detail.

2.3.2 Preliminary observations

It is noted that finding the minimum of the objective function c(x) is equivalent to find the maxi-

mum of the function exp(−c(x)/T ), for any given value of T > 0 [174]. In connection with this

result, and treating the design variables as random variables uniformly distributed over the feasible

design space Xfeasible, where

Xfeasible = {x ∈ X : ri(x) ≤ 1, i = 1, . . . , nr} , (2.3)
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define the non-normalized auxiliary distribution

fT (x) ∝ exp
(
−c(x)

T

)
IXfeasible(x) (2.4)

where IXfeasible(x) is the indicator function of the feasible design space Xfeasible, that is, IXfeasible(x) =

1, for x ∈ Xfeasible, and IXfeasible(x) = 0, otherwise. It is seen that fT (x) becomes flatter as the

parameter T increases. In fact, fT (x) is proportional to IXfeasible(x) as T → ∞. Moreover, as T

decreases and tends to zero, the distribution fT (x) becomes spikier, and it puts more and more

of its probability mass into the set that maximizes the function exp(−c(x)/T ), and therefore the

corresponding samples minimize the objective function c(x) (optimal solutions set X∗). Thus, a

sample drawn from fT (x) will be in the vicinity of the optimal solutions set X∗ with a very high

probability when T converges to zero [175, 177]. Note that in the previous setting, the design

variables are artificially treated as random variables as previously pointed out. Such uncertainty

is just a tool for setting the optimization problem in the framework of a Bayesian model updating

problem.

2.3.3 Approach: General idea

Based on the previous observations, the basic features of the TMCMC method, and some of the

ideas suggested in [175, 177, 180], define a sequence of non-normalized intermediate distributions

as

fT0(x) ∝ IXfeasible(x) (2.5)

fTj
(x) ∝ exp

(
−c(x)

Tj

)
IXfeasible(x), j = 1, 2, . . . (2.6)

where ∞ = T0 > T1 > . . . > Tj > . . . is a sequence of monotonically decreasing parameters

with Tj → 0 as j → ∞. In the context of Section 3.1, the design variables x correspond to

the model parameters θ, the function exp(−c(x)) takes the role of the likelihood function lD(θ)

with Tj = 1/αj , while IXfeasible(x) represents the non-normalized prior distribution. Note that the



CHAPTER 2. A GENERAL TWO-PHASE MARKOV CHAIN MONTE CARLO APPROACH
FOR CONSTRAINED DESIGN OPTIMIZATION: APPLICATION TO STOCHASTIC
STRUCTURAL OPTIMIZATION 46

corresponding prior normalized distribution is the uniform distribution, UXfeasible(x), defined over the

feasible design space. In the framework of the TMCMC method, the parameters Tj, j = 1, 2, . . .

are constructed adaptively in such a way that the distributions fTj
(x) and fTj+1(x) be similar by

using different criteria [178, 318, 319].

The iteration starts with the generation of samples (designs) x0
1, . . . , x0

n from IXfeasible(x) in order to

populate the feasible design space. The samples at stage j +1, i.e. xj+1
1 , . . . , xj+1

n , j = 0, 1, . . ., are

obtained by generating Markov chains as in the TMCMC method. The procedure is repeated until a

stopping criterion is satisfied. The idea of the method is to iterate until the parameter Tj+1 is small

enough so that the corresponding samples xj+1
1 , . . . , xj+1

n are approximately uniformly distributed

over the optimal solution set X∗. The samples at the optimal solutions set represent possible designs

with similar values of the objective function c(x). If a single optimal solution is needed, a possible

choice based on the samples xj+1
1 , . . . , xj+1

n is given by x∗, such that c(x∗) = mini=1,...,n c(xj+1
i ).

The reader is referred to [178, 179, 286] for a detailed implementation of the TMCMC method.

2.3.4 Approach: Phase I

It is seen that the proposed approach requires drawing samples uniformly distributed over the fea-

sible design space Xfeasible, that is, designs that verify the side constraints, i.e., x ∈ X, and the

constraints ri(x) ≤ 1, i = 1, . . . , nr. This is an involved task since the feasible design space, which

is not known in advance, could be quite complex. To overcome this difficulty, the following scheme

is devised. Consider the following auxiliary unconstrained optimization problem defined in terms

of the constraint functions of the original constrained problem given in Eq. (2.1)

min
x

h(x)

s.t. x ∈ X
(2.7)
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where h(x) is an auxiliary objective function defined as

h(x) =


maxi {ri(x)} if ∃ i : ri(x) > 1

1 if ∀ i , ri(x) ≤ 1
(2.8)

where i = 1, . . . , nr. Based on the definition of the auxiliary objective function, it is clear that the

minimum value of h(x) is equal to 1, while the corresponding optimum solution set, X∗
h, is given

by

X∗
h = {x ∈ X : ri(x) ≤ 1, i = 1, . . . , nr} (2.9)

In other words, the optimum solution set of the auxiliary unconstrained optimization problem is

equal to the feasible design space, Xfeasible, of the original constrained optimization problem (2.1).

Then, the solution of the unconstrained optimization problem (2.7) provides a set of designs in the

feasible design space. Note that the auxiliary optimization problem can be solved as indicated in

Section 2.3.3, with a sequence of non-normalized intermediate distributions defined as

fT0(x) ∝ UX(x) (2.10)

fTj
(x) ∝ exp

(
−h(x)

Tj

)
UX(x), j = 1, 2, . . . (2.11)

where UX(x) is the uniform distribution defined over X. Recall that X is the set that defines the

side constraints of the design variables. It is easy to show that all feasible samples generated during

the different stages of Phase I are uniformly distributed over Xfeasible. Then, the sampling process

can be stopped if the total number of feasible samples (designs) reaches a certain pre-determined

value ntarget.

2.3.5 Approach: Phase II

The goal of Phase II is to obtain a set of designs lying in the vicinity of the optimal solution set

X∗, associated with the constrained optimization problem (2.1). To this end, and in the context
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of the approach proposed in Section 2.3.3, the samples at the initial stage of the updating process,

which should be uniformly distributed over the feasible design space Xfeasible, are the ones obtained

from Phase I. Thus, the Two-Phase framework allows the solution of the general constrained design

problem formulated in Eq. (2.1). It is noted that the same framework for obtaining samples in the

vicinity of the optimal solution set, that is, Phase II, is used for obtaining samples in the feasible

design space, i.e., Phase I. Thus, special constraint-handling techniques are not necessary.

2.4 Implementation aspects

2.4.1 Updating process

The actual updating process is performed in an underlying normal space Y ⊂ Rnd of independent

standard normal variables. The mapping between the spaces Y and X, i.e., x = x(y) is given by

xi = xi(yi) = xl
i + Φ(yi)(xu

i − xl
i), i = 1, . . . , nd, where Φ(·) is the standard normal cumulative

univariate distribution function. Validation calculations have shown that performing the updating

process in the underlying standard normal space has some numerical advantages due to normal-

ization and boundedness issues [179, 180]. Note that, however, an implementation of the updating

process in the physical design space X is also possible. Once the problem is set into the space of in-

dependent standard normal variables, and based on some of the ideas suggested in [175, 177, 180],

the Two-Phase scheme is implemented as follows.

2.4.2 Pseudo-code: Phase I

The following steps are involved in Phase I.

1) Initial stage

Set j = 0 (T0 =∞), and generate samples {y0
1, . . . , y0

n0} in the underlying standard normal space

by Monte Carlo simulation. Compute the auxiliary objective function values {h(x(y0
1)), . . . , h(x(y0

n0))}.
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2) Determination of Tj+1

The criterion to select Tj+1 is based on the effective sample size technique [318, 319]. This tech-

nique measures how similar the non-normalized intermediate distribution fTj
is to fTj+1 . An esti-

mator of the effective sample size, neff , is given by n̂eff = 1/
nj∑

i=1

(
w̄j

i

)2
, where nj is the number

of samples at stage j, and w̄j
i represents the normalized importance weight of the sample yj

i (see

Step 3). Based on this estimator, it follows that if the distributions are alike, the effective sample

size is close to nj , while neff is a small number if the distributions are different. The value of Tj+1

is chosen by imposing the condition neff = νnj where ν ∈ (0, 1) is a user-defined parameter. This

condition gives the following nonlinear equation for Tj+1

nj∑
i=1

exp
(
−2h(x(yj

i ))
[

1
Tj+1

− 1
Tj

])
( nj∑

i=1
exp

(
−h(x(yj

i ))
[

1
Tj+1

− 1
Tj

]))2 = 1
νnj

(2.12)

The previous nonlinear equation can be solved by any suitable numerical technique.

3) Computation of importance weights

Once the parameter Tj+1 has been determined, compute the importance weights wj
i of the samples

as

wj
i =

fTj+1(x(yj
i ))

fTj
(x(yj

i ))
= exp

(
−h(x(yj

i ))
[

1
Tj+1

− 1
Tj

])
, i = 1, . . . , nj (2.13)

and the corresponding normalized importance weights w̄j
i = wj

i /
nj∑

p=1
wj

p, i = 1, . . . , nj .

4) Generation of samples for stage j + 1

The samples from fTj+1 are based on the samples from fTj
, and according to the TMCMC scheme,

they are obtained by generating Markov chains where the lead samples are selected from the distri-

bution fTj
. The lead sample of the Markov chain is a sample from the previous step, e.g. yj

l , which

is selected according to its normalized weight [178]. Each Markov chain is generated by applying

the Metropolis-Hastings algorithm [88, 89]. The corresponding proposal probability density func-
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tion is a Gaussian distribution centered at the previous sample of the chain and with covariance

matrix Σj equal to a scaled version of the estimate covariance matrix of the current intermediate

distribution fTj
, that is, Σj = β2∑nj

i=1 w̄j
i

(
yj

i − ȳj
) (

yj
i − ȳj

)T
, ȳj = ∑nj

i=1 w̄j
i y

j
i , where β2 is

a parameter that can be chosen according to different criteria. For example, it can be defined di-

rectly by the user or by an adaptive scheme based on the acceptance rate of the sampling process

[179, 288].

5) Stopping criterion

At stage j + 1, identify all samples {y1, . . . , ym} generated during the previous stages of the

updating process, such that h(x(yi)) = 1, i = 1, . . . , m. If m ≥ ntarget stop the process and

continue to Phase II where the samples {y1, . . . , ym} are used at the initial stage. If m < ntarget,

return to step 2 with j ← j + 1.

2.4.3 Pseudo-code: Phase II

The following steps are involved in Phase II.

1) Initial stage

Set j = 0 (T0 = ∞). The initial samples of the process, uniformly distributed over the feasible

design space Xfeasible, are the designs obtained during Phase I. Compute the objective function

values {c(x(y0
1)), . . . , c(x(y0

n0))}, where n0 = m. Next, compute the corresponding coefficient of

variation (c.o.v.) of these samples as

δ0 =

√√√√√ 1
n0 − 1

n0∑
i=1

c(x(y0
i ))−

 1
n0

n0∑
p=1

c(x(y0
p))
2/

1
n0

n0∑
p=1

c(x(y0
p)) (2.14)

2) Initial information for stopping criterion

Set δtarget = γδ0, where γ is a user-defined parameter, and δtarget is the target c.o.v. of the objective

function values. Alternatively, the stopping criterion can be defined in terms of a pre-determined

maximum number of stages jmax.
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3) Determination of Tj+1

As in Phase I, the criterion to select Tj+1 is based on the effective sample size technique [318, 319].

Thus, the value of Tj+1 is chosen to satisfy the nonlinear equation

nj∑
i=1

exp
(
−2c(x(yj

i ))
[

1
Tj+1

− 1
Tj

])
( nj∑

i=1
exp

(
−c(x(yj

i ))
[

1
Tj+1

− 1
Tj

]))2 = 1
νnj

(2.15)

where nj is the number of samples at stage j, and ν ∈ (0, 1) is as before, a user-defined parameter.

4) Computation of importance weights

The importance weight wj
i of the sample yj

i is defined as

wj
i = exp

(
−c(x(yj

i ))
[

1
Tj+1

− 1
Tj

])
, i = 1, . . . , nj (2.16)

with normalized importance weight w̄j
i = wj

i /
nj∑

p=1
wj

p, i = 1, . . . , nj .

5) Generation of samples for stage j + 1

The generation of samples at each step proceeds in a similar manner as in step 4 of Phase I. How-

ever, in this case, the candidate sample generated in the context of the Metropolis-Hasting algorithm

should belong to the feasible design space Xfeasible. If not, the sample is rejected.

6) Stopping criterion

Compute the sample c.o.v. of the objective function values at the (j + 1)-th stage, δj+1, as

δj+1 =

√√√√√ 1
nj+1 − 1

nj+1∑
i=1

c(x(yj+1
i ))−

 1
nj+1

nj+1∑
p=1

c(x(yj+1
p ))

2/
1

nj+1

nj+1∑
p=1

c(x(yj+1
p ))

(2.17)

If δj+1 ≥ δtarget, set j ← j + 1 and return to Step 3. Otherwise, set M = j + 1 and stop the

process. Obtain the sample-based optimum design x∗, and the corresponding objective function
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value as c(x∗) = mini=1,...,nM
c(x(yM

i )). Alternatively, the optimization process can be stopped if

a maximum number of stages jmax has been reached as indicated in step 2. It is noted that other

stopping criteria could be also implemented.

2.4.4 Practical observations

As previously pointed out, all feasible samples generated during Phase I are used at the initial stage

of Phase II. Additionally, these samples can also be used to explore the feasible design space in a

direct manner. This information can give valuable insight into the optimization problem, especially

when the design variables exhibit a complex interaction between them. Moreover, the information

from the uniformly distributed samples could also be used in connection with other optimization

techniques. For example, the best design among the samples generated in Phase I can be used as the

initial design in gradient-based optimization schemes such as interior point algorithms. Finally, it is

noted that the best solution from Phase I could also be used as an approximation of the solution to

the original optimization problem (2.1). In this case, the accuracy of the solution should be studied

in detail.

2.4.5 Additional implementation issues

High performance computing (HPC) techniques at the computer hardware level can be considered

for increasing the computational efficiency of the proposed Two-Phase approach. In fact, recall that

the proposed optimization process, which is based on the TMCMC method, is suitable for a parallel

implementation in a HPC environment. The first stage of Phase I, which corresponds to direct

Monte Carlo simulation, can be fully scheduled in parallel. In addition, each of the subsequent

stages of Phases I and II produces a set of Markov chains that are perfectly parallel. Thus, a

number of computer workers can handle the generation of samples corresponding to the different

chains [286, 320].
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2.4.6 Final remarks

Some of the benefits and advantages of using the proposed optimization scheme can be summarized

as follows. First, the proposed optimization scheme is based on a well-developed and widely used

updating technique (TMCMC method). Thus, the same framework can be adapted for an effective

optimization scheme. Second, the methodology produces a set of nearly optimal solutions instead

of a single optimal solution. This feature can be advantageous in many practical cases where addi-

tional considerations or alternative criteria can be taken into account to select the appropriate final

design. Thus, the approach provides flexibility to the decision-making process. Third, due to the

theoretical basis of the approach, it has high chances to reach the vicinity of the global optimum in

an effective manner, even in presence of multiple local optima. Fourth, the scheme is a useful tool

for exploration of complex feasible design spaces. This is especially useful when design variables

exhibit a complex interaction between them. Fifth, the proposed approach provides valuable sensi-

tivity information. In fact, sensitivity of the feasible designs and the final design with respect to the

design variables can be obtained directly. Sixth, generally, problems with multiple discontinuous

sub-feasible regions can be handled in an effective manner. Seventh, the technique is very-well

suited for parallel implementation in a computer cluster. This is extremely important when deal-

ing with optimization problems involving expensive function evaluations such as reliability-based

optimization problems. Eight, the proposed constraint-handling technique is direct. Actually, sam-

ples in the feasible design space are obtained from the solution of an unconstrained optimization

problem which is directly defined in terms of the constraint functions of the original problem. The

same framework for obtaining samples in the vicinity of the optimal solution set is used for solving

the unconstrained optimization problem. Thus, special constraint-handling techniques are not nec-

essary. This is an advantage from a practical viewpoint. Ninth, due to the generality and flexibility

of the formulation, it can handle, in principle, different types of optimization problems. From the

structural point of view, these problems may include complex linear and nonlinear systems. Tenth,

the proposed framework can handle in a rational and consequent manner problems involving noisy
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objective or constraint functions (noisy optimization problems), e.g., general performance-based

or reliability-based design optimization problems. Finally, the feasibility of solving general con-

strained optimization problems in the framework of a Bayesian model updating problem provides

an additional technique for solving this type of problems.

2.5 Numerical examples

It is noted that due to the generality of the proposed approach, a number of optimization problems

can be considered as potential examples. As previously pointed out, the focus of this contribution is

on the application of the proposed optimization scheme to the reliability-based design optimization

of structural dynamical systems under stochastic excitation. Solving this class of problems in-

volves estimating the system reliability at different designs during the optimization process which

is well-known to be very challenging from a numerical point of view. In addition, complex physi-

cal interactions between the design variables can be obtained, and consequently, involved feasible

design spaces can be generated. Therefore, this is an ideal scenario to evaluate the performance of

the proposed optimization scheme. First, two test problems are presented to illustrate the perfor-

mance of some of the features of the proposed scheme. Specifically, the efficiency of Phase I in

relatively complex feasible design spaces is considered. Then, the effectiveness of the optimization

algorithm is demonstrated by two application problems involving the reliability-based optimization

of structural dynamical systems under stochastic excitation. The following parameter values of the

proposed approach are considered for numerical implementation: γ = 0.05 (stopping criterion pa-

rameter); and ν = 0.5 (effective sample size parameter). In addition, the scaling parameter β is

determined by an adaptive scheme that monitors the acceptance rate of the updating process with

initial value equal to β = 0.1 [288]. These values have proved to be adequate in the context of this

work.
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2.5.1 Test problem 1

The objective of this test problem is to demonstrate the performance of Phase I in generating sam-

ples uniformly distributed over the feasible design space. To focus only on this aspect of the pro-

posed implementation, the optimization problem is defined in terms of analytical functions. The

constrained optimization problem takes the form

min
x

c(x)

s.t. ri(x) ≤ 1, i = 1, . . . , 4

2.0 ≤ x1 ≤ 7.0

0.5 ≤ x2 ≤ 5.5

(2.18)

where c(x) is an arbitrary objective function, and

r1(x) = 2.0− x2
1x2

20
r2(x) = 2.0− 93.0

x2
1 + 8.0x2 + 5.0

r3(x) = 2.0− (x1 + x2 − 10.0)2

30.0 − (x1 − x2 + 10.0)2

120.0
r4(x) = (0.906x1 + 0.423x2 − 6.0)2 + (0.906x1 + 0.423x2 − 6.0)3−

0.6(0.906x1 + 0.423x2 − 6.0)4 − (−0.423x1 + 0.906x2)

(2.19)

Figure 2.1 presents the corresponding feasible design space. The evolution of the samples during

the different stages of Phase I is shown in Figure 2.2. At each stage, 1000 samples are considered

for illustration purposes. The number of feasible designs generated at the first three stages are

424, 887 and 1000, respectively. Among them, a total of 980 designs are different. Thus, after

three stages, almost 1000 different samples uniformly distributed over the feasible design space are

obtained. Such samples are shown in Figure 2.3. By comparing Figures 2.1 and 2.3, it is observed

that the samples populate the feasible design space in an effective manner.

To get more insight into the updating process of Phase I, the marginal conditional distributions of
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Fig. 2.1: Feasible design space of Test Problem 1.

Fig. 2.2: Samples generated at different stages of Phase I. Test Problem 1.

Fig. 2.3: Samples uniformly distributed over the feasible design space. Test Problem 1.

the samples lying in the feasible design space at the final stage of Phase I are shown in Figure 2.4.

The histograms are compatible with the distribution of the samples in the feasible design space, as

expected. These samples could be used at the initial stage of Phase II for the purpose of solving the
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optimization problem formulated in Eq. (2.18), as previously pointed out.

Fig. 2.4: Conditional marginal histograms of the samples obtained at the last stage of Phase I. Test
Problem 1.

2.5.2 Test problem 2

As in the first test problem, the objective is to illustrate the performance of Phase I. To this end,

consider the constrained optimization problem of the form

min
x

c(x)

s.t. r(x) ≤ 1

−3.0 ≤ x1 ≤ 3.0

−3.0 ≤ x2 ≤ 3.0

(2.20)

where c(x) is an arbitrary objective function, and the constraint function r is given by the so-called

six-hump camel-back function, i.e.,

r(x1, x2) = 1 + 4.0x2
1 − 2.1x4

1 + x6
1/3.0 + x1x2 − 4.0x2

2 + 4.0x4
2 (2.21)

Figure 2.5 shows the corresponding feasible design space which is a disconnected region. The evo-

lution of the samples during the different stages of Phase I is shown in Figure 2.6. One thousand

samples are considered at each stage. After five stages, more than 2000 feasible samples are ob-

tained. Observing the last figure (feasible samples), it is seen that the samples populate the feasible
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design space in a rather efficient manner.

Fig. 2.5: Feasible design space of Test Problem 2. Disconnected region.

Fig. 2.6: Samples generated at different stages of Phase I. Disconnected region. Test Problem 2.

Another interesting case, where the feasible design space is a region containing interior holes, is
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Fig. 2.7: Feasible design space of Test Problem 2. Region with interior holes.

Fig. 2.8: Samples generated at different stages of Phase I. Region with interior holes. Test Problem
2.

given by the problem

min
x

c(x)

s.t. r1(x) ≤ 1

r2(x) ≤ 1

−3.0 ≤ x1 ≤ 3.0

−3.0 ≤ x2 ≤ 3.0

(2.22)

where r1(x) = 2.0− r(x), and r2(x) = r(x)− 5.0. The feasible design space and the evolution of
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the samples during the different stages of Phase I are shown in Figures 2.7 and 2.8, respectively. As

in the previous cases, it is clear that the samples occupy the feasible design space in an effective way

(see feasible samples figure). The previous results, together with additional validation calculations,

show the effectiveness of Phase I in populating feasible design spaces, even for complex geometries

such as disconnected regions and regions containing interior holes. Finally, it is noted that the

different quantities involved in the test problems are analytical functions which are inexpensive to

evaluate. Thus, the corresponding numerical effort for populating the feasible design spaces is not

relevant in the context of these examples.

2.5.3 Application problem 1

Model description

A simple two degree of freedom system subject to stochastic excitation is considered in this ap-

plication. The model, which is shown in Figure 2.9, is characterized by normalized masses m1

and m2, and normalized stiffnesses k1 and k2, which are the parameters to be controlled during the

design process. Additionally, 5% of critical damping is added to the model. Though the model is

relatively simple from a structural viewpoint, complex interactions between the design variables

can be obtained.

The system is subjected to a base acceleration üg(t), which is modeled as a non-stationary stochas-

tic process. In particular, a stochastic model based on a point-source model is considered [114].

Based on this model, the base acceleration can be expressed as üg(t, z), where z ∈ Z ⊂ Rnz is a

vector of uncertain parameters involved in the characterization of the excitation. The duration of

the excitation is taken as tT = 10s, with a sampling interval equal to ∆t = 0.01s. According to

these values, it can be shown that the generation of ground motion samples comprises more than

1000 random variables [114, 133]. A detailed description and implementation of the stochastic

excitation model can be found in [34, 114, 321].
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Fig. 2.9: Two-degree-of-freedom system.

Optimization problem

The design problem is written in the form

min
x

c(x)

s.t. x2/x1 ≤ 1

PF (x)/10−2 ≤ 1

1.0 ≤ xi ≤ 5.0, i = 1, 2

(2.23)

where xi, i = 1, 2 are the design variables, that is, x1 = k1 and x2 = k2, and PF (x) is the system

failure probability evaluated at the design x. For illustration purposes, the objective function is

assumed to be proportional to the stiffnesses k1 and k2. In particular, c(x) = (x1 + x2)/10. The

failure probability PF (x) is defined in terms of a failure event associated with the interstory drifts

and the total accelerations at the first and second floor. The characterization of the failure event

and the corresponding reliability problem is provided in Appendix A (see Section 2.7). It is noted

that the estimation of the probability of failure for a given design, i.e., PF (x), constitutes a high-

dimensional problem which is extremely demanding from a numerical point of view. Such quantity

is usually estimated by advanced simulation techniques [133, 138, 141].
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Results

The related iso-probability curves are shown in Figure 2.10. These curves are constructed by

using a set of failure probability estimates distributed over the design space. The estimates are

obtained by Subset simulation [133]. The resulting curves, which are rather rugged because of

the variability of the probability estimates, have been smoothed for presentation purposes. The

corresponding feasible design space is sketched in Figure 2.11, where some contour curves of the

objective function are also shown as well as the optimal design. Due to the responses involved

in the definition of the failure event, a highly complex interaction between the design variables is

observed.

Fig. 2.10: Iso-probability curves. Application Problem 1.

The evolution of the samples during the different stages of Phase I is shown in Figure 2.12. At

each stage, 500 samples are considered for illustration purposes. After three stages, more than 500

different feasible designs are generated. These samples, which are uniformly distributed over the

feasible design space, are shown in Figure 2.13. Note that the shape generated by these samples

shows an excellent agreement with the feasible design space shown in Figure 2.13.

Next, the minimization problem formulated in Eq. (2.23) is solved by the proposed Phase II, where

the number of samples per stage is set equal to 500. The samples obtained from the first five
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Fig. 2.11: Sketch of the feasible design space, some contour curves of the objective function, and
optimal design (∗). Application Problem 1.

Fig. 2.12: Evolution of samples generated at different stages of Phase I. Application Problem 1.

Fig. 2.13: Samples uniformly distributed over the feasible design space. Application Problem 1.
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stages are shown in Figure 2.14. At the last stage, the samples populate a vicinity of the optimal

solution set, which is consistent with Figure 2.11. The range of the objective function values

obtained during the different stages is shown in Figure 2.15. The minimum value obtained during

the simulation process (sample-based optimum cost) is equal to 0.25, which is associated with the

design k1 = 1.43 and k2 = 1.10, and corresponding reliability constraint value PF /10−2 = 0.96,

and geometric constraint x2/x1 = 0.74. Considering the variability involved in the estimation of

the probability of failure, the reliability constraint can be considered as active at the final design.

Note that this result is compatible with the information provided by Figure 2.11.

Fig. 2.14: Evolution of samples generated at different stages of Phase II. Application Problem 1.

Finally, observing Figure 2.15, it is seen that the minimum value of the objective function at Stage

0 of Phase II, i.e., at the designs uniformly distributed over the feasible design space, is relatively

close to the sample-based optimal cost, i.e., minimum value of the objective function at Stage 5.

Thus, the best solution among the samples generated during Phase I gives a good approximation

for the value of the objective function at the final design in this case. It is noted that however,
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Fig. 2.15: Objective function values at different stages of Phase II. Application Problem 1.

Phase II can provide valuable information about the sensitivity of the final design with respect to

the design variables in the vicinity of the final design. This information is quite relevant, specially

when dealing with several design variables and complex feasible design spaces.

Numerical effort and comparison

Considering that the total number of sampling stages involved in the optimization process is equal

to 8, and that 500 samples are used per stage, the total number of function evaluations is equal

to 4000. In this regard, it is noted that a study about the statistical performance of the proposed

design scheme in this example problem indicates that the scheme performs in an effective manner

even when the number of samples per stage is much smaller than 500. Recall that this number

was used only for illustration purposes, as previously pointed out. In other words, the algorithm is

capable to obtain the optimal solution set in an effective manner with a relatively small number of

samples per stage. Thus, the number of function evaluations (reliability estimates) indicated before

overestimates the actually required number.

The comparison of the performance of the proposed optimization scheme with respect to some al-

ternative methods is provided in Table 2.1. In particular, the following stochastic optimization algo-

rithms are considered: genetic algorithm based on dominance-based tournament selection (GAS)

[311]; subset simulation-based optimization (SSBO) [317]; co-evolutionary particle swarm opti-

mization (CPSO) [322]; hybrid particle swarm optimization with a feasibility-based rule (HYP-
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SOR) [323]; genetic algorithm based on a co-evolution model (GAC) [324]; and harmony search

(HS) [325]. The second column of the table corresponds to the function-call factor which is the

ratio of the number of function evaluations involved in a given algorithm and the number of func-

tion evaluations involved in the proposed scheme. The algorithms were calibrated, in terms of the

number of function calls, in such a way that similar final designs were obtained.

Table 2.1: Comparison of numerical efforts with respect to alternative algorithms.

Algorithm Function-call factor

GAS 6.1
SSBO 6.2
CPSO 14.1

HYPSOR 6.1
GAC 64.1
HS 6.1

Proposed 1.00

It is seen that the proposed algorithm compares very favorably with respect to the other population-

based stochastic optimization algorithms for this example problem. The algorithm needs the least

number of reliability analyses to solve the problem. In fact, the proposed scheme requires less than

one sixth of the function calls involved in the other methods.

2.5.4 Application problem 2

Structural model

A finite element model with about 50000 degrees of freedom is analyzed in the second application

problem. The model consists of a non-linear 52-story building under stochastic earthquake exci-

tation. An isometric view of the structural system is shown in Fig. 2.16. The plan view and the

dimensions of each floor are shown in Fig. 2.17. The inter-story height is 3.6 m for all floors except

the first one which has a height of 14 m.

The building has a reinforced concrete core of shear walls and a reinforced concrete perimeter

moment frame as shown in Fig. 2.17. The columns in the perimeter have a circular cross section.
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Fig. 2.16: Isometric view of the 52-story building model.

Fig. 2.17: Floor plan of the 52-story building model.

The nominal value for the column’s diameter and shear wall’s thickness is 0.40 m. In addition,

the slab thickness is equal to 0.20 m. Properties of the reinforced concrete have been assumed

as follows: Young’s modulus E = 2.45 × 1010 N/m2, Poisson’s ratio µ = 0.3, and mass density

ρ = 2500 kg/m3. For the dynamic analysis, it is assumed that each floor may be represented as rigid

within the plane when compared with the flexibility of the other structural components. Then, the
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degrees of freedom of the finite element model are linked to three degrees of freedom per floor (two

translational displacements and one rotational displacement) by using condensation techniques. A

5% of critical damping for the modal damping ratios is introduced in the model. The building is

excited horizontally by a ground acceleration üg(t) in the y direction as shown in Fig 2.17. The

excitation is modeled as in the previous example problem. The sampling interval is assumed to be

∆t = 0.01s, and the duration of the excitation is tT = 15s.

For aseismic design purposes, the model is reinforced with nonlinear hysteretic devices. At each

floor, four devices are implemented as shown on the floor plan of the structure (axes 4, 7, 8, and

11). These elements provide additional resistance and dissipation against relative displacements

between floors. Each non-linear device follows the interstory restoring force law r(t) = ke(δu(t)−

q1(t) + q2(t)), where ke denotes the initial stiffness of the non-linear device, δu(t) is the relative

displacement between floors at the position of the device in the y direction, and q1(t) and q2(t)

denote the plastic deformations of the device. The restoring force r(t) acts between adjacent floors

with the same orientation as the relative displacement δu(t). Using the auxiliary variable v(t) =

δu(t) − q1(t) + q2(t), the plastic elongations are specified by the first-order nonlinear differential

equations [326]

q̇i(t) = (−1)i+1δ̇u(t)H
(

(−1)i+1δ̇u(t)
)[

H
(

(−1)i+1v(t)− vy

)(−1)i+1v(t)− vy

vp − vy

H
(

vp − (−1)i+1v(t)
)

+ H
(

(−1)i+1v(t)− vp

)]
, i = 1, 2 (2.24)

where H(·) denotes the Heaviside step function, δ̇u(t) is the relative velocity between floors at the

position of the device in the y direction, vy is a parameter specifying the onset of yielding, and kevp

is the maximum restoring force of the device. All devices have initial stiffness ke = 2.8×109 N/m,

and model parameters vp = 0.006 m and vy = 0.0042 m. Note that the evaluation of the system

response involves the solution of a system of coupled differential equations, that is, the equation of

motion of the structural system and the equation for the evolution of the variables describing the

plastic deformation of the non-linear devices. The equations are solved by an appropriate step-by-
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step integration scheme.

Design problem

The variables to be controlled are the thicknesses of the concrete core of shear walls (tw) and the

diameters of the exterior columns (dc). The dimensions of these structural components at each floor

are linked to one intermediate optimization variable, x, as tw = x t̂w, and dc = x d̂c, where t̂w

and d̂c are the nominal values of the thickness of the shear walls and the diameter of the exterior

columns at each floor, respectively. The intermediate optimization variables are grouped into a

number (nd) of optimization variables. The objective function for the design problem is defined in

terms of the intermediate optimization variables. Two reliability constraints are considered in the

present example. The constrained optimization problem is formulated as

min
x

c(x)

s.t. PF1(x)/10−3 ≤ 1

PF2(x)/10−3 ≤ 1

xi+1/xi ≤ 1, i = 1, 2, . . . , nd − 1

0.5 ≤ xi ≤ 1.5, i = 1, 2, . . . , nd

(2.25)

where the failure probability PF1(x) is defined in terms of a failure event associated with the inter-

story drift of the first floor, and PF2(x) is given in terms of a failure event related to the roof dis-

placement. The characterization of the failure events is provided in Appendix B (see Section 2.8).

Similarly to the first application problem, the estimation of the probability of failure for a given

design requires considerable numerical efforts.

Use of meta-model

It is noted that the proposed Two-Phase approach may require a large number of reliability analyses

for populating the region containing the optimal solution set. Clearly, the failure probabilities

at the different designs can be estimated directly during the design process, as in the previous
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example. However, the numerical demands may become excessive when the computational time

for estimating the failure probability functions is significant. To deal with this issue, an adaptive

kriging-based meta-model for approximating the failure probability functions is considered in the

present example. Information about the meta-model is given in Appendix C (see Section 2.9).

Results: First scenario

In this scenario, two design variables are considered. The first design variable is associated with the

lower 26 floors, while the second design variable corresponds to the upper 26 floors of the building.

The reliability-based optimal design problem is written in terms of a normalized objective function

as
min

x
c(x)

s.t. PF1(x)/10−3 ≤ 1

PF2(x)/10−3 ≤ 1

x2/x1 ≤ 1

0.5 ≤ xi ≤ 1.5, i = 1, 2

(2.26)

where c(x) = ∑2
i=1 xi. Figure 2.18 shows some iso-probability curves and the corresponding

sketch of the feasible design space, including the optimal design. As in the previous example,

the curves have been smoothed for presentation purposes. It is observed that the iso-probability

curves associated with the interstory drift of the first floor (continuous-lines) show a rather weak

interaction between the design variables. In fact, the curves present an important dependence on

the design variable related to the thickness of the shear walls and the diameter of the exterior

columns at the lower floors (x1). On the other hand, the iso-probability curves related to the roof

displacement (dashed-lines) show a strong interaction between both design variables, as expected.

Note that these results give a valuable insight into the interaction and effect of the design variables

on the reliability of this complex system.

The set of feasible samples uniformly distributed over the feasible design space is shown in Figure

19 (Stage 0). This information correspond to all feasible designs obtained during Phase I. For
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Fig. 2.18: Left figure: Iso-probability curves. PF1: continuous lines, PF2: dashed-lines. Right
figure: sketch of the feasible design space with the optimal design (asterisk). Application Problem
2. First scenario.

illustration purposes, the algorithm is implemented by considering 500 samples per stage. There

are about 500 samples of which more than 200 are different after three stages. The shape generated

by these samples agrees very well with the feasible design space shown in Figure 2.18 (right figure).

The designs obtained from the first five stages of Phase II are also shown in Figure 2.19. At the last

stage, the values of the normalized objective function range from 2.121 to 2.140. The associated

optimal design is given by x1 = 1.413 and x2 = 0.708, with corresponding reliability constraint

values PF1/10−3 = 0.999, and PF2/10−3 = 0.218. Thus, the reliability constraint associated with

the interstory displacement of the first floor is active at the final design, which is consistent with

Figure 2.18 (right figure).

Information about the use of kriging during the different stages of Phase II is shown in Figure 2.20.

The number of support points is equal to 12 and an error tolerance level ϵ = 0.1 is selected (see

Appendix C in Section 2.9). These values proved to be adequate for the current optimization prob-

lem. Once the initial database of support points has been constructed, the surrogate acceptance

ratio is almost 100%. Thus, almost all surrogate estimates are accepted from the second stage of

Phase II. In this context, the acceptance ratio represents the fraction of failure probability eval-

uations obtained with the kriging approximation. Overall, that is, considering the generation of

the database, more than 87% of the total number of reliability evaluations are performed using the
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Fig. 2.19: Feasible samples (Stage 0), and the evolution of samples generated at different stages of
Phase II. Application Problem 2. First scenario.

meta-model. The previous level of acceptance ratio clearly indicates the efficiency of the proposed

adaptive meta-model scheme. This high level of acceptance ratio is due to the fact that the fail-

ure probability functions involved in the problem are smoothly varying with respect to the design

variables, and thus the surrogate estimates are quite accurate for most of the samples. In terms of

accuracy, validation calculations show that the previous results are very similar to those obtained

when the reliability constraints are estimated directly, that is, when the meta-model is not used. In

fact, the sample-based normalized optimum cost obtained by the proposed approach, i.e., 2.121, is

only 0.07% higher than the one obtained without using the kriging approximation. In relation to the

computational cost, a speedup close to 10 is obtained by the proposed approach. In this context, the

speedup is the ratio of the execution time by solving the design problem directly and the execution

time by using the proposed approximation of the failure probabilities during the design process.

The actual total number of function evaluations during the entire optimization process is around

500. This small number of function evaluations indicates that use of the proposed meta-model for
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approximating the reliability constraints is quite beneficial in terms of computational efficiency.

Fig. 2.20: Use of kriging during the different stages of Phase II. Application Problem 2. First
scenario.

Results: Second scenario

Under this scenario, the intermediate design variables are grouped into six optimization variables.

The definition of these variables is given in Table 2.2.

Table 2.2: Linking detail of intermediate optimization variables.

Design variable x1 x2 x3 x4 x5 x6

Design elements (floors) 1− 9 10− 18 19− 26 27− 35 36− 44 45− 52

The reliability-based design optimization problem takes the form

min
x

c(x)

s.t. PF1(x)/10−3 ≤ 1

PF2(x)/10−3 ≤ 1

xi+1/xi ≤ 1, i = 1, 2, . . . , 5

0.5 ≤ xi ≤ 1.5, i = 1, 2, . . . , 6

(2.27)

where c(x) = ∑6
i=1 xi, and the failure events are the ones defined in the first scenario. As in the

previous case, the algorithm is implemented by considering 500 samples per stage. The feasible
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samples obtained after eight stages of Phase I are shown in Figure 2.21. This figure shows the

two-dimensional projections and marginal distributions of the feasible designs obtained after eight

steps. A total of 950 feasible samples are obtained, among which 275 are distinct. It is noted that

the volume of the feasible design space is very small with respect to the initial design space. In

fact, the volume ratio is about 0.01% according to preliminary validation calculations. Then, it

is seen that the approach is capable of obtaining samples from the feasible design space even in

challenging geometries as in this case.

Fig. 2.21: Two-dimensional sample projections and marginal histograms of feasible samples ob-
tained at the last stage of Phase I. Application Problem 2. Second scenario.
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Fig. 2.22: Two-dimensional sample projections and marginal histograms of the design variables
obtained at the last stage of Phase II. Application Problem 2. Second scenario.

The set of samples obtained after ten stages of Phase II are shown in Figure 2.22 22. It is observed

that the samples are concentrated near a single value. At the last stage, the values of the normalized

objective function range from 6.333 to 6.357. Then, the minimum value (sample-based optimal

cost) is equal to 6.333, which is associated with the design xT = ⟨ 1.489, 1.476, 1.088, 1.011 ,0.751,

0.515⟩. The corresponding reliability constraint values are PF1/10−3 = 0.999, and PF2/10−3 =

0.169. Thus, the reliability constraint associated with the interstory displacement of the first floor

is active at the final design, which is compatible with the first scenario. On the other hand, the
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geometric constraint values are: x2/x1 = 0.991; x3/x2 = 0.736; x4/x3 = 0.930; x5/x4 = 0.743;

and x6/x5 = 0.685. Based on these results, the first geometric constraint can be considered as

active at the final design. It is seen that the final design favors large values of the optimization

variables associated with the column diameter and shear wall thickness of the lower floors, which

is consistent from the structural point of view. Note that the same feature is exhibited by the final

design obtained when considering only two design variables (first scenario). Thus, the final designs

obtained from both scenarios are qualitatively similar. However, note that the distribution of the

stiffness over the height of the building is more regular in the present scenario, which is reasonable

from the optimization point of view (six control or optimization variables instead of two).

Fig. 2.23: Use of kriging during the different stages of Phase II. Application Problem 2. Second
scenario.

The evolution of the surrogate acceptance ratio during the design process is shown in Figure 2.23.

In particular, this figure shows the acceptance ratio during Phase II. The number of support points

in the context of kriging approximations is equal to 28. This number proved to be adequate for

the current scenario. The acceptance rate remains very high during the entire process. Actually,

the number of reliability estimates that need to be evaluated directly is less than 6% of the total

number of estimates required during the entire optimization process (Phases I and II). Thus, the

efficiency of the proposed adaptive scheme is also evident in the context of this scenario. As in the

first scenario, the failure probability functions involved in the problem are smoothly varying with

respect to the design variables, and thus the surrogate estimates are quite accurate for most of the
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samples. Validation calculations show that the previous results are very similar to those obtained

when the reliability constraints are estimated directly.

Computational effort

The corresponding speedup factor obtained by the proposed scheme is more than 16 in this case,

and the total number of function evaluations (reliability analyses) during the entire optimization

process is close to 500. This small number of function calls indicates that the use of the pro-

posed meta-model is very advantageous in terms of computational cost. Note that this significant

reduction in computational effort is obtained without compromising the accuracy of the design

process. To make a fair comparison of the proposed optimization scheme with other population-

based stochastic optimization algorithms it is necessary to develop meta-models in the framework

of those algorithms. Clearly, this is beyond the scope of the present contribution. Finally, the re-

sults of this application problem show that the use of surrogate modeling techniques together with

the proposed optimization scheme can be an efficient and practical choice for solving the class of

complex problems considered in the present work.

2.6 Conclusions

A population-based stochastic optimization scheme for solving general constrained optimization

problems has been presented. The problem is set into a framework of a Two-Phase Bayesian

model updating problem. Phase I generates designs uniformly distributed over the feasible design

space, while Phase II obtains a set of designs lying in the vicinity of the optimal solution set. The

model updating problem is solved by the transitional Markov chain Monte Carlo method. The

proposed constraint-handling approach is direct and does not require special constraint-handling

techniques. Actually, the same framework for obtaining samples in the vicinity of the optimal

solution set is used for obtaining samples in the feasible design space. In addition, the scheme

produces a set of nearly optimal solutions instead of a single optimal solution. This feature can be
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advantageous in many practical cases, where additional considerations or alternative criteria can

be taken into account to select the appropriate final design. Thus, the approach provides flexibility

to the decision-making process. Moreover, due to the generality and flexibility of the formulation,

it can handle different types of structural optimization problems involving linear and nonlinear

models.

The general approach is applied to an important class of problems. Specifically, reliability-based

design optimization of structural dynamical systems under stochastic excitation. The results of the

example problems indicate that the samples generated by Phase I populate the feasible design space

in an effective manner, even in problems involving challenging geometries. Thus, the proposed

scheme is a useful tool for exploration of complex feasible design spaces. Moreover, at the last

stage of Phase II, the samples are distributed in the vicinity of the optimal solution set. In terms of

computational efficiency, the results indicate that the proposed algorithm compares favorably with

respect to other population-based stochastic optimization algorithms.

When dealing with complex reliability-based design optimization problems, the use of meta-models

can be very attractive. In fact, the numerical results of application 2 show that high surrogate ac-

ceptance rates are obtained during the entire design process. In this manner, a small percentage of

direct reliability estimations is required during the procedure allowing substantial savings in com-

putational efforts. Beside, the reduction in computational effort is obtained without compromising

the accuracy of the design process. Thus, the use of surrogate modeling techniques together with

the proposed optimization scheme may provide an effective numerical tool for dealing with the

stochastic optimization of complex structural models.

A future research effort aims to implement the proposed approach to more complex and involved

stochastic structural optimization problems. In these cases, the proposed optimization scheme can

be combined with parametric reduced-order models. The idea is to perform structural analyses in

terms of reduced-order models instead of full finite element models. The extension of the method-

ology to stochastic optimization problems involving mixed-design variables is an additional topic
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for future research. Work in these directions is currently under way.
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2.7 Appendix A

The failure event F is characterized as F (x, z) = d(x, z) > 1, where d is a demand function given

by

d(x, z) = max
j=1,2

max
t∈[0,tT ]

{
|δuj(t, x, z)|

δ∗ ,
|aj(t, x, z)|

a∗

}
(2.28)

where δuj(t, x, z), j = 1, 2, are the interstory drifts, aj(t, x, z), j = 1, 2, are the total accelerations

at the first and second floor, respectively, and δ∗ = 0.42 and a∗ = 0.84 are the acceptable response

levels. The failure probability function PF (x) can be written in terms of the demand function as

the multidimensional probability integral

PF (x) =
∫

d(x,z)>1
p(z)dz (2.29)

where p(z) is the joint probability density function of the uncertain parameters involved in the

characterization of the excitation. This function indicates the relative plausibility of the possible

values of the uncertain parameters z ∈ Z. It is noted that the above multidimensional probability

integral involves more than 1000 random variables in this case. Therefore, the reliability estimation

for a given design constitutes a high-dimensional problem as previously pointed out [133, 138,
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141].

2.8 Appendix B

The failure event associated with the interstory displacement of the first floor is given by

F1(x, z) = max
t∈[0,tT ]

{
|u1

x(t, x, z)|
u1∗ ,

|u1
y(t, x, z)|

u1∗

}
> 1 (2.30)

where u1
x(t, x, z) and u1

y(t, x, z) are the centroid relative displacements of the first floor along the

x and y direction, respectively, and u1∗ is the maximum allowable drift equal to 0.08% of the first

story height.

The failure event related to the roof displacement is given by

F2(x, z) = maxt∈[0,tT ]

{
|u2

x(t, x, z)|
u2∗ ,

|u2
y(t, x, z)|

u2∗

}
> 1 (2.31)

where u2
x(t, x, z) and u2

y(t, x, z) are the centroid displacements at the top of the building along

the x and y direction, respectively,and u2∗ is the maximum allowable roof displacement equal to

0.075% of the building height. As in Application 1, the reliability estimation for a given design

constitutes a high-dimensional problem. In fact, more than 1500 random variables are involved in

the corresponding multidimensional probability integral in this case.

2.9 Appendix C

A kriging-based model is selected for approximating the failure probability functions [327, 328].

Validation calculations have shown that it is computationally more stable and efficient to perform

the kriging interpolation in the physical design space X rather than in the underlying normal space

Y [180]. Furthermore, it is more convenient, from the numerical point of view, to approximate the

logarithm of the failure probability function than the failure probability function itself [101]. In this
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framework, the idea is to construct an initial data-base of support points during the first stage of

Phase I which is updated during the different stages of the proposed approach. The support points

are then used to construct the kriging estimates of the logarithm of the failure probability functions,

i.e., P Ln
Fi

(x) = ln(PFi
(x)). The numerical implementation is as follows.

1) The initial set of support points and the corresponding values of P Ln
Fi

(x) are generated during

the first stage of Phase I. This implies a direct evaluation of P Ln
Fi

(x) at the support points. Define

the number of support points nsu, and error tolerance level ϵ.

2) For a given candidate sample xnew, find its closest nsu support points according to, e.g., the

Euclidean distance.

3) Check if xnew belongs to the nd-dimensional convex hull of the support points. If not, go to step

6.

4) Estimate the coefficient of variation of the kriging estimate. Check the variability of the estimate.

If its coefficient of variation is greater than the error tolerance level ϵ, go to 6.

5) Kriging estimate of P Ln
Fi

(x) is accepted for the candidate sample xnew. Go to step 7.

6) Evaluate P Ln
Fi

(xnew) directly from the physical model. Store the values of xnew and P Ln
Fi

(xnew) in

the database of support points.

7) Continue with the updating process.

This procedure is repeated during the different stages of the proposed Two-Phase method. For more

details about the implementation of the meta-model, the reader is referred to [180, 287, 288].
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Abstract: This paper presents a Markov sampling-based framework, called Asymptotic Bayesian

Optimization, for solving a class of constrained design optimization problems. The optimization

problem is converted into a unified two-phase sample generation problem which is solved by an

effective Markov chain Monte Carlo simulation scheme. First, an exploration phase generates de-

signs distributed over the feasible design space. Based on this information, an exploitation phase

obtains a set of designs lying in the vicinity of the optimal solution set. The proposed formulation

can handle continuous, discrete, or mixed discrete-continuous design variables. Appropriate adap-

tive proposal distributions for the continuous and discrete design variables are suggested. The set

of optimal solutions provides valuable sensitivity information of the different quantities involved in

the problem with respect to the design variables. Representative examples including an analytical

problem involving nonlinear benchmark functions, a classical engineering design problem, and a

performance-based design optimization problem of a structural system under stochastic excitation
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are presented to show the effectiveness and potentiality of the proposed optimization scheme. Val-

idation calculations show that the scheme is a flexible, efficient and competitive choice for solving

a wide range of classical and complex engineering design problems.

Keywords: Discrete-continuous optimization; Dynamic systems; Metropolis-Hastings algorithm;

Markov sampling method; Performance-based design; Stochastic optimization

3.1 Introduction

Constrained optimization problems originate from a large number of involved engineering design

processes. The problem is generally formulated in terms of minimizing a cost function or maximiz-

ing a utility function subject to multiple inequality constraints. In addition, and due to manufac-

turing limitations, some design variables cannot be considered as continuous but should be treated

as discrete in many cases. Due to the significance of this type of problems, the development of

efficient and robust constrained optimization algorithms has been an important area of research in

engineering design [117, 151, 306].

One class of optimization schemes for solving constrained optimization problems is based on tra-

ditional mathematical optimization algorithms [117, 143, 329, 330]. This type of schemes has been

extensively used in a large number of engineering design problems. Recently, stochastic-based

search algorithms have been also proposed for constrained optimization. This class of algorithms

can be classified into three main groups: evolution-based, physics-based, and swarm-based meth-

ods. Evolution-based methods, which are inspired by the laws of natural evolution, include Genetic

Algorithms (GA) [307], Evolution Strategies (ES) [331], Genetic Programming (GP) [332], etc.

On the other hand, physics-based methods such as Simulated Annealing (SA) [174], Gravitational

Search Algorithm (GSA) [333], Subset Simulation-based algorithms (SuS) [133, 317], and Ray

Optimization (RO) [334], replicate physical rules. Finally, swarm-based techniques that imitate the

social behavior of different groups include Particle Swarm Optimization (PSO) [308], Ant Colony

Optimization (ACO) [309], Harmony Search (HS) [335], Artificial Bee Colony (ABC) [336], etc.
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Some of the advantages of using stochastic search algorithms include their simplicity, flexibility,

and local optima avoidance. In this context, one important issue related to constrained optimization

is constraint-handling [312, 313, 324]. In this regard, a number of strategies have been suggested

in the context of specific stochastic optimization algorithms such as evolutionary algorithms [314],

simulated annealing [315], particle swarm optimization [316, 323], and subset simulation-based

algorithm [317]. The previous stochastic optimization algorithms have been applied in a number

of constrained optimization problems with different levels of efficiency and robustness.

Considering that design optimization of complex systems is a challenging problem, and the fact

that there is no single method capable of solving all types of constrained optimization problems,

there is still room for further developments in this area. This motivates the attempt to develop an

effective and flexible framework for solving complex constrained optimization problems, including

problems with mixed discrete-continuous design variables. In the proposed scheme, which is called

Asymptotic Bayesian Optimization (ABO), the optimization problem is converted into a problem of

successively generating samples according to a sequence of probability distributions with supports

increasingly concentrated in a vicinity of the optimum solution set. The samples are generated by a

unified two-phase approach based on an efficient Markov chain Monte Carlo technique [178, 179].

The first phase corresponds to an exploration state which generates designs uniformly distributed

over the feasible design space, while the second phase, which is an exploitation state, generates a

set of designs lying in the vicinity of the optimal solution set. The proposed constraint-handling

approach is direct and does not require special constraint-handling techniques. In fact, the same

framework for obtaining samples in the vicinity of the optimal solution set is used for finding

designs in the feasible space. The solution scheme can efficiently explore the sensitivity of the

objective function and constraints with respect to the design variables in the feasible design space

as well as in the neighborhood of the optimal solution set. In this context, appropriate adaptive

proposal distributions are suggested for the continuous and discrete design variables. Moreover,

the optimization algorithm can be implemented with few control parameters.
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In summary, it is the objective of this contribution to propose a unified Markov sampling-based

framework for solving a class of constrained optimization problems with application to design

optimization. The contribution can be viewed as an extension and generalization of the work pre-

sented in [175, 177, 181, 182] in the sense that the same formulation can be used for a wide range

of engineering design problems involving continuous, discrete, or mixed discrete-continuous de-

sign variables. The structure of the paper is as follows. In Section 3.2, the general formulation

of the problem is presented. The relationship between the optimization and the sample genera-

tion problem is explained in Section 3.3. Section 3.4 outlines the sample generation scheme to

be implemented. The exploration and exploitation phases are discussed in Sections 3.5 and 3.6,

respectively. Some advantages of the proposed optimization scheme are highlighted in Section 3.7.

The performance and capabilities of the proposed algorithm are demonstrated in Section 3.8 by

means of three example problems. The paper closes with some final remarks.

3.2 Problem formulation

Consider the constrained optimization problem formulated as

min
x

c(x)

s.t. gj(x) ≤ 0, j = 1, . . . , ng

x ∈ X

(3.1)

where c(x) is the objective function, gj(x) is the j th constraint function, ng is the number of in-

equality constraints, x represents the set of design variables, and X is the search space. The set

of design variables is defined as x = ⟨xT
c , xT

d ⟩T ∈ X = Xc × Xd ⊂ Rnc+nd , where xc(xci, i =

1, . . . , nc) ∈ Xc ⊂ Rnc denotes the set of continuous design variables, nc is the number of con-

tinuous design variables, xd(xdi, i = 1, . . . , nd) ∈ Xd ⊂ Rnd denotes the set of discrete design

variables, and nd is the number of discrete design variables. The side constraints for the continuous

design variables are given by xl
ci ≤ xci ≤ xu

ci, i = 1, . . . , nc, where xl
ci and xu

ci are the correspond-
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ing lower and upper bounds. Finally, the set of available discrete values Xdi for the ith discrete

design variable is written as xdi ∈ Xdi = {xdi(j), j = 1, . . . , ndi}, i = 1, . . . , nd. For convenience,

the available discrete values are listed in an ascending order. The objective function c(x) can be

defined in terms of general cost functions, while the design constraints gj(x) ≤ 0, j = 1, . . . , ng

can be given in terms of different design specifications.

3.3 Relationship between optimization problem and sample generation prob-

lem

Based on the connection between statistical mechanics and combinatorial optimization proposed in

[174], with the idea of simulated annealing, the optimization problem in Eq. (3.1) can be converted

into a problem of generating sample points or designs according to a specially devised distribution.

To examine this connection, it is first observed that finding the minimum of the objective function

c(x) is equivalent to find the maximum of the function exp(−c(x)/K), for any given value of

K > 0 [174]. The parameter K is usually called temperature by analogy with the Boltzmann-

Gibbs distribution in statistical mechanics [294]. Next, artificially treating the design variables as

random variables distributed over the feasible design space Xfeasible, where

Xfeasible =
{
x = ⟨xT

c , xT
d ⟩T : xc ∈ Xc ∧ xd ∈ Xd ∧ gj(x) ≤ 0, j = 1, . . . , ng

}
, (3.2)

consider the non-normalized distribution

fK(x) ∝ exp
(
−c(x)

K

)
IXfeasible(x) (3.3)

where IXfeasible(x) is the indicator function of the feasible design space Xfeasible, that is, IXfeasible(x) =

1, for x ∈ Xfeasible, and IXfeasible(x) = 0, otherwise. The distribution fK(x) becomes propor-

tional to IXfeasible(x) as K → ∞, and it becomes spikier as K → 0. The previous results corre-

spond to the concept of annealing which indicates that as K decreases, the distribution fK(x) puts



CHAPTER 3. ASYMPTOTIC BAYESIAN OPTIMIZATION: A MARKOV
SAMPLING-BASED FRAMEWORK FOR DESIGN OPTIMIZATION 89

more and more of its probability mass into the set of feasible designs that maximize the function

exp(−c(x)/K). Thus, a sample or design drawn from fK(x) will be in a vicinity of the optimal

solution set X∗
c with very high probability when K → 0 [175, 177]. Then, if a number of samples

(designs) following the distribution fK(x) as K → 0 can be generated, the sample points with

the smallest value of c(x) among the generated designs can provide a good approximation for the

optimal solution set of the problem.

3.4 Sample generation

As previously pointed out, the optimization problem can be converted into a problem of generating

sample points (designs) according to the non-normalized distribution fK(x) with K → 0. The gen-

eration of the required samples can be carried out by Markov chain Monte Carlo techniques [81].

This is a family of stochastic simulation algorithms for sampling from arbitrary probability density

distributions. They are based on constructing a Markov chain whose state probability distribution

converges to any desired target distribution as its stationary distribution. In this context, a num-

ber of standard algorithms may be used, including the independent Metropolis-Hastings algorithm

[319], the random walk Metropolis-Hastings algorithm [88, 89], the asymptotically independent

Markov sampling scheme [176], etc. In the present formulation, a highly effective Markov chain

Monte Carlo simulation technique called the transitional Markov chain Monte Carlo (TMCMC)

method is employed [178, 179]. It is noted that the treatment of the design variables as random

variables is just a tool in the present formulation for setting the optimization problem into a sample

generation problem [175, 177, 180]. In the framework of the TMCMC method, define a series of

non-normalized intermediate distributions of the form

fK0(x) ∝ IXfeasible(x) , fKj
(x) ∝ exp

(
−c(x)

Kj

)
IXfeasible(x) , j = 1, 2, . . . (3.4)

where∞ = K0 > K1 > . . . > Kj > . . . is a sequence of monotonically decreasing parameters

with Kj → 0 as j → ∞. These parameters are constructed adaptively in such a way that the
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distributions fKj
(x) and fKj+1(x) be similar [178, 318, 319]. This small change of the shape

between consecutive distributions allows to efficiently obtain samples from fKj+1(x) based on the

samples from fKj
(x). To this end, different criteria can be used. In particular, a criterion based

on the effective sample size technique [318, 319] is considered in the present implementation.

According to this criterion, the value of Kj+1, given Kj , is chosen to satisfy the equation

n∑
i=1

exp
(
−2c(xj

i )∆Kj

)
(

n∑
i=1

exp
(
−c(xj

i )∆Kj

))2 = 1
νn

(3.5)

where ∆Kj = 1/Kj+1 − 1/Kj , and ν ∈ (0, 1) is a user-defined parameter. At the zeroth level,

j = 0, uniformly distributed samples x0
1, . . . , x0

n are generated over the feasible design space

Xfeasible, where n is the number of samples per stage. The samples at stage j+1, i.e., xj+1
1 , . . . , xj+1

n ,

j = 0, 1, . . ., which are approximately distributed according to fKj+1(x), are obtained by gener-

ating Markov chains using the Metropolis-Hastings algorithm [88, 89]. The lead sample of each

chain, x̃j+1, is a sample from the previous stage, xj
i , drawn with probability equal to its normalized

importance weight, w̄j
i , i = 1, . . . , n (see Appendix A). Each candidate design x⋆ = ⟨x⋆

c
T , x⋆

d
T ⟩T

is generated from an adaptive proposal distribution with independent continuous and discrete com-

ponents [182] as described in appendices B and C, respectively. The candidate design is then

accepted or rejected according to the procedure described in Appendix D. The procedure is re-

peated until the required number of samples has been obtained. It is noted that when the number

of samples n → ∞, the samples generated by the previous procedure are actually distributed ac-

cording to the non-normalized intermediate distributions fKj
(x), j = 1, 2, . . . which ultimately are

densely concentrated near the optimum solution set. Furthermore, the target non-normalized distri-

bution fK(x) ∝ exp(−c(x)/K)IXfeasible(x), K → 0, can be viewed as the posterior distribution of a

Bayesian model updating problem where exp(−c(x)/K), K → 0, takes the role of the likelihood

function and IXfeasible(x) of the prior distribution. These features are the reasons for naming the

proposed optimization scheme “Asymptotic Bayesian Optimization”. The generation of samples at
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stage j + 1, i.e., xj+1
1 , . . . , xj+1

n , based on the samples generated at level j, is schematically repre-

sented in Fig. 3.1. A detailed implementation of the TMCMC method can be found in [178, 179].

Fig. 3.1: Sample generation process (Flowchart 1).

3.5 Exploration phase

The first step of the proposed solution scheme requires the generation of a set of samples uniformly

distributed over the feasible design space Xfeasible. To this end, an exploration phase that investigates

the feasible domain of the search space is introduced. Following some of the ideas suggested in
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[181], define the auxiliary unconstrained optimization problem

min
x

h(x) = max
{

0, max
j=1,...,ng

gj(x)
}

s.t. x ∈ X
(3.6)

where all terms have been previously defined. Note that the optimal solution set X∗
h of the uncon-

strained optimization problem is given by

X∗
h =

{
x = ⟨xT

c , xT
d ⟩T : xc ∈ Xc ∧ xd ∈ Xd ∧ gj(x) ≤ 0 , j = 1, . . . , ng

}
(3.7)

with minimum objective function value equal to 0. Thus, the optimal solution set X∗
h of the uncon-

strained optimization problem given in Eq. (3.6) coincides with the feasible design space defined

in Eq. (3.2), i.e., Xfeasible = X∗
h. Note that the problem is unconstrained in the sense that only

side constraints on the design variables are considered. The previous optimization problem can be

solved as indicated in the previous section, that is, by means of the TMCMC method. In this case,

define the sequence of non-normalized intermediate distributions

fK0(x) = UX(x) , fKj
(x) ∝ exp

(
−h(x)

Kj

)
UX(x) , j = 1, 2, . . . (3.8)

where UX(x) is the uniform distribution defined over the set that characterizes the side constraints,

i.e., X = {x = ⟨xT
c , xT

d ⟩T : xc ∈ Xc ∧ xd ∈ Xd}. Therefore, the samples at the first phase

(K0 = ∞) can be generated efficiently by direct Monte Carlo simulation. Furthermore, according

to the sample generation scheme described in the previous section, the samples at the last stage of

the process (Kj → 0) represent designs with objective function value h(x) = 0. In this phase, the

parameter Kj+1 satisfies the equation

n∑
i=1

exp
(
−2h(xj

i )∆Kj

)
(

n∑
i=1

exp
(
−h(xj

i )∆Kj

))2 = 1
νn

(3.9)
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according to the effective sample size technique [318, 319]. It can be shown that all feasible designs

obtained during the different stages of the exploration phase are uniformly distributed over the set

Xfeasible [181]. Therefore, a possible stopping criterion is to obtain a sufficient amount of feasi-

ble designs during all stages. In the proposed implementation, the sampling process stops when

m ≥ nfeasible, where m is the total number of feasible designs obtained during the entire simulation

process, and nfeasible is a user-defined target value. The procedure to generate samples in the feasible

design space is schematically shown in Fig. 3.2.

Fig. 3.2: Exploration phase of ABO (Flowchart 2).
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3.6 Exploitation phase

3.6.1 Samples in the optimal solution set

The exploitation phase uses the samples generated in the exploration phase to obtain a set of de-

signs lying in the vicinity of the optimal solution set X∗
c . In the context of the approach presented

in Section 3.4, the samples uniformly distributed over the feasible design space Xfeasible are the ones

obtained from the exploration phase. In addition, as Kj → 0, the distribution fKj
(x) converges

to a uniform distribution over the optimal solution set X∗
c and, therefore, the generated samples

become more and more concentrated around X∗
c as the iterations progress. Clearly, for numerical

implementation the algorithm should stop based on any suitable stopping rule. In the present for-

mulation, the sampling procedure stops if a user-defined number of stages, Nmax, are completed or

if the sample coefficient of variation (c.o.v.) of the objective function is below a certain threshold.

In particular, the optimization process stops at stage j = 0, 1, . . . if j + 1 = Nmax or, alternatively,

δj+1 < γδ0, where γ ∈ (0, 1) is a user-defined parameter, and

δj =

√√√√ 1
n− 1

n∑
i=1

(
c(xj

i )−
[

1
n

n∑
l=1

c(xj
l )
])2/(

1
n

n∑
l=1

c(xj
l )
)

, j = 0, 1, . . . (3.10)

is the sample c.o.v. of the objective function during stage j. In other words, the algorithm runs

until a prescribed number of stages are completed or until δj+1 becomes less than some fraction

γ of the initial sample c.o.v. of the objective function, δ0. Smaller values for γ correspond to

better approximations of the optimal solution set. It is noted that alternative stopping criteria can

be implemented as well. The corresponding procedure to generate a set of candidate designs is

illustrated in Fig. 3.3.
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Fig. 3.3: Exploitation phase of ABO (Flowchart 3).

3.6.2 Additional remarks

Due to the annealing property of the approach, candidate designs with objective function values

larger than those of the corresponding lead samples can be still accepted during the exploitation

phase (see Appendix D). Thus, the probability of accepting a worse candidate solution during the

initial stages is not negligible, but it decreases as the temperature parameter approaches zero. In

this manner, sub-optimal regions in the feasible design space are potentially visited during the

initial stages of the sampling process. The final stages, on the other hand, are almost completely
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focused on improving the objective function values of the designs. This feature is beneficial towards

avoiding local optima and improving the robustness of the overall optimization scheme.

3.7 Practical observations

Some practical benefits of using the proposed optimization scheme can be summarized as follows.

Adequacy for high performance computing. The sampling simulation technique under consider-

ation, i.e., the TMCMC method, is very-well suited for parallel implementation in a computer

cluster. In fact, the first level of the exploration phase, which corresponds to direct Monte Carlo

simulation, can be fully scheduled in parallel. In addition, each of the subsequent levels of the ex-

ploration and exploitation phases produces a set of Markov chains that are perfectly parallel. Thus,

a number of computer workers can handle the generation of samples corresponding to the differ-

ent chains. This is very important when dealing with optimization problems involving expensive

function evaluations.

Improved flexibility for decision making. Asymptotic Bayesian Optimization produces a set of

nearly optimal solutions instead of a single optimal solution as well as a number of designs uni-

formly distributed over the feasible design space. In this manner, sensitivity information about

the feasible designs and the final design can be obtained directly. This type of information can be

advantageous in many practical cases where additional considerations or alternative criteria can be

taken into account to select the appropriate final design. Thus, the approach provides flexibility to

the decision-making process.

Robustness and effectiveness. Due to the theoretical basis of the formulation and the properties of

the TMCMC method, the Asymptotic Bayesian Optimization scheme has high chances to reach a

vicinity of the global optimum in an effective manner, even in presence of multiple local optima,

complex feasible design spaces, and problems with multiple discontinuous sub-feasible regions.

Moreover, no restrictions are imposed on the number of constraints. Furthermore, due to the gen-
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erality and flexibility of the formulation it can handle, in principle, different types of optimization

problems. From the structural optimization point of view, these problems may include discrete-

continuous design variables, complex linear and nonlinear systems, and performance-based design

problems.

Implementation simplicity. Special constraint-handling techniques, such as penalty function meth-

ods or other approaches, are not necessary within the context of the proposed two-phase scheme.

In fact, the same framework for obtaining samples in the vicinity of the optimal solution set (ex-

ploitation phase) is used for finding designs in the feasible set (exploration phase). In addition, the

proposed approach requires the definition of few control parameters. These features represent an

advantage from a practical viewpoint.

3.8 Examples

Due to the generality of the proposed optimization scheme, a wide range of optimization problems

can be considered for evaluating its effectiveness. For clarity and conciseness, three representa-

tive numerical examples are chosen and presented in this section. First, a test problem involving

highly nonlinear benchmark functions with continuous design variables is examined to illustrate

the capabilities of the proposed method in detail and, in addition, to evaluate the effect of the

algorithm parameters on its performance. Then, the effectiveness of the Asymptotic Bayesian Op-

timization scheme is demonstrated by two design optimization problems: a classical engineering

design problem including mixed discrete-continuous design variables, and a performance-based

discrete-design optimization problem of a structural system under stochastic excitation. As pre-

viously pointed out, a number of additional or alternative engineering design problems can be

considered as well.
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3.8.1 Example No. 1: Benchmark functions

Optimization problem

The constrained optimization problem of interest is stated as

min
x

c(x1, x2)

s.t. g(x1, x2) ≤ 0

−3.0 ≤ xi ≤ 3.0, i = 1, 2

(3.11)

where the objective function c(x1, x2) is the so-called six-hump camel back function given by

c(x1, x2) = 4.0x2
1 − 2.1x4

1 + x6
1/3.0 + x1x2 − 4.0x2

2 + 4.0x4
2 (3.12)

and the constraint function g(x1, x2) is defined in terms of the Schaffer function N.2 as

g(x1, x2) = 0.1 + sin2(x2
1 − x2

2)− 0.5
[1 + 0.001(x2

1 − x2
2)]2

(3.13)

where x1 and x2 are the design variables which are treated as continuous variables. For illustration

purposes, the objective and constraint functions are shown in Fig. 3.4. The left figure shows the

objective function in the entire design space, while the right figure depicts the constraint function

which is quite involved with abrupt variations in the design space. The corresponding feasible

design space is illustrated in Fig. 3.5, where the two optimum solutions and some contours of the

objective function are also shown. It is seen that the feasible design space is rather complex, as it

involves several disconnected regions and some of them represent a small portion of the search

space. In addition, the objective contours indicate that this example problem involves several

disconnected sub-optimal regions. The optimal solutions of the optimization problem are given

by x∗ = ⟨0.0898,−0.7126⟩T and x∗ = ⟨−0.0898, 0.7126⟩T , with optimum objective function

c(x∗) = −1.0316.
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Fig. 3.4: Left: Objective function in the entire design space. Right: Constraint function. Example
No. 1.

Fig. 3.5: Sketch of the feasible design space (gray area), optimal solutions (*), and contours of the
objective function (dashed lines). Example No. 1.

Exploration phase

The following parameter values of the proposed approach are considered for the numerical imple-

mentation of the test problem: γ = 0.05 (stopping criterion parameter); ν = 0.5 (effective sample

size parameter); n = 1000 (number of samples per stage); and nfeasible = 5000 (target feasible

sample size). In addition, the scaling parameter β, associated with the proposal distribution (see

Appendix B), is determined by an adaptive scheme that monitors the acceptance rate of the up-

dating process [288]. Figure 3.6 shows the evolution of the samples during the different stages of

the exploration phase. The process stops at stage j = 5. That is, a total of six stages are required
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to verify the stopping criterion of the exploration phase. Thus, the samples generated at the final

stage correspond to stage 5. It is observed that the samples tend to populate the feasible design

space more effectively as the number of stages increases. In fact, the shape of the set of samples at

the final stage is very similar to the feasible design space shown in Fig. 3.5. During the different

stages, almost 5800 feasible samples are obtained. Thus, it is clear that the method generates a

set of samples uniformly distributed over the feasible design space in an effective manner for this

example.

Fig. 3.6: Samples generated during the different stages of the exploration phase. Example No. 1.

Exploitation phase

Based on the set of feasible designs, the exploitation phase aims to obtain samples in a vicinity of

the optimal solution set. Figure 3.7 shows the evolution of the samples obtained during the different

stages of the exploitation phase. Note that the samples at the initial stage of the exploitation phase

(stage 0 in the figure) correspond to the approximately 5800 feasible designs obtained during the

exploration phase. It is seen that the intermediate distributions of the samples tend to be more and
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more concentrated near the two optimum solutions as the iterations progress. Two clusters can be

clearly seen at the last stage of the exploitation phase, whose mean and optimum solutions are given

in Table 3.1. The previous results indicate that the method effectively populates a vicinity of the

optimal solution set during the final stages for this example, which is consistent with the theoretical

foundations of the proposed approach. In summary, the preceding results show the applicability

and effectiveness of the proposed approach in a rather complex optimization problem involving

a disconnected feasible design space with multiple global optima and several disconnected sub-

optimal regions.

Fig. 3.7: Evolution of samples obtained during the different stages of the exploitation phase. Ex-
ample No. 1.



CHAPTER 3. ASYMPTOTIC BAYESIAN OPTIMIZATION: A MARKOV
SAMPLING-BASED FRAMEWORK FOR DESIGN OPTIMIZATION 102

Table 3.1: Sample-based mean, sample-based optimum, and actual optimum for each cluster. Ex-
ample No. 1.

Design Upper cluster Lower cluster

Sample-based mean optimum x̄ x̄1 = −0.0905 , x̄2 = 0.7124 x̄1 = 0.0876 , x̄2 = −0.7124
Objective value c(x̄) -1.0316 -1.0316

Sample-based optimum x̂∗ x̂∗
1 = −0.0901 , x̂∗

2 = 0.7126 x̂∗
1 = 0.0896 , x̂∗

2 = −0.7126
Objective value c(x̂∗) -1.0316 -1.0316

Actual optimum x∗ x∗
1 = −0.0898 , x∗

2 = 0.7126 x∗
1 = 0.0898 , x∗

2 = −0.7126
Objective value c(x∗) -1.0316 -1.0316

Statistical performance

Preliminary validation calculations show that the number of samples per stage, n, plays an impor-

tant role on the performance of the proposed approach. In this regard, a statistical analysis is carried

out to study the influence of this parameter on the quality of the results. In particular, a total of 30

independent optimization runs are conducted for different numbers of samples per stage. They

range from 50 to 1000. For comparison purposes, the target number of feasible samples is taken as

nfeasible = 2n and the total number of stages during the exploitation phase is limited to 8. The effec-

tive sample size parameter is taken as before, that is, ν = 0.5. The statistical analysis is performed

as follows. For the rth independent run (r = 1, . . . , Nr = 30), the sample-based optimum cost cr
opt

is obtained. In this framework, the optimum cost refers to the smallest objective function value

found in each independent run. Based on these values, four statistical parameters are computed,

namely, the best optimum cost cbest
opt , the worst optimum cost cworst

opt , the average optimum cost cavg
opt ,

and the coefficient of variation of the optimum cost cc.o.v.
opt . The statistical parameters are formally

defined as
cbest

opt = min
r=1,...,Nr

cr
opt, cworst

opt = max
r=1,...,Nr

cr
opt

cavg
opt = 1

Nr

Nr∑
r=1

cr
opt, cc.o.v.

opt =

√
1

Nr−1
∑Nr

r=1(cr
opt − cavg

opt )2

| cavg
opt |

(3.14)

Table 3.2 shows the performance of the method in terms of the number of samples per stage. It

is seen that the best optimum cost coincides with the reference value (-1.03163) even for a small



CHAPTER 3. ASYMPTOTIC BAYESIAN OPTIMIZATION: A MARKOV
SAMPLING-BASED FRAMEWORK FOR DESIGN OPTIMIZATION 103

number of samples per stage. On the other hand, the best, average, and worst optimum costs remain

almost invariant, from the practical viewpoint, when the number of samples per stage is greater than

200. Moreover, as expected, the corresponding c.o.v. of the optimum cost reduces as n increases.

The previous results indicate that the scheme is able to explore the design space in a very effective

manner, even with a relatively small number of samples per stage. Another interpretation of these

results is that the proposed method, which is based on Markov chain Monte Carlo simulation,

exhibits a good performance in terms of its ergodicity in this particular problem. Although the

appropriate value of n is problem-dependent, 200 samples per stage seem to be suitable for this

example.

Table 3.2: Statistical performance of the proposed scheme (ABO) in terms of the number of samples
per stage (n). Example No. 1.

optimal cost

best mean worst c.o.v. (%)
n (cbest

opt ) (cavg
opt ) (cworst

opt ) (cc.o.v.
opt )

50 -1.03163 -1.03003 -1.01513 3.5× 10−3

100 -1.03163 -1.03154 -1.03103 1.5× 10−4

150 -1.03163 -1.03157 -1.03096 1.2× 10−4

200 -1.03163 -1.03158 -1.03135 7.0× 10−5

500 -1.03163 -1.03162 -1.03158 8.0× 10−6

1000 -1.03163 -1.03163 -1.03162 2.0× 10−6

Finally, the influence of the effective sample size parameter, ν, on the quality of the optimization

results is examined. Table 3.3 shows the best optimum cost, the worst optimum cost, the average

optimum cost, and the c.o.v. of the optimum cost for different values of ν. The number of samples

per stage is set equal to 200. It is seen that the best and average optimum costs are relatively similar

to the reference solution, except for higher values of ν. In addition, the smallest difference between

the best and worst optimum costs is obtained for intermediate values of the effective sample size

parameter, that is, ν = 0.5. Similarly, the c.o.v. of the optimum cost tends to decrease for inter-

mediate values of ν. These results are reasonable due to the role that ν plays in the optimization

process. On the one hand, consecutive intermediate distributions become more similar between
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each other for higher values of ν and, as a result, more stages are required to obtain a distribu-

tion that is densely concentrated in a vicinity of the optimum solution set. This slower converge

leads to a higher variability of the sample-based optimum cost, since the number of stages is lim-

ited to eight. On the other hand, smaller values for ν allow more abrupt changes in the shape of

consecutive intermediate distributions. This, in turn, can be detrimental to the effectiveness of the

Metropolis-Hastings method and, eventually, diminish the accuracy of the sample-based optimum

solution. Thus, intermediate values for ν (around 0.5) should be preferred in this example to reduce

the variability of the optimum solutions for a fixed computational cost.

Table 3.3: Statistical performance of the proposed scheme (ABO) in terms of the effective sample
size parameter (ν). Example No. 1.

optimal cost

best mean worst c.o.v. (%)
ν (cbest

opt ) (cavg
opt ) (cworst

opt ) (cc.o.v.
opt )

0.3 -1.03163 -1.03160 -1.03124 8.5× 10−5

0.5 -1.03163 -1.03158 -1.03135 7.0× 10−5

0.7 -1.03163 -1.03124 -1.02899 5.2× 10−4

0.9 -1.03091 -1.02093 -0.99980 9.1× 10−3

A similar behavior of the method performance with respect to ν is observed for alternative sample

sizes. Analogously, the effect of n on the statistical performance of the method remains similar

for different values of the effective sample size parameter. Such results are not presented here for

conciseness and brevity. As indicated before, a number of samples per stage of around 200 and

values for the effective sample size parameter roughly between 0.4 and 0.6 provide a reasonable

tradeoff between efficiency and accuracy for this problem.

3.8.2 Example No. 2: A classical engineering design problem

Speed reducer design

The objective of this problem is to minimize the weight of the speed reducer shown in Fig. 3.8.

A number of requirements associated with gear and shaft design practices, including bending and
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clamp constraints, strength conditions on gear shafts, permissible magnitude of deflection, etc.,

must be satisfied [337]. Seven design variables are involved in the optimization problem (see

Fig. 3.8): width of the gear face (x1), teeth module (x2), number of pinion teeth (x3), length between

bearings of shafts 1 and 2 (x4 and x5, respectively), and diameter of shafts 1 and 2 (x6 and x7,

respectively). The problem can be formulated as

min
x

c(x)

s.t. gj(x) ≤ 0, j = 1, . . . , 11

x ∈ X

(3.15)

where the cost function is given by

c(x) = 0.7854x1x
2
2(3.3333x2

3 + 14.9334x3 − 43.0934)

− 1.508x1(x2
6 + x2

7) + 7.4777(x3
6 + x3

7) + 0.7854(x4x
2
6 + x5x

2
7),

(3.16)

the constraint functions are defined as

g1(x) = 27
x1x2

2x3
− 1 , g2(x) = 397.5

x1x2
2x

2
3
− 1 , g3(x) = 1.93x3

4
x2x4

6x3
− 1

g4(x) = 1.93x3
5

x2x4
7x3
− 1 , g5(x) =

√(745x4

x2x3

)2
+ 16.9× 106

110.0x3
6

− 1

g6(x) =

√(745x5

x2x3

)2
+ 157.5× 106

85.0x3
7

− 1 , g7(x) = x2x3

40 − 1 , g8(x) = 5x2

x1
− 1

g9(x) = x1

12x2
− 1 , g10(x) = 1.5x6 + 1.9

x4
− 1 , g11(x) = 1.1x7 + 1.9

x5
− 1 (3.17)

and the side constraints on the design variables are 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, x3 ∈

{17, 18, . . . , 28}, 7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5. Note that

the number of pinion teeth (x3) is an integer quantity, whereas the rest of design variables are con-

tinuous. Thus, this is a mixed discrete-continuous optimization problem. A thorough description
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of the objective and constraint functions can be found in [337].

Fig. 3.8: Schematic of the speed reducer design problem. Example No. 2.

The proposed approach is implemented to solve the speed reducer design problem. The effective

sample size parameter is taken as ν = 0.4 and n = 500 samples per stage are considered. The

exploration phase stops after obtaining nfeasible = 1000 feasible designs. For illustration purposes,

40 exploitation stages are considered in this case. In addition, the parameters of the discrete pro-

posal distribution (see Appendix C) are defined as λ∗ = 2 and τ = 0.05 for the exploration phase,

and as λ∗ = 1 and τ = 0 for the exploitation phase. Note that the parameter λ∗ is updated at

the beginning of each exploitation stage according to an adaptive scheme that reuses information

gathered during previous stages (see Appendix C). Preliminary validation calculations indicate that

the previous parameter values are appropriate in the context of this mixed discrete-continuous op-

timization problem.

First, an exploration phase is performed to generate samples uniformly distributed over the feasible

set. After seven stages, a total of 1304 feasible designs are obtained. These designs are shown

in Fig. 3.9 by means of two-dimensional projections and marginal histograms. It is noted that the

feasible supports of variables x1 and x2 present the largest reduction when compared with the initial

search space. This gives an insight on the sensitivity of the constraints with respect to the design

variables.

The samples shown in Fig. 3.9 are used as the initial set of feasible designs for the exploitation

phase. During this phase, samples increasingly concentrated near the set that minimizes the objec-
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Fig. 3.9: Samples uniformly distributed over the feasible design set. Example No. 2.

tive function are iteratively generated. To illustrate this, Fig.3.10 presents the marginal histograms

obtained during stages j = 0, 5, 10, 15 and 39 (last stage). Note that the support of x3 is reduced

significantly during the initial stages. In addition, the vicinity of the optimum solution set becomes

more densely populated as the optimization process continues, as expected. Correspondingly, the

range of the objective function is also reduced during the different stages of the proposed approach.

The corresponding sample-based optimum obtained is x∗ = ⟨3.50000, 0.70000, 17, 7.30001, 7.71533, 3.35022, 5.28665⟩T
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with c(x∗) = 2994.4727.

Fig. 3.10: Marginal histograms obtained during different stages of the exploitation phase. Example
No. 2.

Finally, Table 3.4 presents the best solution obtained with the proposed approach across 30 indepen-

dent runs. In addition, the table also shows the solution of this problem obtained by other stochastic

search techniques reported in several references. They include Social Behavior inspired Optimiza-

tion technique (SBO) [338], Particle Swarm Optimization with Differential Evolution (PSO-DE)

[339], Differential Evolution with Level Comparison (DELC) [340], and Mine Blast Algorithm

(MBA) [341]. For reference purposes, the number of function calls corresponding to each solution

is also reported in the table. It is seen that the solution obtained by the proposed approach for

this application example is competitive with respect to the ones obtained by other stochastic search

techniques. Thus, the proposed framework can be an efficient choice for this problem.
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Table 3.4: Best solutions reported by different algorithms. Example No. 2.

Design variables Optimal values

SBO [338] PSO-DE [339] DELC [340] MBA [341] ABO

x1 3.500000 3.500000 3.500000 3.500000 3.500000
x2 0.700000 0.700000 0.700000 0.700000 0.700000
x3 17 17 17 17 17
x4 7.300000 7.300000 7.300000 7.300033 7.300004
x5 7.800000 7.800000 7.715319 7.715772 7.715321
x6 3.350215 3.350215 3.350240 3.350218 3.350215
x7 5.286683 5.286683 5.286654 5.286654 5.286655
Weight (lb) 2996.232157 2996.348165 2994.471066 2994.482453 2994.471550
Function calls 70000 54350 30000 25000 24000

3.8.3 Example No. 3: A performance-based optimization problem

Description of the model

The structural model under stochastic excitation shown in Fig. 3.11, which has been borrowed from

[182], is considered in this example. Each floor is supported by 48 columns as shown in Fig. 3.11.

The columns on axes A, C, D, and F contribute to the horizontal resistance of the floors in the x

direction, while those on axes B and E work primarily in the y direction. In addition, a bracing

system consisting of tubular steel brace elements is placed in axes A, C, D and F acting in the x

direction, and in axes 1, 2, 7 and 8 acting in the y direction. A typical configuration of the brace

elements is shown in Fig. 3.12. Thus, a total of 128 brace elements are used in the model, with

Young’s modulus E = 2.1 × 1011 N/m2 and weight density ρ = 7.42 ton/m3. All floors have a

constant height equal to 3.2 m, leading to a total height of 12.8 m. For a given floor, all columns are

assumed to be equal and their specifications are given in Table 3.5 [342]. It is assumed that each

floor may be represented with sufficient accuracy as rigid within the x − y plane when compared

to the flexibility of the horizontal resistant elements. Hence, each floor can be represented by three

degrees of freedom, i.e., two translational displacements along the x and y axes, and a rotational

displacement about the z axis. The associated masses mx = my and mz are taken as constant for

all floors and equal to 5.98×105 kg and 1.10×108 kg m2, respectively. In addition, a 2% of critical
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damping is assumed in the model. It is noted that no attempt has been made to consider a more

detailed structural model since the objective of this example is to evaluate the effectiveness of the

proposed optimization scheme in a performance-based optimization problem involving a structural

dynamical system under stochastic excitation.

Fig. 3.11: Isometric (left) and plan (right) view of the structural model. Example No. 3.

Fig. 3.12: Typical configuration of brace elements. (a) Brace system in axes 2 and 7. (b) Brace
system in axes A, C, D, F, 1 and 8. Example No. 3.

The system is subjected to a base acceleration modeled as a non-stationary stochastic process. In

particular, a stochastic model based on a point-source model is considered [34, 114]. The model

is characterized by a white noise sequence and a series of parameters such as radiation pattern,

shear wave velocity in the vicinity of the source, corner frequencies, local site conditions, velocity

pulse parameters, and additional seismicity parameters such as the moment magnitude and rupture
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Table 3.5: Specification of column elements. Example No. 3.

Floor Type of section

1 W24 × 131
2 W24 × 131
3 W24 × 104
4 W24 × 104

distance. Details of the procedure can be found in [34, 114, 321, 343]. The excitation is applied

at 45◦ with respect to the x axis and its duration is taken as T = 15 s with a sampling interval

equal to ∆t = 0.01 s. Based on these values and according to the stochastic excitation model

under consideration, it can be shown that more than 1500 random variables are involved in the

generation of base acceleration samples [114]. Thus, a high-dimensional uncertain parameter space

is involved in this problem. For illustration purposes, Fig. 3.13 shows a synthetic ground motion

sample corresponding to the stochastic point-source model.

Fig. 3.13: Synthetic ground acceleration sample from the stochastic point-source model. Example
No. 3.

For improved seismic behavior, the model is reinforced with nonlinear devices at each floor. At

each floor, six devices are implemented as shown in the floor plan of the model (see Fig. 3.11).

Specifically, four devices in the x direction and two devices in the y direction are considered. These

elements provide additional resistance against relative displacements between floors. The devices
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follow the inter-story restoring force law κ(t) = kd

(
δ(t) − γ1(t) + γ2(t)

)
, where kd denotes the

initial stiffness of the device, δ(t) is the relative displacement between floors, and γ1(t) and γ2(t)

denote the plastic elongations of the device. Using the auxiliary variable µ(t) = δ(t)−γ1(t)+γ2(t),

the plastic elongations γ1(t) and γ2(t) are specified by the differential equations [344]

γ̇i(t) =ς(i)δ̇(t)H(ς(i)δ̇(t))×[
H(ς(i)µ(t)− µy)ς(i)µ(t)− µy

µp − µy

H(µp − ς(i)µ(t)) + H(ς(i)µ(t)− µp)
]

, i = 1, 2

(3.18)

where H(·) denotes the Heaviside step function, ς(1) = 1, ς(2) = −1, µy is a parameter specifying

the onset of yielding, and kd µp is the maximum restoring force of the device. The values µp =

6.0 × 10−3 m, µy = 0.7up, and kd = 6.0 × 108 N/m are used for the nonlinear elements. A

typical displacement-restoring force curve of the nonlinear devices is shown in Fig. 3.14. Note that,

because of yielding, energy dissipation due to hysteresis is introduced in the structural response.

Fig. 3.14: Typical displacement-restoring force curve of the nonlinear device. Example No. 3.
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Design problem

The objective function for the optimization problem is defined in terms of the expected value of the

root-mean-square (RMS) of the displacement response at the top floor, while the design constraints

are given in terms of cost limitations, geometric requirements and availability of section sizes.

The vector of design variables x is defined in terms of the areas of the cross-sections of the steel

brace elements. For illustration purposes, the brace elements located every two floors are linked to

two design variables, one associated with the x direction and one with the y direction. This leads

to four design variables in total. The axes and stories corresponding to each design variable are

given in Table 3.6. In this setting, x1 and x3 are associated with the brace elements pointing in

the x direction, while x3 and x4 with those pointing in the y direction. The values for the different

design variables (areas of tubular cross-sections) must be selected from the discrete set of available

member sizes presented in Table 3.7. Thus, each design variable can be chosen from a discrete set

of 48 tubular elements and, therefore, more than 5 × 106 different configurations for the bracing

system can be devised.

Table 3.6: Design variables. Example No. 3.

Design variables Stories Axes

x1 1-2 A C D F
x2 1-2 1 2 7 8
x3 3-4 A C D F
x4 3-4 1 2 7 8

The design problem is written as

min
x

c(x)

s.t. g1(x) = v̄(x)− 1 ≤ 0

g2(x) = x3/x1 − 1 ≤ 0

g3(x) = x4/x2 − 1 ≤ 0

xi ∈ X, i = 1, . . . , 4

(3.19)
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Table 3.7: Available values for the design variables. Example No. 3.

D (in) A (mm2) D (in) A (mm2) D (in) A (mm2)

2 719 4 1517 6 2315
2 1/8 769 4 1/8 1567 6 1/8 2365
2 1/4 819 4 1/4 1617 6 1/4 2415
2 3/8 869 4 3/8 1667 6 3/8 2465
2 1/2 919 4 1/2 1717 6 1/2 2515
2 5/8 969 4 5/8 1767 6 5/8 2565
2 3/4 1019 4 3/4 1817 6 3/4 2615
2 7/8 1069 4 7/8 1866 6 7/8 2664

3 1118 5 1916 7 2714
3 1/8 1168 5 1/8 1966 7 1/8 2764
3 1/4 1218 5 1/4 2016 7 1/4 2814
3 3/8 1268 5 3/8 2066 7 3/8 2864
3 1/2 1318 5 1/2 2116 7 1/2 2914
3 5/8 1368 5 5/8 2166 7 5/8 2964
3 3/4 1418 5 3/4 2216 7 3/4 3014
3 7/8 1468 5 7/8 2265 7 7/8 3063

where x = ⟨x1, x2, x3, x4⟩T is the vector of design variables, c(x) is the objective function, v̄(x) is

a normalized cost function associated with the total volume of the bracing system, and X represents

the set of available discrete values for the design variables given in Table 3.7. It is noted that g1(x) is

associated with cost limitations, whereas g2(x) and g3(x) impose geometric conditions on the final

design. As previously pointed out, the objective function corresponds to the expected value of the

root-mean-square of the displacement response at the top floor, that is, c(x) = Eθ[RMSd(x,θ)]

where θ is the vector of uncertain parameters involved in the stochastic excitation model, Eθ(·)

denotes the expectation with respect to the distribution of θ, and

RMSd(x,θ) = 1
NT

√√√√NT∑
k=1
{u2

x(tk, x,θ) + u2
y(tk, x,θ)} (3.20)

where ux(tk, x,θ) and uy(tk, x,θ) are the x and y components, respectively, of the roof displace-

ment at time instant tk, k = 1, . . . , NT , NT = 1500, for a given realization of θ. The estimate

of c(x) is evaluated by means of Monte Carlo simulation [81]. In particular, 2000 samples are
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considered, that is, the evaluation of the objective function at each design involves 2000 dynamic

analyses in this case. In addition, the normalized cost function is defined as v̄(x) = ∑4
i=1 v∗

i xi,

with normalized constants v∗
1 = v∗

3 = 0.9402× 10−4 and v∗
2 = v∗

4 = 1.2363× 10−4.

Results

The proposed optimization framework is implemented to handle this performance-based design

problem considering n = 200 samples per stage and ν = 0.5 for the effective sample size pa-

rameter. In addition, the stopping criteria for the exploration and exploitation phases are to obtain

nfeasible = 400 feasible designs and to verify δj+1 < γδ0 with γ = 0.01 (see Section 3.6.1), re-

spectively. Moreover, the proposal distributions for the discrete design variables (see Appendix

C) are defined by λ∗
l = 3, τl = 0.05, l = 1, . . . , 4, for the exploration phase, and by λ∗

l = 1,

τl = 0, l = 1, . . . , 4, for the exploitation phase. As in the previous example, the parameters λ∗
l are

updated during the different stages of the exploitation phase according to the strategy presented in

Appendix C. Additional validation computations indicate that the previous implementation details

are adequate in the context of this application.

Feasible designs are first obtained during an exploration phase. In this case, a total of 544 designs

uniformly distributed over the feasible region are obtained after four TMCMC stages, which are

shown in Fig. 3.15 by means of two-dimensional projections and marginal histograms. Note that

the projections x1 − x3 and x2 − x4 show some interaction between the design variables, which is

associated with the effect of the geometric constraints. In this regard, the results of the exploration

phase provide an insight on the sensitivity of the constraints with respect to the design variables.

Starting with this set of feasible designs, an exploitation phase is then carried out to generate a

set of designs lying in a vicinity of the optimal solution set. For illustration purposes, Fig. 3.16

shows the minimum and maximum objective function values obtained during the different stages

of the exploitation phase. Note that the difference between both values reduces as the optimization

process continues, which is consistent with the theoretical foundations of the proposed approach.
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Fig. 3.15: Two-dimensional sample projections and marginal histograms of the feasible samples.
Example No. 3.

Fig. 3.16: Maximum and minimum objective function values obtained during the different stages
of the exploitation phase. Example No. 3.

Figure 3.17 shows the samples, in terms of marginal histograms, obtained during exploitation stages

j = 0, 2, 4, and 6 (final stage). It is seen that the designs are increasingly concentrated near the set
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that minimizes the objective function, as expected. The reduction in the RMS of the displacement

at the top floor is attained by selecting higher values for x1 and x2, and intermediate values for

x3 and x4. In other words, larger section sizes are preferred for the braces allocated in the lower

stories, which is reasonable from the structural viewpoint. This provides valuable information on

the sensitivity of the objective function with respect to the design variables. Furthermore, the last

stage of the optimization procedure provides several designs with very similar objective function

values (see Fig. 3.16) which, due to the variability in the estimation of this quantity, can be regarded

as equivalent from the objective function viewpoint. Therefore, the final design can be selected by

considering alternative criteria. This highlights one of the advantages of the proposed optimization

framework, that is, a set of candidate designs is obtained instead of a single solution, which provides

additional flexibility for the overall decision-making process.

Fig. 3.17: Marginal histograms obtained during different stages of the exploitation phase. Example
No. 3.

For reference and comparison purposes, Table 3.8 shows the best solution obtained by the proposed

approach. In addition, the optimum design obtained by means of Genetic Algorithms (GA) [307],
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which considers a population size of 200 individuals is also reported in the table. It is seen that

both solutions are qualitatively similar and, taking into account the variability in the estimation of

the objective function value, they can be regarded as equivalent from the optimization viewpoint.

However, it is observed that the cost constraint is slightly violated in the GA-based solution. Finally,

in terms of numerical efforts, the total number of function calls (expected value of the root-mean-

square of the displacement response at the top floor) is in the order of 2000 for both cases.

Table 3.8: Best solutions reported by the proposed method (ABO) and Genetic Algorithms (GA).
Example No. 3.

Design variables Optimal values

ABO GA

x1 3063 2963
x2 2714 2864
x3 2265 2116
x4 1318 1368
Eθ[RMSd(x,θ)] 5.70× 10−3 5.70× 10−3

g1(x) −5.8× 10−4 8.3× 10−4

g2(x) −2.61 −0.37
g3(x) −0.51 −0.68
Function calls 2000 2138

The results presented in this section and additional validation calculations illustrate that the pro-

posed optimization framework is an effective tool to handle complex constrained optimization

problems, such as those involving performance-based measures, nonlinear structural systems under

stochastic excitation, and discrete design variables. Thus, the proposed approach is a competitive,

general and flexible choice for dealing with a general class of constrained design optimization

problems.

3.9 Conclusions

A general Markov sampling-based framework for solving a class of constrained design optimiza-

tion problems has been presented. The design problem is reformulated as the equivalent task of
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obtaining samples uniformly distributed over the optimum solution set. To generate such samples,

a sequence of distributions increasingly concentrated around the optimum solution set is intro-

duced. Furthermore, a unified two-phase strategy is developed. An exploration phase generates

an initial set of designs uniformly distributed over the feasible domain, and then an exploitation

phase generates designs increasingly concentrated in a vicinity of the optimum solution set. The

transitional Markov chain Monte Carlo method is adapted to generate the required samples during

both phases, and appropriate adaptive proposal distributions are implemented for the continuous

and discrete design variables. The capabilities of the proposed approach, which is quite general,

have been demonstrated in different types of representative design optimization problems. Numer-

ical results have shown some of the advantages and benefits of the proposed Asymptotic Bayesian

Optimization scheme.

• First, the proposed method can handle complex feasible design spaces. In fact, the explo-

ration phase is able to deal with linear and nonlinear constraint functions, and feasible de-

signs can be efficiently generated in cases involving non-trivial geometries for the feasible

design space such as disconnected regions.

• Second, the exploitation phase successfully generates designs in a vicinity of the optimum

solution set for relatively complex objective functions. Moreover, the method can also handle

problems involving single and multiple optima. In general, few stages are required to identify

a region that lies close to the optimum solution set.

• Third, the same framework can be used for purely continuous, purely discrete, or mixed

discrete-continuous design variables. In this context, suitable adaptive proposal distributions

for the continuous and discrete design variables are suggested.

• Fourth, the approach provides benefits from the practical viewpoint. In this regard, relatively

few user-defined parameters are involved in the proposed approach. Numerical results indi-

cate that sample sizes in the range of 200-500 and intermediate values for the effective sample

size parameter, e.g. 0.5, yield a good tradeoff between efficiency and accuracy for the design
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problems investigated in this work. In addition, constraints are handled directly during the

sampling process. Therefore, special constraint-handling techniques are not required by the

proposed optimization scheme.

• Fifth, information on the sensitivity of the constraint and objective functions with respect

to the design variables is provided as a by-product of the sampling process. This feature is

particularly valuable in situations where problem functions are not known explicitly. Thus,

additional insight for design purposes is obtained without any additional computational effort

and, as a result, improved flexibility can be accomplished throughout the overall decision

making process.

• Sixth, the same stochastic sampling technique is used to explore the feasible and optimum

sets, which is advantageous from the implementation viewpoint.

• Finally, the example problems considered in this contribution and additional validation cal-

culations indicate that the method is very competitive with respect to other state-of-the-art

stochastic search techniques. Overall, the proposed Markov sampling-based framework is

a valuable tool to deal with a wide range of constrained design optimization problems. In

this regard, it is stressed that the proposed Asymptotic Bayesian Optimization scheme is

quite general. In other words, it is not customized to a particular class of engineering design

problems.

Future research efforts aim to extend the proposed framework to more complex structural opti-

mization problems, including general performance-based design optimization problems. In this

context, suitable strategies based on parametric reduced-order models can be integrated to increase

the overall efficiency of the optimization procedure. The treatment of multiobjective optimization

problems by means of the proposed approach is an additional subject for future work. Another

research direction involves the implementation and assessment of alternative sampling schemes

within the two-phase framework. Some of these topics are currently under consideration.
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3.10 Appendix A

The lead sample in terms of the continuous and discrete design variables, which is denoted as

x̃j+1 = ⟨x̃j+1T

c , x̃j+1T

d ⟩T , is a sample from stage j that is selected with probability equal to its

normalized importance weight w̄j
i , i = 1, . . . , n, that is,

w̄j
i = wj

i∑n
l=1 wj

l

, wj
i =

fKj+1(xj
i )

fKj
(xj

i )
, i = 1, . . . , n (3.21)

where wj
i , i = 1, . . . , n are the importance weights given by

wj
i = exp

(
−h(xj

i )
[

1
Kj+1

− 1
Kj

])
(3.22)

for the exploration phase, and

wj
i = exp

(
−c(xj

i )
[

1
Kj+1

− 1
Kj

])
(3.23)

for the exploitation phase. If a sample xj
i has been already drawn, then the last sample of its

corresponding Markov chain is selected as the lead sample.

3.11 Appendix B

A symmetric local proposal distribution pc is considered for the continuous design variables. The

proposal is taken as a Gaussian distribution centered at the lead sample, say x̃j+1
c , whose covariance

matrix Σj is equal to a scaled version of the estimate covariance matrix of the continuous design

variables following the intermediate distribution fKj
(x). That is,

Σj = β2
n∑

i=1
w̄j

i

(
xj

ci − x̄j
c

) (
xj

ci − x̄j
c

)T
(3.24)
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where β is a scaling parameter, xj
ci, i = 1, . . . , n are the samples at stage j, w̄j

i , i = 1, . . . , n are

the normalized importance weights, and x̄j
c = ∑n

i=1 w̄j
i x

j
ci is the estimate mean of the continuous

design variables following fKj+1(x). The scaling parameter β can be defined directly by the user,

or it can be determined by an adaptive scheme that monitors the acceptance rate in the context of

the Metropolis-Hastings algorithm [179, 288]. It is noted that alternative sampling schemes in the

so-called underlying normal space [179] can be also considered in the context of the ABO method.

3.12 Appendix C

The proposal distribution pd for the vector of discrete design variables xd is defined in terms of

independent proposal distributions corresponding to each discrete variable, that is,

pd(x⋆
d|x̃

j+1
d ) =

nd∏
l=1

pdl(x⋆
dl|x̃

j+1
dl ) (3.25)

where x⋆
d = ⟨x⋆

d1, . . . , x⋆
dnd
⟩T is the candidate sample, x̃j+1

d = ⟨x̃j+1
d1 , . . . , x̃j+1

dnd
⟩T is the lead sample

of the discrete design variables, and pdl(x⋆
dl|x̃

j+1
dl ) is the local proposal distribution for the discrete

design variable x⋆
dl. The candidate sample x⋆

dl is selected from the set of discrete values adjacent to

x̃j+1
dl , i.e., Adj(x̃j+1

dl ), which is defined as

Adj(x̃j+1
dl ) = {xdl(i)i=1,...,ndi

: λ(x̃j+1
dl , xdl(i)) ≤ λ∗

l } (3.26)

where λ(x̃j+1
dl , xdl(i)) is the distance between the lead sample x̃j+1

dl and the sample xdl(i). For

example, if the lead sample corresponds to the sth available value of the discrete variable xdl,

that is, x̃j+1
dl = xdl(s), the distance between these two samples is given by λ(x̃j+1

dl , xdl(i)) =

λ(xdl(s), xdl(i)) = |s− i|. The proposal distribution for the lth discrete design variable is defined as

[182]

pdl(x⋆
dl|x̃

j+1
dl ) =


1−τ

Card(Adj(x̃j+1
dl

)) , if x⋆
dl ∈ Adj(x̃j+1

dl )
τ

Card(Adjc(x̃j+1
dl

)) , if x⋆
dl /∈ Adj(x̃j+1

dl )
(3.27)
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where τ represents a small probability of randomly selecting a nonadjacent value of the lead sam-

ple x̃j+1
dl , Adjc(x̃j+1

dl ) is the complement set of Adj(x̃j+1
dl ), and Card(·) is the number of discrete

available values in the corresponding set.

It is noted that the values for the distribution parameters λ∗
l and τ are problem-dependent. Such

parameters can be selected directly by the user or adaptively tuned during the sampling process.

In this contribution, an adaptive strategy is implemented. At the beginning of each exploitation

stage, the parameter λ∗
l is updated by reusing information obtained during the previous stage. The

procedure is carried out as follows. First, the elements of Xdl that were observed during the pre-

vious stage are identified. Then, the maximum number of consecutive values observed during the

previous stage, denoted by η, is obtained. Based on this number, the parameter λ∗
l is updated as

λ∗
l = min {λ∗

l , m} (3.28)

where m is the largest integer such that m ≤ (η − 1)/2. The process is repeated for l = 1, . . . , nd.

This scheme tends to decrease the value of λ∗
l for advanced exploitation stages, which can improve

the efficiency of the proposed approach. Certainly, alternative strategies can be implemented as

well.

3.13 Appendix D

The implementation of the acceptance/rejection test, in the context of the Metropolis-Hastings

algorithm, is as follows. The candidate sample x⋆ = ⟨x⋆T

c , x⋆T
d ⟩T , is accepted with probability

ρ⋆, where

ρ⋆ = min
{

1, IX(x⋆) exp (−h(x⋆)/Kj+1)
exp (−h(x̃j+1)/Kj+1)

pd(x̃j+1
d |x⋆

d)
pd(x⋆

d|x̃
j+1
d )

}
(3.29)

for the exploration phase, where IX(x⋆) = 1 if x⋆ ∈ X and IX(x⋆) = 0 otherwise, and

ρ⋆ = min
{

1, IXfeasible(x⋆) exp (−c(x⋆)/Kj+1)
exp (−c(x̃j+1)/Kj+1)

pd(x̃j+1
d |x⋆

d)
pd(x⋆

d|x̃
j+1
d )

}
(3.30)
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for the exploitation phase. According to the definition of the proposal distribution pd, the ratio

pd(x̃j+1
d |x⋆

d)/pd(x⋆
d|x̃

j+1
d ) is given by

pd(x̃j+1
d |x⋆

d)
pd(x⋆

d|x̃
j+1
d )

=
nd∏
l=1


Card(Adj(x̃j+1

dl
))

Card(Adj(x⋆
dl

)) if x⋆
dl ∈ Adj(x̃j+1

dl )

Card(Adjc(x̃j+1
dl

))
Card(Adjc(x⋆

dl
)) if x⋆

dl /∈ Adj(x̃j+1
dl )

(3.31)

If the candidate state x⋆ is rejected, the lead sample x̃j+1 is repeated. More information about the

Metropolis-Hastings algorithm can be found in [88, 89].
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4.1 Introduction

Structural engineering practice is inherently related to the design of safe and cost-efficient systems

to satisfy private and public needs. Optimization techniques have proved instrumental to this end,

whereby suitable design solutions are identified by minimizing a cost function subject to certain

constraints [117, 306]. Since the systems of interest are unavoidably exposed to external actions

and deterioration processes that are difficult to predict, the treatment of uncertainties is a key aspect

to obtain meaningful optimization results. To address this issue, reliability-based optimization

(RBO) offers a rational and theoretically sound framework to incorporate the interaction between

uncertainties and design requirements into decision-making processes [7, 101, 104]. In this setting,

system performance metrics are explicitly included in the objective and/or constraint functions by

means of reliability measures.

Structural systems of practical interest are characterized by their exposure to environmental ac-

tions, a relatively large scale, and a complex behavior. In this context, the prediction of the system

response often relies on complex computational procedures involving, e.g., the numerical solution

of nonlinear equations with multiple unknowns. Further, their probabilistic characterization using,

e.g., random fields or stochastic processes, requires a relatively large number of random variables,

which leads to high-dimensional reliability integrals [82]. These features make reliability assess-

ment a challenging task, which is usually addressed using stochastic simulation [85]. This, in turn,

brings challenges to the solution of RBO problems associated with the computational cost, inherent

variability, and sensitivity evaluation of the reliability estimates [111].

Several approaches have been reported to address RBO problems involving high-dimensional prob-

ability integrals. In general, they can be classified in three groups based on the adopted search

strategy [111], namely, sequential optimization approaches, stochastic search-based techniques,

and schemes based on augmented reliability spaces. Although the most suitable optimization ap-

proach depends on the problem characteristics, the use of stochastic search-based techniques can
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be regarded as a general and flexible strategy. These methods do not need sensitivity measures and

are not restricted to a specific class of systems. However, they tend to be computationally more in-

tensive than sequential strategies (see, e.g., [150, 159]) or augmented reliability formulations (see,

e.g., [204, 345]).

This work presents a stochastic search-based approach for the RBO of structural engineering sys-

tems including high-dimensional reliability integrals. The method is based on a two-phase sampling

framework [180–183]. An exploration phase is first carried out to obtain feasible designs, which

are then used in an exploitation phase that ultimately yields a set of close-to-optimal designs. The

method can handle unconstrained, constrained, discrete and continuous formulations [183]. In ad-

dition, a suitable metamodel is implemented for improved numerical efficiency [181, 287]. Three

examples involving a class of structural systems, namely, structural systems under stochastic exci-

tation, are presented. Overall, the method represents a potentially useful tool to address a practical

class of RBO problems in engineering applications.

4.2 Reliability-based optimization

4.2.1 Formulation

The class of problems of interest can be stated as

min
x

f(x)

s.t. rj(x) ≤ 0, j = 1, . . . , nr

gk(x) ≤ 0, k = 1, . . . , ng

x ∈ X

(4.1)

where the vector x ∈ X ⊂ Rnx comprises the nx design variables (continuous and/or discrete),

f(x) is a general objective function, rj(x) ≤ 0, j = 1, . . . , nr, represent nr constraints in terms

of system reliability measures, and gk(x) ≤ 0, k = 1, . . . , ng, are ng standard constraints. The
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vector of design variables is expressed as xT = ⟨xT
c , xT

d ⟩ with xc ∈ Xc ⊂ Rnc and xd ∈ Xd ⊂ Rnc

containing, respectively, the nc continuous and nd discrete design variables. In this formulation,

the set X = Xc ×Xd characterizes explicit constraints on the design variables. For the continuous

components, side constraints are imposed as

Xc =
{
xc ∈ Rnc : xL

i ≤ xci ≤ xU
ci, i = 1, . . . , nc

}
(4.2)

where xL
ci and xU

ci are the lower and upper bounds of the ith continuous design variable, respectively.

In addition, the side constraints on the discrete design variables are given by

Xd = {xd ∈ Rnd : xdi ∈ Xdi, i = 1, . . . , nd} (4.3)

where the set Xdi =
{
xdi(m), m = 1, . . . , ndi

}
contains the ndi allowable values for the ith discrete

component of the design vector. For convenience, it is assumed that these values are sorted in an

ascending order.

In the previous setting, the objective function f(x) can be related to, e.g., initial construction costs,

life-cycle costs, or structural performance measures. Further, the standard constraints gk(x) ≤

0, k = 1, . . . , ng, are associated with design requirements such as material availability, budget

restrictions, etc., that do not involve system reliability measures. Hence, it is assumed that the

functions gk(x), k = 1, . . . , ng, are relatively inexpensive to compute. In addition, the reliability

constraints represent design conditions expressed in terms of failure probabilities as

rj(x) = PFj
(x)− P ∗

Fj
≤ 0, j = 1, . . . , nr (4.4)

where PFj
(x) is the probability of failure event Fj evaluated at design x, and P ∗

Fj
is the correspond-

ing maximum allowable value. The failure events can be defined, e.g., in terms of serviceability

conditions, users’ comfort requirements, and partial or total collapse. It is noted that, according

to this formulation, failure probability measures can be involved in the definition of the objec-
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tive function and/or reliability constraints. Thus, the optimization problem stated in Eq. (4.1) is

quite general in the sense that it allows the treatment of several RBO formulations. In this regard,

indicative applications include the design of wind-excited buildings [126], structural topology op-

timization [346], and energy harvester optimization [347].

4.2.2 First-passage probabilities

For a general class of complex engineering systems, a suitable reliability measure corresponds to

the so-called first-passage probability [71]. This measure quantifies the likelihood of performance

requirements not being satisfied at any instant of a reference period. In this framework, consider a

vector of basic random variables θ ∈ Rnθ following the multivariate probability density function

q(θ|x), i.e., θ ∼ q(θ|x). This distribution can depend, in principle, on the vector of design variables

x. If that is not the case, the random variables are simply distributed as θ ∼ q(θ). In general, the

vector θ characterizes the uncertainty in the system properties as well as in the external actions

over the system. Then, a first-passage failure event F can be defined as F = {d(x,θ) > 1} with

normalized demand function d(x,θ) given by

d (x,θ) = max
t∈[0,T ]

max
ℓ=1,...,nη

ηℓ(t, x,θ)
η∗

ℓ

(4.5)

where ηℓ(t, x,θ), ℓ = 1, . . . , nη, are the system response functions of interest with corresponding

thresholds η∗
ℓ > 0, and T is the reference period. In general, these functions depend on time, the

design variables x, and the basic random variables θ. Hence, from the previous description, failure

is defined when any response of interest exceeds its prescribed maximum allowable value at any

instant of a reference period. Then, the corresponding first-passage probability can be written as

PF (x) =
∫

d(x,θ)>1
q(θ|x)dθ (4.6)
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For most complex engineering systems, the vector of random variables θ is high-dimensional and,

in addition, the responses of interest are only available through involved black-box models. As

a result, the evaluation of the previous integral is quite challenging, and its evaluation is usually

carried out using stochastic simulation methods [84]. As previously pointed out, this makes the

solution of RBO problems a challenging task due to the computational cost, noisy behavior and

involved sensitivity estimation of failure probability functions [111].

4.3 Two-phase sampling approach

4.3.1 Underlying idea

Following the ideas of simulated annealing [174], the solution of the optimization problem (4.1)

can be equivalently formulated as the generation of designs that follow an appropriate probabilistic

distribution. Such a formulation stems from the concept of canonical distribution in statistical

mechanics [294] and the fact that finding the minimum of f(x) is equivalent to maximizing the

function exp(−f(x)/T ) for any T > 0 [174]. Consider the auxiliary distribution

p(x|T ) ∝ UX̄(x) exp
(
−f(x)

T

)
(4.7)

where T > 0 is the temperature parameter and UX̄(x) is a uniform distribution over the feasible set

X̄, which is defined as

X̄ = {x ∈ X : rj(x) ≤, j = 1, . . . , nr ∧ gk(x) ≤, k = 1, . . . , ng} (4.8)

In Eq. (4.7), the parameter T affects the spread of the distribution p(x|T ). On the one hand,

increasing the value of T leads to flatter distributions. In the limit case in which T → ∞, the

auxiliary distribution becomes uniform over the feasible set, i.e., limT →∞ p(x|T ) = UX̄(x). On the

other hand, for smaller values of T the distribution in Eq. (4.7) becomes increasingly concentrated
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around the feasible designs that minimize f(x). In fact, when T → 0 the probability mass is

uniformly distributed over the optimal solution set X∗
f , that is, limT →0 p(x|T ) = UX∗

f
(x). Thus, by

generating samples (designs) that follow p(x|T ), T → 0, the optimal solution set corresponding

to Eq. (4.1) can be explored. In other words, the solution of the RBO problem can be restated as

the generation of samples according to the target distribution limT →0 p(x|T ). It is noted that, in a

Bayesian framework, the target distribution can be also interpreted as a posterior distribution where

UX̄(x) plays the role of the prior distribution and limT →∞ exp(−f(x)/T ) of the (unnormalized)

likelihood function [183].

4.3.2 Sequence of intermediate distributions

The straightforward generation of samples following limT →0 p(x|T ) with, e.g., direct Monte Carlo

simulation is generally unfeasible. To circumvent this issue, a sequential strategy is adopted in this

work [175, 177, 178, 282]. Consider the sequence of non-normalized intermediate distributions

p0(x) = UX̄(x)

pj(x) ∝ UX̄(x) exp
(
−f(x)

Tj

)
, j = 1, 2, . . .

(4.9)

where ∞ = T0 > T1 > . . . > Tj > . . . is a sequence of monotonically decreasing tempera-

ture parameters, with Tj → 0 as j → ∞. These parameters are adaptively chosen to achieve a

smooth transition between distributions. Such strategy has been adopted to address several applica-

tions including, e.g., Bayesian model updating [178, 282], structural optimization [175, 177], and

structural reliability assessment [348].

Based on the previous setting, it is seen that the initial distribution is uniform over the feasible set,

whereas the next distributions in the sequence become increasingly concentrated around the optimal

solution set as the temperature parameter decreases. Thus, the main idea is to generate samples

(designs) in a sequential manner. In the initial stage (j = 0), samples uniformly distributed over

the feasible set are obtained. Then, during stage j = 1, 2, . . ., samples following the distribution
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pj(x) are drawn based on the samples from the previous stage. The transitional Markov chain

Monte Carlo (TMCMC) method [178] is implemented for the sample generation process. Finally,

once a certain stopping criterion is verified, the final designs represent a set of close-to-optimal

solutions that follow an approximately uniform distribution over the optimal solution set.

The previous formulation requires an initial set of samples uniformly distributed over the feasible

set X̄, which is usually difficult to obtain in a direct manner for practical cases. Thus, a two-phase

sampling approach is adopted in this work [181, 183]. First, an exploration phase is carried out to

obtain uniformly distributed designs in the feasible set. Then, these designs are used as the initial

population of an exploitation phase which ultimately yields a set of close-to-optimal solutions.

4.3.3 Exploration phase

To obtain designs following UX̄(x), consider the auxiliary optimization problem

min
x

h(x) = max
{

0, max
j=1,...,nr

rj(x), max
k=1,...,ng

gj(x)
}

s.t. x ∈ X
(4.10)

From the previous definition, the minimum value of the auxiliary objective function h(x) is equal

to zero with corresponding optimal solution set [181]

X∗
h = {x ∈ X : rj(x) ≤ 0, j = 1, . . . , nr ∧ gk(x) ≤ 0, k = 1, . . . , ng} (4.11)

Thus, the optimal solution set in Eq. (4.11) is equal to the feasible design set in Eq. (4.8), i.e., X∗
h =

X̄. In addition, the auxiliary optimization problem in Eq. (4.10) involves only side constraints on

the design variables, i.e., x ∈ X. Based on these features, consider the sequence of intermediate

distributions
p̄0(x) = UX(x)

p̄j(x) ∝ UX(x) exp
(
−h(x)

Tj

)
, j = 1, 2, . . .

(4.12)
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where UX(x) represents a uniform distribution over the set X. In this case, samples at the initial

stage (j = 0) can be generated directly, while samples at the final stage (Tj → 0) approximately

follow a uniform distribution over the feasible set X̄. The TMCMC method [178] is implemented

to generate the required samples. To achieve a smooth transition between distributions, the temper-

ature parameter Tj+1 satisfies the condition [175, 183]

∑n
ℓ=1 exp

(
−h

(
x(ℓ)

j

) (
T −1

j+1 − T −1
j

))
[∑n

ℓ=1 exp
(
−h

(
x(ℓ)

j

) (
T −1

j+1 − T −1
j

))]2 = 1
νn

(4.13)

where x(ℓ)
j , ℓ = 1, . . . , n, are n samples following p̄j(x) and ν ∈ (0, 1) is a user-defined parameter.

It is noted that all feasible designs generated during the intermediate stages of the sampling process

are uniformly distributed over X̄ [181]. Therefore, the sampling process is stopped when nfeasible ≥

ntarget, where nfeasible is the total number of feasible designs obtained during the different stages

and ntarget is a user-defined target value. At the end of the exploration phase, a total of nfeasible

designs uniformly distributed over X̄ are available.

4.3.4 Exploitation phase

Starting from the set of feasible designs obtained during the exploration phase, which are dis-

tributed according to p0(x) = UX̄(x), the exploitation phase ultimately generates a set of designs

lying in the vicinity of the optimal solution set X∗
f . In this setting, samples following the interme-

diate distributions pj(x), j = 1, 2, . . ., in Eq. (4.9) are obtained using the TMCMC method. The

temperature parameter Tj+1 verifies the relationship [183]

∑n
ℓ=1 exp

(
−f

(
x(ℓ)

j

) (
T −1

j+1 − T −1
j

))
[∑n

ℓ=1 exp
(
−f

(
x(ℓ)

j

) (
T −1

j+1 − T −1
j

))]2 = 1
νn

(4.14)

where x(ℓ)
j , ℓ = 1, . . . , n, are n samples following the distribution pj(x), and ν ∈ (0, 1) is a

user-defined parameter. As already pointed out, the distribution becomes uniform over the optimal
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solution set when Tj → 0. For numerical implementation, however, a suitable stopping rule must be

imposed. In this regard, the optimization procedure is finished if (i) a prescribed maximum number

of stages, Nmax, are completed, or (ii) the sample coefficient of variation (c.o.v.) of the objective

function is sufficiently small. Specifically, the sampling process stops at stage j = 0, 1, . . ., if

j + 1 = Nmax or, alternatively, δj+1 < γδ0, where γ ∈ (0, 1) is a user-defined parameter and

δj =

√
1

n−1
∑n

ℓ=1

(
f
(
x(ℓ)

j

)
−
[

1
n

∑n
m=1 f

(
x(m)

j

)])2

1
n

∑n
ℓ=1 f

(
x(ℓ)

j

) (4.15)

is the sample c.o.v. of the objective function f(x) during stage j. The previous conditions indicate

that the algorithm runs until a prescribed number of stages are completed or until δj+1 becomes

smaller than some fraction of the initial sample c.o.v. of the objective function, δ0. It is noted that

alternative stopping criteria can be implemented as well. The samples
{
x(1)

j+1, . . . , x(n)
j+1

}
obtained

at the final stage of the procedure can be regarded as a set of close-to-optimal designs. Thus, the

proposed approach provides, in general, designs which are similar between each other in terms of

their objective function value. This is particularly useful, e.g., in cases with multiple sub-optimal

regions. Nevertheless, if a single solution is needed, the sample with the smallest objective function

value can be selected.

4.3.5 Remarks

According to the previously described procedure, a set of close-to-optimal designs are obtained in

a two-phase sampling framework in which the feasible and optimal solution sets are sequentially

explored. In this regard, the proposed approach presents several advantageous features. First, due

to its theoretical foundations and annealing properties, the procedure has high chances of reaching

a vicinity of the optimal solution set. This includes cases involving multiple local optima, multiple

discontinuous sub-feasible regions, and complex feasible design spaces [183]. Second, the formu-

lation of the approach does not impose restrictions on the number of constraints or the behavior of
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the objective and constraint functions. Moreover, the proposed approach is not limited to a particu-

lar type of reliability assessment techniques. Thus, the method is quite general in the sense that, in

principle, different classes of RBO problems can be treated with the same formulation. Third, the

approach is suitable for practical implementation. In this regard, the same basic framework (i.e., the

TMCMC method) is used in the exploration and exploitation phases. In addition, few user-defined

parameters are required and, since the treatment of the reliability and standard constraints is direct,

no special constraint-handling techniques such as penalty factors are necessary. Fourth, the method

produces a set of nearly optimal designs rather than a single final solution. This can introduce ad-

ditional flexibility to decision-making processes since an appropriate final design can be selected

based on alternative considerations. Finally, the sets of designs produced during the different stages

of the sampling process allow to assess the sensitivity of the problem functions with respect to the

design variables. This information, which is a byproduct of the procedure, gives a valuable insight

into the RBO problem at hand.

4.4 Implementation aspects

4.4.1 Transitional Markov chain Monte Carlo method

The TMCMC method [178], which has proved effective in several model updating applications

(see, e.g., [24, 25, 115, 270]), is implemented to carry out the exploration and exploitation phases.

This technique draws samples at stage j + 1, i.e.,
{
x(1)

j+1, . . . , x(n)
j+1

}
, by generating several Markov

chains with stationary distribution equal to p̄j+1 (exploration phase) or pj+1 (exploitation phase).

To this end, importance sampling concepts and the Metropolis-Hastings (M-H) algorithm are inte-

grated [178]. In this setting, the ith sample, i.e., x(i)
j+1, is generated as follows:

1. Select a lead sample, x̃, as a design from the previous stage, x(ℓ)
j , drawn with probabil-

ity equal to its normalized importance weight w̄
(ℓ)
j = w

(ℓ)
j /

∑n
k=1 w

(k)
j , ℓ = 1, . . . , n. The

weights are given by w
(ℓ)
j = p̄j+1

(
x(ℓ)

j

)
/p̄j

(
x(ℓ)

j

)
for the exploration phase and w

(ℓ)
j =
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pj+1
(
x(ℓ)

j

)
/pj

(
x(ℓ)

j

)
for the exploitation phase. If the selected sample, x(ℓ)

j , has been previ-

ously drawn, then the last state of its corresponding chain is chosen as lead sample x̃.

2. Draw a candidate design x⋆ from the proposal distribution p∗(x|x̃). An adaptive proposal

distribution with independent continuous and discrete components is considered [182, 183].

3. Set x(i)
j+1 = x⋆ with probability ρ∗ = min{1, α}, where

α = p̄j+1(x⋆)p∗(x̃|x⋆)/p̄j+1(x̃)p∗(x⋆|x̃) (4.16)

for the exploration phase, and

α = pj+1(x⋆)p∗(x̃|x⋆)/pj+1(x̃)p∗(x⋆|x̃) (4.17)

for the exploitation phase. If the candidate state is rejected, the lead sample is repeated, i.e.,

set x(i)
j+1 = x̃.

The previous procedure is iteratively carried out until the required number of samples has been

obtained. A more detailed description of the TMCMC method, from the theoretical and implemen-

tation viewpoints, can be found in [178].

4.4.2 Proposal distribution

The proposed approach requires, in the context of the M-H algorithm, the definition of an appropri-

ate proposal distribution to draw samples from the intermediate distributions. As already pointed

out, an adaptive proposal distribution with independent continuous and discrete components is

considered in this work [182, 183]. That is, the candidate state is generated from a distribution

p∗(x|x̃) = p∗
c(xc|x̃c)p∗

d(xd|x̃d), where p∗
c(xc|x̃c) is the proposal distribution for the continuous

design variables and p∗
d(xd|x̃d) for the discrete design variables.
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Continuous design variables

Following some of the ideas introduced in [178], the proposal distribution for the continuous vari-

ables, p∗
c(xc|x̃c), is a Gaussian distribution centered at the continuous components of the lead sam-

ple. The corresponding covariance matrix, Σ̃, is taken as

Σ̃ = β2
n∑

ℓ=1
w̄

(ℓ)
j

(
x(ℓ)

j,c − x̄j,c

) (
x(ℓ)

j,c − x̄j,c

)T
(4.18)

where β is a scaling parameter, x(ℓ)
j,c , ℓ = 1, . . . , n, are the continuous components of the samples at

stage j, x̄j,c = ∑n
ℓ=1 w̄

(ℓ)
j x(ℓ)

j,c , and the normalized weights w̄
(ℓ)
j , ℓ = 1, . . . , n, have been previously

defined. The scaling parameter β is adaptively tuned according to the observed acceptance rate of

the M-H algorithm [179].

Discrete design variables

The discrete proposal distribution, p∗
d(xd|x̃d), considers the discrete components to be independent

between each other, i.e.,

p∗
d(xd|x̃d) =

nd∏
i=1

p∗
di(xdi|x̃di) (4.19)

where x̃d = ⟨x̃d1, . . . , x̃dnd
⟩T contains the discrete components of the lead sample and p∗

di(xdi|x̃di)

is the proposal distribution corresponding to the ith discrete component. The definition of this

distribution relies on the set of neighbors of the current lead sample, x̃di, within the corresponding

set of available values Xdi. This set is defined as

Adj(x̃di) =
{
xdi(m), m = 1, . . . , ndi : λ(x̃di, xdi(m)) ≤ λ∗

i

}
(4.20)

where λ(x̃di, xdi(m)) is the distance between x̃di and xdi(m) within the set Xdi, and λ∗
i is a user-

defined parameter. This distance is defined in terms of the indices of the values within the sorted

set Xdi. For instance, if x̃di is equal to the sth available value, i.e., x̃di = xdi(s), then the distance
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measure becomes λ(x̃di, xdi(m)) = λ(xdi(s), xdi(m)) = |s −m|. Based on the previous definitions,

the proposal distribution for the ith component is given by

p∗
di(xdi|x̃di =


1− τi

Card[Adj(x̃di)]
, if xdi ∈ Adj(x̃di)

τi

ndi − Card[Adj(x̃di)]
, otherwise

(4.21)

where τi ∈ [0, 1] represents the probability of randomly selecting a discrete value that does not

belong to the set of neighbors of the lead sample x̃di, and Card[·] is the cardinality of the set within

square brackets.

In the adopted proposal distribution, the parameters τi and λ∗
i jointly characterize its corresponding

spread. Such parameters can be directly defined by the user or adaptively modified during the

sampling process. In particular, an adaptive strategy is implemented here to update the value of λ∗
i

at the beginning of each stage of the exploitation phase. First, the maximum number of consecutive

elements of Xdi that were observed during the previous stage, denoted by η, is identified. Then, the

parameter λ∗
i is defined as

λ∗
i ← min{λ∗

i , L} (4.22)

with L the largest integer such that L ≤ (η− 1)/2. The updating rule is repeated for i = 1, . . . , nd.

This strategy tends to reduce the value of λ∗
i for advanced exploitation stages, which can improve

the sampling efficiency. Nonetheless, alternative updating approaches can also be considered.

Acceptance probability

As previously mentioned, the candidate state x⋆ = ⟨x⋆
c

T , x⋆
d

T ⟩T , which is drawn from p∗(x|x̃),

becomes the next state of the Markov chain with probability ρ∗ = min{1, α}. For the exploration
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phase, the quantity α is given by

α = I [x⋆ ∈ X]
exp

(
−h(x⋆)

Tj+1

)

exp
(
−h(x̃)

Tj+1

) p∗
d(x̃d|x⋆

d)
p∗

d(x⋆
d|x̃d) (4.23)

where I [·] = 1 if the expression within square brackets is true and I [·] = 0 otherwise. In addition,

for the exploration phase the quantity α becomes

α = I [x⋆ ∈ X]
exp

(
−f(x⋆)

Tj+1

)

exp
(
−f(x̃)

Tj+1

) p∗
d(x̃d|x⋆

d)
p∗

d(x⋆
d|x̃d) (4.24)

In the previous expressions, the ratio p∗
d(x̃d|x⋆

d)/p∗
d(x⋆

d|x̃d) is given by

p∗
d(x̃d|x⋆

d)
p∗

d(x⋆
d|x̃d) =

nd∏
i=1


Card[Adj(x̃di)]
Card[Adj(x⋆

di)]
, if x⋆

di ∈ Adj(x̃di)

ndi − Card[Adj(x̃di))
ndi − Card(Adj(x⋆

di)]
, otherwise

(4.25)

4.4.3 Adaptive surrogate model

The proposed approach requires the sequential generation of samples. Consequently, a significant

number of first-passage probability evaluations may be required by the optimization procedure.

To alleviate the corresponding numerical demands, an adaptive surrogate model based on kriging

interpolants is implemented [286, 287]. These metamodels approximate the target function using

an underlying Gaussian process whose properties depend on the available data points [327, 328].

Some of their advantages are that they do not require a regular grid of support points, the c.o.v.

of the kriging prediction can be directly estimated, and they are exact at the support points. Fur-

thermore, given the annealing nature of the proposed approach, the effective support of the current

distribution is generally contained in that of prior stages. Thus, data points from previous stages can
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be used to construct the metamodel at the current stage. As a result, the previous features enable

a local and adaptive surrogate model in which (i) the support points that lie closer to the candidate

design are used and (ii) the database is enriched as new designs in the important region of the target

distribution are generated.

Specifically, consider a first-passage probability function, PF (x), involved in the definition of one

of the problem functions. A kriging metamodel, p̂kr(x), is implemented to approximate the loga-

rithm of this function, i.e., p̂kr
F (x) ≈ ln PF (x). At the beginning of the sampling process, a database

corresponding to full model evaluations of ln PF (x) is obtained by means of any suitable strategy.

Then, the surrogate prediction of a candidate design x⋆ corresponding to a given Markov chain is

obtained as follows.

1. Find the Nsp points in the database of available values of ln PF (x) that are closer to the

starting seed of the current Markov chain. The Euclidean distance is considered to this end,

although alternative distance metrics can be adopted as well. Construct the kriging meta-

model for the current Markov chain, p̂kr
F (x), using this set of designs as the corresponding

support points.

2. For a given candidate design, x⋆, verify the following criteria:

(a) Check if x⋆ belongs to the nx-dimensional convex hull of the support points. If not, go

to step 4.

(b) Compute the kriging prediction p̂kr(x⋆). If this value is smaller than the Q-quantile of

ln PF (x) in the database, go to step 4.

(c) Compute the c.o.v. of the kriging estimate. If this value is larger than a user-defined

tolerance ϵ > 0, go to step 4.

3. If all the criteria in step 2 are verified, the kriging prediction is accepted. Set PF (x) =

exp(p̂kr
F (x)) and continue the sampling process.



CHAPTER 4. A TWO-PHASE SAMPLING APPROACH FOR RELIABILITY-BASED
OPTIMIZATION IN STRUCTURAL ENGINEERING 143

4. If at least one criterion in step 2 does not hold, the kriging prediction is rejected. An exact

evaluation of PF (x⋆) is performed and this point is added to the database. Continue the

sampling process.

The criteria in step 2 aim to control the quality of the kriging estimate. In addition, the set of

support points is kept fixed throughout the generation of a given Markov chain. This is done to

avoid potential discontinuities associated with slightly different sets of support points. A more

detailed description of the strategy can be found in [180, 286, 287].

4.4.4 Parallelization features

High-performance computing techniques at the computer hardware level can be considered for

improved computational efficiency. In this regard, the proposed approach is particularly suitable

for parallel implementation due to the properties of the TMCMC method. First, the initial stage

of the exploration phase corresponds to direct Monte Carlo simulation and, therefore, it can be

fully scheduled in parallel. Thereafter, the method produces Markov chains that can be generated

independently. Since the numerical cost of evaluating the reliability at each design is difficult to

predict, dynamic scheduling schemes can be beneficial to distribute the function evaluations on a

first-come-first-serve basis [286, 287].

Parallelization strategies can also be integrated with the use of adaptive surrogate models to enhance

the numerical efficiency of the proposed approach. To this end, a total of npar samples are generated

simultaneously, and then the database of support points is updated. This procedure is repeated

during each stage until the required sample size is reached. This allows to exploit the parallel

features of the TMCMC method while enriching the kriging database on a regular basis. The

parameter npar should be relatively small to promote the adaptability of the surrogate model, but not

smaller than a certain value beyond which the approach becomes detrimental to the efficaciousness

of the parallelization process.
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4.5 Application examples

Three application examples involving structural dynamical systems under stochastic excitation are

presented, which include unconstrained, constrained, discrete and continuous formulations. In all

cases, the structural behavior can be modeled by a multi-degree of freedom system satisfying the

equation of motion

Mÿ(t) + Cẏ(t) + Ky(t) + κNL(y(t), ẏ(t), q(t)) = f(t) (4.26)

where y(t) denotes the displacement vector, κNL(y(t), ẏ(t), q(t)) is the vector of nonlinear restor-

ing forces, q(t) comprises the state variables of the nonlinear components, and f(t) represents the

excitation vector. The matrices M, C, and K characterize, respectively, the mass, damping, and

stiffness of the system. In addition, the evolution of q(t) depends on an appropriate nonlinear

model. Thus, finding the system response requires, in general, to solve a set of coupled nonlinear

equations using suitable time integration schemes. Subset simulation [133, 134] is implemented

for reliability assessment in all examples. Nonetheless, alternative simulation methods can also be

considered.

4.5.1 Example 1

The reliability-based design of a bridge system subject to stochastic ground excitation is addressed.

Figure 4.1 presents an isometric view of the structural model, which has been borrowed from

[68, 180]. The bridge is curved in plan and has five spans of lengths equal to 27 m, 25 m, 23 m,

20 m, and 24 m, which give a total length of 119 m. The deck is monolithically supported by four

piers of 8 m height, and each pier is founded on an array of four piles of 35 m height. To model

the soil-pile interaction, a series of linear translational springs are incorporated along the height of

each pile, with stiffness constants increasing linearly from 560 T/m at the surface to 11200 T/m

at the base. The piers and piles are modeled as column elements with diameters of 1.6 m and 0.6
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m, respectively. In addition, the deck cross section is a box girder modeled with beam and shell

elements. Two sliding bearings are included at each abutment to support the bridge deck. These

nonlinear devices consist of an upper steel plate with a housing cap for the slider, a bottom plate

with a concave semi-spherical stainless-steel surface, and a steel slider [256, 349]. A sketch of the

sliding bearing is also shown in Fig. 4.1. Overall, the finite element model of the bridge involves

more than 10000 degrees of freedom.

For dynamical analysis purposes, it is assumed that the nonlinearities are localized in the response

of the sliding bearings, while the piers, piles, and deck remain linear. In this regard, the linear

components are characterized by an elastic modulus equal to 2.94 × 1010 N/m2, a Poisson ratio

equal to 0.2, and a density of 2500 kg/m3. In addition, a 5% of critical damping ratio is considered.

On the other hand, the sliding bearings at the abutments are characterized by an experimentally

validated model that incorporates performance degradation effects. These relate to changes in the

friction coefficient due to variations in the vertical load, in the relative velocity between plates, and

in the sliding surface temperature [256]. For illustration purposes, a representative displacement-

restoring force curve of these devices is shown in Fig. 4.2.

As shown in Fig. 4.1, the structural model is subject to a seismic excitation applied at 40◦ with re-

spect to the y axis. A point-source model [34, 114] is considered to characterize the base excitation

as a non-stationary stochastic process. This class of models links available knowledge about the

geological site with the uncertainty of future ground motions. To this end, a white noise sequence

is considered along with several seismic parameters [34, 114, 321, 343]. The duration of the exci-

tation is T = 10 s with a time step of 0.01 s. Thus, more than 1000 random variables are involved

in the characterization of the excitation.

In this example, the goal is to minimize the failure probability of the system subject to side con-

straints on the design variables [180]. Formally, the corresponding RBO problem is formulated
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as
min

x=⟨x1,x2⟩T
PF (x)

s.t. 0.5 ≤ xi ≤ 1.5, i = 1, 2
(4.27)

where x1 and x2 are the design variables, and PF (x) is the probability of F = {d(x,θ) > 1}

evaluated at x. The corresponding demand function is

d(x,θ) = max
ℓ=1,2,3

max
t∈[0,T ]

|aℓ(t, x,θ)|
a∗

ℓ

(4.28)

where aℓ(t, x,θ) is the absolute acceleration at the ℓth control point and a∗
ℓ = 6.9 m/s2. The control

points are located at the two abutments and the deck midpoint.

The design variables are associated with two model parameters of the sliding bearings, namely, the

initial friction coefficient (µ0) and the radius of the concave surface (R). For optimization purposes,

the intermediate design variables are specified as x1 = µ0/µ̄0 and x2 = R/R̄ with reference values

µ̄0 = 0.106 and R̄ = 2.235 m. The initial friction coefficient affects the dissipation capacity of the

bearing system, while the radius of the concave surface controls its natural frequency. Thus, it is

expected that both parameters will significantly affect the system behavior.

Fig. 4.1: Isometric view of the nonlinear bridge model. Example 1.

To illustrate the effect of the design variables on the objective function, Fig. 4.3 presents contours

of PF (x) in the design space. The results indicate that the failure probability tends to decrease for

higher values of the initial friction coefficient and lower values of the radius of the concave surface.

Further, a close inspection of the plot shows that the optimal solution set seems to involve a valley

near the lower-right corner of the design space. For clarity, this region is highlighted in the figure.

Thus, multiple solutions with very similar objective function values can be expected in this case.
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Fig. 4.2: Typical displacement-restoring force curve of the devices. Example 1.

As previously pointed out, the RBO problem in Eq. (4.27) involves only side constraints on the

design variables. Hence, uniformly distributed feasible designs can be obtained directly and only

the exploitation phase is needed in this case. The proposed approach is implemented with n = 500

samples per stage and ν = 0.5. In addition, the adaptive surrogate model is implemented with 20

support points, ϵ = 0.1, and Q = 0.05. The database is initialized with all the designs from the

initial stage. However, alternative initialization strategies can also be considered.

Figure 4.4 presents the samples obtained at the different stages of the exploitation phase. The

initial designs (stage 0) are uniformly distributed over the design space, whereas the samples at

the final stage lie in a region near the lower-right corner of the design space. The final set of

designs resembles the optimal region identified in Fig. 4.3, which illustrates the effectiveness of the

approach. The corresponding failure probability values roughly range between 3 × 10−4 and 7 ×

10−4. The sample-based optimal design is given by xT = ⟨1.32, 0.51⟩ with PF (x) = 3.17× 10−4.

Fig. 4.3: Iso-probability curves in the design space. Example 1.
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Fig. 4.4: Designs obtained during the different optimization stages. Example 1.

As previously pointed out, an adaptive surrogate model is integrated for improved numerical ef-

ficiency. To assess its performance, Fig. 4.5 shows the acceptance rate of the kriging predictions

after the initial stage. This quantity corresponds to the fraction of designs that satisfy all acceptance

criteria, and it remains above 80% throughout the optimization procedure. Overall, after the initial

stage (stage 0), no more than 8% of the total number of design evaluations are performed with full

reliability assessment. Thus, the use of kriging greatly improves the numerical efficiency of the

method without sacrificing the quality of the optimization results.

Fig. 4.5: Metamodel acceptance rate during the optimization stages. Example 1.



CHAPTER 4. A TWO-PHASE SAMPLING APPROACH FOR RELIABILITY-BASED
OPTIMIZATION IN STRUCTURAL ENGINEERING 149

4.5.2 Example 2

The design of a nonlinear 52-story reinforced concrete building is considered as the second ex-

ample. The structural model, which has been borrowed from [181], comprises more than 50000

degrees of freedom. For reference purposes, an isometric view of the building and the plan view

of each floor are presented in Fig. 4.6. The building includes a core of shear walls and a perime-

ter of columns with circular cross sections. The nominal value for the corresponding thicknesses

and diameters is equal to 0.40 m, whereas the slab thickness is equal to 0.20 m. The same ma-

terial properties from the previous example are considered. For improved seismic performance,

four nonlinear hysteretic devices are placed at each floor to increase the stiffness and dissipation

capacity of the system. As indicated in Fig. 4.6, these devices are located along the axes 4, 7, 8

and 11. The restoring force in each device is given by κ(t) = kev(t) where ke = 2.8× 109 N/m is

the initial stiffness, v(t) = δ(t)− q1(t) + q2(t), δ(t) denotes the interstory displacement, and q1(t)

and q2(t) are the plastic elongations of the device. These variables satisfy the first-order nonlinear

differential equations [344]

q̇1(t) = δ̇(t)H(δ̇(t))
[
H(v(t)− vy)v(t)− vy

vp − vy

H(vp − v(t)) + H(v(t)− vp)
]

q̇2(t) = −δ̇(t)H(−δ̇(t))
[
H(−v(t)− vy)−v(t)− vy

vp − vy

H(vp + v(t)) + H(−v(t)− vp)
] (4.29)

where H(·) is the Heaviside step function, vy = 0.0042 m is the yielding onset, and κp = kevp is

the maximum restoring force of the device with vp = 0.006 m.

As illustrated in Fig. 4.6 (right), the building is subject to a horizontal ground excitation, üg(t),

acting along the y axis. This excitation is characterized as a stochastic process using a point-

source model, as in the previous example. For dynamic analysis purposes, each floor is regarded

as rigid within its plane when compared with the rest of structural components. Thus, by means

of appropriate condensation techniques, the degrees of freedom of the entire model are linked to

three coordinates per floor (one rotational and two translational displacements). In addition, a 5%
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of critical damping ratio at the modal level is considered.

Fig. 4.6: Isometric view (left) and floor plan (right) of the 52-story building model. Example 2.

In this case, the variables to be controlled correspond to the dimensions of the shear walls and

exterior columns (see Fig. 4.6). In particular, the wall thickness (tw) and column diameter (dc)

at each floor are linked to an intermediate optimization variable, x, as tw = t̄wx and dc = d̄cx,

respectively, with nominal values t̄w = d̄c = 0.40 m. For optimization purposes, a total of nx = 6

intermediate variables are considered. These are linked to the design elements of different floors

as follows: x1 is associated with floors 1 to 9, x2 with floors 10 to 18, x3 with floors 19 to 26,

x4 with floors 27 to 35, x5 with floors 36 to 44, and x6 with floors 45 to 52. Then, a constrained

optimization problem is formulated as

min
x

f(x) = 1
6
∑6

i=1 xi

s.t. PFj
(x) ≤ 10−3, j = 1, 2

xi+1 ≤ xi, i = 1, . . . , 5

0.5 ≤ xi ≤ 1.5, i = 1, . . . , 6

(4.30)

where the failure probability functions PF1(x) and PF2(x) are associated with the displacement

at the first and top floors, respectively, and the standard constraints xi+1 ≤ xi impose that the

dimensions of upper floor members cannot be larger than those of lower floors. The corresponding
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first-passage failure events are defined as Fj = {dj(x,θ) > 1}, j = 1, 2, where

dj(x,θ) = max
t∈[0,T ]

|uy
j (t, x,θ)|

u∗
j

, j = 1, 2 (4.31)

with uy
1(t, x,θ) and uy

2(t, x,θ) denoting the ground-relative displacement along the y direction

at the centroid of the first and top floors, respectively. The corresponding thresholds u∗
1 and u∗

2

are equal to 0.08% of the first story height and 0.075% of the building height, respectively. The

reference period is taken as T = 15 s with a time step of 0.01 s, which leads to more than 1500

random variables involved in the corresponding multidimensional probability integrals.

The proposed approach is implemented by considering n = 500 samples per stage and ν = 0.5

for both phases. The exploration phase considers a target sample size of ntarget = 750 as stopping

criterion, whereas Nmax = 10 stages are carried out in the exploitation phase. In addition, the adap-

tive surrogate model strategy is implemented to approximate the two failure probability functions

throughout the entire optimization process. In this regard, the corresponding kriging metamodel

considers 28 support points, ϵ = 0.1 and Q = 0.05.

First, an exploration phase is carried out. The corresponding final set of samples, which comprises

950 feasible designs, is shown in Fig. 4.7 in terms of two-dimensional projections and marginal

histograms. These designs have been retrieved from the eight TMCMC stages carried out during

the exploration phase and approximately follow a uniform distribution over the feasible set. The

marginal histograms indicate that the effective support of the first design variable is smaller than

that of, e.g., the sixth design variable. Thus, the dimensions of the core walls and columns of lower

floors seem to be more relevant than of upper floors to determine the feasibility of a given design.

Finally, validation calculations indicate that the hypervolume of the feasible set represents less than

0.01% of the initial search space. This illustrates the ability of the proposed approach to explore

feasible design spaces with challenging geometries in an effective manner.

Starting from the set of samples in Fig. 4.7, an exploitation phase is carried out to explore the
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optimal solution set. The final designs, which are obtained after ten TMCMC stages, are shown in

Fig. 4.8. It is seen that they are densely concentrated near a single value in the design space. In fact,

the corresponding objective function values range between 6.333 and 6.357 at the final stage. These

values represent a relative variation of less than 0.3% and, thus, they can be considered as equivalent

from the optimization viewpoint. This illustrates one of the advantages of the proposed approach, as

it yields a set of nearly optimal solutions which, in turn, provides additional flexibility for decision-

making purposes. Nonetheless, if a single solution is needed, the design with the smallest objective

function value can be chosen. Such design is xT = ⟨1.489, 1.476, 1.088, 1.011, 0.751, 0.515⟩, with

f(x) = 6.333, PF1(x) = 0.999 × 10−3 and PF2(x) = 0.169 × 10−3. In addition, the standard

constraints verify x2/x1 = 0.991, x3/x2 = 0.736, x4/x3 = 0.930, x5/x4 = 0.743, and x6/x5 =

0.685. It is seen that the first reliability constraint, whose response of interest is the first story drift,

and the first geometric constraint can be regarded as active at this design from a practical point of

view.

4.5.3 Example 3

The design of the bracing system for a 4-story building is considered as the third example. The

corresponding structural model, which has been borrowed from [182], is illustrated in Fig. 4.9.

Each floor is supported by 48 identical columns. The corresponding cross sections, which are

taken from AISC standards [342], are W24 × 131 for the two lower floors and W24 × 104 for

the two upper floors. In addition, six nonlinear devices, which follow the same restoring force law

from the previous example, are implemented at each floor. Finally, a bracing system consisting

of 128 tubular steel elements is incorporated. The braces along axes A, C, D and F act in the x

direction, while those along axes 1, 2, 7 and 8 in the y direction. The elastic modulus and density

of the bracing elements are taken as 2.1× 1011 N/m2 and 7.42 ton/m3, respectively.

The system is subject to a ground excitation applied at 45 degrees with respect to the x axis (see

Fig. 4.9). As in the previous examples, the ground acceleration is represented using a point-source
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Fig. 4.7: Set of feasible designs obtained in the exploration phase. Example 2.

model. A reference period of T = 15 s is considered with a time step of 0.01 s and, therefore,

more than 1500 random variables are involved in the characterization of the stochastic process. For

dynamic analysis purposes, each floor is assumed as rigid within the x − y plane when compared

with the horizontal resistant elements. Using condensation techniques, the global system response

can be characterized with three coordinates per floor. The mass and polar inertia of each floor are

5.98 × 105 kg and 1.10 × 108 kg m2, respectively. Finally, a 2% of critical damping is considered

in the model.

In this example, the objective function f(x) is related to the total weight of the brace elements.

A total of four design variables are considered to define the areas of the tubular cross sections of
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Fig. 4.8: Set of designs at the end of the exploitation phase. Example 2.

the bracing elements. The areas can be chosen from a discrete set of 48 available values ranging

from 719 mm2 to 3063 mm2 [182]. Each design variable xi, i = 1, . . . , 4, is linked to the brace

elements of two consecutive floors along a certain direction. The variables x1 and x2 represent the

areas of the bracing elements in the two lower floors along the x and y directions, respectively. For

the two upper floors, the areas of the brace elements along the x and y directions are given by x3

and x4, respectively. In this setting, the initial search space comprises more than 5× 106 available
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Fig. 4.9: Floor plan (left) and isometric view (right) of the 4-story building. Example 3.

configurations for the bracing system. A constrained RBO problem is formulated as

min
x

f(x) = ∑4
i=1 f̄ixi

s.t. PFj
(x) ≤ 5× 10−4, j = 1, 2

xi ∈ X, i = 1, . . . , 4

(4.32)

where f(x) represents the normalized weight of the bracing system with normalizing constants

f̄1 = f̄3 = 8.5 × 10−5 and f̄2 = f̄4 = 7.8 × 10−5, PFj
(x) is the probability of failure event

Fj = {dj(x,θ) > 1}, and X comprises the 48 available discrete values for the areas of the bracing

elements. The first failure event is defined in terms of the normalized demand function

d1 (x,θ) = max
υ=x,y

max
t∈[0,T ]

|uυ
r (t, x,θ)|

u∗
r

(4.33)

with uυ
r (t, x,θ) the displacement at the roof centroid along the x or y direction and u∗

r = 0.033 m.

Similarly, the normalized demand function corresponding to the second failure event is given by

d2 (x,θ) = max
ℓ=1,...,128

max
t∈[0,T ]

|σℓ(t, x,θ)|
σ∗ (4.34)
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where σℓ(t, x,θ) is the axial stress of the ℓth brace element and σ∗ = 3.31× 108 Pa (80% of yield

stress).

The proposed approach is implemented considering n = 100 samples per stage and ν = 0.5. For

illustration purposes, the exploration phase considers a target sample size of 250 feasible designs

while the exploitation phase stops after twelve stages. It is noted that, in this case, all design

variables are discrete. For the exploration phase the corresponding proposal distribution considers

λ∗
i = 5 and τi = 0.025, i = 1, . . . , 4, while for the exploitation phase λ∗

i = 2 and τi = 0. Finally,

the adaptive surrogate model strategy is not implemented for this example.

The feasible designs obtained from the exploration space are presented in Fig. 4.10 in terms of two-

dimensional projections and marginal histograms. This set is composed of 250 feasible designs

obtained in four stages. The results show that the range of the design variables associated with the

lower floors (x1 and x2) is smaller than of those corresponding to upper floors (x3 and x4). Thus,

the system performance seems to be more sensitive to the stiffness of lower floors than of upper

floors, which is reasonable from the structural viewpoint. This shows some of the advantages of the

proposed approach, in the sense that valuable insight about the system behavior can be obtained as

a byproduct of the sampling process.

Starting from the designs in Fig. 4.10, an exploitation phase is carried out. After ten stages, the set

of samples presented in Fig. 4.11 is obtained. It is seen that these samples densely populate a small

portion of the initial search space, i.e., they are almost coincident. To obtain further insight into

the optimization procedure, Fig. 4.12 shows the maximum and minimum values of the objective

function f(x) observed during the different exploitation stages. It is seen that both values are almost

coincident from stage j = 7 on. The sample-based minimum objective value is equal to 0.6235,

which corresponds to xT = ⟨2615, 2216, 1418, 1368⟩ mm2. It is noted that this solution imposes

larger cross sections for the lower floors, which is consistent from an engineering viewpoint. The

corresponding failure probability values satisfy PF1(x)/5 × 10−4 = 0.99 and PF2(x)/5 × 10−4 =

0.05. Thus, the first reliability constraint, which is associated with the maximum roof displacement,
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Fig. 4.10: Set of feasible designs obtained in the exploration phase. Example 3.

can be regarded as active at this solution. Finally, in terms of numerical efforts, the total number of

designs evaluated in this case is in the order of 1000. That is, the algorithm is capable to explore

the optimal solution set of this RBO problem in an effective manner with a relatively small sample

size.

4.6 Conclusions

A two-phase sampling approach for the reliability-based optimization of structural engineering sys-

tems has been presented. The method relies on the reformulation of the constrained optimization

problem as obtaining samples uniformly distributed over the optimal solution set. This task is car-

ried out sequentially. An exploration phase is first carried out to generate feasible designs, which

are then used in an exploitation phase to yield a set of close-to-optimal designs. Due to its theo-

retical foundations, the method has high chances to reach a vicinity of the optimum solution set.

Further, it is relatively simple to implement, it provides flexibility for decision-making processes,

and it yields sensitivity information as a byproduct of the sampling process. To illustrate the ca-
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Fig. 4.11: Set of designs at the end of the exploitation phase. Example 3.

Fig. 4.12: Maximum and minimum objective function values obtained during the exploitation
phase. Example 3.

pabilities of the approach, three examples involving nonlinear structural systems under stochastic

ground excitation have been presented, which include continuous and discrete design spaces as

well as unconstrained and constrained formulations. Overall, the numerical results indicate that

the proposed approach is a potentially useful tool for solving a class of practical RBO problems in

structural engineering applications.
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Abstract: This contribution focuses on reliability-based design and optimum design sensitivity of

linear dynamical structural systems subject to Gaussian excitation. Directional Importance Sam-

pling (DIS) is implemented for reliability assessment, which allows to obtain first-order derivatives

of the failure probabilities as a byproduct of the sampling process. Thus, gradient-based solution

schemes can be adopted by virtue of this feature. In particular, a class of feasible-direction interior

point algorithms are implemented to obtain optimum designs, while a direction-finding approach

is considered to obtain optimum design sensitivity measures as a post-processing step of the opti-

mization results. To show the usefulness of the approach, an example involving a building structure

is studied. Overall, the reliability sensitivity analysis framework enabled by DIS provides a poten-
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tially useful tool to address a practical class of design optimization problems.

Keywords: Structural design; First excursion probability; Directional Importance Sampling; Opti-

mum design sensitivity; Linear structures; Gaussian loading; Interior point algorithm.

5.1 Introduction

The design of safe and cost-effective structures to satisfy public and private needs is one of the

most classical tasks in civil engineering. In this regard, structural systems are usually required to

be optimum with respect to a given criterion while complying with a set of design conditions [117].

Moreover, appropriate design procedures must take into account all relevant uncertainties about the

system under consideration, as they can significantly affect the expected structural performance

of final designs [118]. Especially relevant are uncertainties in environmental dynamical excita-

tions, such as wind effects or earthquakes, which are commonly modeled by means of stochastic

processes [34–37, 113, 114, 120, 350, 351]. In this setting, reliability-based optimization (RBO)

provides a realistic and rational framework for structural design which explicitly accounts for the

uncertainties during the design process [7, 104].

RBO problems are usually formulated as the minimization of an objective function subject to both

standard design requirements and reliability constraints. In structural dynamics applications, relia-

bility is measured by means of first-passage probabilities. Some reliability analysis techniques that

have been used in this context include, e.g., the Wiener path integral [347], statistical linearization

[352], and advanced simulation techniques [110, 149, 175, 177, 204, 209]. In general, the choice

of a solution method depends on the particular characteristics of the problem at hand. The reader

is referred to [111] for a recent overview on RBO methods for structural dynamical systems under

stochastic excitation.

Special attention is directed to the optimal design of linear structures subject to Gaussian excitation

under constraints on first-passage probabilities. This type of problems arises, e.g., when require-
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ments on serviceability conditions are considered [353, 354]. Several specialized approaches have

been reported to address this particular class of problems. A stochastic search method is proposed in

[177], which relies on the nested implementation of advanced simulation techniques to explore the

design space and evaluate the reliability constraints. An adaptive scheme to allocate computational

efforts is integrated for improved numerical efficiency. Alternatively, a sequential optimization ap-

proach is presented in [149], where failure probability functions are locally approximated using

sensitivity information. It is noted that the previous methods use simulation techniques to evaluate

the reliability constraints in a direct manner, without any approximation at the stochastic response

level. On the other hand, the sequential optimization approaches presented in [125, 127, 169, 170]

mainly rely on approximation schemes for (i) peak responses, (ii) failure probability functions, and

(iii) the second-order statistics of the different responses of interest. These methods have proved

effective in applications involving uncertain linear systems and high-dimensional design spaces.

Approximations of the peak responses are formulated either using peak factors [125], the so-called

auxiliary variable vector approach [127], or parametrized distributions [170]. In addition, for de-

mand functions involving more than one response, reliability constraints are approximated with

kriging metamodels for the so-called inverse reliability constraints [169], or by assuming the fail-

ure probability as proportional to the sum of its corresponding individual component-level failure

probabilities [170]. Usually, the computation of the mean values and standard deviations of all

responses of interest at any given design is required by these formulations. To this end, surrogates

based on direct Monte Carlo simulation results from the previous candidate design are used. Even

though all previous approaches have proved effective in a variety of applications, it is believed that

there is still room for further developments in this area, particularly in the effective and efficient

integration of specialized sampling methods in RBO procedures.

Several stochastic simulation techniques especially tailored to the reliability assessment of linear

structures under Gaussian loading have been proposed. These include Efficient Importance Sam-

pling [137], Domain Decomposition Method [139], Multidomain Line Sampling [355], and Direc-

tional Importance Sampling (DIS) [140]. These methods exploit the linear relationship between
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the structural responses and the set of basic random variables [71] to reduce the variability of fail-

ure probability estimates. In this work, DIS [140] is adopted to evaluate the reliability constraints.

Further, this method also provides estimates of the first-order derivatives of the failure probability

by reusing the sampling results [167]. As a result, sensitivities with respect to design variables and

general model parameters can be obtained as a post-processing step of reliability assessment. This

feature is particularly advantageous for the treatment of RBO problems, since suitable gradient-

based solution schemes can be adopted.

It is the objective of this work to implement DIS as a general reliability and sensitivity assessment

framework to treat RBO problems involving linear structural systems under Gaussian excitation.

First-order solution schemes are adopted not only to identify optimal designs, but also to assess their

sensitivity. On the one hand, a sequential optimization method based on a class of feasible-direction

interior point algorithms [159, 356] is adopted to solve the RBO problem. This scheme provides a

sequence of feasible designs with improving objective values, which is advantageous for practical

purposes. Further, full reliability assessment at only few designs is usually required by this method.

On the other hand, a direction-finding technique [357] is implemented to evaluate the sensitivity

of optimum designs with respect to model parameter perturbations. This analysis is performed

as a post-process of the optimization results, which allows to obtain a deeper understanding of

final solutions with reduced computational efforts. Numerical results suggest that DIS represents a

potentially useful tool for the treatment of a class of RBO problems.

The structure of this contribution is as follows. Section 5.2 formulates the problems of interest. The

main ideas of Directional Importance Sampling are summarized in Section 5.3, whereas Section 5.4

discusses the enabled reliability sensitivity assessment framework. Section 5.5 describes the first-

order solution schemes adopted for RBO and optimum design sensitivity assessment. A numerical

example is presented in Section 5.6 to illustrate the applicability of the proposed framework. The

paper closes with some conclusions and final remarks.
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5.2 Formulation of the problem

The class of reliability-based design optimization problems of interest can be stated as

minx f(x)

s.t. rj(x) ≤ 0, j = 1, . . . , nr

gj(x) ≤ 0, j = 1, . . . , ng

(5.1)

where x ∈ Rnx denotes a vector of continuous design variables, f(x) is the objective function,

rj(x) ≤ 0, j = 1, . . . , nr characterize nr constraints on structural reliability, and gj(x) ≤ 0, j =

1, . . . , ng represent ng standard constraints. Typical objective functions include construction or

maintenance costs, total weight, etc. Reliability constraints represent design conditions formulated

in terms of reliability measures, such as the verification of serviceability limit states. On the other

hand, standard constraints are requirements that do not involve structural reliability assessment,

including geometric design needs, material availability, etc. Note that the side constraints on the

design variables, i.e., xL
i ≤ xi ≤ xU

i , i = 1, . . . , nx with xL
i and xU

i the lower and upper bounds

on xi, respectively, are contained in the set of ng standard constraints. Finally, in the context of

this contribution, the objective function does not involve reliability assessment and, therefore, it

is assumed that the objective and standard constraint functions are computationally inexpensive to

evaluate.

5.2.1 Mechanical modeling

The structural dynamical systems of interest are characterized by means of linear, elastic and clas-

sically damped multi-degree-of-freedom models, which satisfy the equation of motion

M(x)ÿ(t, x,θ) + C(x)ẏ(t, x,θ) + K(x)y(t, x,θ) = q(x)p(t,θ) (5.2)
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where ÿ, ẏ, and y are, respectively, the acceleration, velocity, and displacement vectors of dimen-

sion ny; the matrices M, C, and K characterize the mass, damping and stiffness properties of the

structure; q is a vector coupling the excitation p with the structural degrees of freedom; and θ is

the vector of basic random variables.

5.2.2 Stochastic Gaussian excitation

The dynamic load p of duration T is characterized as a discrete Gaussian process. This class

of stochastic processes can be used to represent uncertain environmental excitations in structural

engineering applications; see, e.g., [37, 63, 358–361]. By applying the Karhunen-Loève expansion

[8, 91], the discrete Gaussian load can be represented as

p(tk,θ) = µk +ψT
k θ, k = 1, . . . , nT (5.3)

where p(tk,θ) is the loading at time tk = (k − 1)∆t, k = 1, . . . , nT , ∆t is the time step, nT =

T/∆t + 1 is the number of time instants; θ is a realization of a standard Gaussian random variable

vector of dimension nθ; µk is the expected value of the stochastic process p at time tk; and ψk is

a vector of dimension nθ associated with time instant tk. The set of vectors Ψ = [ψ1, . . . ,ψnT
]

is given by Ψ = Λ1/2ΞT , where Λ and Ξ comprise, respectively, the nθ largest eigenvalues and

corresponding eigenvectors of the covariance matrix Σ of the stochastic load, i.e., ΣΞ = ΞΛ.

Without loss of generality, a zero-mean stochastic process is assumed as µk = 0, k = 1, . . . , nT .

Finally, it is noted that the characterization of the stochastic load by means of Eq. (5.3) generally

involves a large number of basic random variables, i.e., nθ is usually in the order of hundreds or

thousands [71].
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5.2.3 Reliability constraints

Requirements on system reliability are usually established using failure probability measures. In

this contribution, the reliability constraints are expressed in the form

rj(x) = ln
(
PFj

(x)
)
− ln(P ∗

Fj
) ≤ 0, j = 1, . . . , nr (5.4)

where ln(·) denotes natural logarithm, PFj
(x) is the probability of failure event Fj evaluated at

design x, and P ∗
Fj

is the corresponding maximum allowable value. In the context of structural

dynamical systems under stochastic excitation, the probability that certain requirements are not

fulfilled within the load duration T is a useful measure of structural performance. Thus, reliability

requirements are expressed by means of first-passage failure events [82, 84]

Fj = {dj(x,θ) > 1} , j = 1, . . . , nr (5.5)

where dj(x,θ) is the normalized demand function of event Fj given by

dj(x,θ) = max
t∈[0,T ]

max
m=1,...,nj,h

|hj,m(t, x,θ)|
h∗

j,m

(5.6)

where hj,m(t, x,θ), m = 1, . . . , nj,h are the response functions of interest associated with failure

event Fj with corresponding threshold levels h∗
j,m > 0. The response functions are taken as linear

combinations of the structural displacements, velocities and/or accelerations. As a result, they are

time-dependent and also depend on the design and random variables. Finally, the first-passage

failure probability associated with the j th reliability constraint is given by

PFj
(x) =

∫
θ∈Rnθ

IFj
(x,θ)fΘ(θ)dθ (5.7)

where IFj
(x,θ) is the indicator function with IFj

(x,θ) = 1 if dj(x,θ) > 1 and IFj
(x,θ) = 0 oth-

erwise, and fΘ(θ) is the standard multivariate Gaussian probability density function of dimension
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nθ. As already pointed out, θ may comprise hundreds or thousands of random variables. There-

fore, the evaluation of the integral in Eq. (5.7) at each design represents a high-dimensional problem

which is extremely demanding from the numerical viewpoint [82, 84]. As already pointed out, DIS

[140, 167] is implemented to evaluate the reliability constraints and their first-order derivatives.

5.2.4 Optimum design sensitivity

The formulation of a RBO problem depends a number of parameters to characterize the objective

and constraint functions and, therefore, changes in these quantities can affect the final solution

[330]. Of particular importance are those involved in the definition of reliability constraints, e.g.,

excitation model parameters or response thresholds. For a given model parameter, ζ , the rates of

change of the optimum objective value, df∗

dζ
, and of the optimum values for the design variables,

∂x∗
i

∂ζ
, i = 1, . . . , nx, represent suitable sensitivity measures. These derivatives are associated with

the greatest feasible improvement of the final solution for small changes in ζ . A direction-finding

approach [357] is adopted in this contribution to compute such sensitivities.

5.3 Directional Importance Sampling

Directional Importance Sampling is a stochastic simulation method tailored to linear structural

systems subject to Gaussian excitation [140, 167]. Consider a first-passage failure event F =

{d(θ) > 1} with normalized demand function d(θ) = maxk=1,...,nT
maxm=1,...,nh

|hm(tk,θ)|/h∗
m.

For notation simplicity, the explicit dependence of the different quantities on x has been dropped.

Given the system linearity, the mth response of interest evaluated at time tk can be written as [362]

hm(tk,θ) = aT
m,kθ, am,k =

k∑
q=1

ϵq∆tηm(tk − tq)ψq (5.8)

where ϵq depends on the time integration rule [363] and ηm(t) is the unit impulse response function

computed using modal superposition.
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The fundamental ideas of DIS can be summarized as follows. First, the concept of directional sam-

pling [364–366] is considered. Instead of using full Cartesian coordinates, the reliability problem

is expressed in terms of unit directions u ∼ fU(u) uniformly distributed over the unit hypersphere

ΩU ⊂ Rnθ . Second, an importance sampling density fDIS
U (u) is introduced for the unit directions

following some of the ideas presented in [137]. Third, the linearity of the responses of interest is

exploited to obtain closed-form solutions for the probability of failure conditioned on each sampled

direction. As a result, the failure probability can be written as

PF =
∫

Ωu

[
1− F nθ

χ2

(
c(u)2

)] ( fU(u)
fDIS

U (u)

)
fDIS

U (u)du (5.9)

where F nθ

χ2 (·) is the cumulative distribution function of the Chi-square distribution of nθ degrees of

freedom, and

c(u) = min
m=1,...,nh
k=1,...,nT

cm,k(u) = min
m=1,...,nh
k=1,...,nT

h∗
m

|aT
m,ku|

(5.10)

represents the minimum capacity-to-demand ratio across all responses of interest and time instants

for the fixed unit vector u. Equivalently, this quantity can be interpreted as the minimum factor by

which u must be amplified to generate failure. Finally, a failure probability estimate is obtained by

drawing samples u(ℓ) ∼ fDIS
U (u), ℓ = 1, . . . , N , which gives

PF ≈ P̃ DIS
F = 1

N

N∑
ℓ=1

P̂F

[
1− F nθ

χ2

(
c(u(ℓ))2

)]
∑nh

m=1
∑nT

k=1

[
1− F nθ

χ2 (cm,k(u(ℓ))2)
] (5.11)

where P̂F = 2∑nh
m=1

∑nT
k=1 Φ(−h∗

m/∥am,k∥) with Φ(·) the standard Gaussian cumulative distribu-

tion function. In general, relatively small sample sizes are required to obtain sufficiently accurate

reliability estimates [140]. Further, the sample generation process is highly efficient and paralleliz-

able [139]. A detailed description of DIS can be found in [140].



CHAPTER 5. ON THE USE OF DIRECTIONAL IMPORTANCE SAMPLING FOR
RELIABILITY-BASED DESIGN OPTIMIZATION AND OPTIMUM DESIGN SENSITIVITY
OF LINEAR STOCHASTIC STRUCTURES 170

5.4 Reliability sensitivity assessment framework

5.4.1 First-order derivatives with respect to general model parameters

Consider a general model parameter, ν, involved in the definition of the normalized demand func-

tion such that F = {d(ν,θ) > 1}. Note that ν can affect the structural properties, the excitation

model, or the response thresholds. Following the ideas presented in [167], direct differentiation of

the integral in Eq. (5.9) with respect to ν yields

∂PF

∂ν
= −

∫
ΩU

[
2c(ν, u)∂c(ν, u)

∂ν
fnθ

χ2

(
c(ν, u)2

)]( fU(u)
fDIS

U (u)

)
fDIS

U (u)du (5.12)

where fnθ

χ2 is the probability density function of the Chi-squared distribution of nθ degrees of free-

dom. Then, the same set of samples generated to evaluate Eq. (5.11) can be used to estimate the

first-order derivatives as

∂PF

∂ν
≈ ∂P̃ DIS

F

∂ν
= − 1

N

N∑
ℓ=1

2P̂F (ν)c(ν, u(ℓ))∂c(ν,u(ℓ))
∂ν

fnθ

χ2

(
c(ν, u(ℓ))2

)
∑nh

m=1
∑nT

k=1

[
1− F nθ

χ2 (cm,k(ν, u(ℓ))2)
] (5.13)

In the previous equation, the only additional terms that need to be computed are ∂c(ν,u(ℓ))
∂ν

, ℓ =

1, . . . , N . To this end, assume that c(ν, u) = cM,K(ν, u), where (M, K) are the indices that provide

the minimum in Eq. (5.10). Then, the sought partial derivative is

∂c(ν, u)
∂ν

= ∂cM,K(ν, u)
∂ν

= ∂

∂ν

(
h∗

M

|aT
M,Ku|

)
(5.14)

Three different scenarios in terms of the type of model parameter can be identified. First, if ν affects

structural properties, then the evaluation of Eq. (5.14) simply requires the sensitivities of the spec-

tral properties [367]. Second, when ν represents an excitation model parameter, the derivatives of

the vectors associated with the Karhunen-Loève expansion (see Eq. (5.3)) are needed. This can be

carried out using any suitable method [147]. Finally, in case ν corresponds to a response threshold,
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sensitivity evaluation can be performed with marginal computational efforts. For completeness,

Appendix 5.8 provides explicit formulas for the three different scenarios in terms of ν.

5.4.2 Practical advantages

From the practical viewpoint, the adopted reliability sensitivity assessment framework presents

two main advantageous features. On the one hand, the formulation presented in this section is

quite general in the sense that it can be used to estimate sensitivities with respect to both design

variables (ν = xi) and alternative model parameters (ν = ζ). On the other hand, the comparison

of Eqs. (5.11) and (5.13) reveals that all the information retrieved during reliability assessment is

reused to compute the corresponding first-order derivatives. Thus, first-order derivatives of relia-

bility measures can be obtained as a byproduct of reliability assessment. These features are quite

beneficial in the context of RBO problems, as they enable effective gradient-based solution schemes

to obtain optimum solutions and to evaluate the sensitivity of final designs.

5.5 Implementation of first-order solution methods

5.5.1 Sequential optimization strategy

In order to solve the RBO problem in Eq. (5.1), a first-order sequential optimization approach based

on a class of feasible-direction interior point algorithms [159, 356] is adopted. In essence, each op-

timization cycle requires to identify a feasible-descent direction and to solve a line search problem

to find a new candidate along such direction. Several advantages are provided by the adopted op-

timization strategy. First, the method produces a sequence of feasible designs with consecutively

lower objective function values. Hence, the optimization process can be stopped at any iteration to

retrieve a feasible solution that is better than the initial one. Second, one-dimensional surrogates

for the reliability constraints, instead of multi-dimensional surrogates, can be adaptively generated

during each optimization cycle for improved computational efficiency. Finally, relatively few re-
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liability analyses are usually required to reach convergence. The reader is referred to [159] for a

detailed description of the optimization strategy.

5.5.2 Direction-finding approach for optimum design sensitivity

In this contribution, the framework proposed in [357] is adopted to compute optimum design sen-

sitivities. Consider the augmented design space ⟨x1, . . . , xnx , ζ⟩ of dimension nx + 1, where ζ

represents a given model parameter. Then, sensitivity computation can be viewed as finding the

constrained steepest-descent direction in such augmented space, s = [s1, . . . , snx+1]T , which pro-

vides the greatest improvement of the objective value while satisfying the problem constraints. This

direction is the solution to [357, 368]

min
s
∇fT s

s.t. ∇rT
j s ≤ 0, j ∈ Jr

∇gT
j s ≤ 0, j ∈ Jg

sT s− 1 ≤ 0

(5.15)

where∇FT =
[

∂F(x,ζ)
∂x1

, . . . , ∂F(x,ζ)
∂xnx

, ∂F(x,ζ)
∂ζ

]∣∣∣
x∗,ζ0

, with F representing f , rj , j ∈ Jr, or gj , j ∈ Jg;

ζ0 is the nominal or actual value of ζ; and Jr and Jg denote the sets of reliability and standard

constraints, respectively, that are active at the final design x∗. It is seen that the framework only

requires the first-order derivatives of the objective and active constraint functions with respect to

xi, i = 1, . . . , nx, and ζ . Furthermore, the previous optimization problem can be solved very effi-

ciently, as it involves a linear objective function, linear constraints and a single quadratic constraint

[369]. Based on the direction s, the rate of change of the optimum objective is [357]

df ∗

dζ
= ∇f(x∗, ζ0)T s

|snx+1|
(5.16)
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and the rates of change of the optimum values for the design variables are computed as [357]

∂x∗
i

∂ζ
= si

|snx+1|
, i = 1, . . . , nx (5.17)

If snx+1 is positive (negative), the previous results are associated with an increase (decrease) in ζ .

In case snx+1 = 0, the optimum solution remains unaffected by changes in ζ . If the sign of the

change in ζ is specified beforehand, a similar technique can be adopted [357].

Note that all the derivatives of the problem functions with respect to the design variables are readily

available from the final optimization cycle. Therefore, only the sensitivities with respect to ζ remain

to be evaluated, which is performed by reusing the DIS results at the final design. In other words,

optimum design sensitivities are obtained as an effective post-process of the optimization results,

which is advantageous for practical purposes.

5.5.3 Remarks

As already pointed out, DIS provides efficient estimation of failure probabilities and their sensitiv-

ities for linear structural systems subject to Gaussian excitation. This, in turn, enables first-order

solution methods for RBO and optimum design sensitivity analysis. The specific strategies adopted

in this work have proved quite effective, as illustrated in Section 5.6. Nonetheless, the use of DIS in

RBO problems is not necessarily limited to these particular solution methods. In principle, any suit-

able method that requires only the gradients of failure probability functions can be integrated with

the sensitivity analysis framework described in this contribution. Hence, DIS can be interpreted as

a potentially useful and numerically efficient tool to aid informed decision-making processes under

uncertainty. Furthermore, this suggests that exploiting particular features of specialized simulation

techniques can be quite advantageous for RBO schemes.
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5.6 Example problem

In order to illustrate the applicability of the proposed framework, a numerical example involving a

realistic building model subject to stochastic loading is presented in this section. The goal of this

example is to determine the thicknesses of the core shear walls that minimize structural weight,

subject to constraints on serviceability reliability and geometric conditions. Two scenarios in terms

of the number of design variables and the number of reliability constraints are addressed. In addi-

tion, the sensitivity of the optimum design with respect to response thresholds and excitation model

parameters is studied.

5.6.1 Building structure

A three-dimensional finite element model of a 16-story reinforced concrete (RC) building, which

has been borrowed from [167], is considered in this section. For illustration purposes, Fig. 5.1

shows a three-dimensional representation of the structural model. The interstory height is equal

to 3.25 m, which gives a total height of 52.0 m. In addition, the building is 30 m by 35 m in

plan. A perimeter of RC rectangular columns and shear walls plus a core of RC shear walls are

considered for the horizontal resistant system. The corresponding material properties are given by

Young modulus E = 2.5 × 1010 N/m2, Poisson ratio equal to 0.3, and mass density equal to 2500

kg/m3. Shell elements of different thicknesses are considered to model the shear walls and floor

slabs. In addition, beam and column elements are also included in the system. As a result, the finite

element model involves 29466 degrees of freedom. Since the system is studied for small vibrations,

linear elastic behavior is assumed. Finally, 20 modes are kept for dynamic analysis purposes and a

5% of critical damping is considered for all modes.
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Fig. 5.1: Perspective view of a 16-story reinforced concrete structure under ground excitation.

5.6.2 Stochastic ground excitation

As illustrated in Fig. 5.1, the building is subject to a ground excitation applied at 45° with respect to

the x axis. Such loading is modeled as a non-stationary filtered white noise process with duration

T = 10 s and time step ∆t = 0.01 s. Specifically, a modulated white noise signal passing through

a Clough-Penzien filter [370] is considered. Hence, the ground acceleration is given by üg(t) =

Ω2
1w1(t) + 2ξ1Ω1ẇ1(t)− Ω2

2w2(t)− 2ξ2Ω2ẇ2(t), where Ω1 = 15.6 rad/s, Ω2 = 1.0 rad/s, ξ1 = 0.6

and ξ2 = 0.9 are the filter parameters, and the variables wi(t), i = 1, 2, satisfy the set of coupled

differential equations

ẅ1(t) + 2ξ1Ω1ẇ1(t) + Ω2
1w1(t) = w(t)h(t)

ẅ2(t) + 2ξ2Ω2ẇ2(t) + Ω2
2w2(t) = Ω2

1w1(t) + 2ξ1Ω1ẇ1(t)
(5.18)
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where w(t) is a white noise process with spectral intensity S = 1.5×10−3 m2/s3, and h(t) is a time

envelope function defined as

h(t) =


(t/5)2 0 ≤ t ≤ 5 s

1 5 < t ≤ 6 s

e−(t−6)2
t > 6 s

(5.19)

Finally, for illustration purposes, all the eigenvalues of the covariance matrix of the stochastic

process are retained to construct the Karhunen-Lòeve expansion and, as a result, the number of

basic random variables is given by nθ = nT = 1001. Therefore, the discrete representation of the

stochastic ground acceleration involves a large number of basic random variables for this case.

5.6.3 Scenario I: Design problem

For illustration purposes, nx = 2 design variables and a single reliability constraint are considered

in this scenario. The thicknesses of the core shear walls of the eight lower stories are linked to the

first design variable as tw,s = t̄wx1, s = 1, . . . , 8, whereas that of the remaining stories is linked to

the second design variable as tw,s = t̄wx2, s = 9, . . . , 16, with t̄w = 0.4 m the reference thickness

value. The constrained RBO problem is given by

min
x=[x1,x2]T

f(x) = (x1 + x2)/2

s.t. r(x) = ln(PF (x))− ln(10−3) ≤ 0

g(x) = x2 − x1 ≤ 0

0.5 ≤ xi ≤ 2.0, i = 1, 2

(5.20)

where f(x) is associated with the weight of the core shear walls, PF (x) is a failure probability

function with maximum allowable value P ∗
F = 10−3, and g(x) ≥ 0 is a geometric constraint. Note

that this formulation imposes x2 ≤ x1, i.e., walls of lower floors must be thicker than of upper

floors. This is a usual consideration in the context of structural design procedures. In addition, the
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constraints 0.5 ≤ xi ≤ 2.0, i = 1, 2, indicate that the core wall thicknesses lie between 0.2 m and

0.8 m. The failure event F is associated with serviceability conditions, and it is defined as

F =
{

max
m=1,...,16

max
k=1,...,1001

(
|hm,x(tk, x,θ)|

h∗
m

,
|hm,y(tk, x,θ)|

h∗
m

)
> 1

}
(5.21)

where hm,x(tk, x,θ) and hm,y(tk, x,θ) are the interstory drifts, expressed as a percentage of the

floor height, between floors m and m−1 along the x and y directions, respectively, and h∗
m = 0.1%,

m = 1, . . . , 16, represent the corresponding maximum allowable values. It is assumed that m = 0

represents the ground floor. In this setting, failure is defined when any interstory drift along the

x or y axes exceeds 0.1% of its corresponding floor height. Such failure criterion can be related,

for instance, to the violation of a serviceability limit state of the RC core walls [371]. Finally,

it is noted that the evaluation of the failure probability at any given design, PF (x), represents a

challenging problem as it involves a high-dimensional integration domain, a finite element model

with thousands of degrees of freedom, and more than 30000 elementary failure domains.

To obtain insight about the design problem, Fig. 5.2 shows the contours of PF (x). These iso-

probability curves have been obtained by considering a set of DIS-based failure probability esti-

mates distributed over the design space. The resulting curves, which are somewhat rugged due to

the inherent variability of the estimates, have been smoothed for presentation purposes. From the

figure, it is seen that the failure probability seems to be minimized by increasing the core wall thick-

nesses as much as possible, as expected. In general, the failure probability function depends mainly

on x1 when x2 > x1, i.e., when the upper core walls are thicker than the lower ones. Meanwhile,

a stronger interaction between x1 and x2 is observed for x2 < x1. In this case, an increase in the

thickness of the lower core walls can be compensated by a decrease in the thickness of the upper

walls to maintain the same reliability level. These results are reasonable from a structural view-

point. For comparison and reference purposes, Fig. 5.3 shows a sketch of the feasible design set.

Some contours of the objective function and a reference location for the optimum design are also

presented in the figure. Note that only the reliability constraint is active at the optimum solution.
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Fig. 5.2: Contours of the failure probability function PF (x). Scenario I.

Fig. 5.3: Sketch of the feasible design space, objective contours and optimum design (∗). Scenario
I.

5.6.4 Scenario I: Results

Reliability sensitivity estimates

First-order information on the problem functions is used by the adopted optimization strategy to

explore the design space efficiently. Typically, candidate design trajectories tend to move along

boundaries of the feasible design set until reaching the optimum region [356]. In this context, poor
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quality information about the sensitivity of the active constraints can lead to spurious behavior of

the optimization process, since identified search directions might not be actually feasible. There-

fore, it is particularly important for the convergence of the algorithm to obtain sufficiently accurate

estimates of the gradients of the active reliability constraint functions. For this example, the gradi-

ent of the reliability constraint function in Eq. (5.20) is estimated as ∂r(x)
∂xi
≈ 1

P̃ DIS
F (x)

∂P̃ DIS
F (x)
∂xi

, i = 1, 2.

In this regard, the choice of an inadequately small sample size can affect the optimization procedure

as such sensitivity estimates might have an unacceptable level of variability. Validation calculations

have shown that N = 2000 samples provide a reasonable tradeoff between computational cost and

quality of the DIS results in this example. For illustration purposes, Fig. 5.4 presents the estimates

of ∇r(x) obtained across 20 independent DIS runs with N = 2000 samples. These estimates are

evaluated at the design x = [1.18, 0.93]T , which verifies PF (x) ≈ 10−3. It is seen that the gradient

estimates point in a similar direction and, overall, their quality is acceptable in the context of RBO

problems involving structural dynamical systems under stochastic excitation.

Fig. 5.4: Estimates of the reliability constraint gradient obtained in 20 independent DIS runs. Sce-
nario I.

Optimization process

The sequential optimization strategy presented in Section 5.5.1 is implemented to solve problem

(5.20). As already pointed out, this optimization strategy uses sensitivity information provided by
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DIS to produce a sequence of feasible designs with decreasing objective function values. The rec-

ommendations provided in [159, 356] are considered for numerical implementation. Additionally,

a sample size equal to N = 2000 is considered for DIS. Furthermore, the customary technique of

using common random number streams is implemented, which means that the same sequence of

pseudorandom numbers is considered for reliability assessment at each design. Numerical expe-

rience indicates that this strategy is quite effective in reducing the effect of the variability of the

estimators on RBO procedures [173]. Three different cases in terms of the starting point are studied

to evaluate the performance of the optimization scheme. In particular, cases A, B and C correspond

to initial designs xA = [1.95, 1.90]T , xB = [1.95, 0.80]T and xC = [1.75, 1.00]T , respectively. It

is noted that the method requires an initial design that is feasible, which can be usually identified

using engineering judgment. However, in involved cases where a feasible design is difficult to

identify a priori, systematic methods can be implemented to find a starting point [330].

The sequences of candidate designs obtained for the three different starting points under consider-

ation are presented in Fig. 5.5, where the corresponding final solutions are highlighted using dark

markers. For reference purposes, some contours of the objective function f(x) are also shown in

the figure. In general, the method reaches the active feasible boundary in few optimization cycles.

Then, candidate solutions tend to move along that boundary, which in this case is associated with

the reliability constraint. Additionally, the three final designs are very similar between each other

and they seem to lie along a contour of f(x). To obtain further insight about the optimization pro-

cess, the objective function values obtained during the different optimization cycles are presented

in Fig. 5.6. Note that eight iterations are required in all cases to verify the stopping criterion. From

the figure, it is clear that significant improvements in the objective function values are obtained

during the initial algorithm iterations, which is beneficial for the type of problems under considera-

tion. In case A, for instance, a relative improvement of approximately 45% is attained after the four

initial optimization cycles for case. This behavior is consistent with the large initial displacements

in the search space observed in Fig. 5.5. Finally, Table 5.1 presents the optimum designs obtained

by the optimization scheme for the three different starting points. For comparison purposes, a ref-
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erence solution obtained from a direct double-loop implementation is also presented in the table.

This design has been obtained using direct Monte Carlo simulation and genetic algorithms [173]

with a population size of 50 individuals. Very similar objective function values are observed for

all cases. In fact, the maximum relative difference between the objective values of all the reported

solutions is less than 0.5%. Thus, the integration of DIS and suitable gradient-based methods pro-

vides optimum designs in an effective manner. Finally, the reliability constraint can be regarded as

active while the geometric constraint remains inactive for all the designs reported in the table, as

expected.

Fig. 5.5: Trajectories of candidate designs corresponding to three different starting points. Scenario
I.

Table 5.1: Final designs corresponding to three different starting points and reference solution.
Scenario I.

Case A Case B Case C Reference

x∗
1 1.217 1.268 1.175 1.177

x∗
2 0.889 0.848 0.932 0.928

PF (x∗)/10−3 0.999 0.999 0.995 0.999
g(x∗) −0.327 −0.421 −0.242 −0.249
f(x∗) 1.0529 1.0580 1.0536 1.0525
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Fig. 5.6: Evolution of candidate objective function values for three different starting points. Sce-
nario I.

Comparison with a finite difference implementation

As discussed in Section 5.4, the sensitivity assessment framework enabled by DIS provides first-

order derivatives by post-processing the sampling results. In principle, an alternative means of

computing such derivatives is to use finite differences and DIS. To compare the performance of

both sensitivity assessment methods, they are integrated with the optimization strategy presented

in Section 5.5.1 to solve the RBO problem in Eq. (5.20). Central differences are considered and,

therefore, a total of five DIS estimates are required to evaluate the reliability constraint function

and its gradient at each design. Validation calculations indicate that a total of N = 2000 samples

are adequate for both sensitivity assessment techniques.

Table 5.2 summarizes the results obtained by both approaches in terms of the final design, number

of optimization cycles (Ncycles), and total number of reliability analyses (Nrel). For conciseness,

only case A is presented in the table. However, validation calculations indicate that similar results

are obtained for alternative starting points. Several observations can be made from this table. First,

both approaches provide very similar final designs in terms of the objective value. Second, the

use of finite differences requires to define an appropriate perturbation step, whereas the framework
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described in Section 5.4 circumvents this need. This is an advantage from the practical viewpoint.

Third, the proposed approach needs only eight optimization cycles (see Fig. 5.6) whereas the imple-

mentation with finite differences requires 12 iterations. Fourth, the number of reliability analyses

required by the finite difference implementation is significantly higher than by the proposed ap-

proach. In fact, the proposed approach requires 35 reliability analyses, which are associated with

the full evaluation of approximately four designs per optimization cycle. Meanwhile, the finite

difference implementation requires a total of 640 DIS runs, which is roughly equivalent to the

full evaluation of 10 designs per optimization cycle. This behavior can be attributed to the higher

variability of sensitivity estimates obtained with finite differences, which tends to reduce the per-

formance of gradient-based optimization methods. For this case, not only such variability affects

the choice of the feasible-descent direction in each optimization cycle, but is also detrimental to

the convergence of the subsequent line search procedure. Finally, the previous observations indi-

cate that the computational burden of the proposed approach is significantly lower than of using

finite differences and, in addition, it provides additional advantages for practical implementation

purposes.

Table 5.2: Optimization results obtained with the proposed approach and an implementation based
on finite differences. Case A. Scenario I.

Proposed approach Finite differences

x∗
1 1.217 1.269

x∗
2 0.889 0.847

PF (x∗)/10−3 0.999 0.998
g(x∗) −0.327 −0.422
f(x∗) 1.0529 1.0580
Ncycles 8 12
Nrel 35 640

Sensitivity of the optimum design with respect to response thresholds

Optimum design sensitivity assessment studies how optimum solutions can change under model

parameter perturbations. As described in Section 5.5.2, this is achieved by integrating a direction-
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finding approach for optimum design sensitivity analysis with the general sensitivity assessment

framework enabled by DIS. For illustration purposes and to show the type of results that can be ob-

tained by the proposed scheme, the sensitivities of the optimum design with respect to the different

response thresholds are considered here. Explicit formulas for the computation of these sensitivity

measures can be found in Appendix 5.8. Note that, in this case, reliability sensitivity assessment

involves negligible computational efforts.

To evaluate the quality of the estimates obtained by the adopted framework, Fig. 5.7 shows the

evolution, in terms of the number of samples, of the DIS-based estimates of ∂PF

∂h∗
s

, s = 7, 9, 10, 11,

evaluated at the final design of case A (see Table 5.1). The rest of the sensitivities are almost

zero. From the figure, it is noted that all derivatives are negative. In other words, the failure

probability tends to decrease when the maximum allowable values for the different interstory drifts

are increased. This is reasonable from an engineering perspective, since higher threshold values

correspond to more permissive performance requirements and, as a result, failure becomes less

likely in such cases. In addition, it is noted that the estimates become rather stable for N ≥

2000 samples. Thus, obtaining first-order derivatives of the failure probability with respect to the

response thresholds as a byproduct of the reliability assessment step at the final design, which

involves N = 2000 samples, is adequate in the context of this example.

Once the first-order derivative of the reliability constraint with respect to each threshold h∗
s is ob-

tained, the approach presented in Section 5.5.2 is implemented to obtain the sought optimum design

sensitivity measures. Table 5.3 reports the results corresponding to the final design obtained in case

A. However, validation calculations show that similar results are obtained for all final solutions

reported in Table 5.1. For presentation purposes, all quantities in the table are normalized by a

factor that ensures that the maximum absolute value of the optimum objective sensitivities is equal

to one. Several observations can be made from these results. First, the final design is only sensitive

to the response thresholds corresponding to stories 7, 9, 10 and 11, which are associated with the

non-zero sensitivities reported in Fig. 5.7. Hence, perturbations of the maximum allowable drift
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Fig. 5.7: Evolution of the estimator of the partial derivative of the failure probability with respect
to different response thresholds (h∗

s) in terms of the number of samples. Scenario I.

values associated with lower and upper stories do not affect the optimum solution in this case.

Second, all values presented in the table are negative, i.e., the greatest improvement in the opti-

mum design is obtained by reducing the values of the design variables. Further, the solution of the

direction-finding problem in Eq. (5.15) indicates that the results in the table correspond to increases

of the different thresholds (δh∗
s > 0). Note that this behavior is reasonable from the engineering

viewpoint since, as already pointed out, higher allowable values for the responses of interest lead

to less restrictive design conditions. This highlights one of the advantages of the chosen method

for optimum design sensitivity analysis, as it can identify the sign of the perturbation (increase or

decrease) that is most beneficial toward improving the final solution. Third, the direction in which

the optimum design tends to move is identical for all thresholds and is opposite to the objective

function gradient. Fourth, the relative importance of the different parameters with respect to the

final solution can be established from the optimum design sensitivity results. In this regard, Ta-

ble 5.3 indicates that h∗
9 and h∗

10 are the most relevant parameters, h∗
7 and h∗

11 are less important,

and the rest of thresholds do not affect the final design. Finally, the previous results illustrate that

the implementation of DIS allows to obtain non-trivial information about final designs and their
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sensitivities.

Table 5.3: Normalized sensitivities of the optimum objective value and of the optimum values for
the design variables with respect to the maximum allowable interstory drifts. Scenario I.

Story (s) df/dh∗
s ∂x∗

1/∂h∗
s ∂x∗

2/∂h∗
s

1–6 0 0 0
7 −0.12 −0.12 −0.12
8 0 0 0
9 −1.00 −1.00 −1.00

10 −0.91 −0.91 −0.91
11 −0.28 −0.28 −0.28

12–16 0 0 0

5.6.5 Scenario II: Design problem

In this scenario, a more complex optimization problem in terms of the number of design variables

and the number of constraints is studied. In particular, a total of nx = 8 intermediate design

variables are considered. Each design variable is linked to the thickness of the core walls of two

consecutive floors as tw,2i−1 = tw,2i = t̄wxi, i = 1, . . . , 8 (see Table 5.4). In addition, seven geo-

metric constraints and 16 reliability constraints are imposed. The resulting optimization problem

is stated as
min

x
f(x) = ∑8

i=1 xi

/
8

s.t. rj(x) = ln(PFj
(x))− ln(5× 10−4) ≤ 0, j = 1, . . . , 16

gj(x) = xj+1 − xj ≤ 0, j = 1, . . . , 7

0.5 ≤ xi ≤ 2.0, i = 1, . . . , 8

(5.22)

where the constraints gj(x) ≤ 0, j = 1, . . . , 7, ensure that walls of lower floors are thicker than

of upper floors, and PFj
(x), j = 1, . . . , 16 are failure probability functions with maximum value

P ∗
F = 5 × 10−4. Note that this value is smaller than the one considered in the previous scenario.

The failure events are defined in terms of the normalized interstory drifts as

Fj =
{

max
k=1,...,1001

(
|hj,x(tk, x,θ)|

h∗
j

,
|hj,y(tk, x,θ)|

h∗
j

)
> 1

}
(5.23)
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with h∗
j = 0.1%, j = 1, . . . , 16. Hence, the j th failure probability function is associated with the

drift responses, along the x and y directions, of the j th story.

Table 5.4: Linking detail of intermediate design variables. Scenario II.

Design variable x1 x2 x3 x4 x5 x6 x7 x8

Core walls (floors) 1–2 3–4 5–6 7–8 9–10 11–12 13–14 15–16

5.6.6 Scenario II: Results

Optimization results

The sequential optimization strategy presented in Section 5.5.1 is implemented, and a total of

N = 3000 samples are considered for reliability assessment. To illustrate the effectiveness of

the optimization scheme in terms of the starting point, three different initial designs are considered,

which are presented in Table 5.5.

Table 5.5: Initial designs corresponding to different cases. Scenario II.

x1 x2 x3 x4 x5 x6 x7 x8

Case A 1.98 1.97 1.96 1.95 1.94 1.93 1.92 1.91
Case B 1.75 1.74 1.73 1.72 1.50 1.49 1.48 1.47
Case C 1.60 1.50 1.40 1.30 1.20 1.10 1.05 1.00

Figure 5.8 shows the candidate objective values obtained throughout the optimization process for

the different starting points. From the figure, it is seen that cases A, B and C require 11, 14 and 12

optimization cycles, respectively, to verify the stopping criterion. However, in all cases it is possible

to obtain a design that is very similar to the final solution after roughly 10 optimization cycles. This

behavior is consistent with the results observed in the previous scenario, since the method is able to

reduce significantly the objective values after few optimization cycles. Moreover, the final objective

function values obtained in the different cases are very similar between each other. Regarding

computational cost, it is noted that each optimization cycle requires the full reliability assessment

of a number of designs associated with the identification of the step size along the search direction
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[356]. In this context, an average of three designs must be evaluated during each optimization cycle,

leading to a total of less than 50 reliability analyses in all cases. This number is relatively small in

the context of RBO problems. This highlights some of the benefits of adopting DIS as sensitivity

assessment framework, since the use of gradient-based optimization strategies provides greatly

improved designs with relatively few reliability analyses. Such a feature represents a significant

advantage when compared, e.g., with stochastic search-based methods [111, 139].

Fig. 5.8: Evolution of candidate objective function values for three different initial designs. Sce-
nario II.

Table 5.6 shows the final designs obtained for the three starting points under consideration. In addi-

tion, Table 5.7 reports the corresponding values of the active constraint functions that are regarded

as active at the final designs. These correspond to the normalized failure probabilities PFj
(x)/P ∗

F ,

j = 9, 10, 11, with P ∗
F = 5 × 10−4, and gj(x), j = 2, 3, 4, 7. The results indicate that all final

designs are quite similar from the objective and constraint viewpoints. In fact, the maximum rela-

tive difference between the optimum objective values is about 0.2%. Thus, the first-order method

enabled by DIS allows an effective exploration of the design space for this scenario. To gain further

insight into the optimization process, Fig. 5.9 presents the evolution of the values of the constraint

functions that are active at the final solution for case A. It is seen that the method requires about

nine optimization cycles to reach a boundary of the feasible design set where all constraints under
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consideration are practically active. Such constraints tend to remain active during the rest of the

optimization process. In other words, the search directions identified during the next iterations tend

to follow such feasible boundary, which is consistent with the behavior observed in the previous

scenario.

Fig. 5.9: Evolution of active geometric constraints (left) and active failure probability functions
(right). Case A. Scenario II.

Table 5.6: Final designs corresponding to three different starting points. Scenario II.

Case A Case B Case C

x∗
1 1.528 1.500 1.498

x∗
2 1.141 1.141 1.141

x∗
3 1.126 1.132 1.130

x∗
4 1.122 1.128 1.129

x∗
5 1.118 1.123 1.125

x∗
6 0.962 0.961 0.959

x∗
7 0.507 0.509 0.507

x∗
8 0.504 0.505 0.504

f(x∗) 1.001 0.999 0.999

Optimum design sensitivity with respect to excitation model parameters

Once a final solution is identified, its sensitivity with respect to the parameters Ω1 and Ω2 involved

in the definition of the excitation model (see Section 5.6.2) is investigated. The approach described
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Table 5.7: Active constraint functions corresponding to three different starting points. Scenario II.

Case A Case B Case C

PF9(x∗)/P ∗
F 0.994 0.998 0.995

PF10(x∗)/P ∗
F 0.968 0.968 0.968

PF11(x∗)/P ∗
F 0.953 0.952 0.961

g2(x∗) −0.015 −0.009 −0.011
g3(x∗) −0.004 −0.004 −0.001
g4(x∗) −0.004 −0.005 −0.004
g7(x∗) −0.003 −0.004 −0.003

in Section 5.5.2 is implemented, which requires the first-order derivatives of the active reliability

constraint functions with respect to these parameters. As previously pointed out, such quantities

can be computed by post-processing the DIS results. In this context, since Ω1 and Ω2 affect the

properties of the excitation model, the only additional computations are associated with the sen-

sitivities of the vectors involved in the representation of the stochastic load (see Appendix 5.8).

Further, since the same excitation model is considered for all reliability constraints, this analysis

needs to be performed once to evaluate the sensitivities of all active constraints. For conciseness,

only the results corresponding to the final design of case A are presented here. However, additional

calculations indicate that similar results are obtained for cases B and C.

For reference purposes, Figure 5.10 presents the evolution, in terms of the number of samples, of the

estimates of ∂PF10
∂Ω1

and ∂PF10
∂Ω2

evaluated at the final design of Case A (see Table 5.6). Rather stable

estimates are obtained for N ≥ 3000, with ∂PF10
∂Ω1

≈ −1.70 × 10−2 and ∂PF10
∂Ω2

≈ −0.03 × 10−2.

Thus, in this case PF10(x) is much more sensitive to Ω1 than to Ω2. Moreover, increasing the

values of Ω1 or Ω2 tends to decrease the likelihood of exceeding the maximum allowable threshold

in the 10th story. Validation calculations indicate that a similar behavior is also observed for the

failure probability functions PF9(x) and PF11(x), which are associated with the active reliability

constraints.

Table 5.8 presents the optimum design sensitivity measures corresponding to perturbations in ζ =

Ω1 and ζ = Ω2, i.e., the sensitivities of the optimum values for the design variable, ∂x∗
i

∂ζ
, i =
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Fig. 5.10: Sensitivity estimates of PF10 with respect to Ω1 and Ω2 in terms of the number of samples.
Scenario II.

1, . . . , 8, and of the optimum objective value, df∗

dζ
. For convenience, all these quantities have been

normalized in such a way that the maximum magnitude of the sensitivities of the optimum objective

values equals one. From the table, it is seen that the final solution is more sensitive to Ω1 than to

Ω2, since
∣∣∣ df∗

dΩ1

∣∣∣ >
∣∣∣ df∗

dΩ2

∣∣∣. Such behavior, in turn, can be associated with the higher sensitivity of the

active reliability constraint functions with respect to this parameter (see Fig. 5.10). Furthermore,

the previous results, which are obtained from the solution of Eq. (5.15), correspond to perturbations

δΩ1 > 0 and δΩ2 > 0. In other words, improved designs can be obtained for larger values of the

filter parameters Ω1 or Ω2. This agrees with the results presented in Fig. 5.10. Finally, regarding the

rates of change of the optimum values for the design variables with respect to both excitation model

parameters, all values in the table are negative. For small changes in Ω1, the optimum design tends

to move almost parallel to the steepest descent direction of the objective function. Meanwhile, a

different behavior is observed for perturbations in Ω2, where core wall thicknesses of upper floors

are decreased to a greater extent than the rest. This can be related to the smaller influence of these

structural properties on the responses involved in the definition of the active constraint functions,

i.e., the drifts of stories 9 to 11.
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Table 5.8: Normalized sensitivities of the optimum solution with respect to the excitation model
parameters Ω1 and Ω2. Case A. Scenario II.

ζ = Ω1 ζ = Ω2

∂x∗
1/∂ζ −0.999 −0.038

∂x∗
2/∂ζ −0.999 −0.042

∂x∗
3/∂ζ −1.000 −0.052

∂x∗
4/∂ζ −1.001 −0.052

∂x∗
5/∂ζ −1.001 −0.052

∂x∗
6/∂ζ −0.997 −0.022

∂x∗
7/∂ζ −1.001 −0.170

∂x∗
8/∂ζ −1.003 −0.188

df ∗/dζ −1.000 −0.077

Based on the previous discussion, it is seen that the optimum design sensitivity approach adopted

in this contribution can provide non-trivial information about the effect of model parameter pertur-

bations on final designs. As already pointed out, the required sensitivity measures can be computed

as a byproduct of the optimization process by virtue of the reliability sensitivity analysis framework

enabled by DIS. Thus, valuable insight for decision-making processes involving linear structural

systems subject to Gaussian excitation can be obtained with reduced numerical costs. Overall,

the results indicate that the use of DIS allows the implementation of potentially useful tools for a

practical and real type of RBO problems.

5.7 Conclusions

This contribution implements Directional Importance Sampling (DIS) as a general reliability and

sensitivity assessment framework for reliability-based optimization (RBO) and optimum design

sensitivity analysis of linear structural systems under Gaussian excitation. First-order derivatives

of the failure probability, with respect to design variables or general model parameters, can be

obtained as a byproduct of the sampling process. This enables effective first-order solution meth-

ods for the two types of problems under consideration. On the one hand, a first-order sequential

optimization strategy based on an efficient feasible-direction interior-point algorithm is adopted
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to solve RBO problems. The scheme generates a sequence of feasible designs with improving

objective values and, moreover, relatively few optimization cycles are required to obtain greatly

improved designs. On the other hand, a direction-finding approach is considered for optimum de-

sign sensitivity analysis. In this setting, the rates of change of the optimum objective value and of

the optimum values for the design variables with respect to model parameters are computed as a

byproduct of the DIS results at the final design. Thus, valuable information on final designs and

their sensitivities can be obtained with reduced numerical efforts.

An application example involving a 16-story reinforced concrete building structure subject to

ground acceleration modeled as a non-stationary filtered white noise process is addressed to assess

the performance of the proposed framework. Structural weight minimization subject to reliability

and geometric constraints is studied. In particular, reliability requirements involving serviceabil-

ity conditions for the interstory drifts are considered. Two alternative scenarios in terms of the

number of design variables and reliability constraints are presented. In both cases, the optimization

strategy enabled by DIS provides optimum designs in an effective manner. Additionally, significant

improvements in the objective values are attained after the initial optimization cycles. Furthermore,

numerical results also illustrate the advantages of the adopted framework with respect to a direct

finite difference implementation, both in terms of numerical efforts and optimization results. These

features are beneficial from a practical viewpoint and highlight the capabilities of DIS in the con-

text of RBO problems. As a byproduct of the optimization results, the sensitivities of the optimum

design with respect to response thresholds and excitation model parameters are evaluated. Non-

trivial information on how final designs can change under small increases or decreases of model

parameters is obtained and, in addition, their relative importance with respect to final solutions can

be established. Overall, the results indicate that the general sensitivity analysis framework enabled

by DIS provides potentially useful tools for decision-making processes involving linear structural

systems subject to Gaussian excitation.

Future research efforts involve the assessment of the framework in more complex structural sys-
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tems. In these cases, the computational cost of a single structural analysis can be significant and,

therefore, parametric reduced-order model techniques can be integrated to reduce the numerical ef-

forts. Another research direction corresponds to the evaluation of different RBO methods, in terms

of efficiency and robustness, for the class of problems addressed in this contribution. Some of these

topics are currently under consideration.

5.8 Appendix: Sensitivity of minimum demand-to-capacity ratio

5.8.1 Derivatives with respect to structural parameters

In case ν affects the properties of the structural model, the M th impulse response function in Eq.

(5.8) verifies ηM(t) = ηM(t, ν) and aM,K = aM,K(ν). Then, from Eq. (5.14) it is seen that

∂c(ν, u)
∂ν

= − h∗
M

(aM,K(ν)T u) |aM,K(ν)T u|
×

(∂aM,K(ν)
∂ν

)T

u

 (5.24)

with
∂aM,K(ν)

∂ν
=

K∑
q=1

εq∆t
∂ηM(tK − tq, ν)

∂ν
ψq (5.25)

where ∂ηM

∂ν
can be obtained applying the chain rule due to the use of modal superposition. This

requires the derivatives of the mode shapes and natural frequencies, which are computed using the

method presented in [367].

5.8.2 Derivatives with respect to excitation model parameters

Assume that ν is involved in the definition of the stochastic excitation model. Hence, aM,K =

aM,K(ν) and, therefore, Eq. (5.24) is also valid. However, in this case the first-order derivative of
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the linear map aM,K becomes

∂aM,K(ν)
∂ν

=
K∑

q=1
εq∆tηM(tK − tq)

∂ψq(ν)
∂ν

(5.26)

which requires, in turn, the first-order derivatives of the set of vectors Ψ(ν) = [ψ1(ν), . . . ,ψnT
(ν)]

with respect to ν. From Section 5.2.2, such sensitivities can be computed as

∂Ψ(ν)
∂ν

= 1
2Λ(ν)−1/2

[
∂Λ(ν)

∂ν
Ξ(ν)T + 2λ(ν)∂Ξ(ν)

∂ν

T]
(5.27)

The derivatives of the eigenvalues Λ(ν) and eigenvectors Ξ(ν) of the covariance matrix of the

stochastic load, Σ(ν), can be computed using any suitable method; see, e.g., [147, 372].

5.8.3 Derivatives with respect to response thresholds

Assume that ν corresponds to the sth response threshold, that is, c(ν, u) = c(h∗
s, u). Hence, the

derivative in Eq. (5.14) can be computed as

∂c(h∗
s, u)

∂h∗
s

=


cM,K(u)

h∗
s

, if s = M

0, otherwise
(5.28)

This means that the required derivative is non-zero only if the sth failure response determines the

closest failure boundary along the direction u. Finally, it is noted that Eq. (5.28) involves a single

arithmetic operation. Thus, marginal computational efforts are required to evaluate the first-order

derivative of the failure probability in this case.
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possible contaminant event. The parameters of each model class characterize the contaminant

mass inflow over time in terms of its intensity and starting time. The class with the highest pos-

terior probability is interpreted as the most plausible location for the contaminant injection. The

evidences of the model classes are estimated using the transitional Markov chain Monte Carlo (TM-
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posterior samples of the parameters that describe the contaminant event. The effectiveness of the
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6.1 Introduction

Water distribution networks are constantly exposed to external events that can negatively affect their

performance and the safety of the public. One important type of event is the intrusion, accidental or

intentional, of contaminants into the system [4, 231]. The presence of an unwanted substance in the

network can be very harmful to users and therefore the identification and characterization of any

source of contamination is an important goal in water security [230, 373]. In this context, sensor

measurements and available system knowledge must be properly taken into account. However,

the use of monitoring data in order to identify and characterize the contamination event remains

an open challenge in the security of water distribution systems. Relevant attributes of this type

of events include the location of the contaminant source, magnitude of the mass inflow, injection

starting time, duration, etc. Certainly, the source location is one of the most relevant features since

it allows to take corrective actions in a timely manner. Thus, efforts must be directed towards the

effective identification of the contaminant source based on available data from an array of sensors

located in the network.

Traditionally, the identification of contaminant sources has been treated as a deterministic inverse

problem [241, 242]. Direct optimization approaches, particle backtracking algorithm, data mining

and machine learning techniques have been reported in this context [238–240, 243, 244, 374–

376]. The main idea is to determine which contaminant outline can result in simulated sensor

measurements that best match the real sensor measurements. One of the difficulties of this type of

approaches is the non-uniqueness of the solution to the inverse problem. In fact, due to the nature of

the problem, different network characterizations may lead to similar behavior at the measurement

points. For instance, responses corresponding to a certain injection point with a given starting time

and contamination intensity can be similar to the ones of an upstream point with a higher intensity

and an earlier starting time.

Modeling and monitoring processes of water distribution networks involve unavoidable uncertain-
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ties in hydraulic engineering practice [32, 377]. These uncertainties must be properly taken into

account when dealing with identification problems in order to improve the overall security and

reliability of these critical infrastructure systems [378]. In the context of contaminant source de-

tection, such uncertainties may include sensor noise, nodal demands, modeling errors, attributes

of contaminant events, prior knowledge associated with possible source scenarios, etc. To deal

with these issues, Bayesian-type of approaches [23] have been also adopted for solving contam-

inant source characterization problems. The main idea of these approaches is to obtain revised

probabilistic information that allows to decide the most plausible contamination source based on

available data. Bayesian techniques, in the context of contaminant source detection problems, in-

clude the use of factor graph representation and belief propagation [247], beta-binomial conjugate

framework coupled with deterministic backtracking algorithms [75], real-time approaches where

the posterior information is updated as new measurements become available [248], backward prob-

abilistic modeling [73], and Bayesian belief networks [249, 250]. These methodologies usually

identify a region in the network with relatively high plausibility of containing the true sources, and

some of them are limited to steady-state hydraulics. An additional type of Bayesian approaches

correspond to sample-based model updating techniques [251–253]. In these contributions, injec-

tion location and time profile characteristics are simultaneously considered. Then, a set of posterior

samples is obtained and the one that maximizes the posterior probability density function is chosen

as the contaminant event. Due to the mixed discrete-continuous nature of the uncertain parameter

space, this represents a serious computational challenge in realistic network models. In addition,

numerical results reported by the previous contributions have usually identify a broad band of pos-

sible sources but they have not been able to single out the true source. Then, it is clear that more

research and developments are needed in order to improve the precision, accuracy and efficiency

of contaminant source characterization procedures.

In the previous context, this contribution proposes a simulation-based Bayesian model updating

framework [24, 53, 54] to deal with contaminant source identification of water distribution systems.

In particular, a model class selection problem is formulated where each model class is associated
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with a potential source location. In this manner, the most probable source locations are selected

taking into account all possible contaminant scenarios for any given injection point and therefore

the mixed discrete-continuous nature of the identification parameter space can be circumvented.

To solve the model class selection problem a multi-level Markov chain Monte Carlo algorithm,

called the transitional Markov chain Monte Carlo (TMCMC) method, is adopted in this work [178].

The method is well-developed and it has been proved in a number of model updating and model

class selection applications. Moreover, the approach has been successfully used in resolving some

of the difficulties involved in the solution of inverse problems, that is, non-uniqueness, even in

presence of limited amount of data and when modeling errors are present. Actually, the TMCMC

algorithm can handle globally identifiable cases (set of most probable solutions is a singleton),

locally identifiable cases (set of most probable solutions is finite), and unidentifiable cases (set of

most probable solutions is uncountable) in an effective manner [178].

Thus, the efforts of this work are focused on the adaptation and implementation of the TMCMC

technique into the area of contaminant source characterization with applications to water distribu-

tion networks. The approach provides a realistic representation of the uncertainties associated with

the hydraulic modeling, water quality behavior, measured data and prior engineering information.

The proposed approach is potentially a functional tool for identifying the location of the contami-

nant sources and estimating the attributes of the contaminant events. In fact, results of the proposed

methodology indicate that the location of injection points is clearly identified for practical cases

when relatively large model and measurement errors are considered. Thus, the proposed identifi-

cation process is robust to model and measurement errors for the cases considered in this work.

Moreover, the proposed methodology allows to obtain further insight into the contaminant injec-

tion profile, in addition to the identification of the contaminant event. This type of information can

be useful to assist involved decision making processes in an emergency management framework.

The methodology can be considered as an extension of the approach presented in [56] for leakage

detection problems.
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The organization of the paper is as follows. Section 6.2 presents the contaminant source identifica-

tion problem in the framework of Bayesian model updating. The proposed approach is introduced

in detail in Section 6.3. Section 6.4 discusses some aspects related to the numerical implementa-

tion of the proposed method. The effectiveness of the proposed contaminant source identification

scheme is demonstrated in Section 6.5 by means of two example problems. The paper closes with

some conclusions and final remarks.

6.2 Contaminant source identification

6.2.1 Background and hypotheses

The presence of unwanted substances in a water distribution network can be very harmful to users

and, therefore, it is of the utmost importance to take promptly corrective actions. Once the ex-

istence of a contaminant event has been confirmed, it needs to be identified. The existence of

contamination can be diagnosed by monitoring the changes in concentration over time at certain

control points. Then, the basic idea is to update the hydraulic model in order to identify the lo-

cation of the contaminant event. In other words, the predictions of the updated hydraulic model

will match the measured data obtained from an array of sensors located in the network. Although

optimal sensor placement is one of the important aspects of an effective contaminant warning sys-

tem, this work focuses on source identification with the assumption that sensors are located in the

network in a somewhat reasonable, sound, or optimal manner.

To simplify and clarify the demonstration of the proposed approach, the following assumptions are

considered in this study. First, the array of sensors provides continuous concentration measure-

ments over time rather than a binary signal indicating the presence or absence of the contaminant.

Second, the contamination event is modeled as a constant mass flow entering the network at a single

node, that is, the same amount of mass per time unit enters the network at a given node and from a

certain time instant. In addition, it is assumed that the contaminant is conservative, i.e., it does not
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decay as it propagates through the distribution system. Thus, for a given network, the attributes of a

contaminant event are determined by three parameters: injection node, contaminant intensity (mass

inflow at the injection point), and the starting time. It is noted that, however, multiple sources and

alternative injection time profiles can also be considered in the proposed framework. The difference

in these cases is that the number of parameters involved in the characterization of the contaminant

events may increase. Finally, the analysis of the water distribution network is carried out using the

well known hydraulic simulation program EPANET [379, 380]. In this setting, the hydraulic anal-

ysis is based on mass conservation equations at all nodes of the network, and energy conservation

equations in all network links. On the other hand, the water quality analysis uses a Lagrangian

time-based approach to track discrete parcels of water as they move along pipes and mix together

at junctions between fixed-length time steps [379]. However, it is noted that different hydraulic

simulation packages can be used as well.

6.2.2 Contaminant model classes

Based on the previous information, the contaminant source characterization requires three network

parameters, i.e., the injection node N , the contaminant intensity I , and the starting time T . It is

noted that N is a discrete quantity, whereas I and T can be regarded as continuous quantities.

Thus, the contaminant source characterization problem presents a mixed discrete-continuous na-

ture in terms of the parameters to be identified, that is, the attributes of a contaminant event. In

this framework, it is assumed that Nc network nodes have been identified as potential contaminant

injection points. The set N = {1, 2, . . . , Nc} collects the possible injection nodes, that is, N ∈ N.

Clearly, the total number of potential contaminant events Nc is problem-dependent, and it depends

on a number of factors such as the layout of the network and additional engineering information. In

this regard, appropriate procedures such as particle backtracking algorithms can be used, in prin-

ciple, to identify the potential contaminant injection points [381, 382]. Since a single contaminant

source is assumed, the ith node, i = 1, 2, . . . , Nc, is associated with a class of network models, Mi,

that comprises all its feasible contaminant injection profiles. This model class is defined by the
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vector of parameters θi ∈ Θi ⊂ R2, with θi = {Ti, Ii}, where Ti represents the starting time of

the contaminant event and Ii represents the mass inflow (contaminant intensity). It is noted that if

multiple sources or alternative injection time profiles are considered, the only difference in terms

of the present formulation is that the number of model classes or the dimension of the parameter

space can increase, as previously pointed out. The parameters θi constitute the set of unknowns

that parametrize the model class Mi. That is, a particular network model Mi(θi) from the class Mi

is selected by specifying the values of the parameter set θi. In addition, the set of all model classes

is defined in the set M = {M1, . . . , MNc}.

It is noted that when multiple sources of contamination are considered, the injection nodes, con-

taminant intensities and the starting times constitute the set of attributes of the potential contam-

inant events. The total number of distinct contaminant events, or model classes, may be quite

large in the general case, and therefore an exhaustive search for the most probable events could be

computationally very expensive or even prohibitive. In this scenario, stochastic search algorithms

[173, 174, 307, 383] can be used to effectively provide a near optimal solution for the injection

nodes. In this context, it is important to note that in many practical situations the injection nodes

are expected to occur only in a certain number of nodes of the network, and therefore the com-

putational complexity of the problem can be significantly reduced. The consideration of multiple

sources of contamination and the corresponding assessment of the proposed methodology is subject

for future research (see Conclusions).

6.3 Proposed approach

For the purpose of identifying the location of the contamination event, a Bayesian system identifi-

cation scheme is adopted in this work [115]. The approach is coupled with a hydraulic and water

quality behavior simulator for model updating and model class selection of a parametrized class of

hydraulic models. It can be regarded as an extension of the methodology introduced in [56, 57] for

leakage and connectivity detection problems.



CHAPTER 6. CONTAMINANT SOURCE IDENTIFICATION IN WATER DISTRIBUTION
NETWORKS: A BAYESIAN FRAMEWORK 206

6.3.1 Model class selection

Monitoring data must be gathered and processed to identify the characteristics of the contami-

nation event. The information about the network behavior is denoted by D and it consists of

concentration measurements at a number of nodes. The data are used to update the plausibility

of all possible injection nodes, i.e., model classes. The most plausible injection node is obtained

by solving a Bayesian model class selection problem [178, 271]. To this end, consider the set

M = {M1, M2, . . . , MNc} of the Nc model classes previously defined. Given data D, the posterior

probability of each model class, i.e., P (Mi|M, D), i = 1, . . . , Nc can be determined as

P (Mi|M, D) = P (D|Mi)P (Mi|M)∑Nc
l=1 P (D|Ml)P (Ml|M)

(6.1)

where P (D|Mi) is the evidence of the model class Mi, which is a measure of the plausibility of

obtaining the measurement data D from Mi. The optimal model class is selected as the one that

maximizes P (Mi|M, D), i = 1, . . . , Nc. Each model class has a prior probability P (Mi|M), i =

1, . . . , Nc, which measures the plausibility of contamination occurrence at each node before any

information is included into the analysis. For the case where no prior information is available, the

prior probabilities can be assumed to be equal, that is, P (Mi|M) = 1/Nc. In this case, the selection

among the model classes can be based solely on their evidence values.

A procedure to estimate the evidence for the different model classes, which involves a Bayesian

model updating problem, is addressed in the following sections. For illustration purposes, a sketch

of the proposed Bayesian model class selection approach is provided in Figure 6.1.

6.3.2 Model updating

In order to estimate the evidence of a model class, a Bayesian model updating problem is first

considered. To this end, the plausibility of each model Mi(θi), within a class Mi, based on con-

centration measurements D from the network, is quantified by the updated joint probability density
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Fig. 6.1: Scheme of the proposed Bayesian model class selection approach.

function p(θi|Mi, D) (posterior probability density function). According to Bayes’ Theorem, the

posterior probability density function of θi is given by

p(θi|Mi, D) = p(D|Mi,θi) p(θi|Mi)
P (D|Mi)

(6.2)

where p(D|Mi,θi) is the likelihood function, p(θi|Mi) is the prior probability density function of

θi, and P (D|Mi) is the evidence of the model class Mi. The likelihood function expresses the

plausibility of observing the data D given a certain θi, while the prior probability density function

represents the prior or initial belief about the distribution of θi. Moreover, the evidence of the

model class is written as

P (D|Mi) =
∫

Θi

p(D|Mi,θi) p(θi|Mi)dθi (6.3)

where all terms have been previously defined. In the present formulation, a method that estimates

the evidence of the model class as a by-product of the solution to the Bayesian model updating

problem is implemented. In particular, the transitional Markov chain Monte Carlo (TMCMC)

method is adopted [178]. For completeness and clarity, the basic ideas of the TMCMC method are

briefly reviewed in the following sections.
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6.3.3 Parameter estimation

The TMCMC method iteratively proceeds from the prior to the posterior distribution of the param-

eter set θi. To this end, a number of non-normalized intermediate distributions pj(θi|Mi, D), j =

0, . . . , m, are defined as

pj(θi|Mi, D) ∝ p(D|Mi,θi)αj p(θi|Mi) (6.4)

where the parameter αj increases monotonically with j such that α0 = 0 and αm = 1. The pa-

rameter αj is chosen in such a way that the change of the shape between two adjacent intermediate

distributions be small. In this regard, different criteria can be used [178, 318, 319]. This small

change of the shape makes it possible to efficiently obtain samples from pj(θi|Mi, D) based on the

samples from the previous distribution. Once the parameter αj has been computed, the samples

at stage j are obtained by generating Markov chains where the lead samples are selected from

the distribution pj−1(θi|Mi, D). Each sample of the current stage is generated by applying the

Metropolis-Hastings algorithm [88, 89]. The lead sample of the Markov chain is a sample from

the previous step, i.e., θk
i,j−1, k = 1, . . . , Nj−1, that is selected according to a probability equal to

its normalized weight w̄(θk
i,j−1) = w(θk

i,j−1)/
∑Nj−1

s=1 w(θs
i,j−1), where Nj−1 is the number of sam-

ples at the j − 1th iteration step, and w(θk
i,j−1) represents the plausibility weight which is given by

w(θk
i,j−1) = p(D|Mi,θ

k
i,j−1)αj−αj−1 .

The proposal probability density function for the Metropolis-Hastings algorithm is chosen as a

Gaussian distribution centered at the lead sample of the chain and with a covariance matrix equal

to a scaled version of the estimate covariance matrix of the current intermediate distribution, that

is, pj−1(θi|Mi, D). Then, Σi,j−1 = β2∑Nj−1
s=1 w̄(θs

i,j−1)
(
θs

i,j−1 − θ̄i,j−1
) (
θs

i,j−1 − θ̄i,j−1
)T

, where

θ̄i,j−1 = ∑Nj−1
s=1 w̄(θs

i,j−1)θs
i,j−1 and β2 is a parameter that can be chosen according to different

criteria. For example, it can be defined directly by the user or by an adaptive scheme based on the

acceptance rate of the sampling process [179, 288]. The procedure is repeated until the parameter

αj is equal to 1 (j = m). At the last stage, the samples θk
i,m, k = 1, . . . , Nm, are asymptotically

distributed as p(θi|Mi, D).
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6.3.4 Evidence estimation

The estimation of the evidences associated with the different model classes is known to be highly

nontrivial. In this regard, the TMCMC method provides a flexible and efficient means to esti-

mate the evidences even in challenging cases such as those involving multi-modal, peaked or

flat posterior distributions. In fact, the TMCMC method can estimate the evidences as a by-

product and they are given in terms of the mean values of the weights at the different stages,

Wi,j = ∑Nj

k=1 w(θk
i,j)
/

Nj , as

Wi =
m−1∏
j=0

Wi,j (6.5)

where Wi is an asymptotically unbiased estimator of the evidence P (D|Mi) [178]. Note that if only

the evidences are required, the process can be stopped at stage j = m − 1. The reader is referred

to [178, 179] for a detailed description of the TMCMC method. A pseudo-code that illustrates the

implementation of the TMCMC method is provided in the Appendix (Section 6.7).

6.4 Implementation aspects

6.4.1 Contaminant data

The likelihood function, p(D|Mi,θi), which measures how plausible is to obtain measurements

D from each model Mi(θi) is defined as follows. In the context of the present formulation, it is

assumed that the data D are obtained from nS sensors at nT time instants. Then, the concentration

measurements are contained in a vector y ∈ RnS×nT where y = ⟨y1
T , . . . , ynS

T ⟩T , in which yj ∈

RnT , j = 1, . . . , nS is a vector comprising the measurements at the jth sensor and given by yj =

⟨yj(t1), . . . , yj(tnT
)⟩T , where yj(tk) represents the concentration level at the jth sensor location at

time instant tk, k = 1, . . . , nT . Formally, the prediction errors from the model Mi(θi) are written

as ejk(θi) = yj(tk) − yj(tk,θi) , j = 1, . . . , nS , k = 1, . . . , nT , where yj(tk,θi) indicates the

concentration level at the jth sensor location at time instant tk computed from the model class Mi,
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corresponding to a particular value assigned to the parameter set θi. The prediction errors may be

due to hydraulic and water quality behavior network modeling and device measurement accuracy

that are unavoidable in the modeling and monitoring processes of real water distribution systems,

and they are modeled as normally distributed with zero mean and covariance matrix C. Based on

the previous conditions, the likelihood function p(D|Mi,θi) is written as [53, 54, 287]

p(D|Mi,θi) ∝ |C|−1/2 exp
[
−1

2L(θi, y)
]

(6.6)

where ∝ indicates proportional, | · | denotes determinant, and L(θi, y) is a weighted measure of fit

between the model predictions and the measured data given by

L(θi, y) = [y− y(θi)]T C−1 [y− y(θi)] (6.7)

where y(θi) represents the corresponding vector of measurements computed from the model class

Mi(θi). For simplicity, the prediction errors are assumed to be independent and, therefore, the

covariance matrix C is a diagonal matrix comprising the prediction error variances. It is noted that,

however, different prediction error model classes can be used as well, including models that con-

sider correlation [55, 384]. Finally, it is noted that, in the framework of model updating, parameters

associated with the characterization of the covariance matrix can also be included in the parameter

set θi.

6.4.2 Hydraulic and water quality simulation model

The widely used software EPANET 2.2 is employed in this work for analysis purposes [379, 380].

In other words, measurements computed from the model classes, in the framework of the TMCMC

method, are generated by this algorithm. The software allows performing extended period simu-

lation of hydraulic and water quality behavior of water distribution networks. Hydraulic analysis

is based on mass conservation equations at all nodes of the network (pipe connection points, tanks
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and reservoirs), and energy conservation equations in all network links (pipes, pumps and valves).

These two types of relationships lead to a system of nonlinear equations that is solved using a

type of Newton iteration scheme. On the other hand, water quality analysis, which simulates the

concentration over time of different substances in all network components, uses a Lagrangian time-

based approach to track discrete parcels of water as they move along pipes and mix together at

junctions between fixed-length time steps [379]. Water quality analysis uses information gathered

from a previous hydraulic simulation of the network in order to propagate the substance across

the network. Hence, water quality results do not affect the hydraulic behavior of the system under

analysis. Validation calculations have shown the efficiency and flexibility of this simulation model

in a large number of water distribution networks.

6.4.3 Computational efficiency

The proposed approach presents several advantages for implementation in a high-performance

computing (HPC) environment. In fact, all model classes are perfectly independent from each

other. Thus, the estimation of the evidences of the different model classes is perfectly parallel

and the analyses can be carried out simultaneously taking advantage of available parallelization

techniques. Moreover, the first stage of the TMCMC method corresponds to direct Monte Carlo

simulation and, therefore, it can be completely scheduled in parallel. In addition, subsequent stages

involve the generation of a number of Markov chains that are perfectly parallel. Hence, the cor-

responding sampling process can also be scheduled in a parallel setting. The load balance in the

computer workers can be based on a static or dynamic job-scheduling scheme [320]. Clearly, if

a high-performance computing environment is not available, the evidences for each potential con-

taminant event need to be estimated in a sequential manner. Although such estimation may be

computationally expensive and could represent a possible limitation of the methodology, in many

practical situations the injection nodes are expected to occur only in a certain number of nodes of

the network. For instance, available pre-screening techniques [381, 382] as well as engineering

knowledge about the network can be used to rule out unfeasible nodes before the identification
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process is carried out. In addition, surrogate models can be integrated, in principle, to reduce the

computational efforts associated with the evaluation of the likelihood function [287, 288]. Thus,

the computational complexity of the problem can be significantly reduced, even for the case when a

HPC environment is not accessible. The implementation and evaluation of the previous techniques

within the proposed approach represent a future research effort.

6.5 Numerical examples

6.5.1 Simplified network model

The objective of this example is to study in detail some of the capabilities of the proposed contam-

inant source identification scheme. In particular, the effect of increasing the amount of available

data and the effect of model and measurement uncertainties on the performance of the approach

are explored. To this end, two cases are analysed in terms of the uncertainty included in the iden-

tification process. Case A considers uncertainty in the hydraulic model properties, whereas case

B considers both, modeling and measurement errors. In addition, two scenarios in terms of the

amount of measurements are studied in each case.

Network description

A simple network subject to a contamination event is considered in the test problem. The network

is shown in Figure 6.2 and comprises 17 nodes, 21 pipes and a single reservoir. The distances

between the nodes are also indicated in the figure. All nodes are located at the same level, whereas

the reservoir has a relative height of 15 m. The water enters to the distribution system through

node 1. The head-losses in pipes are modeled using the Darcy-Weisbach equation. All pipes are

of diameter 110 mm, with roughness coefficient ε = 0.0046 mm. The nodes have a maximum

demand of 0.5 l/s and follow a typical demand pattern which is shown in Figure 6.3. An extended

period of 36 hours is shown in the figure.
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Fig. 6.2: Water distribution network. Test problem.

For illustration purposes, it is assumed that the injection point is node 1, as indicated in Figure 6.2.

The substance can propagate to all network nodes and a periodic behavior of the contaminant

concentration response can be eventually reached at every point of the network. The injection of

the substance starts two hours after the beginning of the simulation period. A constant intensity of

100 mg/min is considered. The hydraulic and water quality time step, in the context of EPANET,

is 5 min.

Fig. 6.3: Normalized demand pattern.

Synthetic measurements

The performance of the proposed identification process is evaluated considering synthetic measure-

ments. The data considered for identification purposes are concentration levels over time obtained
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at nodes 10 and 17, whose location is shown in Figure 6.4. The corresponding time history of the

contaminant injection is also shown in the figure. As previously mentioned, continue-valued sen-

sors are considered for the identification process. Measurement and modeling errors are accounted

explicitly in the analysis in order to consider a realistic setting [56, 57, 245]. In order to include

measurement noise in the sensors, an error term is added to the predictions of the actual network.

Simulated data are generated as

yj(tk) = yactual
j (tk) + ynoise

j (tk) , j = 1, . . . , nS , k = 1, . . . , nT (6.8)

where yactual
j (tk) represents the concentration level in the actual system and ynoise

j (tk) accounts for

the measurement error. The quantities yactual
j (tk) are obtained from an EPANET model that is rep-

resentative of the actual system and it is referred to as the actual network. This model has hydraulic

properties that deviate from the ones considered for identification purposes. The particular char-

acteristics that are perturbed from their nominal values are the pipe roughness coefficients and

peak nodal demands. The roughness coefficient of the lth pipe at the actual network is given by

εactual
l = εnominal

l (1+αul), where εnominal
l is the roughness coefficient of the lth pipe in the model class

used for identification, ul is a random number uniformly distributed over [−1, 1] and α ∈ [0, 1] rep-

resents the intensity of the uncertainty expressed as a percentage of the nominal value. Similarly,

the peak demand of the lth node is written as δactual
l = δnominal

l (1 + βul), where δnominal
l is the peak

demand of the lth node in the model class used for identification, ul is a random number uniformly

distributed over [−1, 1] and β ∈ [0, 1] represents the intensity of the uncertainty expressed as a

percentage of the nominal value. Thus, it is clear that the model classes used for identification are

not capable to represent the behavior of the actual network exactly.

Moreover, the measurement error ynoise
j (tk) is generated as ynoise

j (tk) = yactual
j (tk) γ uj,k, where uj,k

is a random number uniformly distributed over [−1, 1] and γ ∈ [0, 1] represents the measurement

noise intensity expressed as a percentage of the response obtained from the actual network.
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Fig. 6.4: Location of sensors in the network.

Definition of probabilistic model classes

The set of probabilistic model classes comprises all feasible contaminant source locations based on

prior engineering information. All network nodes are considered as potential injection points with

the same plausibility. Thus, the posterior probability of Nc = 17 model classes must be evaluated.

As previously pointed out, appropriate techniques such as particle backtracking algorithms can be

used, in principle, to reduce the number of potential contaminant injection points [381, 382]. As

discussed in Section 6.2, each model class involves a constant mass flow into a given node starting

at a given time instant. Hence, the ith model class, Mi, is parametrized by θi = ⟨Ti, Ii⟩T , where Ti

is the injection’s starting time and Ii is the contaminant intensity. A uniform prior distribution for

the uncertain parameters θi is considered for each model class. They are defined in the intervals

Ti ∈ [0, 540] min, and Ii ∈ [0, 1000] mg/min. The upper bound for the starting time is associated

with the first arrival of the contaminant to the sensors.

In this regard, Figure 6.5 shows the measurements obtained at the sensors when no errors are

considered in the analysis, that is, α = β = γ = 0 (idealized network). It can be observed that the

contaminant arrives at node 10 about seven hours after the injection starts. On the other hand, the

contaminant arrives at node 17 about ten hours after the start of the injection. Then, it is observed

that the source start time can be anytime from 9 hours before the time of first detection up to the



CHAPTER 6. CONTAMINANT SOURCE IDENTIFICATION IN WATER DISTRIBUTION
NETWORKS: A BAYESIAN FRAMEWORK 216

Fig. 6.5: Measurements of nodal concentration over time. Idealized network.

time of detection. Similar arrival times are obtained when model and measurement uncertainties

are considered. Based on the previous information, the upper bound of the starting time is set equal

to 540 min (9 hours). For reference purposes, recall that the actual contaminant source location is

node 1, with starting time T1 = 120 min, and intensity I1 = 100 mg/min. In terms of the TMCMC

method, 100 samples per stage are considered in its implementation.

Results of Case A: Hydraulic model uncertainty

Model errors are imposed by perturbing the values of all pipe roughness coefficients and peak

nodal demands, as previously pointed out. For illustration purposes, relatively large perturbations

are introduced simultaneously for the pipe roughness coefficients and peak nodal demands. In

particular, α = β = 10%. In terms of the proposed framework, it is assumed that all probabilistic

model classes present the same prior probability, since there is no particular preference to any

possible injection node based on previous information. Then, the model class selection problem

can be addressed considering only the evidence values. In addition, two scenarios are considered

regarding the data-set size used in the analysis. The first scenario considers measurements up to the

time of first detection of the contaminant (5 min after the first detection), while the second scenario

contemplates measurements up to 60 min after the first arrival of the contaminant to any sensor

(about 10 hours).
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Fig. 6.6: Normalized evidences of all model classes. A) Scenario 1. B) Scenario 2. Hydraulic
model uncertainty.

Figure 6.6 shows the normalized evidences of the model classes associated with the different in-

jection nodes obtained for both scenarios. The normalized evidences are such that their maximum

value is equal to one. It is observed that the injection node is correctly identified in the second

scenario (Figure 6.6-B), where the normalized evidence of model class 1, which considers node 1

as the injection point, is equal to one, and the evidences of the other model classes are almost equal

to zero. However, the actual injection node is not identified correctly in the first scenario (Fig-

ure 6.6-A). In fact, the most probable contaminant event identified corresponds to injection node

4. Additionally, contaminant injection in nodes 1 and 9 also leads to model classes with evidences

different to zero. It is noted that nodes 1, 4 and 9 are upstream from node 10, which is consistent

from the physical point of view. Thus, although the actual injection node is not identified correctly,

the results still provide important information about the network behavior. When more data are

available, the contaminant event is properly determined as indicated from the results associated

with Scenario 2, where the location of the injection point is clearly identified even when relatively

large model errors are included in the model that generates the data.

To obtain further insight into the contaminant source identification process, Figure 6.7 shows the

corresponding identification process when using model class M1, that is, the most probable model

class. This figure shows how the samples in the T1 − I1 space converge for the actual contaminant

event during the different TMCMC stages when the second scenario is considered. Note that both,
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Fig. 6.7: Plot of samples in the T1− I1 space generated at different steps of the transitional Markov
chain Monte Carlo method when updating model class M1. Hydraulic model uncertainties.

the contaminant intensity and the starting time are correctly identified. The starting time ranges

from 120 to 135 min, whereas the contaminant intensity values range from 97.3 to 112.0 mg/min.

The posterior mean estimate of the model parameters is θ1 = ⟨T1, I1⟩T = ⟨124.9, 104.1⟩T . From

the different steps of the identification process, it is clear that the prior uncertainty of the contami-

nant intensity value and the starting time is significantly reduced due to the available data.

Results of Case B: Hydraulic model and measurement errors

To consider a more practical and realistic situation, it is assumed that model and measurement errors

are present in the analysis. To this end, the perturbation levels for the pipe roughness coefficients,

peak nodal demands, and measurement noise intensities are taken equal to α = β = γ = 10%.

Figure 6.8 shows the normalized evidences obtained for scenarios 1 and 2. Under this case, the

actual contaminant event is not correctly identified in the first scenario (Figure 6.8-A), but the most

probable injection points are located across the flow paths from the actual injection location (node
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1) to the sensor recording non-zero concentrations (node 10), as in Case A where only model un-

certainties are considered. Thus, although the correct node is not identified, the proposed approach

still provides relevant information about the current state of the network.

Fig. 6.8: Normalized evidences of all model classes. A) Scenario 1. B) Scenario 2. Hydraulic
model and measurement errors.

Fig. 6.9: Plot of samples in the T1− I1 space generated at different steps of the transitional Markov
chain Monte Carlo method when updating model class M1. Hydraulic model and measurement
errors.

If more information is available, i.e., Scenario 2 (Figure 6.8-B), the injection node is properly de-
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termined. In fact, among all model classes, the proposed identification scheme clearly favors model

class M1. Thus, it is clear that increasing the amount of available data is highly beneficial towards

the identification process, which is reasonable from the practical point of view. The corresponding

identification process when using model class M1 is shown in Figure 6.10. This figure shows the

evolution of samples in the T1− I1 space during the different TMCMC stages. At the final stage of

the identification process, the starting time ranges from 116 to 134 min, whereas the contaminant

intensity values range from 101.6 to 115.5 mg/min. The posterior mean estimate of the model pa-

rameters is θ1 = ⟨T1, I1⟩T = ⟨126.4, 106.6⟩T . Then, the samples of the model parameters θ1 are

distributed around the actual value, as for the case where only model uncertainties are considered.

Note that the model parameters (contaminant intensity and starting time) are globally identifiable

since the set of posterior samples (most probable model parameters) populates a vicinity of the tar-

get values. Based on the previous results, it is concluded that the identification of the contaminant

event is quite robust to model and measurement errors for this particular network.

6.5.2 Application problem

The objective of this example is to evaluate the capabilities of the proposed approach in a more

realistic network model. Two different events are considered in terms of the location of the con-

taminant source. For each event, two different scenarios in terms of the amount of measurements

are contemplated. In all cases, modeling and measurement uncertainties are included in the data

generation process.

Description of the network

The water distribution network considered as an application problem corresponds to Example Net-

work 3 provided as a tutorial in EPANET 2.2 [379]. This system has been studied in the context

of contaminant source detection by other researchers in previous contributions [75, 177, 248, 251,

252]. It consists of 92 nodes, 117 pipes, two reservoirs, three fully-mixed tanks and two pumps.

The layout of the network and some of its elements are shown in Figure 6.10. Transient flows are
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developed in the pipeline system due to the varying operational conditions, demand requirements,

and the filling and draining of the storage tanks during the network operation. In this context,

most nodes follow the normalized demand pattern shown in Figure 6.11 during the analysis pe-

riod. In addition, a total of 65.75 km of pipelines are allocated to distribute water to the different

nodes. The pipe distributions in terms of Hazen-Williams coefficients and diameters are shown in

Tables 6.1 and 6.2, respectively. A simulation period of 24 h is considered for analysis purposes.

The corresponding hydraulic simulation step and water quality step are equal to 5 min.

Fig. 6.10: Water distribution network. Application problem.

Fig. 6.11: Normalized demand pattern. Application problem.
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Table 6.1: Distribution of pipes in terms of their roughness coefficients. Application problem.

Hazen-Williams Number Total length
coefficient of pipes (km)

110 1 4.33
130 97 41.40
140 4 14.24
141 12 5.69
199 3 0.09

Table 6.2: Distribution of pipes in terms of their diameters. Application problem.

Diameter Number Total length
(mm) of pipes (km)

203.2 25 10.97
254.0 4 1.18
304.8 50 20.22
355.6 3 0.82
406.4 7 6.07
457.2 1 4.33
508.0 1 0.24
609.6 10 3.69
762.0 13 18.15

2514.6 3 0.09

Contamination events

Two different contamination events are studied in order to explore the capabilities of the proposed

approach. In each event, a conservative chemical is injected at a single node with a constant mass

inflow of 0.2 kg/min. The location of these two events within the network is illustrated in Fig-

ure 6.12. Event 1 is associated with a contaminant inflow at node 101, starting 2 h after the be-

ginning of the simulation. On the other hand, Event 2 corresponds to a contaminant injection into

node 157, starting 5 h after the beginning of the simulation. Note that compared with Event 1, a

more complex contaminant propagation pattern can be expected in Event 2 since node 157 is lo-

cated in an intermediate sector of the network. The attributes of each event under consideration are

summarized in Table 6.3.
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Fig. 6.12: Location of contaminant sources and array of sensors. Application problem.

Concentration measurements at given network nodes are considered for identification purposes. In

this context, five fixed sensors recording contaminant concentration every 5 min are allocated in

the network according to Figure 6.12. This array of measuring devices is the one reported in [75],

which is based on the example provided in the threat ensemble vulnerability assessment and sen-

sor placement optimization tool (TEVA-SPOT) toolkit [75, 385]. The same sensor configuration

is considered for both contaminant events. Finally, the corresponding concentration measurements

are obtained as in the previous example. Modeling and measurement uncertainties have been si-

multaneously considered in the data generation processes for both events. In this manner, a more

realistic scenario in terms of the available information about the actual network condition is ad-

dressed. As in the test problem, 100 samples per stage are considered in the framework of the

TMCMC method.

Table 6.3: Attributes of the contaminant events. Application problem.

Event 1 Event 2

Source node 101 157
Intensity I (kg/min) 0.2 0.2

Starting time T (min) 120.0 300.0
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Results: Event 1

This event is associated with a contaminant injection at node 101, that is, close to one of the water

sources (see Figure 6.12). For illustration purposes, Figure 6.13 shows the corresponding con-

centration measurements at the sensors during the entire simulation period when no uncertainties

are taken into account, that is, α = β = γ = 0. It is noted that the contaminant arrives first to

node 193 about 60 min after the injection starts, and the concentrations tend to decrease at the end

of the analysis period. This is attributed to the varying operational conditions of the system under

analysis. For reference purposes, the actual values of the contamination parameters for Event 1 are

T = 120 min and I = 0.2 kg/min.

Fig. 6.13: Measurements of nodal concentration over time. Application problem. Event 1.

The synthetic measurements considered for identification purposes are obtained considering model

and measurement errors as previously pointed out. In particular, the uncertainty levels are given

by α = β = γ = 10%. The Bayesian model class selection problem considers all network nodes

as potential injection points with the same degree of plausibility. This leads to a total of Nc = 92

model classes whose posterior probability needs to be estimated. The parameters of each model

class Mi are given by θi = ⟨Ti, Ii⟩T where Ti is the injection’s starting time and Ii is the constant

mass inflow (contaminant intensity). The prior distribution for the model parameters is taken as

uniform with Ii ∈ [0, 1] kg/min and Ti ∈ [0, 180] min. It is noted that the upper bound for the
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starting time corresponds to the instant in which the contaminant arrives to the sensors for the first

time.

Fig. 6.14: Normalized evidences of all model classes. Application problem. Event 1. A) Scenario
1. B) Scenario 2.

The contaminant source characterization process is carried out considering two cases in terms of

the amount of available measurements. Scenario 1 considers measurements from the beginning of

the simulation up to 60 min after the contaminant arrives to two sensors (about 5 hours), whereas

Scenario 2 considers measurements during the entire analysis period (24 hours). Since all injection

points have the same prior probability, the model class selection process can be performed solely

based on their evidences. Figure 6.14 illustrates the normalized evidences obtained for all model

classes, where nodes with normalized evidence close to zero have been depicted with small white

circles. For Scenario 1 (see Figure 6.14-A), two nodes have similar evidence values. In fact, the

evidence of node 10 is slightly larger than of the actual contamination source (node 101). Validation

calculations show similar results when considering measurements up to 60 min after the initial

contaminant detection (about 4 hours). It is observed that nodes 10 and 110 are adjacent, that is,

they belong to the same pipeline. Thus, even when the actual injection point is not identified as

the most probable one, the results still provide information that can be useful to decision makers.

When the measured data consider the entire simulation period, i.e., Scenario 2, (see Figure 6.14-B),

the actual injection point is properly identified. Moreover, the evidence of node 10 represents about



CHAPTER 6. CONTAMINANT SOURCE IDENTIFICATION IN WATER DISTRIBUTION
NETWORKS: A BAYESIAN FRAMEWORK 226

4% of the evidence of node 101 in this case. This illustrates that the system identifiability seems to

improve as the amount of available measurements increases.

Fig. 6.15: Plot of samples in the T − I space generated at different steps of the transitional Markov
chain Monte Carlo method when updating the model class associated with node 101. Application
problem. Event 1.

The proposed methodology can provide additional insight into the contaminant event in terms of

posterior samples of the model parameters. To illustrate this, Figure 6.15 shows the evolution of

samples obtained during the different stages of the TMCMC method when Scenario 2 is considered.

It is noted how the samples converge from the prior distribution (stage j = 0) to the posterior

distribution (stage j = 10). The posterior samples are concentrated near the actual values for the
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contamination parameters. Thus, the model parameters are globally identifiable in this case. At

the last stage, the starting time ranges from 125 to 130 min, while the contaminant intensity from

0.201 to 0.204 kg/min. The corresponding posterior mean estimate of the model parameters is

given by θ = ⟨T, I⟩T = ⟨127.3, 0.203⟩T . The slight differences with respect to the target values

are explained due to the presence of measurement noise and modeling errors. Note that, however,

these values can be considered as the actual values from a practical point of view.

Results: Event 2

The contaminant is injected at node 157 in this event. This node is located in an intermediate

sector of the network (see Figure 6.12). The corresponding target values of the contaminant source

parameters are T = 300 min for the starting time and I = 0.2 kg/min for the contaminant intensity.

The concentration measurements reported in Figure 6.16 are associated with Event 2 when no

uncertainties are taken into account, i.e., α = β = γ = 0. In this case, the contaminant arrives

first to sensor 207 after 135 min of continuous injection, that is, 435 min since the beginning of the

simulation period. On the other hand, sensors 119 and 141 do not receive contaminant influence

during that period of time. This is attributed to the location of the contaminant source as well as to

the flow patterns developed during the simulation period.

Fig. 6.16: Measurements of nodal concentration over time. Application problem. Event 2.

Model and measurement uncertainties are considered in this event. The uncertainty levels in
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roughness coefficients, peak nodal demands and concentration measurements are given by α =

β = γ = 10%. As for the previous event, Nc = 92 model classes are considered with pa-

rameters θi = ⟨Ti, Ii⟩T for each model class. A uniform prior distribution is considered with

Ii ∈ [0, 1] kg/min and Ti ∈ [0, 435] min. The upper limit for Ti coincides with the arrival time of

the contaminant to the sensors.

Two scenarios in terms of the time-span for measurements are addressed, as in Event 1. Scenario

1 involves measurements from the beginning of the simulation up to 60 min after the contaminant

arrives to two sensors (about 10 hours), whereas Scenario 2 considers measurements over the entire

simulation period (24 hours). As in the previous event, the source identification can be performed

based on the evidence values only. In this context, Figure 6.17 presents the normalized evidences

of all potential injection locations. Normalized evidences close to zero are depicted with small

white circles. It is seen that only node 195 presents a normalized evidence different from zero

in Scenario 1 (see Figure 6.17-A), that is, the contaminant source is not properly identified when

considering measurements up to 60 min after the detection in a second sensor. On the other hand,

the identification results improve when more data are incorporated in the identification process. In

fact, the actual contamination source (node 157) is identified as the most plausible in Scenario 2

(see Figure 6.17-B), although nodes 159 and 161 present similar evidence values. It is noted that

validation calculations show similar results when considering measurements up to 60 min after

the contaminant arrives to three sensors (about 16 hours). These results are reasonable from the

hydraulic viewpoint since these three nodes are part of a single flow path and, therefore, contam-

inant injection in any of these locations generates similar propagation patterns through the water

distribution network.

Figure 6.18 shows the samples obtained during the different stages of the TMCMC method for the

model class associated with node 157 and considering measurements over the entire simulation pe-

riod. The samples at the initial stage (j = 0) are drawn from the prior distribution whereas the last

stage (j = 7) generates samples from the posterior distribution. It is seen how measurement data



CHAPTER 6. CONTAMINANT SOURCE IDENTIFICATION IN WATER DISTRIBUTION
NETWORKS: A BAYESIAN FRAMEWORK 229

Fig. 6.17: Normalized evidences of all model classes. Application problem. Event 2. A) Scenario
1. B) Scenario 2.

significantly reduce the uncertainty in the model parameters. Note that the posterior samples pop-

ulate a vicinity of the target values for the model parameters, and therefore the model parameters

are globally identifiable as in Event 1. In fact, the starting time ranges from 279.8 to 311.4 min and

the contaminant intensity from 0.198 to 0.207 kg/min at the last stage. Moreover, the correspond-

ing posterior mean estimate is θ = ⟨T, I⟩T = ⟨297.7, 0.203⟩T . These results illustrate one of the

advantages of the proposed methodology, which allows to obtain further insight into the contami-

nant injection profile in addition to the solution to the model class selection problem. This type of

information can be potentially useful to assist involved decision making processes in an emergency

management framework.

Computational cost

The proposed approach presents advantageous features for implementation in a high performance

computing environment. As previously pointed out, the computational burden is almost entirely as-

sociated with the water quality analyses of the water distribution network. The number of network

simulation runs for each model class depends, among other things, on the amount of samples per

stage and the number of TMCMC stages needed. In Event 2, the computational effort for obtaining

one water network solution is approximately 0.43 s and the average time spent to obtain posterior
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Fig. 6.18: Plot of samples in the T − I space generated at different steps of the transitional Markov
chain Monte Carlo method when updating the model class associated with node 157. Application
problem. Event 2.

samples of a given model class is about 6.4 min. Considering a parallel implementation to evaluate

the evidences of the model classes and neglecting the generation of posterior samples, which are

not required by the evidence estimate provided by the TMCMC method, the entire model class

selection process takes about 1.3 hrs. The previous computational efforts are based on the imple-

mentation of the identification process in available twelve-core multi-threaded computer units. Of

course, if more advanced computer power is available, the time to solve the contaminant source

characterization problem can be significantly reduced.

6.6 Conclusions

A Bayesian model class selection framework for handling contaminant source characterization

problems in the context of water distribution networks has been presented. The parameters of each
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model class characterize the contaminant mass inflow over time in terms of its intensity and starting

time. The class with the highest posterior probability is interpreted as the most plausible location

for the contaminant injection. The evidences of the model classes are estimated as a by-product

of the model updating technique, i.e., the transitional Markov chain Monte Carlo method. The

model updating technique is combined with a multi-purpose hydraulic and water quality simula-

tion model in order to obtain the quantities of interest, including concentration measurements at

a number of nodes. In addition, the proposed methodology presents advantageous features for its

implementation in a high performance computing environment.

The effectiveness and capabilities of the proposed methodology are demonstrated with a couple

of water distribution systems. Results indicate that overall, the proposed method is potentially a

useful tool to address contaminant source detection problems. The proposed approach can provide

relevant information for decision making processes even when relatively scarce and noisy data are

available. In addition, it can provide additional insight into the actual system state in terms of the

characteristics of the injection process. Generally, the scenarios where the actual injection node

was not identified are associated with high levels of uncertainty and relatively short measurements

periods. However, in these cases, the method is still able to identify nodes that are close to the

actual source. The results also show the importance of an appropriate selection of the sensors

configuration in order to improve the accuracy of contaminant source detection and therefore the

safety of water utility networks.

Future research efforts involve the assessment of the proposed technique in more complex water

distribution networks and the consideration of field data as well as multiple sources of contamina-

tion and alternative injection profiles. The implementation of optimal sensor location strategies to

improve the predictive capability of the proposed approach in the framework of utility networks is

an additional subject for future research. Another research direction is the treatment of binary or

fuzzy sensors as well as the integration of pre-screening techniques and surrogate models within

the proposed framework. Finally, the consideration of stochastic models such as water-demand
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models within the proposed identification scheme is also one topic for further research. Some of

these issues are currently under consideration.

6.7 Appendix

The following pseudo-code illustrates the implementation of the transitional Markov chain Monte

Carlo method [178] to obtain posterior samples associated with the ith model class Mi. It is as-

sumed that the corresponding log-likelihood function Li(θi) = ln (p(D|Mi,θi)) is available (see

Eq. (6.6)).

1. Define β2. Set j = 0 and α0 = 0. Obtain samples θk
i,j, k = 1, . . . , N0, distributed according

to the prior distribution p(θi|Mi). Compute the corresponding log-likelihood values Lk
i,j =

Li(θk
i,j), k = 1, . . . , N0. Note that this step is equivalent to perform direct Monte Carlo

simulation.

2. Define L∗ = maxk=1,...,Nj
Lk

i,j . Compute α∗ such that

σw

µw

= 1 (6.9)

where

µw = 1
Nj

Nj∑
k=1

exp
{
(α∗ − αj)(Lk

i,j − L∗)
}

(6.10)

σw =

√√√√√ 1
Nj − 1

Nj∑
k=1

(
exp

{
(α∗ − αj)(Lk

i,j − L∗)
}
− µw

)2
(6.11)

3. Set αj+1 = min(1, α∗) and compute

ŵk
i,j = exp

{
(αj+1 − αj)(Lk

i,j − L∗)
}

(6.12)

w̄k
i,j =

ŵk
i,j∑Nj

ι=1 ŵι
i,j

(6.13)
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ln(Wi,j) = ln
 1

Nj

Nj∑
k=1

ŵk
i,j

+ (αj+1 − αj)L∗ (6.14)

4. If αj+1 = 1 and no posterior samples are required, go to step 8. Otherwise, continue with

step 5.

5. Obtain the parameters of the proposal distribution

θ̄i,j =
Nj∑

k=1
w̄k

i,jθ
k
i,j (6.15)

Σi,j = β2
Nj∑

k=1
w̄k

i,j

(
θk

i,j − θ̄i,j

) (
θk

i,j − θ̄i,j

)T
(6.16)

and define θk(loc)
i,j = θk

i,j, k = 1, . . . , Nj , and Lk(loc)
j,k = Lk

i,j, k = 1, . . . , Nj . These variables

are used to track the evolution of each Markov chain.

6. Apply the Metropolis-Hastings algorithm [88, 89] to generate Nj+1 samples distributed ac-

cording to pj+1(θi) ∝ p(θi|Mi)p(D|Mi,θi)αj+1 . For k = 1 to Nj+1:

(a) Draw ν from the set {1, 2, . . . , Nj} with probabilities equal to the normalized weights

w̄ι
i,j, ι = 1, . . . , Nj . Set the lead sample as θlead

i = θν(loc)
i,j with Llead

i = Lν(loc)
i,j .

(b) Generate a candidate sample θcand
i from a multivariate normal distribution with covari-

ance matrix Σi,j and centred at θlead
i . If p(θcand

i |Mi) = 0, set Υ = 1 and go to Step 5-(c).

Otherwise, compute Lcand
i = Li(θcand

i ) and

ln(Υ) = αj+1
(
Lcand

i − Llead
i

)
+ ln

(
p(θcand

i |Mi)
)
− ln

(
p(θlead

i |Mi)
)

(6.17)

(c) Generate ξ uniformly distributed on [0, 1]. If ln(ξ) ≤ min{ln(Υ), 0}, set θk
i,j+1 = θcand

i ,

Lk
i,j+1 = Lcand

i and update the last element of the current Markov chain as θν(loc)
i,j = θcand

i

and Lν(loc)
i,j = Lcand

i . Otherwise, set θk
i,j+1 = θlead

i and Lk
i,j+1 = Llead

i .

7. If αj+1 < 1, set j ← j + 1 and go back to step 2. Otherwise, continue with step 8.
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8. Stop the sampling process, set m = j + 1, and compute the evidence estimate as

P (D|Mi) ≈ Wi = exp
m−1∑

j=0
ln(Wi,j)

 (6.18)
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Abstract: The use of reliability methods in the framework of Bayesian model updating of struc-

tural dynamic models using measured responses is explored for high-dimensional model parameter

spaces. This formulation relies on a recently established analogy between Bayesian updating prob-

lems and reliability problems. Under this framework, samples following the posterior distribution

of the Bayesian model updating problem can be obtained as failure samples in an especially de-

vised reliability problem. An approach that requires only minimal modifications to the standard

subset simulation algorithm is proposed and implemented. The scheme uses an adaptive strategy

to select the threshold value that determines the last subset level. Due to the basis of the formu-

lation, the approach does not make use of any problem-specific information and, therefore, any

type of structural model can be considered. Furthermore, no prior knowledge on the maximum

likelihood function value is required by the proposed scheme. The approach is combined with

an efficient parametric model reduction technique for an effective numerical implementation. The
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performance of the proposed method is assessed numerically for a linear building model and a

nonlinear three-dimensional bridge structural model. The results indicate that the proposed scheme

represents an effective numerical technique to address high-dimensional Bayesian model updating

problems involving complex structural dynamic models.

Keywords: Bayesian analysis; Identification; Markov chain Monte Carlo; Model updating; Relia-

bility analysis; Structural dynamics; Subset simulation.

7.1 Introduction

Model updating of structural dynamic models using measured responses has a significant number

of applications in robust structural response prediction, reliability and sensitivity analyses, struc-

tural control, structural health monitoring, etc. Moreover, the appropriate evaluation of the state

of structures over their lifetime based on measurements is an important and challenging task in

structural engineering applications [214, 259, 260, 386–388]. For a proper assessment of updated

models all uncertainties involved in the problem need to be considered. In this regard, a fully prob-

abilistic Bayesian model updating approach provides a robust and rigorous framework for model

updating due to its ability to characterize uncertainties associated with the underlying structural dy-

namic system and update the corresponding distribution based on available data about the structural

behavior [24, 261, 262].

For problems of practical interest, the Bayesian approach requires the evaluation of multidimen-

sional integrals which cannot be done analytically. One way to address this difficulty is to use

a Gaussian approximation to the posterior probability density function by means of the Laplace

method of asymptotic approximation [53]. This type of methods requires to identify the point in

the uncertain parameter space which yields the maximum likelihood value and to evaluate the cor-

responding Hessian matrix of the likelihood function [215, 273]. Such approach has been used in

the past and it is usually valid when there is a large amount of data and the model is globally identi-

fiable. However, the application of this approximation faces some problems in practical cases when
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the amount of data is not sufficient or when the problem is unidentifiable based on the available in-

formation [54]. A more general approach is to use stochastic simulation methods in which samples

consistent with the posterior probability density function are generated. Some potential difficulties

related to this approach are associated with the evaluation of the so-called evidence, which requires

a high-dimensional integration over the uncertain parameter space. Moreover, the high probability

content of the posterior probability density function frequently occupies a very small volume com-

pared with that of the prior probability density function. Therefore, the required samples cannot

be generated efficiently by sampling from the prior probability density function using direct Monte

Carlo simulation. To tackle the previous difficulties, Markov chain Monte Carlo (MCMC) meth-

ods have been proposed to solve Bayesian model updating problems more efficiently [81, 389]. In

this framework, the most well-known MCMC method is the Metropolis-Hastings (MH) algorithm

[88, 89]. The method creates samples from a Markov chain whose stationary state is a specified

target probability density function, which corresponds to the posterior distribution. Though this

algorithm is quite general, its direct implementation is usually inefficient since the high probability

content tends to concentrate in a small volume of the parameter space, as indicated before. To

improve the effectiveness of the method, an approach based on the MH algorithm and simulated

annealing concepts was proposed in [282]. The main idea is to simulate from a sequence of target

probability density functions which converges to the posterior distribution. For each level, a kernel

sampling density based on results from the previous level is used as global proposal distribution

to simulate samples efficiently. However, this strategy requires a prohibitively large number of

samples for higher dimensions. An effective method that adopts the idea as in [282] of using a se-

quence of intermediate distributions, called the transitional Markov chain Monte Carlo (TMCMC)

method, was proposed in [178]. Instead of using kernel sampling densities, the method relies on a

combination of reweighting, resampling and random walk strategies to obtain samples during each

level. The approach is more efficient and, in addition, it allows the estimation of the evidence as

a byproduct of the simulation process. However, the TMCMC method has potential problems in

higher dimensions since, in such cases, the convergence to the target probability density function
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can be very slow and the corresponding statistical estimates can be biased [263].

To handle high-dimensional Bayesian model updating problems of structural dynamic models us-

ing measured responses, sampling schemes based on fictitious dynamic systems have been imple-

mented [263, 264]. These methods rely on the introduction of an auxiliary dynamic system whose

potential energy function is defined in terms of the posterior distribution of the model parameters,

which allows to exploit the structure of the identification problem. The implementation of this

class of algorithms involves the calibration of a number of parameters associated with the charac-

terization and numerical solution of the fictitious dynamic system [263, 264, 266] and, in addition,

they unavoidably require taking derivatives of the likelihood function with respect to the identi-

fication parameters. Additional methods that have been suggested for this type of identification

problems include subspace identification techniques [268] and Kalman-filtering-based approaches

[269, 390]. Finally, another approach that in principle can handle problems involving a large num-

ber of uncertain parameters is based on structural reliability methods [298]. In this case, the idea is

to build an analogy between Bayesian updating problems and reliability problems. In this context,

samples following the posterior distribution in the Bayesian updating problem can be obtained as

failure samples in an equivalent reliability problem. This approach, referred to as BUS (Bayesian

updating with structural reliability methods), has been considered in [298] where the posterior

samples are obtained as the conditional samples in subset simulation [133, 134] at the highest sim-

ulation level. One of the difficulties of this approach is the proper choice of the so-called likelihood

multiplier connected with the rejection principle [276] involved in its formulation. In this regard,

several approaches have been suggested to address this issue. They include an approach based

on a postprocessing step to correct the distribution of failure samples [303], an inner-outer subset

simulation approach [304], and an approach that adaptively modifies the limit-state function dur-

ing subset simulation [305]. The previous procedures have been applied to a variety of problems,

including analytical problems with high-dimensional parameter spaces, nonlinear static systems,

reliability-based monitoring sensitivity analysis for reinforced slopes, and structural dynamic mod-

els with relatively few parameters [47, 300, 301]. However, studies on the effectiveness of BUS
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approaches to handle structural dynamic systems have been limited to academic-type of problems.

Furthermore, high-dimensional Bayesian model updating of complex structural dynamic systems

remains a significantly important challenge in the assessment and life-cycle management of exist-

ing structures. Thus, there is a necessity for developing not only sound theoretical algorithms to

address this class of problems, but also the appropriate techniques for implementing such proce-

dures in engineering practice.

Given that dimension sustainability is efficiently handled by advanced simulation techniques, it

is the objective of this work to evaluate the use of structural reliability methods in the context of

Bayesian model updating of complex structural dynamic models involving measured response data

and multiple uncertain parameters. As previously pointed out, this type of problems has not been

addressed by previous contributions in the framework of BUS. Subset simulation, a well estab-

lished sampling technique, is implemented in this work by combining some of the ideas introduced

in [304, 305]. The resulting algorithm uses an adaptive strategy to select the threshold value that

determines the last subset level, where samples beyond such threshold follow the posterior distri-

bution of the original Bayesian updating problem. In this setting, only minimal modifications to

the standard subset simulation algorithm are required. At the same time, the approach effectively

avoids the necessity of prior knowledge on the maximum value of the likelihood function, the need

to redefine the limit-state function during each level of subset simulation, and the iterative solu-

tion of an inner reliability problem during the sampling process. Overall, the proposed method

represents an effective numerical technique for the treatment of Bayesian identification problems

involving complex, realistic and practical structural models and multiple uncertain parameters.

The structure of the paper is as follows. In Section 7.2, the use of structural reliability methods

in the framework of Bayesian model updating is reviewed. The solution of the corresponding

reliability problem is discussed in Section 7.3. Implementation aspects of the proposed scheme are

addressed in Section 7.4. In Section 7.5, example problems involving structural dynamic models

with multiple uncertain parameters are presented to demonstrate the applicability of the proposed
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method. Conclusions are presented in Section 7.6.

7.2 Background

7.2.1 Bayesian model updating problem

Let θ ∈ Θ ⊂ Rnθ be the set of parameters of a model class M . The objective of model updating

is to compute the posterior probability density function of the model parameters p(θ|M, D) using

available data D [24, 53]. According to Bayes’ Theorem, the posterior probability density function

of θ is given by

p(θ|M, D) = L(D|M,θ) p(θ|M)
P (D|M) (7.1)

where L(D|M,θ) is the likelihood function, p(θ|M) is the prior probability density function of θ,

and P (D|M) is the evidence of model class M . The likelihood function expresses the plausibility

of observing the data D given a certain value of θ, while the prior probability density function

represents the prior or initial belief about the distribution of θ. Moreover, the evidence of the

model class is written as

P (D|M) =
∫

Θ
L(D|M,θ) p(θ|M)dθ (7.2)

which can be used for Bayesian model class selection [271] and model averaging [272]. To simplify

the notation, Eq. (7.1) is rewritten as

p(θ|D) = P (D)−1L(θ) p(θ) (7.3)

where p(θ|D) denotes the posterior probability density function, L(θ) denotes the likelihood func-

tion, p(θ) denotes the prior probability density function, and P (D) denotes the evidence. It is noted

that the posterior distribution cannot be derived analytically for general cases and, therefore, pos-

terior samples are usually generated by means of stochastic simulation techniques. Finally, in the

context of the present work it is assumed that D contains input dynamic data and output responses
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from measurements on the structural system.

7.2.2 Mechanical modeling

The class of structural systems under consideration is characterized by a multi-degree of freedom

model satisfying the equation of motion

Mẍ(t) + Cẋ(t) + Kx(t) + fNL(x(t), ẋ(t), τ (t)) = f(t) (7.4)

where x(t) denotes the displacement vector of dimension nx, fNL(x(t), ẋ(t), τ (t)) the vector of

nonlinear restoring forces, τ (t) the set of variables which describe the state of the nonlinear com-

ponents, and f(t) the external force vector. The matrices M, C, and K describe the mass, damping,

and stiffness, respectively. The evolution of the set of variables τ (t) is described by an appropriate

nonlinear model which depends on the nature of the nonlinearity. Note that the previous equation

of motion constitutes a dynamic system with localized nonlinearities, which can also be extended

to other cases such as the consideration of nonlinear models for the structure.

7.2.3 Likelihood function

Let rn(tj,θ) denote the response of interest at time tj at the nth observed degree of freedom pre-

dicted by the structural model corresponding to the parameters θ, and r∗
n(tj) denotes the corre-

sponding measured output. The prediction and measurement errors en(tj,θ) = r∗
n(tj) − rn(tj,θ)

for n = 1, . . . , no, and j = 1, . . . , nt, where no denotes the number of observed degrees of free-

dom and nt denotes the length of the discrete time history data, are modeled as independent and

identically distributed Gaussian variables with zero mean and variance σ2 [271]. This assumption

implies stochastic independence of the errors for different channels of measurements and for dif-

ferent time instants. In this regard, it is noted that alternative prediction error model classes can be

used as well [55]. Using the above probability model for the prediction and measurement errors,
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the likelihood function L(θ) can be expressed as [53, 54, 271]

L(θ) = 1
(2πσ2)nont/2 exp

[
− 1

2σ2 J(θ)
]

(7.5)

where

J(θ) =
no∑

n=1

nt∑
j=1

(r∗
n(tj)− rn(tj,θ))2 (7.6)

is a measure-of-fit function between the measured response and the model prediction at the mea-

sured degrees of freedom. In the context of the previous equation it is noted that different types of

response quantities can be used to define the measure-of-fit function.

7.2.4 Equivalent reliability problem

As previously pointed out, simulation-based Bayesian model updating techniques such as Markov

chain Monte Carlo methods provide a powerful computational tool for generating posterior sam-

ples. In particular, the TMCMC method has proved to be efficient in generating samples asymp-

totically distributed as the posterior probability density function for low/intermediate-dimensional

Bayesian model updating problems [95, 178, 288]. However, MCMC methods may encounter dif-

ficulties in connection with their efficiency and stability as the dimension of the problem increases.

To handle these potential difficulties, a framework that converts the generation of posterior samples

into the task of obtaining failure samples associated with an equivalent reliability problem has been

suggested and explored in [298, 303–305].

The basic idea of Bayesian updating with structural reliability methods, as suggested in [298], is to

transform the identification problem into a reliability problem. To this end, define a failure event F

in the form

F = {u < cL(θ)} = {cL(θ)− u > 0} (7.7)

where u is an auxiliary random variable uniformly distributed on [0, 1] with probability density

function I[0,1](u), and θ is the set of uncertain model parameters with probability density function
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p(θ). Note that the distribution of the model parameters associated with the failure event stated

in Eq. (7.7) is actually the prior distribution of the Bayesian model updating problem defined in

Eq. (7.1), i.e., p(θ). The constant c > 0 corresponds to the so-called likelihood multiplier, which

must satisfy the inequality [276]

cL(θ) ≤ 1 or c−1 ≥ L(θ), for all θ ∈ Θ (7.8)

If failure samples distributed as p(θ)I[0,1](u), conditional on the failure event F can be generated

by means of any simulation technique, then such samples follow the posterior distribution p(θ|D).

In addition, the evidence of the model class, P (D), can be also computed in this framework as

P (D) = c−1PF (7.9)

where PF is the probability of failure event F and c−1 satisfies Eq. (7.8). More details on the

derivation of the previous results can be found, e.g., in [298, 304].

7.2.5 Likelihood multiplier

From Eq. (7.8) it is clear that the smallest admissible value of c−1, i.e., c−1
adm, is given by

c−1
adm = max

θ∈Θ
L(θ) (7.10)

Generally, this value is not known in advance and it is numerically challenging to choose a like-

lihood multiplier that guarantees the inequality cL(θ) ≤ 1 for all θ. On the one hand, using a

value larger than c−1
adm will give the correct posterior distribution at the expense of decreasing the

efficiency of the sample generation process. On the other hand, using a value smaller than c−1
adm

will lead to bias in the distribution of the samples. Thus, an appropriate choice of this parameter

is crucial as it affects the definition of the failure event F in Eq. (7.7). In this regard, several ap-

proaches have been suggested for addressing the proper selection of the multiplier. They include
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an approach based on a postprocessing step to correct the sampling results [303], an inner-outer

subset simulation approach [304], and an approach that adaptively modifies the limit-state function

during subset simulation [305]. An additional discussion about these approaches is provided in

Section 7.3.6. Finally, it is noted that in some cases it is possible to study the structure of L(θ)

and derive a value of the likelihood multiplier that guarantees cL(θ) ≤ 1 [298], although it is not

necessarily the optimal value. Clearly, the use of these approximations can be computationally ad-

vantageous in such particular situations. Nonetheless, the optimal value of the likelihood multiplier,

which is associated with the maximum likelihood value, is difficult to determine for general cases

of practical interest, as already pointed out. In this regard, an alternative approach that effectively

avoids the a priori definition of this quantity is described in the next section.

7.3 Solution of equivalent reliability problem

As indicated in the previous section, any structural reliability method can be used to solve the equiv-

alent reliability problem. In particular, subset simulation is of special interest since it is efficient and

effective for handling problems involving small failure probabilities. In addition, its performance

does not depend on the number of uncertain parameters involved in the problem, it is not restricted

to specific types of structural systems, and its robustness and efficiency have been demonstrated

in a wide variety of applications. This advanced simulation technique generates samples condi-

tional on a sequence of intermediate failure events. Such samples are generated by MCMC and

they gradually populate the target failure region, while the intermediate failure events are adap-

tively defined during the sampling process. In this contribution, subset simulation is implemented

to generate failure samples associated with the equivalent reliability problem. The proposed tech-

nique effectively avoids a priori definitions of the likelihood multiplier, the need to redefine the

driving variable during each simulation level, and the solution of inner reliability problems during

the sampling process. Finally, the reader is referred to [133, 134] for a detailed description, from

the theoretical and implementation viewpoints, of subset simulation for reliability analysis.
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7.3.1 Preliminary observations

As previously pointed out, subset simulation is adopted to obtain samples following the posterior

distribution p(θ|D). To this end, and following some of the ideas presented in [304, 305], the

failure event defined in Eq. (7.7) is first rewritten as

F = {v(θ, u) > vth} (7.11)

with

v(θ, u) = ln
(

L(θ)
u

)
, vth = ln(c−1) (7.12)

where ln(·) denotes natural logarithm. Note that in the previous formulation, the driving variable v

does not depend on the value of the multiplier c. Moreover, the multiplier only affects the threshold

level vth and, therefore, subset simulation can be performed without the necessity of specifying the

value of the multiplier beforehand. In principle, as long as the multiplier satisfies the inequality in

Eq. (7.8), the marginal distribution of θ conditional on the failure event F = {v > vth} is equal to

the posterior distribution p(θ|D) [298, 304, 305]. Thus, the minimum value of vth beyond which

the samples theoretically follow the posterior probability density function is

vth
min = ln

(
max
θ∈Θ

L(θ)
)

(7.13)

This value, which is generally unknown, does not affect the subset simulation procedure. In fact,

subset simulation can be performed until the intermediate threshold of the highest level has passed

vth
min. This is possible since the intermediate failure events in subset simulation are defined in terms

of the driving variable values obtained during the sampling process, that is, their definition does not

require information on the target threshold level vth. An approach that adaptively estimates vth
min

based on the samples obtained during the different levels of subset simulation is described in what

follows.
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7.3.2 Synopsis of proposed scheme

Following the ideas of subset simulation, the first step (level 0) consists in drawing N samples

{θ0
i , u0

i }, i = 1, . . . , N from the joint distribution p(θ)I[0,1](u). The likelihood function L(·) is

evaluated at each sample and the initial threshold level of the reliability problem in Eq. (7.11)

is selected as the logarithm of the maximum likelihood value, i.e., vth = ln(maxi=1,...,N L(θ0
i )).

Thereafter, each step is performed in accordance with the standard formulation of subset simulation

with only a minor modification. At the end of each simulation level, say level k, the threshold level

is updated based on the samples {θk
i , uk

i }, i = 1, . . . , N , obtained during such a level as vth ←

max{vth, ln(maxi=1,...,N L(θk
i ))}. Based on this updating scheme, it is clear that the threshold vth

can only increase after each iteration, providing better estimates of the optimum threshold level

as the simulation continues. The iteration over the subset levels is performed until the standard

stopping criterion of subset simulation is verified, that is, until the threshold associated with the

current intermediate failure event surpasses the current threshold value. It is noted that a similar

strategy is adopted in [305], but at the limit-state function level. In such approach, all limit-state

function values are updated at the end of each subset level.

In the previous framework it is noted that the final value of c−1 = exp(vth), which is a stochastic

quantity, corresponds to the largest likelihood value observed during the entire simulation. For

large N , the value of c−1 asymptotically approaches to c−1
adm, but for finite N , this parameter is

very likely smaller than c−1
adm. However, this fact does not impede the proposed scheme to produce

samples that follow the posterior distribution from a practical viewpoint. In this regard, the number

of samples employed in each level of subset simulation must be selected large enough to allow

an effective exploration of the entire failure domain. Note that these samples will not necessarily

identify the uncertain parameter values that maximize the likelihood function. Therefore, it is likely

that the final value of c−1, which corresponds to the maximum likelihood value observed during

the entire sampling process, is such that c−1 ≤ c−1
adm, as previously pointed out. However, the

important region of the likelihood function can be effectively explored by the proposed approach,
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as illustrated in the numerical examples presented in this contribution (see Section 7.5).

7.3.3 Underlying normal space

Regarding the numerical implementation of the proposed scheme, the reliability problem is first

set in terms of an underlying normal space Z ⊂ Rnθ+1 of independent standard normal variables

following the standard formulation of subset simulation [133]. The mapping between the spaces

Z and Θ × [0, 1] can be obtained by means of several techniques [22, 391]. In fact, without

loss of generality, the transformation between the first nθ components of z, denoted by (z)1:nθ
,

and θ can be written in terms of a transformation as θ = θ((z)1:nθ
). On the other hand, the

uniformly distributed random variable u can be written in terms of the last component of z, i.e.,

(z)nθ+1, as u = Φ((z)nθ+1), where Φ(·) is the cumulative distribution function of the standard

normal distribution. Note that, however, an implementation of the reliability problem directly in

the original space Θ× [0, 1] is also possible.

7.3.4 Basic procedure

In the following, a procedure that illustrates the basic implementation of subset simulation, in the

context of the present formulation, is provided.

1. Define the conditional probability of the intermediate failure events p0 and the number of

samples N . These parameters are chosen such that p0N is an integer number.

2. Generate N samples {(z0,i), i = 1, . . . , N} by direct Monte Carlo according to the standard

multivariate normal distribution (the subscript 0 denotes that the samples correspond to the

unconditional level, i.e., level 0).

3. Set k = 1 and vth = maxi=1,...,N ln(L(θ0,i)), where θ0,i = θ((z0,i)1:nθ
).

4. Evaluate the driving variable v to obtain {v(zk−1,i), i = 1, . . . , N}. Arrange these values

in ascending order, where v(zk−1,i) = ln(L(θk−1,i)/uk−1,i), θk−1,i = θ((zk−1,i)1:nθ
), and
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uk−1,i = Φ((zk−1,i)nθ+1).

5. Identify the [(1 − p0)N ]th largest value of the set {v(zk−1,i), i = 1, . . . , N}. In case this

value is equal or larger than vth, set m = k, vm = vth and go to step 9. Otherwise, set the

intermediate threshold value vk equal to the aforementioned [(1 − p0)N ]th largest value of

the set {v(zk−1,i), i = 1, . . . , N}.

6. The kth intermediate failure domain is defined as Fk = {z ∈ Z|v(z) > vk}. The estimate for

P (Fk) (if k = 1) or P (Fk/Fk−1) (if k > 1) is equal to p0 by construction.

7. By construction there are p0N samples among {(zk−1,i), i = 1, . . . , N} whose driving vari-

able values are larger than vk. Starting from each of these conditional samples, the modified

Metropolis-Hastings algorithm [133] is used to generate additional (1 − p0)N conditional

samples that lie in Fk making a total of N conditional samples {(zk,i), i = 1, . . . , N} at

level k.

8. Set vaux = maxi=1,...,N ln(L(θk,i)), where θk,i = θ((zk,i)1:nθ
). Update the threshold level as

vth ← max{vth, vaux}. Return to step 4 with k ← k + 1.

9. The failure probability is estimated as

PF ≈ pm−1
0

1
N

N∑
i=1

IFm(zm−1,i) (7.14)

where {zm−1,i, i = 1, . . . , N} is the set of samples generated at the last stage of subset

simulation (conditional level m − 1), and IFm(zm−1,i) is the indicator function of Fm, with

IFm(zm−1,i) = 1 if zm−1,i ∈ Fm and IFm(zm−1,i) = 0 otherwise. The samples that lie in the

target failure domain Fm follow the posterior distribution p(θ|D).

10. The evidence is estimated as

P (D) ≈ exp(vm)PF (7.15)

As indicated in step 7 of the above procedure, the modified Metropolis-Hastings algorithm [133]
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is implemented to generate conditional samples during each simulation level. In this regard, each

component of the candidate sample is generated independently. A uniform distribution centered at

the lead value is selected as the proposal distribution for each component. This choice, which is

commonly adopted in the implementation of subset simulation for reliability assessment of struc-

tural dynamic systems, has proven effective to handle the numerical examples presented in this

contribution. Based on the above procedure, it is clear that the proposed approach requires only

minimal modifications to the standard formulation of subset simulation.

7.3.5 Potential enhancements

Several additional enhancements can be implemented to improve the performance and computa-

tional efficiency of the proposed method. For example, the acceptance rate of the sampling process,

in the framework of the modified Metropolis-Hastings algorithm, can be controlled by using adap-

tive proposal distributions [392]. Similarly, to decrease the dependency of the generated samples

and, consequently, increase the overall performance of the scheme, resampling strategies for the

auxiliary variable associated with the rejection sampling scheme can be considered [305]. Actu-

ally, the previous techniques have been implemented in the present formulation. Additionally, alter-

native definitions of the proposal distribution, in the context of the modified Metropolis-Hastings

algorithm, can improve the performance of the sampling procedure for certain applications. Fi-

nally, variants of the basic formulation of subset simulation have also been proposed to improve its

efficiency, e.g., [134, 135]. Certainly, such variants can also be considered in the framework of the

present contribution.

7.3.6 Remarks on proposed and alternative BUS implementations

Several approaches in the framework of BUS have been proposed. A direct implementation [298]

and a postprocessing step to correct the final results [303] have been previously reported. Both

methods require an initial choice of the likelihood multiplier, c, which can significantly affect their
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performance [303]. Alternatively, the approach presented in [304] iteratively updates the value of

c in terms of the intermediate thresholds of subset simulation. The sampling process continues

until the probability of the likelihood function exceeding the current value of c−1 is smaller than a

user-defined tolerance. In practice, then, this approach indirectly defines the likelihood multiplier

in terms of a certain quantile of the likelihood function. Besides, its formulation requires to solve

an inner reliability problem in each stage of subset simulation. Finally, the approach presented in

[305] iteratively updates the driving variable function, in the context of subset simulation, using

the maximum observed likelihood value. The process continues until sufficient failure samples are

obtained. Hence, the final value of c is defined using the effective support of the likelihood function

instead of specifying it beforehand.

To avoid an a priori characterization of the likelihood multiplier, this work follows the strategy

presented in [305]. That is, the final value of c−1 is equal to the maximum likelihood value ob-

served throughout all subset simulation stages. However, to circumvent the iterative definition of

the driving variable, the failure event is explicitly defined as in [304]. As previously pointed out,

only minimal modifications to the standard subset simulation algorithm are needed and the itera-

tive solution of inner reliability problems is avoided. Overall, the resulting method represents an

alternative BUS approach which provides an effective treatment of the likelihood multiplier while

maintaining simplicity in its formulation and implementation. This feature is particularly attrac-

tive from a practical viewpoint, especially in the context of Bayesian model updating problems

involving structural dynamic systems with multiple uncertain parameters.

7.4 Implementation aspects

7.4.1 Initial remarks

The solution of the equivalent reliability problem involves a large number of model evaluations

associated with the repeated evaluation of the likelihood function. In fact, this process is com-
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putationally very demanding due to the large number of dynamic analyses (in the order of thou-

sands) required for populating the failure region. This is especially important when the compu-

tational time for performing a single dynamic analysis is significant. To cope with this difficulty,

a number of strategies based on meta-modeling techniques have been considered [393, 394]. In

the context of Bayesian updating using structural reliability methods, strategies based on surro-

gate models [395, 396] have been proposed at the limit state function level. It is noted that the

previous approaches have been demonstrated in applications involving structural dynamic systems

with relatively few model parameters. In general, the effective integration of surrogate models

for higher-dimensional parameter spaces remains one of the main challenges in Bayesian model

updating applications.

7.4.2 Parametric model reduction technique

Considering that the focus of this work is on Bayesian model updating of structural dynamic models

with multiple uncertain parameters and measured responses, an effective numerical implementation

of the proposed method is essential. In the present formulation, a very efficient parametric model

reduction technique is considered. In particular, a model reduction technique based on substructure

coupling for dynamic analysis is adopted [163, 164]. The method involves dividing the structure

into a number of linear and nonlinear substructures, obtaining reduced-order models of the linear

substructures and then assembling a reduced-order model of the entire structure. The dynamic

behavior of the linear substructures is described by a set of dominant fixed-interface normal modes

along with a set of interface constraint modes that account for the coupling at each interface where

the substructures are connected [164]. Based on these modes, the corresponding reduced-order

matrices can be derived.

While the use of reduced-order models alleviates part of the computational effort, their repetitive

generation during the solution of the reliability problem can be computationally expensive due to

the substantial computational overhead that arises at the substructure level. In this regard, an effi-
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cient model parametrization scheme is implemented. To this end, the division of the original model

is guided by a parametrization scheme which assumes that the substructure matrices for each of the

introduced linear substructures depend on only one of the model parameters. Based on this assump-

tion, a direct parametrization of the reduced-order matrices associated with the linear substructures

is obtained and, consequently, a drastic reduction in computational effort is achieved [163, 397].

In other words, the different quantities involved in the reduced-order model can be directly up-

dated for different values of the model parameters θ. Thus, the potentially time-consuming step of

computing the reduced-order matrices for different values of the model parameters is completely

avoided. Moreover, the above formulation guarantees that the reduced-order model is based on the

exact substructure modes for all values of the model parameters θ. The equation of motion of the

reduced-order model together with the equation for the evolution of the set of variables τ (t) can

be integrated efficiently by any appropriate step-by-step integration scheme. A detailed derivation

and formulation of the parametric model reduction technique can be found in [163].

Finally, it is noted that the use of parametric reduced-order models has also important implications

from a practical viewpoint. In fact, the use of this technique opens the door to applications involv-

ing real structural dynamic systems and, therefore, the proposed implementation can contribute

to the enhancement of the safety and reliability of practical engineering systems. Moreover, the

consideration of surrogate models at the likelihood function level [287, 288] combined with the

previous parametric model reduction technique can also be implemented to improve further the

efficiency of the proposed scheme for solving the reliability problem. Such approach is currently

under development and it will be reported in a future contribution (see Conclusions).

7.5 Examples

It is noted that validation calculations have shown that the different available BUS techniques and

the proposed approach provide very similar results for the academic-type of problems presented in

previous contributions. In this work, two examples comprising involved structural dynamic sys-



CHAPTER 7. AN EFFECTIVE IMPLEMENTATION OF RELIABILITY METHODS FOR
BAYESIAN MODEL UPDATING OF STRUCTURAL DYNAMIC MODELS WITH
MULTIPLE UNCERTAIN PARAMETERS 255

tems are presented. The first example comprises a benchmark system introduced in [263], which

involves a linear ten-story shear building model subject to ground excitation. In this regard, this

example allows to demonstrate the effectiveness of the proposed approach in predicting different

types of responses as well as in identifying the spectral properties of the structural model. Addition-

ally, a statistical performance analysis of alternative BUS approaches is provided for this example.

On the other hand, the second example considers a realistic finite element model of a nonlinear

three-dimensional bridge structure to demonstrate the applicability of the identification method in

a complex structural system. In both examples, a large number of model parameters are consid-

ered. Additionally, it is assumed that noisy simulated acceleration data are available for updating

purposes.

7.5.1 Example 1: Illustrative problem

Identification problem

The ten-story linear shear-building model shown in Figure 7.1, which has been borrowed from

[263], is considered in this first example problem. The corresponding model class is characterized

by the mass mi, damping coefficient ci, and stiffness parameter ki for each story i = 1, . . . , 10.

The identification process is based on simulated acceleration data. In particular, the input ground

acceleration history to generate the measurements, shown in Figure 7.2, corresponds to the El

Centro ground-motion record. The input acceleration values have been scaled so that the peak

ground acceleration is equal to 0.6 m/s2. The measured response is simulated by first calculating the

absolute acceleration response of the actual structure at the first and tenth floors. Thus, the number

of observed degrees of freedom is no = 2. Then, a Gaussian discrete white noise sequence with

standard deviation σ equal to 10% of the root-mean-square value of the corresponding acceleration

time histories is added. Ten seconds of data with sampling interval ∆t = 0.01 s are used, giving

a total of nt = 1000 time steps. The corresponding measurements are shown in Figure 7.2. The

nominal model used to generate the measured data is defined in Table 7.1. This system may be
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interpreted as the actual or target structural system in a Bayesian model updating framework.

m1

c1

u1

üg(t)

k1

c2

u2

k2

m2

m10 u10

Fig. 7.1: Ten-story linear shear building model.

Table 7.1: Target values of the model parameters. Example 1.

Parameter Value Parameter Value Parameter Value
m1n 1.92× 104 kg c1n 7.70× 104 Ns/m k1n 2.16× 107 N/m
m2n 1.97× 104 kg c2n 7.78× 104 Ns/m k2n 1.74× 107 N/m
m3n 1.95× 104 kg c3n 7.86× 104 Ns/m k3n 2.04× 107 N/m
m4n 2.06× 104 kg c4n 7.28× 104 Ns/m k4n 1.99× 107 N/m
m5n 2.05× 104 kg c5n 7.19× 104 Ns/m k5n 1.74× 107 N/m
m6n 1.98× 104 kg c6n 7.37× 104 Ns/m k6n 1.68× 107 N/m
m7n 1.94× 104 kg c7n 7.10× 104 Ns/m k7n 1.87× 107 N/m
m8n 2.06× 104 kg c8n 7.11× 104 Ns/m k8n 1.77× 107 N/m
m9n 1.90× 104 kg c9n 6.90× 104 Ns/m k9n 1.84× 107 N/m
m10n 2.01× 104 kg c10n 7.57× 104 Ns/m k10n 1.72× 107 N/m
σn 3.74× 10−2 m/s2

For identification purposes, 31 model parameters are selected. They correspond to the masses

mi, i = 1, . . . , 10, damping coefficients ci, i = 1, . . . , 10, stiffness parameters ki, i = 1, . . . , 10,

and the standard deviation of the prediction and measurement errors σ. It is noted that this problem

can be regarded as high-dimensional from a Bayesian model updating point of view. Moreover, the

mass, damping, and stiffness parameters can be uniformly scaled without changing the acceleration

response of the structural model. For reference and comparison purposes, the properties of the

actual structural system as well as the prior distribution of the uncertain parameters are defined as in

[263]. The prior probability density functions of the model parameters mi, ci, and ki, i = 1, . . . , 10,



CHAPTER 7. AN EFFECTIVE IMPLEMENTATION OF RELIABILITY METHODS FOR
BAYESIAN MODEL UPDATING OF STRUCTURAL DYNAMIC MODELS WITH
MULTIPLE UNCERTAIN PARAMETERS 257

Fig. 7.2: Input ground motion and measurement data. Example 1.

correspond to Gaussian distributions with means equal to m̄ = 2 × 104 kg, c̄ = 6 × 104 Ns/m,

k̄ = 2 × 107 N/m, and coefficients of variation of 10%, 30%, and 30%, respectively. On the other

hand, σ follows a lognormal distribution with median equal to 0.1 m/s2 and a logarithmic standard

deviation of 0.3, which leads to a coefficient of variation of approximately 30%. It is seen that the

mean values of the uncertain parameters do not match the corresponding target or nominal values

(exact values) of the model parameters (see Table 7.1).

For illustration purposes, the following user-defined parameters are considered for the numerical

implementation of the proposed approach: number of samples per stage N = 10000, and con-

ditional probability p0 = 0.1. Note that a relatively large sample size is considered in order to

focus on the effectiveness of the proposed scheme in a high-dimensional case and not on the effect

of the number of samples per stage. In any case, additional validation calculations show that the

number of samples per stage can be significantly reduced without affecting the performance of the

identification process. Actually, around 2000 samples per stage are sufficient for the problem un-

der consideration. Finally, due to the simplicity of the structural system, a reduced-order model is

not considered in this example problem. Therefore, all analyses are performed using the original

unreduced model.
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Results

Figures 7.3, 7.4, 7.5 and 7.6 show the posterior marginal histograms associated with the mass,

damping, stiffness and standard deviation parameters, respectively. For presentation purposes, the

model parameters have been normalized with respect to their target values (see Table 7.1) as θ̂i =

mi/min, i = 1, ..., 10, θ̂i = ci−10/c(i−10)n, i = 11, ..., 20, θ̂i = ki−20/k(i−20)n, i = 21, ..., 30, and

θ̂31 = σ/σn. It is seen that the posterior samples tend to be concentrated relatively close to the

target values, i.e., θ̂i = 1, i = 1, . . . , 31. Compared with the prior uncertainty in the structural

model parameters, the posterior uncertainty is significantly reduced since the data provide relevant

information about these parameters. The same result is obtained for the parameter associated with

the standard deviation of the prediction and measurement errors, σ, as shown in Figure 7.6.

Fig. 7.3: Posterior marginal histograms corresponding to the normalized mass parameters.

The posterior mean values of the normalized variables are shown in Table 7.2. It is observed that

there are larger deviations between the target and posterior mean values of the damping parameters

than of the mass and stiffness parameters. In fact, this is expected from a structural viewpoint since

the modal contributions to the response are more sensitive to the mass and stiffness than to the

damping. The corresponding estimation error is less than 10% for the mass and stiffness param-

eters and less than 20% for the damping parameters. These deviations from the target values are
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Fig. 7.4: Posterior marginal histograms corresponding to the normalized damping parameters.

Fig. 7.5: Posterior marginal histograms corresponding to the normalized stiffness parameters.

Fig. 7.6: Posterior marginal histogram corresponding to the normalized standard deviation of the
prediction and measurement errors.
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reasonably small and, as shown in what follows, they marginally affect the quality of the identifi-

cation results in terms of the updated spectral properties of the structural system and of the updated

response prediction.

Table 7.2: Posterior mean values of the normalized parameters. Example 1.

Parameter Value Parameter Value Parameter Value
θ̂1 0.958 θ̂11 0.940 θ̂21 0.968
θ̂2 1.014 θ̂12 1.192 θ̂22 0.955
θ̂3 0.956 θ̂13 1.076 θ̂23 1.045
θ̂4 1.008 θ̂14 1.038 θ̂24 1.041
θ̂5 0.906 θ̂15 0.900 θ̂25 1.098
θ̂6 1.072 θ̂16 0.862 θ̂26 1.052
θ̂7 1.088 θ̂17 0.953 θ̂27 0.914
θ̂8 0.938 θ̂18 0.868 θ̂28 1.022
θ̂9 0.965 θ̂19 0.951 θ̂29 1.081
θ̂10 1.073 θ̂20 1.046 θ̂30 0.939

θ̂31 1.022

Based on the information from the posterior samples of the model parameters, the corresponding

spectral properties of the structural model can be computed and compared with the exact values. In

Table 7.3, the sample mean (with sample c.o.v. inside the parenthesis) of the natural frequency and

damping ratio for each mode along with the target values of the natural frequency and damping ratio

are shown. Note that the model has nonclassical damping and, therefore, it has complex modes. It

is observed that the relative errors are quite small. Actually, the maximum relative error is around

3%, which is observed for the higher-order modes. Moreover, the estimates of the first modes are

much better than those of the higher-order modes. In fact, the maximum relative error for the five

first modes is below 0.5%. This is because only the first complex modes of the model are excited

significantly by the ground acceleration, so it is this information from the first modes that is utilized

in estimating the model parameters.

To illustrate the predictive power of the previous identification scheme, the exact time histories of

the displacement, drift response, and total acceleration of some unobserved floors are compared
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Table 7.3: Natural frequencies and damping ratios associated with the target parameter values and
with the posterior distribution of the model parameters.

Target model Bayesian updating
Complex Natural frequency Damping ratio Natural frequency Damping ratio

mode (Hz) (%) (Hz) (%)
1 0.7343 0.92 0.7345 (0.04%) 0.94 (0.21%)
2 2.1568 2.71 2.1562 (0.01%) 2.67 (0.32%)
3 3.5585 4.45 3.5603 (0.05%) 4.20 (0.33%)
4 4.8896 6.03 4.9027 (0.09%) 6.05 (0.44%)
5 6.0470 7.65 6.0526 (0.11%) 7.43 (0.42%)
6 7.1032 9.11 7.2022 (0.11%) 9.06 (0.22%)
7 8.0466 10.14 7.9530 (0.07%) 10.52 (0.28%)
8 8.6097 11.12 8.8519 (0.08%) 11.05 (0.22%)
9 9.2989 11.58 9.3704 (0.15%) 10.77 (0.55%)

10 9.6355 11.92 9.8938 (0.10%) 12.11 (0.31%)

with the corresponding posterior predictions in Figures 7.7, 7.8, and 7.9, respectively. The solid-

black line shows the exact values of the response and the dashed-red line shows the corresponding

posterior mean prediction. In addition, the posterior 95%-confidence interval, denoted by dotted-

blue lines, is also presented in the figures. The curves for the exact and the mean responses are

indistinguishable. Likewise, the 95%-confidence interval is almost indistinguishable from the other

two curves. Thus, the Bayesian analysis is able to provide a high-quality updated prediction of the

response even at unobserved degrees of freedom.

Performance of proposed and alternative BUS approaches

To study the performance of available BUS approaches, a statistical analysis of the log-evidence

estimates is carried out. This quantity is selected since its computation involves the likelihood mul-

tiplier and the failure event of the equivalent reliability problem, two key aspects of BUS formula-

tions. Along with the proposed approach, the following methods have been considered: adaptive

driving variable-based BUS (A-BUS) [305], inner reliability problem-based BUS (I-BUS) [304],

standard BUS with a priori definition of the likelihood multiplier (S-BUS) [298], and postprocessing-

based BUS (P-BUS) [303]. Rejection sampling has been implemented in P-BUS with a target
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Fig. 7.7: Exact value (solid-black), posterior mean prediction (dashed-red), and posterior 95%-
confidence interval (dotted-blue) of the displacement (in m) at floors 2, 4, 6 and 8.

Fig. 7.8: Exact value (solid-black), posterior mean prediction (dashed-red), and posterior 95%-
confidence interval (dotted-blue) of the drift response (in mm) at floors 2, 4, 6 and 8.
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Fig. 7.9: Exact value (solid-black), posterior mean prediction (dashed-red), and posterior 95%-
confidence interval (dotted-blue) of the total acceleration (in m/s2) at floors 2, 4, 6 and 8.

number of failure samples equal to 1000. The rest of the methods consider subset simulation with

N = 10000 samples per stage and conditional probability p0 = 0.1. For each method, 30 indepen-

dent runs are performed. Two cases for the tolerance value associated with the stopping criterion of

I-BUS are implemented, i.e., Ptol = 10−8 and Ptol = 10−3. For comparison and reference purposes,

the maximum values for ln(c−1) obtained in these two cases are considered in S-BUS. Additionally,

P-BUS considers the maximum value of ln(c−1) obtained for I-BUS with Ptol = 10−3 in order to

illustrate the effect of the postprocessing step on the quality of the results.

Table 7.4 presents the average number of function calls, average log-evidence and maximum values

for ln(c−1) obtained by the different methods across 30 independent runs. Note that the maximum

values for ln(c−1) are not given for S-BUS and P-BUS, since the likelihood multiplier is defined a

priori in these methods. In addition, the user-defined parameters required by the different methods

are also presented in the table. Several observations can be made from these results. First, the evi-

dence tends to be more underestimated for smaller values of ln(c−1). Such a behavior is consistent
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Table 7.4: Statistical performance across 30 independent runs of different BUS methods. Example
1.

Method User-defined Number of Average Maximum
parameter function calls log-evidence ln(c−1)

This work − 4.2× 105 3.58× 103 3.78× 103

A-BUS [305] − 4.4× 105 3.59× 103 3.78× 103

I-BUS [304] Ptol = 10−8 5.1× 105 3.22× 103 3.38× 103

I-BUS [304] Ptol = 10−3 1.5× 105 2.34× 103 2.38× 103

S-BUS [298] ln(c−1) = 3.38× 103 1.1× 105 3.36× 103 −
S-BUS [298] ln(c−1) = 2.38× 103 4.0× 104 2.37× 103 −
P-BUS [303] ln(c−1) = 2.38× 103 1.2× 106 3.03× 103 −

with the relationship between the evidence estimate and the likelihood multiplier, as discussed in

previous contributions [303, 304]. Further, it illustrates the significant effect that this parameter

can have on the performance of BUS formulations. Second, the maximum values for ln(c−1) ob-

tained by I-BUS are smaller than those computed by A-BUS and the proposed approach. Third,

the evidence estimates obtained by S-BUS (ln(c−1) = 2.38 × 103) and I-BUS (Ptol = 10−3) are

similar, as expected. Analogous results are observed in the cases of S-BUS (ln(c−1) = 3.38× 103)

and I-BUS (Ptol = 10−8). At the same time, the computational efforts are higher in I-BUS due to

the iterative solution of the inner reliability problem. Fourth, the average log-evidence estimates

of P-BUS are higher than of S-BUS for ln(c−1) = 2.38 × 103. Thus, the postprocessing strategy

proposed in [303] appears to be effective in improving the quality of the evidence estimates for

this example. Fifth, the computational efforts of P-BUS, which involves the use of rejection sam-

pling, are around two orders of magnitude higher than of S-BUS for ln(c−1) = 2.38 × 103. This

shows an additional strength of adopting subset simulation as reliability analysis technique, since

it can efficiently handle small failure probabilities. In this regard, the adaptation and evaluation

of alternative structural reliability methods for Bayesian model updating represents an interesting

research venue. Finally, the performances of the proposed approach and A-BUS are very similar,

which is reasonable since both methods select the final likelihood multiplier based on the maximum

observed likelihood value. Nonetheless, as already pointed out, the formulation presented in this

work is simpler since there is no need to redefine the driving variable function at each iteration.
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As a result, only minimal modifications to the standard subset simulation algorithm are required

by the proposed approach. Overall, the proposed updating technique can be regarded as a viable

alternative BUS approach which is attractive for practical applications due to the simplicity of both

its formulation and implementation.

7.5.2 Example 2: Application problem

The objective of this application is to evaluate the performance of the proposed approach in an

identification problem involving a realistic nonlinear structural model with multiple uncertain pa-

rameters and noisy seismic response data.

Description of structural model

A three-dimensional bridge finite element model with more than 10000 degrees of freedom is

considered as application problem. The bridge model, which has been taken from [398], is shown

in Figure 7.10. It is curved in plan and has a total length of 119.0 m with five spans of lengths

equal to 24.0 m, 20.0 m, 23.0 m, 25.0 m, and 27.0 m. Four piers of 8.0 m height support the

girder monolithically, where each pier is founded on an array of four piles of 35.0 m height. The

piers and piles are modeled as column elements of circular cross-section with diameters of 1.6 m

and 0.6 m, respectively. In addition, the deck cross section is a box girder modeled by beam and

shell elements. The deck girder rests on each abutment through two sliding bearings which are

composed of an upper steel plate with a housing cap for the slider, a bottom plate with a concave

semi-spherical stainless steel surface, and a steel slider.

An experimentally validated model that takes into account the main sources of performance degra-

dation that friction-based devices experience during seismic events is implemented in the structural

model [256]. The major effects related to the frictional performance of these devices include: the

load effect related to the reduction of the friction coefficient as the vertical load increases, the veloc-

ity effect that takes into account the variation of the friction coefficient with the velocity of motion,
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Fig. 7.10: Isometric view of the finite element model of the bridge structure with friction-based
devices at the abutments.

and the cycling effect which is responsible for the degradation of friction characteristics due to tem-

perature rise. The reader is referred to [256, 349, 399] for a detailed description and implementation

of the experimentally validated model. For illustration purposes, a typical displacement-restoring

force curve of these devices is shown in Figure 7.11.

Fig. 7.11: Typical displacement-restoring force curve of the sliding bearing. Left: x direction.
Right: y direction.

The interaction between the piles and the soil is modeled by a series of translational springs along

the height of the piles with a nominal linear stiffness profile varying from 11200 T/m at the bottom

of the piles to 560 T/m at the surface. The net effect of these springs is to increase the translational

stiffness in the x and y direction of the column elements that model the piles. Nominal material

properties of the structural model have been assumed as follows: Young’s modulus E = 2.0× 1010



CHAPTER 7. AN EFFECTIVE IMPLEMENTATION OF RELIABILITY METHODS FOR
BAYESIAN MODEL UPDATING OF STRUCTURAL DYNAMIC MODELS WITH
MULTIPLE UNCERTAIN PARAMETERS 267

N/m2, Poisson ratio ν = 0.2, and mass density ρ = 2500 kg/m3. A 3% of critical damping is

added to the model. It is assumed that the structural components such as the piers, piles and the

deck girder remain linear during the analysis while the nonlinearities are localized in the sliding

bearings response.

Parametric reduced-order model

In order to improve the numerical efficiency of the updating procedure, a parametric reduced-order

model of the bridge structure is implemented. In particular, the structural model is subdivided into

sixteen linear substructures and two nonlinear substructures as shown in Figure 7.12. Substructures

Si, i = 1, . . . , 5 are related to the five spans of the bridge deck, substructures Si, i = 6, . . . , 9 are

associated with the four piers, while substructures Si, i = 10, . . . , 13 comprise the four arrays

of piles and the corresponding pile footings. In addition, the translational springs that model the

interaction between the piles and the soil are included in three substructures, i.e, Si, i = 14, . . . , 16

as shown in the figure. Finally, the sliding bearings at each abutment are considered in substructures

Si, i = 17, 18. Thus, substructures Si, i = 1, . . . , 16 are linear while S17 and S18 are nonlinear.

Fig. 7.12: Linear and nonlinear substructures of the finite element model.

The reduced-order model is characterized in terms of interface constraint modes and a set of

dominant fixed-interface normal modes (see Section 7.4.2). In this regard, 400 interface degrees

of freedom are present at the interfaces of the finite element model. Additionally, five fixed-
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interface normal modes are kept for each substructure Si, i = 1, . . . , 5, three for each substruc-

ture Si, i = 6, . . . , 9, and three for each substructure Si, i = 10, . . . , 13. Note that substructures

Si, i = 14, 15, 16 compress interface degrees of freedom only. As a result, the number of general-

ized coordinates is equal to 449, which corresponds to a reduction of more than 95% with respect

to the total number of degrees of freedom. Thus, the reduced-order model provides a significant

dimension reduction with respect to the original unreduced finite element model. Validation calcu-

lations show that the selected reduced-order model is able to capture the dynamics of the unreduced

model with great accuracy. In this regard, Figure 7.13 shows a 3-D representation of the matrix of

modal assurance criterion (MAC) values [400] between the 10 first modal vectors computed from

the full finite element model and the reduced-order model. For comparison purposes, only the

linear components of the undamped structural model are considered in the computation of mode

shapes and natural frequencies. It is seen that the off-diagonal terms are almost zero and, hence,

both models are consistent in terms of their mode shapes. Moreover, additional computations show

that the errors for the ten lowest natural frequencies fall bellow 0.5%. The comparison in terms

of the ten lowest-order modes seems reasonable since the contribution of higher-order modes in

the dynamic response of the model is negligible in this case. From the practical point of view it

is important to note that the selection of the fixed-interface modes per substructure, necessary to

achieve a prescribed accuracy, is done offline, before the updating process takes place [163].

Eighteen parameters associated with structural properties of different sections of the structure are

considered to characterize the finite element model, which are denoted as ζi, i = 1, . . . , 18. They

are related to the modulus of elasticity of each span of the bridge deck (ζi, i = 1, . . . , 5), the

modulus of elasticity of each pier (ζi, i = 6, . . . , 9), the modulus of elasticity of each pile (ζi, i =

10, . . . , 13), the stiffness constants of the springs along the height of the piles (ζi, i = 14, 15, 16),

and the friction coefficients of the sliding bearings at the abutments (ζi, i = 17, 18). Thus, based

on the subdivision of the finite element model, it is seen that each substructure is associated with

a single parameter. Furthermore, the parameters are defined such that ζi = 1, i = 1, . . . , 18,

corresponds to the nominal or reference values for the different structural properties. Using this
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Fig. 7.13: Modal assurance criterion (MAC) values between the mode shapes associated with the
full and reduced-order models.

information, the reduced-order matrices associated with the linear substructures can be efficiently

parametrized as indicated in Section 7.4.2.

Numerical validations indicate that the implementation of the parametric reduced-order model al-

lows to obtain a speedup factor of more than 10 for the computation of the structural response in

this case. In this context, the speedup factor corresponds to the ratio between the execution time by

considering the full finite element model and the proposed parametric reduced-order model. Since

most of the computational efforts involved in the updating procedure are associated with the solu-

tion of the equation of motion for different values of the uncertain parameters, the parametrization

scheme under consideration provides significant computational savings for the overall identification

process.

Simulated data

Synthetically generated measurements are considered for identification purposes. The correspond-

ing ground excitation is the El Centro ground-motion record, which is applied at 50◦ with respect

to the x axis (see Figure 7.10) and has been scaled to a peak ground acceleration of 5 m/s2. Ac-

celeration responses along the x and y directions at the midpoints of the five spans of the deck

are considered for identification purposes. In addition, 20 s of response with a sampling interval
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of ∆t = 0.01 s are considered. Thus, the identification data comprise no = 10 observed de-

grees of freedom and nt = 2000 time steps. As in the previous example, the measurements are

generated by contaminating the actual acceleration responses with a Gaussian discrete white noise

sequence whose standard deviation is equal to 10% of the root-mean-square value of the responses.

Table 7.5 shows the actual values of the parameters that are used to generate the measured data,

where ζin, i = 1, . . . , 18 are the actual parameter values associated with the different substructures

and σn is the actual standard deviation (in m/s2) of the prediction and measurement errors. For

illustration purposes, the input ground motion as well as the measurements at the midpoint of the

bridge’s deck along the x and y directions are presented in Figure 7.14.

Table 7.5: Actual values of the model parameters. Example 2.

Parameter Value Parameter Value Parameter Value
ζ1n 0.87 ζ7n 0.98 ζ13n 1.06
ζ2n 1.07 ζ8n 1.14 ζ14n 1.05
ζ3n 0.93 ζ9n 0.94 ζ15n 0.90
ζ4n 0.98 ζ10n 1.06 ζ16n 0.89
ζ5n 1.01 ζ11n 0.95 ζ17n 1.12
ζ6n 1.13 ζ12n 1.04 ζ18n 0.90

σn 8.01× 10−2

Results

For identification purposes, all structural parameters are considered as uncertain, i.e., θi = ζi,

i = 1, . . . , 18. In addition, the standard deviation of the prediction and measurement errors is also

considered in the set of uncertain parameters as θ19 = σ. Thus, the Bayesian model updating prob-

lem comprises a total of nθ = 19 parameters to be identified. Note that this is a high-dimensional

problem from the identification point of view. The prior probability density function of each struc-

tural parameter θi, i = 1, . . . , 18, is taken as uniform over the interval [0.5, 1.5], while the prior

distribution of θ19 is lognormal with median equal to 0.1 m/s2 and a logarithmic standard deviation

of 0.3. According to this definition, the prior means of the uncertain parameters differ from their

corresponding target values.
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Fig. 7.14: Input ground motion and acceleration measurements (in m/s2) at the midpoint of the
deck’s central span. Example 2.

In the context of the proposed identification scheme, a sample size equal to N = 2000 and a con-

ditional probability of p0 = 0.1 are considered. Table 7.6 shows the posterior mean values of the

uncertain parameters obtained at the end of the sampling process. For presentation purposes, the pa-

rameters haven been normalized by their target values (see Table 7.5) as θ̂i = θi/ζin, i = 1, . . . , 18

and θ̂19 = θ19/σn. Relatively small differences with respect to the target values are obtained for

the parameters associated with the deck (θi, i = 1, . . . , 5), bearings (θ17 and θ18), and standard

deviation of the prediction errors (θ19). Validation calculations suggest that these parameters have

a significant effect on the system response. On the other hand, deviations with respect to the tar-

get values are observed for the parameters associated with the piers (θi, i = 6, . . . , 9) and piles

(θi, i = 10, . . . , 13). This can be attributed to the interaction between these parameters. In terms of

the substructures associated with the soil springs, it is seen that the posterior mean of the parameter

associated with the superficial soil layer (θ14) matches its target value, whereas the posterior mean

estimates corresponding to the lower soil layers (θ15 and θ16) present larger deviations with respect

to their target values. This is reasonable from the engineering viewpoint and can be presumably

attributed to a higher sensitivity of the deck acceleration response with respect to the stiffness of
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the superficial soil layer (θ14), as it affects the horizontal stiffness of the entire foundation system

to a greater extent. It is noted that similar results are obtained when considering different runs of

the proposed approach.

Table 7.6: Posterior mean values of the normalized model parameters. Example 2.

Parameter Value Parameter Value
θ̂1 0.956 θ̂11 1.247
θ̂2 1.011 θ̂12 0.751
θ̂3 0.982 θ̂13 1.192
θ̂4 1.029 θ̂14 1.003
θ̂5 1.043 θ̂15 1.322
θ̂6 1.146 θ̂16 0.894
θ̂7 1.149 θ̂17 1.003
θ̂8 0.811 θ̂18 0.996
θ̂9 0.843 θ̂19 1.008
θ̂10 0.891

The predictive capabilities of the proposed method in terms of the system response are shown in

Figure 7.15. This figure presents the target responses (solid-black line) of the horizontal displace-

ments at the abutments, as well as the mean predictions (dotted-red line) and the 95%-confidence

intervals (grey area) associated with the prior (left plots) and posterior (right plots) distributions.

Note that the prior mean predictions present some deviations with respect to the target responses

and, in addition, the uncertainty in such predictions is considerable. However, the incorporation of

available measurement data allows to improve the predictive capabilities of the model class. Recall

that, according to Eq. (7.5), the likelihood function is defined in terms of a measure-of-fit function

between the measured responses and the model prediction. Hence, the objective and goal of the

proposed method is to find a set of parameters that provides high-quality updated predictions of

the response. In this regard, the different lines in the right plots, which are associated with the

posterior distribution, are indistinguishable between each other. That is, the target and expected

responses agree very well and, moreover, the uncertainty in the response prediction is significantly

reduced. Thus, the results indicate that the proposed approach is able to update the information on
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the system response in an effective manner for this case.

Fig. 7.15: Target response (solid-black line), mean predictions (dotted-red line), and 95%-
confidence intervals (grey area) of the horizontal displacements at the abutments. Left: Prior dis-
tribution. Right: Posterior distribution. Example 2.

Figure 7.16 shows the evolution of the threshold level, vth, during the different stages of subset

simulation. Recall that this variable corresponds to the maximum log-likelihood value observed

until the current stage. The results show that the method requires 20 stages to meet the stopping

criterion. Nonetheless, the threshold level is stabilized roughly after 15 stages and it marginally

increases during the final simulation levels. In this regard, the simulation process can be potentially

stopped during an intermediate stage to retrieve samples that follow a truncated version of the

posterior distribution [303]. However, the validity of such approach is problem-dependent and,

therefore, the accuracy of the corresponding results must be assessed for each application. Finally,



CHAPTER 7. AN EFFECTIVE IMPLEMENTATION OF RELIABILITY METHODS FOR
BAYESIAN MODEL UPDATING OF STRUCTURAL DYNAMIC MODELS WITH
MULTIPLE UNCERTAIN PARAMETERS 274

Table 7.7 shows the log-evidence estimates obtained across ten independent runs of the proposed

simulation scheme. Rather stable estimates are observed in this case. Thus, the method is able to

provide robust evidence estimates for this high-dimensional model updating problem involving a

complex structural model equipped with nonlinear devices.

Fig. 7.16: Evolution of threshold level. Example 2.

Table 7.7: Log-evidence estimates obtained in ten independent runs of the proposed scheme. Ex-
ample 2.

Run No. Log-evidence Run No. Log-evidence
1 2.19× 104 6 2.19× 104

2 2.18× 104 7 2.19× 104

3 2.19× 104 8 2.20× 104

4 2.18× 104 9 2.19× 104

5 2.19× 104 10 2.19× 104

7.6 Conclusions

An approach for Bayesian model updating of structural dynamic systems involving multiple un-

certain parameters and measured responses has been presented in this contribution. The proposed

scheme is based on the use of structural reliability methods, where samples following the posterior

distribution are obtained as failure samples corresponding to an equivalent reliability problem. In

this framework, an estimate of the evidence is obtained as a byproduct of the sampling process.
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Subset simulation, a well known and widely applied stochastic simulation technique, is adopted

to generate the required failure samples. A strategy that adaptively determines the threshold level

beyond which the corresponding failure samples follow the posterior distribution is implemented.

Furthermore, only minimum modifications to the standard subset simulation algorithm are needed

and no prior knowledge about the maximum likelihood value is required. These features are ben-

eficial from a practical viewpoint. For an efficient numerical implementation of the proposed ap-

proach, an effective parametric reduced-order model formulation based on substructure coupling

for dynamic analysis is considered. The resulting approach represents an alternative Bayesian iden-

tification technique based on structural reliability methods which provides an effective treatment of

the maximum likelihood value while maintaining simplicity in its formulation and implementation.

Two examples have been studied to demonstrate the effectiveness and robustness of the proposed

scheme, including a realistic model of a bridge structure equipped with nonlinear devices. Noisy

acceleration measurements are synthetically generated for identification purposes. The important

modal properties and the system response prediction are properly updated in both cases. In general,

relatively few stages in the framework of subset simulation are required to stabilize the threshold

level. This indicates the validity of the proposed method, since it is able to explore effectively

the important region of the likelihood function. Similarly, the evidence estimates obtained across

independent runs of the approach are rather stable for the problems analyzed in this contribu-

tion. Finally, the parametric reduced-order model strategy allows substantial computational sav-

ings without compromising the quality of the identification results. Overall, the results suggest that

the proposed approach is an effective tool to address Bayesian model updating problems involv-

ing complex structural dynamic models, measured response data and high-dimensional parameter

spaces. Furthermore, these developments open the door to applications involving real structural

dynamic systems, which can in turn contribute to enhance the safety, reliability and life-cycle man-

agement of existing structures.

Future research efforts involve the integration of surrogate models at the likelihood function level,
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which can allow additional computational savings by reducing the number of calls to the paramet-

ric reduced-order model. Another research direction corresponds to the assessment of alternative

techniques for generating the conditional samples at each simulation level, such as the implemen-

tation of different proposal distributions or methods based on auxiliary dynamic systems. Further,

a thorough comparison between alternative BUS formulations as well as between different struc-

tural reliability methods, in the framework of complex structural dynamic systems, is an interesting

and important topic for future work. Also, the characterization of complex posterior distributions

associated with the identification of involved structural dynamic systems with multiple uncertain

parameters as well as the consideration of measured response data, i.e., field data, are additional

aspects of practical relevance. Finally, the assessment of the proposed scheme for Bayesian model

class selection and model averaging problems, i.e., updated prediction of response quantities based

on different model classes, in the context of high-dimensional parameter spaces is an additional

subject for future research. Some of these topics are currently under consideration.
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Chapter 8

Concluding remarks and outlook

This thesis comprises several contributions pertaining to the topics of reliability-based design opti-

mization (RBDO) of structural dynamical systems under stochastic excitation, contaminant source

detection in water distribution networks (WDNs), and model updating of structural dynamical sys-

tems involving multiple uncertain parameters. Probability theory concepts and tools are adopted to

devise the reported developments. Specifically, stochastic simulation techniques are instrumental

in the formulation and implementation of the proposed approaches.

In Chapters 2, 3 and 4, a stochastic search-based technique is developed for the RBDO of struc-

tural dynamical systems under stochastic excitation. The RBDO problem is stated as an equivalent

Bayesian model updating problem, which is solved by means of a two-phase sampling strategy.

Specifically, an exploration phase is first carried out to retrieve uniformly distributed feasible de-

signs, which are then used in an exploitation phase to obtain a set of nearly optimal designs. To this

end, the transitional Markov chain Monte Carlo (TMCMC) method is implemented with adaptive

surrogate models and suitable proposal distributions. Several application examples involving realis-

tic structural models are presented, which illustrate the method effectiveness in treating constrained

and unconstrained cases, as well as mixed discrete-continuous design spaces. Some valuable fea-

tures of the approach comprise its high theoretical chances to reach a vicinity of the optimum

solution set and its ability to obtain non-trivial insight about the problem functions as a byproduct

of the sampling process. Future research efforts include, e.g., the consideration of multiobjective

optimization formulations and of alternative civil engineering systems.

The contribution reported in Chapter 5 focuses on the RBDO of linear structural systems under

Gaussian excitation. Directional importance sampling is implemented as a general framework to

277
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estimate first-order derivatives of the first-passage probability. Hence, gradient-based methods are

enabled to identify optimal solutions and to assess their sensitivity with respect to model parameter

perturbations. Numerical results involving a realistic finite element model suggest that the approach

constitutes a flexible tool to treat a practical-type of problems in civil engineering. Future research

directions include, indicatively, the integration of reduced-order models and the extension to cases

with random structural parameters.

A Bayesian model class selection approach for contaminant source detection in WDNs is formu-

lated in Chapter 6. Each possible contaminant location is represented by a probabilistic model

class whose parameters define the intensity and starting time of the event. The TMCMC method

is adopted to perform the required calculations. Ultimately, the most probable class represents the

most plausible contaminant location, and its posterior distribution allows assessing the actual sys-

tem state. Two examples involving simulated measurements suggest that valuable information can

be obtained by the approach, even for relatively scarce and noisy data. Potential future extensions

consider the treatment of stochastic demands and of more complex contamination events.

Chapter 7 proposes, in the framework of Bayesian model updating with structural reliability meth-

ods (BUS), an effective implementation of subset simulation to treat problems involving structural

dynamical systems, measured response data, and multiple identification parameters. By adaptively

defining the target threshold value, the need for prior information about the maximum of the likeli-

hood function is circumvented. For improved efficiency, a parametric model reduction technique is

integrated. Two model updating problems, including the finite element model of a bridge equipped

with sliding bearings, illustrate the capabilities of the approach. Future developments include the

use of alternative sampling strategies and the treatment of hierarchical Bayesian model updating

problems.

In conclusion, the arguments and results discussed in the preceding chapters indicate that compu-

tational aspects constitute a crucial component in the implementation of probability-based method-

ologies for the analysis of civil engineering structures and systems. In this regard, the different ap-
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proaches reported in this thesis can be potentially adopted as functional tools to address a number of

practical problems, and their extensions can further improve the overall applicability of RBDO and

model updating procedures. Nonetheless, it is believed that additional research in these subjects is

needed to propel their adoption in customary engineering practice. Examples of possible future im-

provements include, indicatively, the formulation of robust RBDO methods for high-dimensional

design spaces, the efficient identification of high-fidelity models, and the treatment of uncertain

operational conditions for general model updating problems. Following the previous presentation,

future efforts in these areas should focus on devising not only theoretically sound methodologies,

but also the appropriate implementation strategies for applying them. Ultimately, such develop-

ments can contribute to obtain valuable insight for decision making under uncertainty, which can

in turn enhance the overall performance, safety and robustness of civil engineering structures and

systems over their lifetime.
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