39 research outputs found

    Design of frequency synthesizers for short range wireless transceivers

    Get PDF
    The rapid growth of the market for short-range wireless devices, with standards such as Bluetooth and Wireless LAN (IEEE 802.11) being the most important, has created a need for highly integrated transceivers that target drastic power and area reduction while providing a high level of integration. The radio section of the devices designed to establish communications using these standards is the limiting factor for the power reduction efforts. A key building block in a transceiver is the frequency synthesizer, since it operates at the highest frequency of the system and consumes a very large portion of the total power in the radio. This dissertation presents the basic theory and a design methodology of frequency synthesizers targeted for short-range wireless applications. Three different examples of synthesizers are presented. First a frequency synthesizer integrated in a Bluetooth receiver fabricated in 0.35μm CMOS technology. The receiver uses a low-IF architecture to downconvert the incoming Bluetooth signal to 2MHz. The second synthesizer is integrated within a dual-mode receiver capable of processing signals of the Bluetooth and Wireless LAN (IEEE 802.11b) standards. It is implemented in BiCMOS technology and operates the voltage controlled oscillator at twice the required frequency to generate quadrature signals through a divide-by-two circuit. A phase switching prescaler is featured in the synthesizer. A large capacitance is integrated on-chip using a capacitance multiplier circuit that provides a drastic area reduction while adding a negligible phase noise contribution. The third synthesizer is an extension of the second example. The operation range of the VCO is extended to cover a frequency band from 4.8GHz to 5.85GHz. By doing this, the synthesizer is capable of generating LO signals for Bluetooth and IEEE 802.11a, b and g standards. The quadrature output of the 5 - 6 GHz signal is generated through a first order RC - CR network with an automatic calibration loop. The loop uses a high frequency phase detector to measure the deviation from the 90° separation between the I and Q branches and implements an algorithm to minimize the phase errors between the I and Q branches and their differential counterparts

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Clock Generation Design for Continuous-Time Sigma-Delta Analog-To-Digital Converter in Communication Systems

    Get PDF
    Software defined radio, a highly digitized wireless receiver, has drawn huge attention in modern communication system because it can not only benefit from the advanced technologies but also exploit large digital calibration of digital signal processing (DSP) to optimize the performance of receivers. Continuous-time (CT) bandpass sigma-delta (ΣΔ) modulator, used as an RF-to-digital converter, has been regarded as a potential solution for software defined ratio. The demand to support multiple standards motivates the development of a broadband CT bandpass ΣΔ which can cover the most commercial spectrum of 1GHz to 4GHz in a modern communication system. Clock generation, a major building block in radio frequency (RF) integrated circuits (ICs), usually uses a phase-locked loop (PLL) to provide the required clock frequency to modulate/demodulate the informative signals. This work explores the design of clock generation in RF ICs. First, a 2-16 GHz frequency synthesizer is proposed to provide the sampling clocks for a programmable continuous-time bandpass sigma-delta (ΣΔ) modulator in a software radio receiver system. In the frequency synthesizer, a single-sideband mixer combines feed-forward and regenerative mixing techniques to achieve the wide frequency range. Furthermore, to optimize the excess loop delay in the wideband system, a phase-tunable clock distribution network and a clock-controlled quantizer are proposed. Also, the false locking of regenerative mixing is solved by controlling the self-oscillation frequency of the CML divider. The proposed frequency synthesizer performs excellent jitter performance and efficient power consumption. Phase noise and quadrature phase accuracy are the common tradeoff in a quadrature voltage-controlled oscillator. A larger coupling ratio is preferred to obtain good phase accuracy but suffer phase noise performance. To address these fundamental trade-offs, a phasor-based analysis is used to explain bi-modal oscillation and compute the quadrature phase errors given by inevitable mismatches of components. Also, the ISF is used to estimate the noise contribution of each major noise source. A CSD QVCO is first proposed to eliminate the undesired bi-modal oscillation and enhance the quadrature phase accuracy. The second work presents a DCC QVCO. The sophisticated dynamic current-clipping coupling network reduces injecting noise into LC tank at most vulnerable timings (zero crossing points). Hence, it allows the use of strong coupling ratio to minimize the quadrature phase sensitivity to mismatches without degrading the phase noise performance. The proposed DCC QVCO is implemented in a 130-nm CMOS technology. The measured phase noise is -121 dBc/Hz at 1MHz offset from a 5GHz carrier. The QVCO consumes 4.2mW with a 1-V power supply, resulting in an outstanding Figure of Merit (FoM) of 189 dBc/Hz. Frequency divider is one of the most power hungry building blocks in a PLL-based frequency synthesizer. The complementary injection-locked frequency divider is proposed to be a low-power solution. With the complimentary injection schemes, the dividers can realize both even and odd division modulus, performing a more than 100% locking range to overcome the PVT variation. The proposed dividers feature excellent phase noise. They can be used for multiple-phase generation, programmable phase-switching frequency dividers, and phase-skewing circuits

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    Design of a Dual Band Local Positioning System

    Get PDF
    This work presents a robust dual band local positioning system (LPS) working in the 2.4GHz and 5.8GHz industrial science medical (ISM) bands. Position measurement is based on the frequency-modulated continuous wave (FMCW) radar approach, which uses radio frequency (RF) chirp signals for propagation time and therefore distance measurements. Contrary to state of the art LPS, the presented system uses data from both bands to improve accuracy, precision and robustness. A complete system prototype is designed consisting of base stations and tags encapsulating most of the RF and analogue signal processing in custom integrated circuits. This design approach allows to reduce size and power consumption compared to a hybrid system using off-the-shelf components. Key components are implemented using concepts, which support operation in multiple frequency bands, namely, the receiver consisting of a low noise amplifier (LNA), mixer, frequency synthesizer with a wide band voltage-controlled oscillator (VCO) having broadband chirp generation capabilities and a dual band power amplifier. System imperfections occurring in FMCW radar systems are modelled. Effects neglected in literature such as compression, intermodulation, the influence of automatic gain control, blockers and spurious emissions are modeled. The results are used to derive a specification set for the circuit design. Position estimation from measured distances is done using an enhanced version of the grid search algorithm, which makes use of data from multiple frequency bands. The algorithm is designed to be easily and efficiently implemented in embedded systems. Measurements show a coverage range of the system of at least 245m. Ranging accuracy in an outdoor scenario can be as low as 8.2cm. Comparative dual band position measurements prove an effective outlier filtering in indoor and outdoor scenarios compared to single band results, yielding in a large gain of accuracy. Positioning accuracy in an indoor scenario with an area of 276m² can be improved from 1.27m at 2.4GHz and 1.86m at 5.8GHz to only 0.38m in the dual band case, corresponding to an improvement by at least a factor of 3.3. In a large outdoor scenario of 4.8 km², accuracy improves from 1.88m at 2.4GHz and 5.93m at 5.8GHz to 0.68m with dual band processing, which is a factor of at least 2.8.Die vorliegende Arbeit befasst sich mit dem Entwurf eines robusten lokalen Positionierungssystems (LPS), welches in den lizenzfreien Frequenzbereichen für industrielle, wissenschaftliche und medizinische Zwecke (industrial, scientific, medical, ISM) bei 2,4GHz und 5,8GHz arbeitet. Die Positionsbestimmung beruht auf dem Prinzip des frequenzmodulierten Dauerstrichradars (frequency modulated continuous wave, FMCW-Radar), welches hochfrequente Rampensignale für Laufzeitmessungen und damit Abstandsmessungen benutzt. Im Gegensatz zu aktuellen Arbeiten auf diesem Gebiet benutzt das vorgestellte System Daten aus beiden Frequenzbändern zur Erhöhung der Genauigkeit und Präzision sowie Verbesserung der Robustheit. Ein Prototyp des kompletten Systems bestehend aus Basisstationen und mobilen Stationen wurde entworfen. Fast die gesamte analoge hochfrequente Signalverarbeitungskette wurde als anwendungsspezifische integrierte Schaltung realisiert. Verglichen mit Systemen aus Standardkomponenten erlaubt dieser Ansatz die Miniaturisierung der Systemkomponenten und die Einsparung von Leistung. Schlüsselkomponenten wurden mit Konzepten für mehrbandige oder breitbandige Schaltungen entworfen. Dabei wurden Sender und Empfänger bestehend aus rauscharmem Verstärker, Mischer und Frequenzsynthesizer mit breitbandiger Frequenzrampenfunktion implementiert. Außerdem wurde ein Leistungsverstärker für die gleichzeitige Nutzung der beiden definierten Frequenzbänder entworfen. Um Spezifikationen für den Schaltungsentwurf zu erhalten, wurden in der Fachliteratur vernachlässigte Nichtidealitäten von FMCW-Radarsystemen modelliert. Dazu gehören Signalverzerrungen durch Kompression oder Intermodulation, der Einfluss der automatischen Verstärkungseinstellung sowie schmalbandige Störer und Nebenschwingungen. Die Ergebnisse der Modellierung wurden benutzt, um eine Spezifikation für den Schaltungsentwurf zu erhalten. Die Schätzung der Position aus gemessenen Abständen wurde über eine erweiterte Version des Gittersuchalgorithmus erreicht. Dieser nutzt die Abstandsmessdaten aus beiden Frequenzbändern. Der Algorithmus ist so entworfen, dass er effizient in einem eingebetteten System implementiert werden kann. Messungen zeigen eine maximale Reichweite des Systems von mindestens 245m. Die Genauigkeit von Abstandsmessungen im Freiland beträgt 8,2cm. Positionsmessungen wurden unter Verwendung beider Einzelbänder durchgeführt und mit den Ergebnissen des Zweiband-Gittersuchalgorithmus verglichen. Damit konnte eine starke Verbesserung der Positionsgenauigkeit erreicht werden. Die Genauigkeit in einem Innenraum mit einer Grundfläche von 276m² kann verbessert werden von 1,27m bei 2,4GHz und 1,86m bei 5,8GHz zu nur 0,38m im Zweibandverfahren. Das entspricht einer Verbesserung um einen Faktor von mindestens 3,3. In einem größeren Außenszenario mit einer Fläche von 4,8 km² verbessert sich die Genauigkeit um einen Faktor von mindestens 2,8 von 1,88m bei 2,4GHz und 5,93m bei 5,8GHz auf 0,68m bei Nutzung von Daten aus beiden Frequenzbändern

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Frequency Synthesis in Wireless and Wireline Systems

    Get PDF
    First, a frequency synthesizer for IEEE 802.15.4 / ZigBee transceiver applications that employs dynamic True Single Phase Clocking (TSPC) circuits in its frequency dividers is presented and through the analysis and measurement results of this synthesizer, the need for low power circuit techniques in frequency dividers is discussed. Next, Differential Cascode Voltage-Switch-Logic (DCVSL) based delay cells are explored for implementing radio-frequency (RF) frequency dividers of low power frequency synthesizers. DCVSL ip- ops offer small input and clock capacitance which makes the power consumption of these circuits and their driving stages, very low. We perform a delay analysis of DCVSL circuits and propose a closed-form delay model that predicts the speed of DCVSL circuits with 8 percent worst case accuracy. The proposed delay model also demonstrates that DCVSL circuits suffer from a large low-to-high propagation delay ( PLH) which limits their speed and results in asymmetrical output waveforms. Our proposed enhanced DCVSL, which we call DCVSL-R, solves this delay bottleneck, reducing PLH and achieving faster operation. We implement two ring-oscillator-based voltage controlled oscillators (VCOs) in 0.13 mu m technology with DCVSL and DCVSL-R delay cells. In measurements, for the same oscillation frequency (2.4GHz) and same phase noise (-113dBc/Hz at 10MHz), DCVSL-R VCO consumes 30 percent less power than the DCVSL VCO. We also use the proposed DCVSL-R circuit to implement the 2.4GHz dual-modulus prescaler of a low power frequency synthesizer in 0.18 mu m technology. In measurements, the synthesizer exhibits -135dBc/Hz phase noise at 10MHz offset and 58 mu m settling time with 8.3mW power consumption, only 1.07mWof which is consumed by the dual modulus prescaler and the buffer that drives it. When compared to other dual modulus prescalers with similar division ratios and operating frequencies in literature, DCVSL-R dual modulus prescaler demonstrates the lowest power consumption. An all digital phase locked loop (ADPLL) that operates for a wide range of frequencies to serve as a multi-protocol compatible PLL for microprocessor and serial link applications, is presented. The proposed ADPLL is truly digital and is implemented in a standard complementary metal-oxide-semiconductor (CMOS) technology without any analog/RF or non-scalable components. It addresses the challenges that come along with continuous wide range of operation such as stability and phase frequency detection for a large frequency error range. A proposed multi-bit bidirectional smart shifter serves as the digitally controlled oscillator (DCO) control and tunes the DCO frequency by turning on/off inverter units in a large row/column matrix that constitute the ring oscillator. The smart shifter block is completely digital, consisting of standard cell logic gates, and is capable of tracking the row/column unit availability of the DCO and shifting multiple bits per single update cycle. This enables fast frequency acquisition times without necessitating dual loop fi lter or gear shifting mechanisms. The proposed ADPLL loop architecture does not employ costly, cumbersome DACs or binary to thermometer converters and minimizes loop filter and DCO control complexity. The wide range ADPLL is implemented in 90nm digital CMOS technology and has a 9-bit TDC, the output of which is processed by a 10-bit digital loop filter and a 5-bit smart shifter. In measurements, the synthesizer achieves 2.5GHz-7.3GHz operation while consuming 10mW/GHz power, with an active area of 0.23 mm2

    Design Techniques of Energy Efficient PLL for Enhanced Noise and Lock Performance

    Get PDF
    Phase locked loops(PLLs)are vital building blocks of communication sys-tems whose performance dictates the quality of communication.The design of PLL to o_er superior performance is the prime objective of this research.It is desirable for the PLL to have fast locking,low noise,low reference spur,wide lock range,low power consumption consuming less silicon area.To achieve these performance parameters simultaneously in a PLL being a challenging task is taken up as a scope of the present work.A comprehensive study of the performance linked PLL components along with their design challenges is made in this report.The phase noise which is directly related to the dead zone of the PLL is minimized using an e_cient phase frequency detector(PFD)in this thesis.Here a voltage variable delay element is inserted in the reset path of the PFD to reduce the dead zone.An adaptive PFD architecture is also proposed to have a low noise and fast PLL simultaneously.In this work,before locking a fast PFD and in the locked state a low noise PFD operates to dictate the phase di_erence of the reference and feedback signals.To reduce the reference spur,a novel charge pump architecture is proposed which eventually reduces the lock time up to a great extent.In this charge pump a single current source is employed to reduce the output current mis-match and transmission gates are used to reduce the non ideal e_ects.Besides this,the fabrication process variations have a predominant e_ect on the PLL performance,which is directly linked to the locking capability.This necessitates a manufacturing process variation tolerant design of the PLL.In this work an e_cient multi-objective optimization method is also applied to at-tain multiple optimal performance objectives.The major performances under consideration are lock time,phase noise,lock range and power consumption

    Transceiver architectures and sub-mW fast frequency-hopping synthesizers for ultra-low power WSNs

    Get PDF
    Wireless sensor networks (WSN) have the potential to become the third wireless revolution after wireless voice networks in the 80s and wireless data networks in the late 90s. This revolution will finally connect together the physical world of the human and the virtual world of the electronic devices. Though in the recent years large progress in power consumption reduction has been made in the wireless arena in order to increase the battery life, this is still not enough to achieve a wide adoption of this technology. Indeed, while nowadays consumers are used to charge batteries in laptops, mobile phones and other high-tech products, this operation becomes infeasible when scaled up to large industrial, enterprise or home networks composed of thousands of wireless nodes. Wireless sensor networks come as a new way to connect electronic equipments reducing, in this way, the costs associated with the installation and maintenance of large wired networks. To accomplish this task, it is necessary to reduce the energy consumption of the wireless node to a point where energy harvesting becomes feasible and the node energy autonomy exceeds the life time of the wireless node itself. This thesis focuses on the radio design, which is the backbone of any wireless node. A common approach to radio design for WSNs is to start from a very simple radio (like an RFID) adding more functionalities up to the point in which the power budget is reached. In this way, the robustness of the wireless link is traded off for power reducing the range of applications that can draw benefit form a WSN. In this thesis, we propose a novel approach to the radio design for WSNs. We started from a proven architecture like Bluetooth, and progressively we removed all the functionalities that are not required for WSNs. The robustness of the wireless link is guaranteed by using a fast frequency hopping spread spectrum technique while the power budget is achieved by optimizing the radio architecture and the frequency hopping synthesizer Two different radio architectures and a novel fast frequency hopping synthesizer are proposed that cover the large space of applications for WSNs. The two architectures make use of the peculiarities of each scenario and, together with a novel fast frequency hopping synthesizer, proved that spread spectrum techniques can be used also in severely power constrained scenarios like WSNs. This solution opens a new window toward a radio design, which ultimately trades off flexibility, rather than robustness, for power consumption. In this way, we broadened the range of applications for WSNs to areas in which security and reliability of the communication link are mandatory

    Bluetooth/WLAN receiver design methodology and IC implementations

    Get PDF
    Emerging technologies such as Bluetooth and 802.11b (Wi-Fi) have fuelled the growth of the short-range communication industry. Bluetooth, the leading WPAN (wireless personal area network) technology, was designed primarily for cable replacement applications. The first generation Bluetooth products are focused on providing low-cost radio connections among personal electronic devices. In the WLAN (wireless local area network) arena, Wi-Fi appears to be the superior product. Wi-Fi is designed for high speed internet access, with higher radio power and longer distances. Both technologies use the same 2.4GHz ISM band. The differences between Bluetooth and Wi-Fi standard features lead to a natural partitioning of applications. Nowadays, many electronics devices such as laptops and PDAs, support both Bluetooth and Wi-Fi standards to cover a wider range of applications. The cost of supporting both standards, however, is a major concern. Therefore, a dual-mode transceiver is essential to keep the size and cost of such system transceivers at a minimum. A fully integrated low-IF Bluetooth receiver is designed and implemented in a low cost, main stream 0.35um CMOS technology. The system includes the RF front end, frequency synthesizer and baseband blocks. It has -82dBm sensitivity and draws 65mA current. This project involved 6 Ph.D. students and I was in charge of the design of the channel selection complex filter is designed. In the Bluetooth transmitter, a frequency modulator with fine frequency steps is needed to generate the GFSK signal that has +/-160kHz frequency deviation. A low power ROM-less direct digital frequency synthesizer (DDFS) is designed to implement the frequency modulation. The DDFS can be used for any frequency or phase modulation communication systems that require fast frequency switching with fine frequency steps. Another contribution is the implementation of a dual-mode 802.11b/Bluetooth receiver in IBM 0.25um BiCMOS process. Direct-conversion architecture was used for both standards to achieve maximum level of integration and block sharing. I was honored to lead the efforts of 7 Ph.D. students in this project. I was responsible for system level design as well as the design of the variable gain amplifier. The receiver chip consumes 45.6/41.3mA and the sensitivity is -86/-91dBm
    corecore