78 research outputs found

    Sitting behaviour-based pattern recognition for predicting driver fatigue

    Full text link
    The proposed approach based on physiological characteristics of sitting behaviours and sophisticated machine learning techniques would enable an effective and practical solution to driver fatigue prognosis since it is insensitive to the illumination of driving environment, non-obtrusive to driver, without violating driver’s privacy, more acceptable by drivers

    Prediction of drivers’ performance in highly automated vehicles

    Get PDF
    Purpose: The aim of this research was to assess the predictability of driver’s response to critical hazards during the transition from automated to manual driving in highly automated vehicles using their physiological data.Method: A driving simulator experiment was conducted to collect drivers’ physiological data before, during and after the transition from automated to manual driving. A total of 33 participants between 20 and 30 years old were recruited. Participants went through a driving scenario under the influence of different non-driving related tasks. The repeated measures approach was used to assess the effect of repeatability on the driver’s physiological data. Statistical and machine learning methods were used to assess the predictability of drivers’ response quality based on their physiological data collected before responding to a critical hazard. Findings: - The results showed that the observed physiological data that was gathered before the transition formed strong indicators of the drivers’ ability to respond successfully to a potential hazard after the transition. In addition, physiological behaviour was influenced by driver’s secondary tasks engagement and correlated with the driver’s subjective measures to the difficulty of the task. The study proposes new quality measures to assess the driver’s response to critical hazards in highly automated driving. Machine learning results showed that response time is predictable using regression methods. In addition, the classification methods were able to classify drivers into low, medium and high-risk groups based on their quality measures values. Research Implications: Proposed models help increase the safety of automated driving systems by providing insights into the drivers’ ability to respond to future critical hazards. More research is required to find the influence of age, drivers’ experience of the automated vehicles and traffic density on the stability of the proposed models. Originality: The main contribution to knowledge of this study is the feasibility of predicting drivers’ ability to respond to critical hazards using the physiological behavioural data collected before the transition from automated to manual driving. With the findings, automation systems could change the transition time based on the driver’s physiological state to allow for the safest transition possible. In addition, it provides an insight into driver’s readiness and therefore, allows the automated system to adopt the correct driving strategy and plan to enhance drivers experience and make the transition phase safer for everyone.</div

    Methods and techniques for analyzing human factors facets on drivers

    Get PDF
    Mención Internacional en el título de doctorWith millions of cars moving daily, driving is the most performed activity worldwide. Unfortunately, according to the World Health Organization (WHO), every year, around 1.35 million people worldwide die from road traffic accidents and, in addition, between 20 and 50 million people are injured, placing road traffic accidents as the second leading cause of death among people between the ages of 5 and 29. According to WHO, human errors, such as speeding, driving under the influence of drugs, fatigue, or distractions at the wheel, are the underlying cause of most road accidents. Global reports on road safety such as "Road safety in the European Union. Trends, statistics, and main challenges" prepared by the European Commission in 2018 presented a statistical analysis that related road accident mortality rates and periods segmented by hours and days of the week. This report revealed that the highest incidence of mortality occurs regularly in the afternoons during working days, coinciding with the period when the volume of traffic increases and when any human error is much more likely to cause a traffic accident. Accordingly, mitigating human errors in driving is a challenge, and there is currently a growing trend in the proposal for technological solutions intended to integrate driver information into advanced driving systems to improve driver performance and ergonomics. The study of human factors in the field of driving is a multidisciplinary field in which several areas of knowledge converge, among which stand out psychology, physiology, instrumentation, signal treatment, machine learning, the integration of information and communication technologies (ICTs), and the design of human-machine communication interfaces. The main objective of this thesis is to exploit knowledge related to the different facets of human factors in the field of driving. Specific objectives include identifying tasks related to driving, the detection of unfavorable cognitive states in the driver, such as stress, and, transversely, the proposal for an architecture for the integration and coordination of driver monitoring systems with other active safety systems. It should be noted that the specific objectives address the critical aspects in each of the issues to be addressed. Identifying driving-related tasks is one of the primary aspects of the conceptual framework of driver modeling. Identifying maneuvers that a driver performs requires training beforehand a model with examples of each maneuver to be identified. To this end, a methodology was established to form a data set in which a relationship is established between the handling of the driving controls (steering wheel, pedals, gear lever, and turn indicators) and a series of adequately identified maneuvers. This methodology consisted of designing different driving scenarios in a realistic driving simulator for each type of maneuver, including stop, overtaking, turns, and specific maneuvers such as U-turn and three-point turn. From the perspective of detecting unfavorable cognitive states in the driver, stress can damage cognitive faculties, causing failures in the decision-making process. Physiological signals such as measurements derived from the heart rhythm or the change of electrical properties of the skin are reliable indicators when assessing whether a person is going through an episode of acute stress. However, the detection of stress patterns is still an open problem. Despite advances in sensor design for the non-invasive collection of physiological signals, certain factors prevent reaching models capable of detecting stress patterns in any subject. This thesis addresses two aspects of stress detection: the collection of physiological values during stress elicitation through laboratory techniques such as the Stroop effect and driving tests; and the detection of stress by designing a process flow based on unsupervised learning techniques, delving into the problems associated with the variability of intra- and inter-individual physiological measures that prevent the achievement of generalist models. Finally, in addition to developing models that address the different aspects of monitoring, the orchestration of monitoring systems and active safety systems is a transversal and essential aspect in improving safety, ergonomics, and driving experience. Both from the perspective of integration into test platforms and integration into final systems, the problem of deploying multiple active safety systems lies in the adoption of monolithic models where the system-specific functionality is run in isolation, without considering aspects such as cooperation and interoperability with other safety systems. This thesis addresses the problem of the development of more complex systems where monitoring systems condition the operability of multiple active safety systems. To this end, a mediation architecture is proposed to coordinate the reception and delivery of data flows generated by the various systems involved, including external sensors (lasers, external cameras), cabin sensors (cameras, smartwatches), detection models, deliberative models, delivery systems and machine-human communication interfaces. Ontology-based data modeling plays a crucial role in structuring all this information and consolidating the semantic representation of the driving scene, thus allowing the development of models based on data fusion.I would like to thank the Ministry of Economy and Competitiveness for granting me the predoctoral fellowship BES-2016-078143 corresponding to the project TRA2015-63708-R, which provided me the opportunity of conducting all my Ph. D activities, including completing an international internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José María Armingol Moreno.- Secretario: Felipe Jiménez Alonso.- Vocal: Luis Mart

    Analysis and detection of driver fatigue caused by sleep deprivation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (leaves 167-181).Human errors in attention and vigilance are among the most common causes of transportation accidents. Thus, effective countermeasures are crucial for enhancing road safety. By pursuing a practical and reliable design of an Active Safety system which aims to predict and avoid road accidents, we identify the characteristics of drowsy driving and devise a systematic way to infer the state of driver alertness based on driver-vehicle data. Although sleep and fatigue are major causes of impaired driving, neither effective regulations nor acceptable countermeasures are available yet. The first part of this thesis analyzes driver-vehicle systems with discrete sleep-deprivation levels, and reveals differences in the performance characteristics of drivers. Inspired by the human sleep-wake cycle mechanism and attributes of driver-vehicle systems, we design and perform human-in-the-loop experiments in a test bed built with STISIM Drive, an interactive fixed-based driving simulator. In the simulated driving, participants were given various driving tasks and secondary tasks for both non and partially sleep-deprived conditions. This experiment demonstrates that sleep deprivation has a greater effect on rule-based tasks than on skill-based tasks; when drivers are sleep-deprived, their performance of responding to unexpected disturbances degrades while they are robust enough to continue such routine driving tasks as straight lane tracking, following a lead vehicle, lane changes, etc. In the second part of the thesis we present both qualitative and quantitative guidelines for designing drowsy driver detection systems in a probabilistic framework based on the Bayesian network paradigm and experimental data.(cont.) We consider two major causes of sleep, i.e., sleep debt and circadian rhythm, in the framework with various driver-vehicle parameters, and also address temporal aspects of drowsiness and individual differences of subjects. The thesis concludes that detection of drowsy driving based on driver-vehicle data is a feasible but difficult problem which has diverse issues to be addressed; the ultimate challenge lies in the human operator.by Ji Hyun Yang.Ph.D

    Developing Driving Behaviour Models Incorporating the Effects of Stress

    Get PDF
    Driving is a complex task and several factors influence drivers’ decisions and performance including traffic conditions, attributes of vehicles, network and environmental characteristics, and last but not least characteristics of the drivers themselves. in an effort to better explain and represent driving behaviour, several driving behaviour models have been suggested over the years. In the existing literature, there are two main streams of driving behaviour models that can be found. The first is approaching driving behaviour from a human factors and cognitive perspective while the second is engineering-based. Driving behaviour models of the latter category are mathematical representations of drivers’ behaviour at the individual level, mostly focussing on acceleration/deceleration, lane-change and gap-acceptance decisions. Many of these factors are captured by existing driving behaviour models used in microscopic simulation tools. However, while the vast majority of existing models is approximating driving behaviour, primarily focusing on the effects of traffic conditions, little attention has been given to the impact of drivers’ characteristics. The aim of the current thesis is to investigate the effects of stress on driving behaviour and quantify its impact using an econometric modelling framework. This main research question emerged as a result of a widely acknowledged research gap in existing engineering-based driving behaviour models related to the incorporation of human factors and drivers’ characteristics within the model specification. The research was based on data collected using the University of Leeds Driving Simulator. Two main scenarios were presented to participants, while they were also deliberately subjected to stress induced by time pressure and various scenarios. At the same time, stress levels were measured via physiological indicators. Sociodemographic and trait data was also collected in the form of surveys. The data has been initially analysed for each main scenario and several statistics are extracted. The results show a clear effect of time pressure in favour of speeding, however relations related to physiological responses are not always clear. Moreover, two driving behaviour models are developed, a gap-acceptance and a car-following model. In the former model, increase in physiological responses is related to higher probability of accepting a gap and time pressure has a positive effect of gap-acceptance probability as well. In the car-following model, stress is associated with increased acceleration and potentially a more aggressive driving style. The aforementioned analysis is based on data collected in a driving simulator. Given the potential differences in driving behaviour between real and simulated driving, the transferability of a model based on the latter data to field traffic setting is also investigated. Results indicate significant differences in parameters estimated from a video and the simulator dataset, however these differences can be significantly reduced after applying parameter updating techniques. The findings in this thesis show that stress and drivers’ characteristics can influence driving behaviour and thus should be considered in the driving behaviour models for microscopic simulation applications. However, for real life applications, it is suggested that the extent of these effects should be treated with caution and ideally rescaled based on real traffic observations

    Integration of body sensor networks and vehicular ad-hoc networks for traffic safety

    Get PDF
    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.Peer ReviewedPostprint (author's final draft

    Novel technologies for the detection and mitigation of drowsy driving

    Get PDF
    In the human control of motor vehicles, there are situations regularly encountered wherein the vehicle operator becomes drowsy and fatigued due to the influence of long work days, long driving hours, or low amounts of sleep. Although various methods are currently proposed to detect drowsiness in the operator, they are either obtrusive, expensive, or otherwise impractical. The method of drowsy driving detection through the collection of Steering Wheel Movement (SWM) signals has become an important measure as it lends itself to accurate, effective, and cost-effective drowsiness detection. In this dissertation, novel technologies for drowsiness detection using Inertial Measurement Units (IMUs) are investigated and described. IMUs are an umbrella group of kinetic sensors (including accelerometers and gyroscopes) which transduce physical motions into data. Driving performances were recorded using IMUs as the primary sensors, and the resulting data were used by artificial intelligence algorithms, specifically Support Vector Machines (SVMs) to determine whether or not the individual was still fit to operate a motor vehicle. Results demonstrated high accuracy of the method in classifying drowsiness. It was also shown that the use of a smartphone-based approach to IMU monitoring of drowsiness will result in the initiation of feedback mechanisms upon a positive detection of drowsiness. These feedback mechanisms are intended to notify the driver of their drowsy state, and to dissuade further driving which could lead to crashes and/or fatalities. The novel methods not only demonstrated the ability to qualitatively determine a drivers drowsy state, but they were also low-cost, easy to implement, and unobtrusive to drivers. The efficacy, ease of use, and ease of access to these methods could potentially eliminate many barriers to the implementation of the technologies. Ultimately, it is hoped that these findings will help enhance traveler safety and prevent deaths and injuries to users

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    On the Recognition of Emotion from Physiological Data

    Get PDF
    This work encompasses several objectives, but is primarily concerned with an experiment where 33 participants were shown 32 slides in order to create ‗weakly induced emotions‘. Recordings of the participants‘ physiological state were taken as well as a self report of their emotional state. We then used an assortment of classifiers to predict emotional state from the recorded physiological signals, a process known as Physiological Pattern Recognition (PPR). We investigated techniques for recording, processing and extracting features from six different physiological signals: Electrocardiogram (ECG), Blood Volume Pulse (BVP), Galvanic Skin Response (GSR), Electromyography (EMG), for the corrugator muscle, skin temperature for the finger and respiratory rate. Improvements to the state of PPR emotion detection were made by allowing for 9 different weakly induced emotional states to be detected at nearly 65% accuracy. This is an improvement in the number of states readily detectable. The work presents many investigations into numerical feature extraction from physiological signals and has a chapter dedicated to collating and trialing facial electromyography techniques. There is also a hardware device we created to collect participant self reported emotional states which showed several improvements to experimental procedure

    A survey of the application of soft computing to investment and financial trading

    Get PDF
    • …
    corecore