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Abstract

Human errors in attention and vigilance are among the most common causes of trans-
portation accidents. Thus, effective countermeasures are crucial for enhancing road

safety. By pursuing a practical and reliable design of an Active Safety system which

aims to predict and avoid road accidents, we identify the characteristics of drowsy

driving and devise a systematic way to infer the state of driver alertness based on

driver-vehicle data. Although sleep and fatigue are major causes of impaired driving,
neither effective regulations nor acceptable countermeasures are available yet.

The first part of this thesis analyzes driver-vehicle systems with discrete sleep-

deprivation levels, and reveals differences in the performance characteristics of drivers.

Inspired by the human sleep-wake cycle mechanism and attributes of driver-vehicle

systems, we design and perform human-in-the-loop experiments in a test bed built

with STISIM Drive, an interactive fixed-based driving simulator. In the simulated

driving, participants were given various driving tasks and secondary tasks for both

non and partially sleep-deprived conditions. This experiment demonstrates that sleep

deprivation has a greater effect on rule-based tasks than on skill-based tasks; when

drivers are sleep-deprived, their performance of responding to unexpected distur-

bances degrades while they are robust enough to continue such routine driving tasks

as straight lane tracking, following a lead vehicle, lane changes, etc.

In the second part of the thesis we present both qualitative and quantitative guide-

lines for designing drowsy driver detection systems in a probabilistic framework based

on the Bayesian network paradigm and experimental data. We consider two major

causes of sleep, i.e., sleep debt and circadian rhythm, in the framework with various

driver-vehicle parameters, and also address temporal aspects of drowsiness and indi-

vidual differences of subjects. The thesis concludes that detection of drowsy driving

based on driver-vehicle data is a feasible but difficult problem which has diverse issues

to be addressed; the ultimate challenge lies in the human operator.

Thesis Supervisor: Eric Feron
Title: Visiting Professor, Department of Aeronautics and Astronautics, Massachusetts Institute of

Technology, Professor, School of Aerospace Engineering, Georgia Institute of Technology

Thesis Supervisor: Joseph Coughlin
Title: Senior Lecturer, Engineering Systems Division
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B Backlash

b Distance from rear wheels to center of gravity

Ca Front cornering stiffness

Car Rear cornering stiffness

c Constant in Backlash model

d Effect size index

F False

Faero Equivalent longitudinal aerodynamic drag

Fx Longitudinal tire force
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n Number of data within sampling window
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T True
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tf Terminal time in sampling window

U Longitudinal velocity
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NTSB National Transportation Safety Board
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Chapter 1

Introduction

In the past decades, there has been worldwide interest in the analysis and management

of fatigue-related transportation accidents, and significant efforts have been devoted

to its study. On-line driver monitoring devices in motor vehicles have received renewed

attention for managing fatigue in the U.S.A. and Europe since the late 1990's.

Among all fatigue-related accidents, crashes caused by fall-alseep-drivers are com-

mon and serious in terms of injury severity. As these lines are being written, countless

people are driving while fatigued or drowsy. Despite the wide-spread occurrence of

drowsy driving and the risk it generates, no nationwide regulations exist for drowsy

driving as they do for driving under the influence. Subjective estimates of sleepiness

are unreliable, and there is a strong perceived need for objective drowsiness-detection

technologies.

1.1 Motivation

Until recently, most safety-related research has focused on methods to reduce damage

caused by transportation accidents while they are occurring and after they happen.

Front/side air bags attempt to alleviate injuries in the case of an automobile collision.

Crash dummy tests analyze data to mitigate the effects of motor vehicle accidents on

human bodies. These are called Passive Safety features, because they do not actively

prevent accidents from occurring. They deal with situations on the assumption that
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Figure 1-1: Development profile: Active and Passive Safety systems [39]

accidents have already happened.

On the other hand, Active Safety systems are generally defined within global au-

tomotive industries as systems which contribute to the active avoidance of road acci-

dents, as opposed to Passive Safety features [39]. They aim to predict whether there is

going to be an accident or a near crash situation. They monitor drivers to determine

whether they are vigilant enough to drive safely and to cope with emergencies. ABS

(Anti-lock brake systems), RSC (Roll Stability Control Systems) and LDW (Lane

Departure Warning Systems) are some examples of Active Safety systems.

A myriad of Active Safety systems have received attention from major automobile

companies, and are being developed. The chronological development profile of both

Passive and Active safety features is shown in Fig. 1-1 [39], which clearly shows

a distinction between both features. Whereas the development of Passive Safety

systems is nearly saturated, the development of Active Safety systems is accelerating.

The Active Safety Enablers shown in Fig. 1-1 describe technologies essential for Active

Safety systems. Many Active Safety systems require advanced sensor systems for

implementation.
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As shown in Fig. 1-1, a majority of Active Safety systems aim at assisting drivers;

they help drivers to keep lane positions, to brake, to steer, and to monitor blind

spots. There is a growing consensus that human errors of attention and vigilance

are among the most common causes of transportation accidents [30, 31, 64, 129].

We often blame vehicles for any malfunctions, but a majority of transportation ac-

cidents originate from humans; drivers, passengers, or pedestrians. Statistics from

the U.S.A. and Europe show that among the diverse causes of transportation acci-

dents, approximately 10 to 30 percent of accidents involves sleep and fatigue [113.

Furthermore, their involvement in fatal accidents is especially high [122]. During the

period of 2000-2005, the percentage of fatal accidents attributable to sleepiness and

inattention varied from 19.6% to 25.1% [41].

Sleep and fatigue involvement in transportation accidents is undoubtedly global.

For example, a pile-up crash occurred on January 13, 2007 on Northbound Kyungbu-

Highway in South Korea. This crash killed 9 people, injured 23, and crushed all five

vehicles involved. Fig. 1-2 [68] shows damaged vehicles from the accident. This tragic

accident has turned out to be initiated by a drowsy driver.

This is just one episode showing that the consequences of drowsy driving could

be severe, yet drowsy driving is unregulated. Although the danger of drowsy driving

has been recognized, no efficient methods for regulating or managing fatigue-related

transportation accidents have been enacted yet, as there have been for DUI (Driving

Under the Influence). This thesis focuses on addressing the following questions:

e Can we detect drowsiness of drivers before an accident happens?

* What kind of technology is reliable and efficient in detecting drowsy driving?

e How dangerous is drowsy driving compared to other impaired driving such as

DUI?

* What kind of countermeasures for drowsy driving are effective?

In the U.S.A., there are many ongoing efforts at Federal, industrial, and in non-

govermental organizations toward technological development for monitoring drivers'

behavior in order to manage performance-impairment caused by fatigue [47]. We
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Figure 1-2: Drowsy driving often leads to severe consequences. [68]

believe that research on drowsy driving is a key to manage fatigue problems in trans-

portation.

1.2 Problem Statement

In this section we define the problems and issues that we will address throughout

the thesis. As a way to identify the problems within the context of transportation

accident management, we introduce the Haddon Matrix, which is the most commonly

used paradigm in the field of injury prevention.

The Haddon matrix [46] is a matrix of categories. It enables us to systemati-

cally analyze transportation accidents by considering causal factors and contributing

factors. Active and Passive Safety systems can be also mapped into the Haddon

matrix. A Haddon matrix categorizing automobile collisions is shown in Table 1.1.

The causal factors, shown in each row of the matrix, categorize problems into three

different time frames: before the accident, during the accident, and after the acci-

dent. The contributing factors, shown in each column, divide the problems into three

attributes: human, vehicle, and environment. Thus, the Haddon matrix has a total

of 9 categories of intervention to prevent transportation accidents.
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Table 1.1: Haddon Matrix for automobile collision [39, 46]

Human Vehicle Environment

Pre-event Motor skills, Active Safety A nation wide
(Accident Cognitive (Ex: ABS, LDW, roadway based

Avoidance) function CAS, RSC) communications,
Detection of Human Drowsiness Weather cond.

Event Technology Passive Safety Road design
(Occupant and proper (Ex: Air bags, for injury
Protection) use Seat belt) mitigation

Post-event Automatic Emergency
(Injury Telematics crash medical

mitigation) notification services

For example, Active and Passive Safety systems appear in the second column (the

vehicle-attribute column), since both features are mainly installed and operated in

vehicles. However, they are categorized into two different time frames depending on

their purpose, as described in Section 1.1. Thus, Active Safety systems reside in the

first row (pre-event), whereas Passive Safety systems belong to the second row (dur-

ing the event). Environmental attributes, shown in the third column, are examples

of infrastructures that can predict, prevent or mitigate transportation accidents: a

nation-wide roadway-based communication system, smarter and safer roadway de-

sign, better emergency medical services, etc. Environment (Road) and Vehicles have

recently received considerable attention [114], such as ITS (Intelligent Transportation

Systems). However, drivers behind the wheel are considered to be the most important

factor in analyzing automobile collisions [114].

Among a variety of Active Safety systems, our interest centers on detection of

drowsy driving. Detection of human drowsiness resides in both the Human & Pre-

event and Vehicle & Pre-event categories, i.e. the first and second columns of the first

row. This implies that our research is twofold; we need to understand the character-

26



istics of drowsy drivers (the human attribute) and at the same time find out how to

design a system to detect human drowsiness (the vehicle attribute).

The first problem encompasses the characteristics of drowsy driving. People are

aware of the danger of drowsy driving, but only peripherally. How dangerous is drowsy

driving compared to normal driving or other impaired driving? Many people guess

that drowsy drivers may have bad lane tracking performance compared to normal

drivers. Can this belief be verified by experiments or field tests?

Many experiments [16, 32, 33, 34, 69, 80, 127] have shown that response time

deteriorates significantly as drivers are sleep-deprived. An experiment investigated

subjects' ability to memorize nonsense syllables (attentiveness), to find a correct

number from a set of seven digit numbers (rapidity), and to erase as many alphabet

letter A's as possible in a certain amount of time (accuracy). It has been found

out that attentiveness and rapidity suffer more than accuracy [138] when people

are sleep-deprived. However, few of these studies have been performed for sleep-

deprived drivers. We are interested in seeing if sleep-deprived drivers show different

characteristics for various driving tasks and secondary tasks. When we get drowsy,

which part of our driving abilities is affected first or most significantly?

Recently, studies [20, 58, 132, 145] have tried to find a mapping between driving

tasks and areas of brain activities by using imaging techniques such as fMRI (Func-

tional Magnetic Resonance Imaging). It shows the activated brain areas of subjects

under a variety of simulated driving circumstances. It is beyond the scope of this

study to find the exact mapping between brain areas and driving tasks for various

sleep levels. We study several driving tasks and secondary tasks that have different

characteristics, while trying to determine whether there exist any tasks during which

driver performance is more vulnerable to drowsiness than others. We shows how

task types and sleep-deprivation levels affect driving performance and provides design

strategies for building drowsiness-detection devices.

Our study does not employ physiological signals such as EEG (Electrocephalogra-

phy), but deals with driver-vehicle data including driver reaction and vehicle states.

Considering that sleep and wakefulness are often defined by EEG signals, we can view
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Figure 1-3: Can we detect drowsy drivers? (Photo from [137])

our methodology as an indirect way of analyzing and/or detecting drowsy driving.

This approach is cost-effective because we do not need any complicated sensor systems

or peripherals, and the result can be more practical and directly related to driving. To

tackle the problem of identifying the characteristics of drowsy driving, human-in-the-

loop experiments are designed and performed. Results from this stage are essential

for the second problem: detection of drowsy driving based on driver-vehicle data.

The second problem focuses on devising a systematic method to detect drowsy

driving, which can be considered dual to the first problem. We first desire to differen-

tiate between drowsy and normal drivers, and then to infer driver states only based

on their performance or vehicle states, i.e., driver-vehicle data.

A variety of methods for the detection of drowsiness have been developed by many

research groups. They can be classified in terms of detection techniques, which are

described in Chapter 2. We do not aim to develop another detection technique, but

to present a universal and systematic methodology for inferring the state of drivers

based on driver-vehicle data.

In case of DUI, BAC (Blood Alcohol Content or Blood Alcohol Concentration) is

usually estimated from breath alcohol concentration. Tolerance to alcohol varies from
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person to person depending on weight, gender, body fat percentage, etc. However, in

many countries, the estimated BAC is generally utilized to detect drunken drivers. If

we can establish such a standard for drowsy driving that can be universally accepted,

it will contribute to transportation safety. Furthermore, by actively predicting the

state of drivers rather than detecting drowsiness after it has occurred, we can manage

fatigue in transportation more effectively.

We aim to establish a systematic methodology for detecting drowsy drivers utilizing

the Bayesian Network paradigm and to quantify the associated results using driver-

vehicle data obtained from the simulator-based human-in-the-loop experiment. Time-

varying characteristics of drowsiness are also considered. We do not include any

physiological signals or physical changes of drivers such as eye closure rate. (Details

of physiological signals and physical changes of drivers are elaborated in Chapter 2.)

Countermeasures for drowsy driving, i.e. how and what we do with the detection

method, are interesting topics, but are a completely separate problem from detection.

They are beyond the scope of this study, but further research is necessary for proper

installation of drowsy driver detection systems.

1.3 Contributions

In terms of the problems discussed in the previous section, this thesis yields practical

outcomes for managing drowsy driving. The contributions can be stated as follows:

e Drowsy driving characteristics are comprehensively analyzed through a simulator-

based human-in-the-loop experiment. Subjects who have different sleep-deprivation

levels are asked to perform common driving tasks and various secondary tasks in

the simulator. The experimental data shows that performance in various driving

tasks is not affected uniformly by sleep-deprivation; under sleep-deprivation, the

rule-based tasks, such as Psychomotor Vigilance Tasks, deteriorate to a greater

extent than the skill-based tasks, such as Straight Lane Tracking Tasks with no

disturbances. This result demonstrates a latent risk of sleep-deprived drivers,

and points to a possible design of drowsy driver detection systems based on
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driver-vehicle data.

" Inspired by brain functions related to the human motor control system and

the sleep-wake cycle regulators, we introduce an experimental hypothesis that

drowsiness affects various driving tasks non-uniformly. This approach allows us

to understand drivers' performance more profoundly than simple comparison of

superficial phenomena. Although it is beyond our scope to prove interactions

between the motor systems and the sleep-wake cycle regulators, this idea opens

a new engineering-oriented interdisciplinary research field combining human fac-

tors and neurosciences.

" We lay the foundation for the systematic management of drowsy driving. In-

depth knowledge of the sleep-wake cycle mechanism and of the driver-vehicle

system enables us to rigorously define drowsy driving, which is supposedly known

from a common sense standpoint. This foundation helps us to organize overall

research on drowsy driving. We examine the management of drowsy driving

detection from such standpoints as law enforcement and policies, as well as

detection techniques.

" We devise a systematic way to infer the state of driver alertness. A basic frame-

work is adopted from the Bayesian Network (BN) paradigm. Two major causes

of sleep, sleep-debt and circadian rhythm, are modeled in the framework with

various driver-vehicle parameters. We examine both static and dynamic BN

structures. Time varying characteristics of drowsy driving are captured in the

dynamic BN structure.

" We employ experimental results (driver-vehicle data) for a structural develop-

ment, which in turn provides us with quantitative outcomes. Performance in var-

ied driving tasks and secondary tasks are utilized to estimate the state of driver

alertness. The comprehensive inference probability based on driver-vehicle data

presents guidelines for designing a drowsy driver detection system. The result

suggests that individual human differences should be considered in the design of

such a system, although we are able to observe global trends. This framework
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can be easily extended if we have more information on driver-vehicle systems

such as physiological signals.

e We propose a new probabilistic measure that enables us to provide a low-cost

drowsy driver detection system. Once characteristics of other driving impair-

ments (such as DUI) characteristics are collected, estimates based on driver-

vehicle data are applicable to a general driver-state monitoring as well as to

drowsy driving.

1.4 Overview of Thesis

This thesis focuses on the interaction issues of drowsy driver detection by driver-

vehicle data, and provides a systematic methodology to infer the state of drivers

based on driver-vehicle data. The whole contents are structured as follows.

Chapter 2 reviews previous research on fatigue management in transportation. We

summarize existing measures including transportation policies and detection tech-

niques mainly developed in the U.S.A. and Europe, and discuss statistics on drowsy

driving as well.

Specification of drowsy driving requires us to understand the sleep-wake mech-

anism, which in turn enables us to clarify the concept of drowsiness. Chapter 3

presents the mechanism of the human sleep-wake cycle along with causes of sleep,

and the physiology of the sleep-wake regulation. Definitions of related terminologies

including drowsiness, fatigue, and boredom are given as well.

Chapter 4 illustrates general driver-vehicle systems to help understand driving in

general. Structures of driver-vehicle system, various types of input to the driver-

vehicle system including visual and vestibular inputs, control interface between a

driver and a vehicle, and simplified vehicle dynamics are described.

Chapter 5 covers human-in-the-loop experiments using a fixed-based driving sim-

ulator, which aims to find out the characteristics of drowsy driving. Experimental

objectives, hypothesis, design of experiment, independent and dependent variables,

hardware and software set-up, contents of driving scenarios, experiment procedures
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and subject summary data are included.

Chapter 6 mainly deals with extensive driver-vehicle data analysis to reveal the

characteristics of drowsy driving. We analyze performance differences between two

different sleep-deprivation groups for various driving tasks, which is followed by order

effects and power analysis.

In Chapter 7, we devise a systematic way to detect human drowsiness. Bayesian

Network paradigm is introduced, and its framework is built. Using experimental data

obtained from Chapter 5, we set up a quantitative guideline. Both static and dynamic

Bayesian Networks are applied.

Finally, Chapter 8 provides a summary and future research plans.
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Chapter 2

Fatigue Problems in Automobile

Operations

Fatigue is one of the primary causes of accidents in transportation, and thus it has

naturally attracted wide interest in its research. This chapter summarizes the vast

literature on drowsy driving. We first review the history of fatigue problems in trans-

portation. Then, dealing with several causes of fatigue, e.g., long working hours,

sleep deprivation, specific time-of-day, etc., we discuss fatigue management through

drowsy driver detection and existing countermeasures for drowsy driving from both

policy and technical standpoints. Finally, we summarize some critical facts on drowsy

driving, including statistics, crash characteristics, and high-risk population groups.

2.1 Historical Perspectives

In 1938, the Interstate Commerce Commission requested that the U.S. Public Health

Service should conduct an investigation into CMV (commercial motor vehicles) HOS

(hours-of-service) in interstate commerce. This was the first scientific study to ad-

dress driver fatigue related to HOS. The Public Health Service study bolstered the

need for regulatory limitation on HOS to help ensure highway safety [38]. HOS reg-

ulations specify the length of on-duty and off-duty time for operators in commercial

transportation. The motor carrier HOS regulations were developed in 1937, and have
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Table 2.1: Motor carrier hours-of-service regulations [95]

Motor Carrier (49 CFR Part 395)
Drivers may drive for 10 hours or be on duty for 15 hours.
Drivers must have 8 consecutive hours off following a 10/15 hour on-duty period.

If drivers use a sleeper berth, they may split the 8-hour period into two periods

as long as neither period is less than 2hours.
Drivers may not exceed 70 hours in 8 days if the carrier operates 7 days a week.

Drivers may not exceed 60 hours in 7 days if the carrier does not operate every day

of the week.

remained essentially unchanged [95]. Table 2.1 shows the current hours-of-service

regulations for motor carriers [95].

The DOT (U.S. Department of Transportation) has conducted three studies on

CMV driver fatigue since the 1970s, none of which has led to changes in the Federal

HOS regulations. In 1988, the Congress directed the DOT to conduct research on

how HOS regulations, driver fatigue, and the frequency of serious CMV accidents

were related to one another. In the same year, the FHWA (Federal Highway Ad-

ministration) hosted a Symposium on Truck and Bus Driver Fatigue, which brought

together experts from motor carrier industries, scientific and medical communities,

law enforcement, and public policy.

In the 1990s, driver fatigue has continually grown to be a major concern in in-

dustry and public safety. The 1995 FHWA-sponsored Truck and Bus Safety Summit,

collecting over 200 national leaders in CMV and highway safety and including a large

contingent of drivers, identified driver fatigue as the top priority of CMV safety. Ac-

cordingly, the fatigue issue dominates current human factors research on CMV driving

safety sponsored by FHWA [38].

The history of drowsy-driver research dates back to the 1950's, beginning with the

studies on aircraft pilots [82]. In 1995, the NTSB (National Transportation Safety

Board) and NASA (National Aeronautics and Space Administration) cosponsored a

symposium to discuss fatigue countermeasures and to demonstrate how they can be

applied to prevent accidents in all modes of transportation [95]. Development of the

Fatigue Resource Directory is one of the key products in the symposium [126].
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A 100-Car Naturalistic Study conducted by NHTSA and Virginia Tech Trans-

portation Institute aims to provide pre-crash data necessary for understanding cause

of crashes, to support the development and refinement of crash avoidance counter-

measures, and to estimate the potential utility of these countermeasures to reduce

crashes and their consequences [96].

Europe also has several large-scale programs in progress under the direction of RTI

(Road Transportation Informatics), which is the equivalent to the ITS (Intelligent

Transportation Systems) in the U.S.A. Their main programs are DRIVE (Dedicated

Road Infrastructure for Vehicle safety in Europe) and PROMETHEUS (Program

for European Traffic with Highest Efficiency and Unprecedented Safety) beginning

in the late 1980s [18, 35]. In January 2002, the European Commission initiated a

three-year project IMMORTAL (Impaired Motorists, Methods of Roadside Testing

and Assessment for Licensing), which provided a firm scientific base for the associated

legislation [21]. AWAKE (Assessment of driver vigilance and Warning According to

traffic risK Estimation) is a European project, targeting to promote road safety and

to reduce road accidents due to driver hypo-vigilance [81].

2.1.1 Facts and Statistics on Drowsy Driving

Although estimation and detection methods on drowsy driving vary widely, few dis-

pute that the problem of drowsy driving is inadequately addressed. Fatigue has been

estimated to be involved in 2% to 23% of all crashes [37, 33, 115].

The National Highway Traffic Safety Administration conservatively estimates that

100,000 police-reported crashes are caused by drowsy drivers each year. (That is

about 1.5% of all crashes.) These crashes result in more than 1,500 fatalities, 71,000

injuries, and an estimated $12.5 billion in diminished productivity and property loss

[67].

In 1998, FHWA (Federal Highway Administration) estimated the percentage of

large truck crashes involve fatigue as follows: all police-reported crashes (0.53% to

1.3%); all fatal crashes (2.8% to 6.5%); crashes fatal to the truck occupant only

(12% to 29%); and crashes fatal to non-truck occupants (1.2% to 2.8%). The FHWA
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also concluded that more in-depth investigations would yield higher percentages of

fatigue-related crashes than those indicated in comparable samples of police accident

reports. The 1990 NTSB study of 182 heavy truck accidents that were fatal to drivers

showed that 31 percent of the accidents in this sample involved fatigue. The NTSB

numbers regarding fatigue-involved accidents are more revealing, as the NTSB's in-

depth investigations included such surrogate measures as a 72-hour history of rest

and duty times, the amount of sleep in the last 24 hours, and the regularity of the

work schedule, etc.

A 1995 study of 107 accidents (62 of which were fatigue-related) examined factors

that affected fatigue in heavy truck accidents. [95]. Most accidents occur on highways,

and are caused by men (77%) less than 30 years of age (62%). 96% of crashes caused

by drowsy drivers involve cars and 3% involve trucks. For truks, however, the expected

number of involvements per vehicle life cycle is about four times greater than for cars;

this is due to the longer operational lives and higher mileage per year. Truck accidents

are more damaging [63].

2.2 Existing Measures

We have shown that research on fatigue problems has a long history with a myriad of

topics. This section summarizes fatigue management and its existing countermeasures

mainly focusing on drowsy driving detection. We study the existing countermeasures

from both policy and technical standpoints.

2.2.1 Transportation Policies

Since 1989, the NTSB has issued more than 70 fatigue-related safety recommenda-

tions, mostly as a result of accident investigations, special investigations, or safety

studies that identified operator fatigue as a key factor of accidents [95]. In 2004, the

NSF (National Sleep Foundation) also recommended the HOS rules. They suggested

that policies on HOS: provide for a minimum of 10 consecutive hours of off-duty per

24 hours; include required driver education on how to obtain good sleep and how to

recognize signs of reduced alertness and sleep disorders; require automated, on-board
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monitoring of driving times, systems which are used effectively in other countries; en-

courage effective screening of commercial drivers' health for possible sleep disorders,

excessive sleepiness, and medications that may cause sleepiness; should not include

penalties and should minimize lost work time for drivers with sleep disorders provided

they comply with effective treatment; and should apply to bus drivers as well as other

commercial drivers.

NCSDR (National Center on Sleep Disorders Research) and NHTSA expert panels

on driver fatigue [122] recommend three priorities for an educational campaign: 1)

educate young males (ages 16 to 24) about drowsy driving and how to reduce lifestyle-

related risk; 2) promote shoulder rumble strips as an effective countermeasure for

drowsy driving; in the same context, raise public awareness about drowsy-driving

risks and how to reduce them; and 3) educate shift workers about the risks of drowsy-

driving and how to reduce them.

Law Enforcement

The first federal bill focusing on drowsy driving was introduced in the House of

Representatives in October 2002 by Republican Robert Andrews [94]. The bill, HR

5543, is called Maggie's Law: National Drowsy Driving Act of 2002. It was named

after Maggie McDonnell, who had been killed by a drowsy driver on July 20, 1997

when her car had been hit head-on by a van that had crossed three traffic lanes. The

van driver confessed that he had not slept for 30 hours and also smoked a crack of

cocaine before the accident. Since the jury was not allowed to consider driver fatigue

as a factor, he was only convicted of careless driving and fined $ 200 [94]. This tragic

accident caused Maggie's mother, Carol McDonell, to begin lobbying the New Jersey

legislature to enact a law that would punish those who kill or injure others as a result

of their voluntary fatigued driving. The New Jersey State Senate passed Maggie's

Law and established fatigued driving as recklessness under the vehicular homicide

statue on June 23, 2003.

The law narrowly defines fatigue as being without sleep for a period in excess

of 24 consecutive hours. Under Maggie's Law, anyone causing a fatality after be-
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ing awake for 24 hours or more can be prosecuted for vehicular homicide. The bill

calls for incentives for states and communities to develop traffic safety programs to

reduce crashes related to driver fatigue and sleep deprivation. The legislation also

calls for training police officers, revising the driver's education curriculum, reporting

fatigue-related crashes on police report forms in a standardized way, and promoting

countermeasures such as continuous shoulder rumble strips and rest areas [94].

Currently, a number of states are considering similar drowsy driving legislation,

including New York, Massachusetts, Tennessee, Oregon, Kentucky, and Illinois. A

list of pending bills in state legislatures across the U.S.A. addressing drowsy driving

and other sleep-related transportation issues can be found in [94].

2.2.2 Fatigue Detection Techniques

Along with transportation policies, reliable and applicable drowsy driving detection

techniques are essential for fatigue management. Many researchers have developed a

variety of detection methods for drowsiness, which can be classified in terms of their

specific techniques [12, 61, 136, 143].

Detection by Physiological Signals

This method is based on the fact that such physiological signals as pulse rate, EEG

(electrocenphalography), ECG/EKG (electrocardiogram), and electrodermal activity

show different patterns at different human-vigilance levels.

EEG is a sensitive measure of sleepiness, which uses the fact that changes in

theta, alpha, and beta frequencies are associated with brief periods of sleepiness

(microsleep) and the onset of sleep [5, 11, 48, 50, 65, 73, 93, 94, 107, 108, 143].

(Definitions of EEG waves such as alpha, beta, theta, and gamma frequencies are

given in Chapter 3.) For example, lapses of attention are preceded by an increase

in low frequency EEG activity, and are also accompanied by a significant increase in

alpha and theta activity [27, 114]. The changes in the EEG, as sleepiness develops,

are distinct enough to reliably identify sleepiness although the simultaneous use of

the EOG (electrooculogram) is highly recommended [36, 143]. The followings are
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some examples of detection devices based on physiological measures [143].

The ABM Drowsiness Monitoring Device (DMD) records EEG via telemetry to

detect drowsiness. The system requires an operator to wear a baseball cap containing

disposable electrodes. It gives an auditory alert when EEG-determined drowsiness

indicator exceeds a threshold.

The EEG Based Algorithm to Detect Different Levels of Driver Fatigue uses delta,

theta, and alpha activity of the EEG to detect "early, medium, and late" sleepiness.

The Engine Driver Vigilance Telemetric Control System 3rd Generation (ED-

VTCS) measures electrodermal activities and reactions. Operators are required to

wear watch-type sensors. The system activates an auditory alarm when alertness falls

below the critical level.

The biggest drawback associated with the EEG as an on-road drowsiness detection

device is the difficulty in obtaining recordings under natural driving conditions, which

makes it a somewhat unrealistic option for the detection of fatigue [136]. Practical

problems associated with using the EEG as a sleepiness detection mechanism, such

as the requirement for scalp electrodes, have not been addressed [143].

Detection by Physical Changes of Drivers

Any physical changes related to head position, wrist activity, eye closure rate, blinking

behavior, saccadic eye movement patterns, pupil size, eye point of regard, and eyelid

movement can be monitored to help detect drowsiness of drivers [8, 9, 12, 23, 33, 42,

43, 67, 77, 143]. A majority of drowsy driver detection systems are based on indices

of eye activity, as are summarized in Table 2.3 [143]. Fig. 2-1 shows a display of

FaceLAB, one of such systems.

Some examples of detection devices based on wrist activity or head movement are

Actiwatch-alert (measures wrist inactivity associated with sleep), Doze Alert (mea-

sures head-tilt as sleep occurs), Driver Alert Warning Device (measures head-tilt via

pressure device on neck), EPAM (Measures wrist inactivity associated with sleep),

MicroNodDetection System (monitors head movements, learns typical patterns of
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Figure 2-1: FaceLAB's video display window gives a constant view of a subject's face and tracking

features [116]

movement, and detects those associated with drowsiness), and StayAlert (detects

head droop by detecting chin contact with device worn around neck) [143].

The sensors or devices for detecting physical changes usually do not interfere with

drivers directly, although some movement restriction may exist. However, while blinks

are clearly sensitive to sleepiness, there is a complex relationship between blinking

activity, visual information processing (which usually suppresses blinks) and sleepi-

ness [143]. On the other hand, in such situations as micro-sleeps, this method cannot

detect drowsiness, and the false alarm rate is not yet acceptable for assessing driver

drowsiness.

Detection by Driver-Vehicle Data

Driver-vehicle data including steering angle, throttle/brake input, and speed can be

chosen to help detect drowsiness of drivers [24, 49, 89, 99, 100, 114, 123, 130, 142].

Some secondary tasks which periodically request responses from drivers can also be

employed [33, 69, 135].

The most frequently measured parameter is the frequency of steering wheel move-

ments, which decreases as the driving period grows. Conversely, when a subject

is distracted by a rich environment, steering wheel movements are often frequent.

SWRR (Steering Wheel Reversal Rate) can be obtained by counting on oscillation

numbers of the steering wheel when the amplitude is lower or equal to a certain maxi-
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mum value varying from .5 to 10 degrees. On high vigilance periods small amplitudes

of steering wheel movements are frequent, whereas great corrections predominate

during low vigilance states [114]. The underlying presumption is that an alert driver

makes a comparatively large number of fine-steering adjustments to cope with the

driving task and makes a relatively few number of large-steering ones, except when

deliberately changing lanes to pass other vehicles [79].

SDLP (standard deviation of lateral position) or standard deviation of steering

wheel movements increases rapidly after the first 30 minutes of driving. Standard

deviation of the steering wheel is more affected by road curvature [63]. Lane tracking

variability is increased in prolonged wakefulness [7]. Drivers who lose alertness will,

because of lapses in information processing, cause their vehicle to wander somewhat

within the traffic lane, possibly to leave the lane, or to go off onto the road shoulder

[79].

A fatigued driver permits himself more frequently to face situations requiring

abrupt changes in speed. His/her ability to maintain a steady cruising is impaired,

which results in increased variations on his/her intended speed [79]. Off-road in-

cidents also increase with prolonged wakefulness [7]. Standard deviation of vehicle

speed increases after 3 hours of driving [7, 114]. However, no significant velocity vari-

ation is found between 2 and 11 hours of driving [12]. The drivers suffering from loss

of alertness are more prone to follow a vehicle ahead in a risky short distance and

in high closure rates [79], although some drivers affected by fatigue may attempt to

reduce their overall velocity [12].

A task focusing on measuring operator's reaction time called Psychomotor Vig-

ilance Task (PVT) shows noticeable differences between alert and drowsy drivers

[32, 33, 34, 69, 80, 133]. Increased reaction time by presumably fatigued drivers in

response to some injected signal can be displayed either visually or aurally [79].

Table 2.2 shows some sleep detection devices based on driver-vehicle performances.

Detailed descriptions for each system and contact informations can be found in [143].

This method characterizes the vigilance states of drivers by comparing the reactions

of the driver-vehicle system with a pre-determined threshold. However, this threshold
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Table 2.2: Sleep detection devices based on driver-vehicle performances [143]

Name of device Description
APRB/ACARP Device for Uses secondary tasks to estimate alertness via an

Monitoring Haul Truck auditory and visual reaction time task (tailored
Operator Alertness to individuals). Used in mining industry trucks.

DAS 2000 Road Alert System Measures drivers' acceleration, braking, gear-changing,
lane deviation and distances between vehicles

FMD-Fatigue Monitoring Auditory and visual reaction time test. Response pads on
Device steering wheel. Used in mining trucks.

Roadguard Is a secondary task comprising a reaction task.
Only operates when vehicle is in top-gear
Learns normal driver steering movements and detects
deviations from normal. Comprise a driving time measure,

Safety Driver Advisor a dashboard display of recommended rest-break times and a
monitor of erratic steering behaviour. Recommended driving
time is 2h for day, 1h for night

SAMG-3Steer Monitors normal corrective movements of steering wheel

Stay-A-Wake Monitors speed and steering behaviour.
SAFETRAC Uses measurement of lane deviation and steering movements

is difficult to define because there exists considerable inconsistency in the reactions of

driver-vehicle systems in the beginning stage of drowsiness. Another limiting factor

on performance-based measures is decline in performance capacity may occur prior

to changes in driver performance [12, 30]. This phenomenon can be attributed to

drivers' skills and the ability of more experienced drivers to compensate during a

relatively routine driving task, despite their diminished capacity [12].

In fact, it is not sufficient to use one single parameter to detect driver drowsiness

[16]. Renner and Mehring [63, 106] conclude that "With ongoing research it became

evident that lane departure warning and lane position parameters reflect only one

facet of the performance decrements within fatigued drivers. A fatigued driver can

actually keep his vehicle perfectly in the lane, provided the vehicle heading is co-

incidentally appropriate for the road curvature ahead. In our studies we found an

evidence for intentional short naps on straight road sections, on which the vehicle path

was perfect, but the driver was incapable of reacting upon any unexpected event (e.g.

front end collision). In order to prevent these dangerous situations of good lateral

control without reaction readiness, more complex drowsiness detection techniques
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had to be developed." Drowsiness detection devices rely on a wide range of different

parameters, as there is no single commonly accepted metric to detect driver fatigue

in an operational context [143].

2.3 Drowsiness and Driving

Sleepiness and driving form an incompatible and dangerous combination. However,

countless people are driving fatigued or drowsy. Most people are aware of the danger of

drunken driving, but do not realize that drowsy driving can be as much or more fatal.

Like alcohol, sleepiness slows reaction time, decreases awareness, impairs judgment

and increases a risk of crashing [94, 122].

2.3.1 Driving During Onset of Sleep

Definitions of drowsy driving or driver fatigue rely on how the concept of fatigue is

defined. Fatigue is a general term commonly used to describe the experience of being

sleepy, tired, drowsy, or exhausted. While all of these terms have different meanings

in research and clinical settings, they tend to be used interchangeably in the traffic

safety and transportation fields [36]. In Chapter 3 we define terminologies related to

drowsy driving after reviewing the mechanism of the sleep-wake cycle.

There are many underlying causes of sleepiness, fatigue and drowsy driving, for

example, sleep loss from restriction or too little sleep, interruption or fragmented

sleep, chronic sleep debt, circadian factors associated with driving patterns or work

schedules, undiagnosed or untreated sleep disorders, time spent on a task, use of

sedating medications, and consumption of alcohol when already tired. These factors

have cumulative effects, and a combination of any of these can greatly increase the

risk of fatigue-related crashes. In this thesis, we mainly focus on drowsy driving

caused by sleep restrictions.

Although explicit sleep-onset episodes often cause the most serious performance

failures, some performance effects resulting from sleepiness can occur without mi-

crosleeps [30, 32]. This implies that the popular belief that falling asleep is the only

cause of fatigue-related accidents is inaccurate. There are moments a driver still looks
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awake (eyes wide open) but does not process any information. These looking without

seeing moments are dangerous and need to be captured by an effective system [106].

Objective measures on both chronic and situational (acute) sleepiness are required

[122].

2.3.2 Challenges in Driver State Estimation

The difficulty in determining the incident of fatigue-related accidents is due, at least

in part, to the difficulty in identifying fatigue as a causal or contributing factor in

accidents [95]. Unlike alcohol-related crashes, no blood, breath, or other objective

test for sleepiness behind the wheel currently exists, which investigators could give

to a driver at a crash scene. This makes police training in identifying drowsiness as

a crash factor very difficult [94].

It would be certainly useful to develop on-line drowsy driver detection systems,

and a variety of approaches are explained in detail in Section 2.2.2. In this Section,

we have studied advantages and disadvantages of each method. It suggests that in

the near future some technologies should be deployed to prevent or at least limit

certain catastrophic outcomes due to drowsy driving [47], although much validation

remains to achieve this goal. The ultimate challenge lies in the human [47], mainly in

inter-individual differences in responses to sleep loss or drowsiness. We address this

issue in Chapter 7 in the framework developed for drowsy driver detection based on

driver-vehicle data.

2.3.3 Crash Characteristics and High-Risk Population Groups in Drowsy

Driving

Crash characteristics

At present, it is nearly impossible to determine with certainty the cause of a fatal

crash where drowsy driving is suspected. However, there are a number of clues that

tell investigators that a driver falls asleep at a crash scene. For example, drowsy

driving accidents usually involve only one vehicle with a driver alone, and the injuries

tend to be serious or fatal. Also, skid marks or evidence of other evasive maneuvers
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are usually absent from the drowsy driving crash scene [94].

A typical crash related to sleepiness has the following characteristics [111, 122]:

" Accidents occur during late night, early morning, or midafternoon; Drowsy-

driving crashes occur predominantly after midnight, with a smaller secondary

peak in the midafternoon. Studies on commercial drivers show a similar pat-

tern. Nighttime and midafternoon peaks are consistent with human circadian

sleepiness patterns.

" The crash is likely to be serious; The morbidity and mortality associated with

drowsy driving crashes are high, presumably due to higher speeds and delayed re-

action time. In North Carolina, these crashes resulted in more injury than other

nonalcohol-related crashes. Fatalities occurred in 1.4% and 0.5%, respectively.

" A single vehicle leaves the roadway; According to the survey on New York State

drivers about their lifetime experience with drowsy driving, almost one-half of

those who had experienced a fall-asleep or drowsy-driving crash reported a single-

vehicle roadway departure; about one-fourth of those who had fallen alseep with-

out crash also reported going off the road.

" The crash occurs on a high-speed road. Most fatigue-related crashes tend to

occur on higher speed roads in non-urban areas on account of more long-distance

nighttime driving on highways.

" The driver does not attempt to avoid a crash; Drowsy drivers are less likely than

alert drivers to take corrective actions before a crash. Anecdotal reports also

claim that evidence of a corrective maneuver, such as skid marks or brake lights,

is usually absent in fall-asleep crashes.

" The driver is alone in the vehicle; 82% of drowsy-driving crashes occured in a

single occupancy vehicle according to in the New Yor State survey of lifetime

incidents.
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High-Risk Population Groups in Drowsy Driving

Although no drivers are immune from the risk of drowsiness, the following three

population groups are at higher risk against drowsy driving [110, 122]:

* Young people, especially young men: The definition of young falls between the

ages of 16 to 29 year-old. Virtually all studies that analyzed data by gender

and age group found that young people, males in particular, are most frequently

involved in fall-asleep crashes. The discrepancy between genders is not clearly

understood, as both young men and women are likely to be chronically sleep-

deprived.

e Shift workers; Circadian phase disruptions caused by rotating shift work are

associated with lapses of attention, increased reaction time, and performance

deterioration. Most shift workers have occasional sleep disturbances, and ap-

proximately one-third of them complain of fatigue.

9 People with untreated sleep apnea syndrome (SAS) and narcolepsy; Although

the absolute number of crashes is low, the incidence of risk grows among people

with untreated SAS and narcolepsy.

Because of commercial motor vehicle drivers' far greater mileage exposure and

other factors, the risk of commercial drivers against a fatigue-related crash is far

greater than that of non-commercial drivers. Other competing crash factors such

as alcohol and speeding are less common among commercial drivers, and thus less

critical than fatigue [47].

Although we have analyzed high risk population groups, most drivers are exposed

to drowsy driving. 51% of Americans reported that they drove while feeling drowsy

in the past year; 17% said they actually dozed off behind the wheel [94].

Before Thomas Edison's invention of the light bulb, people slept for an average

of 10 hours a night; today American average sleep hours per night are 6.9 hours

on weeknights and 7.5 hours on weekends [94]. A survey from [36] estimates 6.8

hours, whose distribution is shown in Fig. 2-2. Considering that sleep deprivation
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Figure 2-2: Reported mean total nightly sleep time [36]

accumulates with time [135], we see that most populations are under the risk of

drowsy driving.
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Table 2.3: Sleep detection devices based on eye activity [143]

Name of device Description
Monitors eye droop, pupil occlusion and eye closure via

Alert driver a camera. Uses image neural nets, fuzzy logic to locate
subject's eyes. Is also model-based
Detects percentage of time eyes are closed over a specified

CoPilot time interval (PERCLOS systems) via infrared camera system

DaimlerChrysler EyeGaze Measures eye gaze via dashboard camera
Detection System

Measures fixation, gaze control, and saccadic eye movement
Expresseye to a target. Uses infrared light corneal reflection technique

Measures eye position, head position, and eye to point of
EyeHead fixation distance. Uses a magnetic head tracker

Measures gaze-direction via corneal reflection technique.
Eye-Gaze System Also measures pupil diameter, blinking, and eye fixation

Eyeputer Records eye movements via corneal reflection technique

ETS-PC Eye Tracking System Detects eye closure via a camera
Measures eye-gaze and eye closure. Uses PERCLOS fatigue

FaceLAB 2.0 assessment scale
Detects blinks using a piezoelectric adhesive disk attached

IM-Blinkometer to canthus of the eye
Detects eye blinks. Measures ratio of closed to open eyes

MTI AM eye to detect sleepiness. Uses infrared reflectance
Nissan Drowsy/Inattentive Uses image processing to monitor eyelid

Driver Warning movements
Measures eye closure, activates an alarm after 0.5s closure

Onguard period. Uses infrared reflectance
Uses infrared oculography to detect eyelid movements during

OptalertTM blinking and eye closure. The system is being further developed
to measure intersaccade interval
Detects eye closure using infrared, retinal-reflectance device.

PERCLOS Measures duration of blinks and eye closures, and proportion of
time eyes closed over a specified timer interval

Photo Driven Alert System Worn on ear and measures blink rate
SafetyScopeTM Ocular system in quantifying sleepiness

SmartEye Detects head position and point of gaze via image processing

Toyota Driver Drowsiness Detects eyelid movement using camera mounted on
Detection and Warning System rear-view mirror
Vehicle Drivers Anti-Dozing Aid Measures eye closure and head movement via infrared

(VDAD) reflectance. Developed by US military
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Chapter 3

Sleep-Wake Cycle and Drowsiness

We have examined general issues of drowsy driving and their existing measures, but

we have not defined drowsy driving yet. Specification of drowsy driving requires us to

understand the sleep-wake mechanism, which in turn enables us to clarify the concept

of drowsiness. This chapter briefly reviews the mechanism of the human sleep-wake

cycle along with the causes of sleep and the physiology of the sleep-wake regulation.

Definitions of related terminologies including drowsiness, fatigue, and boredom are

given as well.

3.1 Sleep-Wake Cycle

Human exhibit sleep-wake behaviors. They usually stay awake in the daytime and

sleep at night. Until recently, wakefulness has been considered to be good and desir-

able, on the other hand, sleep to be bad, although unavoidable [65]. The view that

sleep is the contrary to wakefulness has been popular and traditional since the days

of Aristotle, who declared [65]:

First, then, this much is clear, that waking and sleep appertain to the same part

of the animal, inasmuch as they are opposite, and sleep is evidently a privation of

waking. For contraries, in natural as well as in all other matters, are seen always to

present themselves in the same subject, and to be affections of the same: examples are

health and sickness, beauty and ugliness, strength and weakness, sight and blindness,
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Figure 3-1: Various sleep images (pictures collected from [94])

hearing and deafness.

Until the early 20th century, sleep is believed to be a passive state. People believed

that they fell a sleep because they closed their eyes and let them lie down; they thought

that they could control sleep by reducing external stimuli through manipulating their

body.

Much more has been discovered about sleep in the past 80 years than in the

preceding many thousand years. Recently researchers have discovered that sleep is,

indeed, a dynamic behavior instead of a passive state caused by a decrease in stimulus

level to human. Sleep is an active state of the brain and is involuntary. A renowned

sleep scientist, Allan Hobson [48], phrases the central role of the brain in sleep (by

rephrasing Abraham Lincoln's famous declaration about government): sleep is of the

brain, by the brain, and for the brain. Hobson says that it is to be emphasized that

for sleep to occur a highly developed brain is necessary, not to say that no other part

of the body participates in or benefits from sleep.

Sleep is of the brain not just because it is fully developed only in animals having
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elaborate brains, but because measurable changes in the electrical activity of the

brain distinctively define sleep. On the other hand, the behavioral symptoms of sleep

- a lying down posture, closed eyes, and lack of responsiveness to stimulus - can be

easily faked.

The brain controls itself so as to produce sleep. We can fall asleep and never even

recognize how difficult we try to stay awake or to sleep. We may be able to try not

to sleep or to sleep long, but it does not belong to our free-will, to govern sleep or

wakefulness. The brain's own electrical activity changes in response to signals from

networks of brain cells. (We will examine the neural systems regulating the sleep-

wake cycle in Section 3.1.3.) Finally, the brain is the prime beneficiary of sleep, which

leads to its functional improvement [48].

Sleep is known to be vital to human life. Although scientists are still trying to find

out why people need to sleep, research on animals shows that sleep is necessary for

survival [93]. The need for sleep is probably as compelling as or more than other drives

such as eating or drinking. Many researchers consent that adequate sleep is essential

for health and wellness. Nobody is invulnerable to drowsiness but some people have

problems falling into sleep or waking up. The most prevalent sleep disorders include

insomnia, sleep apnea, and narcolepsy and they harass daily-based life. Each year, at

least 40 million people in the United States suffer from chronic sleep disorders, and

another 30 million are troubled by transient or occasional sleep problems [93].

We will focus on sleep causes in the following section, and then briefly review how

the brain regulates the sleep-wake cycle, i.e., the mechanism of sleep-wake cycle.

3.1.1 Causes of Sleep

What causes us to sleep or to be awakened? What makes us sleep at night and wake

up in the morning regularly? Is it because we close our eyes and lay down in bed? Is it

because we are bored or provided a quiet environment? It has been believed that the

external environmental factors cause sleep or wakefulness. The truth is that we have

an embedded sleep-wake cycle regulator controlled by a combination of two inter-

nal influences; circadian pacemaker and homeostasis are two primary neurobiological
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forces that govern the sleep-wake cycle [5, 29, 30, 36].

Environmental factors such as stress, noise, light, excitement, anger, pain and

sleep-fragment are known to affect the sleep-wake cycle as well. However, in contrast

to our common belief, they do not cause us to sleep, but simply unmask any tendency

to fall asleep that is present already. As a matter of fact, only a small amount of

stimulation is enough to keep us awake if sleep debt, i.e., the cumulative effect of

not sleeping enough, is trivial. However, we can easily fall into sleep in a very noisy

concert if sleep debt is huge.

It is frequently misunderstood that boredom can cause sleepiness. It may unmask

sleep in human who is either originally sleep-deprived or in circadian sleep-peaks, but

does not cause sleepiness in itself [36]. Masking is a critical concept for understanding

sleep in terms of the sleep-wake cycle. It is common that people who have chronic

sleep deprivation can mask their level of sleepiness at workplace. However, when they

sit still and become unmotivated after work, sleep is unmasked and arises quickly

[101, 133].

Kleitman [65] also pointed out that the appearance of the sleepless person seemed

quite normal particularly during daytime when he was engaged in some forms of

muscular activity. However, the subject had to be supervised very closely, as it

rendered him extremely sleepy to sit down even during daytime. But the subject

usually remained fully awakened while performing a test that required his active

participation.

Let us examine the two neurobiological forces governing the sleep-wake cycle: the

homeostasis and the circadian pacemaker.

Homeostasis

The homeostasis is a process by which our body maintains a steady state of internal

conditions such as blood pressure, body temperature, and acid-base balance [93]. The

amount of sleep we have per night is also under homeostatic control [29, 30, 48, 93,

94, 128, 135]. The homeostasis is related to the amount of sleep we have and the

time we wake up. The longer the period of wakefulness is, the more sleep propensity
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builds and the more difficult we resist it. Thus, we consider the homeostasis as a

sleep-dependent component of the sleep [36].

Although the neurotransmitters of the sleep homeostatic process are not fully

understood, there is an evidence to indicate that adenosine may be the sleep-inducing

chemical [93]. As long as we keep awake, blood levels of adenosine rise continuously,

resulting in a growing need for sleep that becomes more and more difficult to resist.

During sleep, on the other hand, levels of adenosine decrease, thereby reducing the

need for sleep [93].

Then, how much sleep do we need? Someone says that general adults should have

8.2 hours per 24 hours with very little variability [36]. Other studies showed that

healthy adults needed seven to eight hours every night. We call it basal sleep need,

the amount of sleep our bodies need on a regular basis for optimal performance. Thus,

we can assume that human basal sleep need is about 8 hours per 24 hours.

In addition to the basal sleep need, we also need to consider sleep debt to figure

out how much sleep we need for each day. Sleep debt is the accumulated lack of sleep

resulting from poor sleep habits, sickness, awakenings due to environmental factors

or other causes. Even the loss of one hour of sleep time for several days can be

accumulated and influence our daily life negatively [36]. Estimating the necessary

amount of sleep is complicated when we have unresolved sleep debt [94]. It is known

that we need at least 7 consecutive nights of 8-hour full sleep to remove sleep debts

accumulated previously [36].

On the other hand, some claims that there is no magic number for the amount

of sleep we need; they consider that sleep need varies between individuals not only

different from age groups [94]. Someone may need to sleep at most 7 hours a night,

whereas someone else may clearly need at least nine hours to have a happy, productive

life. This suggests that long and short sleepers appear to be born, not made [48].

Circadian Pacemaker

The circadian pacemaker is an internal body clock that completes a cycle approxi-

mately every 24 hours, and it refers to the cyclical changes such as fluctuations in
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Figure 3-2: A schematic diagram of the circadian rhythm, redrawn from [48]

body temperature, hormone levels, and sleep. The biological clock consists of a group

of neurons in the hypothalamus of the brain called suprachiasmatic nucleus (SCN).

The circadian pacemaker is naturally a 25.9 hours cycle which determines when

human fall asleep, i.e., when a human subject is isolated from time cues. However, the

cycle has become synchronized to 24 hours to correspond with daily activities and the

environment surrounding people [48]. In humans, light is the strongest synchronizing

agent [93]. Light and darkness are external signals that set the biological clock and

help determine when we feel necessary to wake up or to go to bed.

The existence of this cycle is thought to be due to: 1) the fluctuation in adrenaline;

increase in adrenaline is accompanied by wakefulness and decrease in adrenaline is

followed by sleep, and 2) fluctuation in body temperature; body temperature de-

creases during sleep at night, but it increases as morning approaches. Since body

temperature is low during sleep, energy is conserved [5]. Fig. 3-2 shows a schematic

rhythm of body temperature and of sleep controlled by the body clock.

Fig. 3-3 shows a conceptual diagram of sleep causes. The homeostasis is a sleep-

dependent factor, whereas the circadian rhythm is a sleep-independent. Thus, the

homeostasis contributes more and more as days of sleep deprivation increases. How-

ever, circadian pacemaker continues its own rhythm regardless of the amount of sleep
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Figure 3-3: Sleep-independent and sleep-dependent factors [36]

deprivation.

The homeostatic factor is known to govern circadian factors to regulate the timing

of sleeping and wakefulness; these processes create a predictable pattern of two sleepi-

ness peaks [48, 122]. First sleepiness peak occurs in the middle of night sleep (most

commonly at night between 2-4 am) and second sleepiness peak occurs, as we all

know by experience, during mid-afternoon, in 12 hours after the first sleepiness peak.

This has been referred to as the mid-afternoon, siesta, post-lunch, or post-prandial

dip even though it appears to have no relationship to food intake [133].

Researchers developed the sleep-wake cycle model, i.e., the two-process model

of sleep-regulation which consists of a homeostatic process and a circadian process.

This model has been employed to describe, predict, and understand the sleep-wake

regulation in a variety of experimental protocols [2, 3, 134].

3.1.2 EEG of Sleep

Sleep is an active physiological process [48, 93, 65]. While metabolism generally slows

down during sleep, all major organs and regulatory systems continue to function.

Changes in brain activity are measured by an electroencephalography (EEG).

EEG is a neurophysiologic measurement of the electrical activity of the brain by

recording from electrodes placed on the scalp. The resulting traces are known as an
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EEG and represent an electrical signal (postsynaptic potentials) from a large number

of neurons. Not electric currents, but voltage differences between different parts of

the brain are measured [48]. The EEG is capable of detecting changes in electrical

activity in the brain on a millisecond-level.

EEG and MEG (magnetoencephalography) have a remarkable merit of high tem-

poral resolution at submillisecond scale, capable of detecting rapid changes of neuro-

physiologic process. However, these techniques suffer from the ambiguities in defining

precise locations of brain activity. On the other hand, fMRI (functional magnetic res-

onance imaging), using endogenous blood-oxygenation-level-dependent (BOLD) con-

trast, is another well-established technique for mapping human brain function. In

contrast to EEG & MEG, the benefit of fMRI lies in its high spatial resolution; acti-

vated brain areas can be localized within millimeter spatial resolution. But the slow

response time of the BOLD response limits its capability to characterize how, rather

than where, the brain performs its tasks [76].

The amplitude of the EEG signal strongly depends on how synchronous the activity

of the underlying neurons is. When a group of cells is excited simultaneously, tiny

signals sum up to generate one large surface signal. On the other hand, when each cell

receives the same amount of excitation spread out in time, the summed signals are

meager and irregular. If the synchronous excitation of this group of cells is repeated,

the resulting EEG consists of large, rhythmic waves, indicating how synchronous the

underlying activity is [11].

EEG signals are categorized by their frequency ranges, and each range is named

by Greek letters [11, 48, 50, 94]. Beta rhythms are the fastest, greater than 14 Hz,

and signal an activated cortex. Alpha rhythms are about 8-13 Hz and are associated

with quiet, waking states. Theta rhythms are 4-7 Hz and occur during some sleep

state. Delta rhythms are quite slow, less than 4 Hz, often large in amplitude, and are

a hallmark of deep sleep [11]. Table 3.1 summarizes these EEG signals.

Sleep can be categorized into distinct states according to the EEG signals [65].

Rapid eye movement(REM) sleep and non-REM (NREM) sleep, which consists of four

stages, are two types of sleep [5, 11, 48, 50, 65, 93, 94]. Although the progression of
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Table 3.1: Characteristics of EEG signals

EEG signal Signal frequency Characteristics
Delta 1-3 Hz deep sleep
Theta 4-7 Hz NREM Stage I
Alpha 8-13 Hz quite, waking states
Beta > 14 Hz an activated cortex

EEG waves has been divided into discrete stages, it is actually gradual and continuous

[48]. During a normal night, we slide through the stages of NREM, into REM, then

back through the NREM stages, repeating the cycle about every 90 minutes. These

cycles are examples of ultradian rhythms, which have faster period than circadian

rhythms [11].

NREM sleep is characterized by a reduction in physiological activity. As it gets

deeper, the brain waves as measured by EEG get slower and have greater amplitude,

breathing and heart rate slow down, and blood pressure drops [93]. Four stages of

NREM sleep is typified as follows [50, 93].

Stage 1 is a time of transition from being awake to falling asleep, which only

occupies 5 percent of night. Theta activity, a loss of alpha and often some vertex sharp

waves are shown in this stage. (Wakefulness usually show alpha or beta rhythms.)

Around 45 percent of sleep is made up of Stage 2, a period of light sleep during

which eye movements stop. This stage contains a mixture of theta activity, sleep

spindles, K complexes, which are sudden sharp wave forms, and a few delta waves.

Stage 3 is more of a transition phase from Stage 2 to Stage 4, and constitutes only

about 7 percent of sleep in young adult.

When delta activity goes beyond in Stage 3, then the deepest sleep, Stage 4, is

reached. It is the most difficult to be awakened during slow wave sleep, i.e., Stage 3

and Stage 4.

REM sleep is an active period of sleep marked by intense brain activity. This

stage is also referred to as paradoxical sleep since brain activities during REM are

comparable to those during wakefulness. Brain waves are fast and desynchronized,

similar to those in the waking state. Most dream occurs in REM sleep [48].

The amount of alpha activity with eyes held either open or closed (to avoid artifacts
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from blinking) is considered to be related to the level of alertness [133].

3.1.3 Brief Review on Neural Systems Regulating Sleep-Wake Cycle

Drowsiness and sleepiness are manifestations of brain activities. The brain stem con-

tains an extremely complex circuit of interconnecting neurons that provokes arousal

when electrically stimulated. This area is called the reticular formation. It is a part

of the brain stem, and is included in all three components of the brain stem: medulla

(in the bottom), pons (in the middle), and midbrain (on the top). Cells from the

reticular formation project into the cerebral cortex indirectly, and their excitation of

those cells produces arousal or wakefulness [60]. Meanwhile, destruction of the rostal

portion of reticular formation produces sleep, which implies that one of its functions

is to keep us awake.

The reticular formation is responsible to produce the main neurotransmitters (such

as acetylchonline, dopamine, glutamate, asparatate, histamine, serotonin, and nore-

pinephrine) involved in sleep and wakefulness. These neurotransmitters primarily

play an excitatory role in the activation and arousal of the corresponding brain areas.

Serotonin and norepinephrine are two major neurotransmitters involved in sleep [5].

At the onset of sleep, serotonin is secreted, which increases NREM sleep. Secretion

of norepinephrine takes place during REM, and increases REM. Fluctuation between

stages of sleep are thought to be due to the secretion of these two neurotransmitters

[40]. On the other hand, blood levels of adenosine rise continuously, resulting in a

growing need for sleep that becomes more and more difficult to resist. During sleep,

on the other hand, levels of adenosine decrease, thereby reducing the need for sleep

[93].

In addition to the reticular formation, another part of the brain, hypothalamus,

is also considered as a key regulator of sleep and wakefulness [52, 87]. It has been

found that hypocretin-containing cell bodies are exclusively located in the lateral

hypothalamus, and hypocretin has been considered to play a critical role in the control

of sleepiness and wakefulness [52]. A sleep disorder, human narcolepsy, is caused by

deficient hypocretin neurotransmission in the hypothalamus [87].
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In Chapter 5, we will review the regulation of the sleep-wake cycle and introduce

the motor system of human to set up our experimental hypothesis.

3.1.4 Age Effect in Sleep-Wake Cycle

The relative proportions of each 24-hour day that are devoted to wake, REM sleep,

and NREM sleep change dramatically over our lifetime [48]. An infant born at full

term sleeps for 16 to 17 hours a day. Twelve to fifteen years later at sexual maturity,

an individual sleeps for only about 8 hours. Young adults (Age 18 to 30) enter the

life-long downhill course of declining sleep length and depth without recognizing it.

Most people first perceive a shallowing and shortening of sleep in the early middle

age of 30 to 45. In the late middle age of 45 to 60, people tend to go to bed earlier

and to b e much more susceptible to sleep deprivation.

However, the relative PVT (psychomotor vigilance task) performance decrements

after 40 hour sleep deprivation is significantly less pronounced in the elderly than in

the young, so that both age groups exhibited similar performance decrements after

16 hour into the sleep-deprivation protocol [14].

3.2 What is Drowsiness?

So far, we have reviewed the mechanism and characteristics of the sleep-wake cycle.

However, drowsiness has not been clearly defined or characterized in the previous

section. Whereas it is relatively clear to distinguish between being wide-awake and

definite sleep, drowsy state is different from sleep and is not fully-awake state either.

Indeed, drowsiness varies intermediately between states of partial wakefulness and

partial sleep. Besides, every individual has his/her own way to perceive drowsiness,

whether it is noticeable or not.

Usually, drowsiness is defined in terms of eye movements and EEG rhythms [97,

114]. Utilizing the EEG signals, the onset of drowsiness can be characterized by a

gradual or brisk " alpha dropout " for the adult and by greater amounts of slow

activity mingling with the posterior alpha rhythm in childhood [97]. However, in case
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Table 3.2: The Epworth Sleepiness Scale (ESS) [28]

0 = no chance of dozing
1 = slight chance of dozing
2 = moderate chance of dozing
3 = high chance of dozing

SITUATION CHANCE OF DOZING
Sitting and reading

Watching TV
Sitting inactive in a public place (e.g. a theater or a meeting )

As a passenger in a car for an hour without a break
Lying down to rest in the afternoon when circumstances permit

Sitting and talking to someone
Sitting quietly after a lunch without alcohol

In a car, while stopped for a few minutes in a traffic

we cannot use the EEG sensor, the characterization or the definition is no longer

effective.

In our study, drowsiness, also referred to as sleepiness, is defined as a spectrum

of transient states between wide-awake and definitely-asleep, which is the result of

both the circadian rhythm and the sleep need due to the homeostasis. (Refer section

3.1.1). Some of the performance effects resulting from sleepiness can occur without

microsleeps [32]. This implies that the belief that only falling asleep while driving will

cause a fatigue-related accident is inaccurate [30]. Thus, our definition of drowsiness

captures this concern as well.

Drowsiness usually accompanies impaired awareness or vigilance. Sometimes hu-

man can recognize if they are in drowsiness state, but sometimes they can not. It

is believed that drowsiness is not directly detectable but can only be inferred from

the available observation [54]. EEG or EOG (electrooculogram) signals can be used

for defining drowsiness [97, 114], but our study does not rely on physiological signals.

In the following section, we will review terms related to drowsiness such as fatigue,

inattention, boredom, etc.
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Related Terminologies

Sleepiness, drowsiness, sleep onset, fatigue, loss of vigilance, inattention, and boredom

are the most common terminologies we can find in many relevant literatures. They

are "everyday word" we use without rigorous definitions, and each person may have

his/her own meaning for each term. For clarification, numerous definitions which can

be found from diverse literatures are listed below for each term.

Fatigue Subjective reports of loss of desire or ability to continue performing [1331,

feeling of tiredness or weariness usually associated with performance decrements [120],

consequence of physical labor or prolonged experience and is defined as a disinclination

to continue the task at hand [122]. a generic term used to encompass a range of

experiences described as anything from 'sleepy,' 'tired,' or 'exhausted' to 'beat' [92],

a complex state characterized by a lack of alertness and reduced mental and physical

performance [1], usually seen as a gradual and cumulative process due to sustained

activity and associated with a disinclination towards effort, eventually resulting in

reduced performance efficiency [98], weariness of exhaustion from labour, exertion, or

stress [113], fatigue is related to much more than just the time on a task, duration

and quality of sleep, shiftwork and work schedule, circadian rhythms, and time of

day may affect fatigue [95], a growing longer lasting limitation of a driver's capability

[106]. (Although sleepiness has more precise definition than fatigue, fatigue is widely

used throughout government, industry, labour, and the public to indicate the effects

of working too long, or following too little rest, and inability to sustain a certain level

of performance on a task [30].)

Subjective sleepiness Subjective reports of sleepiness or the desire of sleep inat-

tention [114, 133], difficulty in maintaining the wakeful state so that the individual

keep asleep if not actively kept aroused. Not a simple feeling of physical tiredness or

listlessness [120].

Vigilance State of high efficiency [114], state of readiness in detecting and re-

sponding to short lived and randomly occurring changes in the environment [114].
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Table 3.3: The Karolinska Sleepiness Scale (KSS) [4, 69]

Karolinska Sleepiness Scale
1 - extremely alert
2
3 - alert
4
5 - neither alert nor sleepy

6
7 - sleepy-but no difficulty in remaining awake
8
9 - extremely sleepy, fighting sleep

(Sustained attention is more commonly used in current psychophysiology [114])

Impairment of vigilance A diminished state of readiness to react [113]

Attention Have been replaced by the term of vigilance [114]

Inattention A short term incapability to react to traffic demands [106]

Sleep onset Transition from wake to sleep, normally into NREM stage 1 [120],

states between wide awakeness and definite sleep [65]

Sleepiness A difficulty in remaining awake [28], resulting from the neurobiological

process regulating circadian rhythms and the drive to sleep [30], inclination to fall

asleep [113].

Alertness Selective attention, vigilance, and attentional control [133].

Assessment of Sleepiness

Subjective Self-Assessment Due to the nature of drowsiness, subjective assess-

ment on drowsiness or sleepiness should be addressed. Though no strong association

exists between perceived and actual drowsiness [7], it is important as well how sub-

jects feel or perceive their own states. Three commonly-used subjective self-assessment

sleepiness scales are listed below.
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Table 3.4: The Stanford Sleepiness Scale (SSS) [28]

Degree of Sleepiness Scale Rating

Feeling active, vital, alert, or wide awake 1
Functioning at high levels, but not at peak; able to concentrate 2

Awake, but relaxed; responsive but not fully alert 3
Somewhat foggy, let down 4

Foggy; losing interest in remaining awake; slowed down 5
Sleepy, woozy, fighting sleep; prefer to lie down 6

No longer fighting sleep, sleep onset soon; having dream-like thoughts 7
Asleep x

The Epworth Sleepiness Scale (ESS), which is shown in Table 3.2, is a simple,

self-administered questionnaire used to assess subject-perceived levels of sleepiness

[28, 113] over the past week or two. The Karolinska Sleepiness Scale (KSS) shown in

Table 3.3 is a Likert-type rating scale [4, 113] and is commonly used to measure levels

of sleepiness. The Stanford Sleepiness Scale (SSS), like KSS, asks a person about

his/her tendency, intention, or potential for falling asleep at a particular moment

[28, 113], which is described in Table 3.4.

Objective Assessment It is true that falling asleep is not voluntary but there

exist some tests that measure how long it takes to fall asleep or to be awakened when

subjects try to do so. Multiple Sleep Latency Test (MSLT) measures how quickly

a subject falls asleep, when asked to do so, or lying down in a quiet and darkened

bedroom. It is performed under scrutiny with electrodes and wires attached so that

sleep can be monitored accurately [13, 34, 55]. In the maintenance of wakefulness

test (MWT), a subject sits in bed, resting against pillows in a quiet dimly lit room,

attempting to stay awake for 20 (for sometimes 40) min, with the same scrutiny and

with the same electrodes attached as in the MSLT [10, 13, 55]. The Oxford Sleep

Resistance Test (OSLER) is simply the response to light; if a subject does not respond

to light within a predetermined time he/she is judged to fall asleep [113].
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Chapter 4

Driver-Vehicle Systems

In this Chapter we study general properties of driver-vehicle systems, covering the

structure of driver-vehicle systems, input modality of drivers, interface between drivers

and vehicles, and simplified vehicle dynamics. In conjunction with Chapter 3, this

Chapter provides a basis for human-in-the-loop experiments dealt within Chapter 5.

4.1 Understanding Driving

While driving, we are not simply looking ahead or around, or accelerating or braking,

or steering right or left, but usually performing each of these action concurrently, as

a part of some larger task , such as following another vehicle or turning a corner.

Indeed, one of the difficulties in understanding driving is that so many relatively

complex activities must be performed together in order to achieve what seems to be

relatively trivial driving tasks [45].

4.2 Inputs to Driver-Vehicle Systems

Human utilize various sensory systems when they drive. They assess the distance

between themselves and other objects, estimate the speed at which both are traveling,

listen to engine noise, feel the condition of road surface, etc. We investigate visual,

vestibular, auditory, and tactile sensory systems which are essential for driving.
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4.2.1 Visual Inputs

For the purpose of understanding driver-vehicle systems, it is sufficient to review two

visual systems; one for determining where things are and the other for recognizing

what is present. The first system, the ambient system, makes use of the peripheral as

well as the central visual field and is principally concerned with detecting the motion

of large objects in the field or of self-motion with respect to the visual environment.

Orientation judgments from the visual field using the ambient system employ such

natural cues as parallax and perspective. The second system, the focal system, relies

primarily on discrimination of fine detail in the central visual field and other cues

that lead to appreciation of an object's size and character [1311.

Humans navigate and manipulate in a three dimensional (3-D) world, and we

usually do so quite accurately and automatically. In order to judge our distance

from objects (and the distance between objects) in 3-D space, we rely on a host

of depth cues to inform us of how far things are away. The three cues used for

judging distance, slant, and speed for objects that are within a few meters from an

observer are accommodation, binocular convergence, and binocular disparity. The

important pictorial cues for judgment of depth and distance for more distant objects

and surfaces are linear perspective, relative size, interposition, light and shading,

textural gradients, and relative motion (motion parallax) [140].

4.2.2 Vestibular Inputs

The importance of manually controlling the vestibular senses - the semicircular canals

for rotational acceleration, and the otolith organs for translational acceleration- are

not commonly appreciated [118]. Controlling an automobile or an aircraft simulator

without motion cues typically yields evidence for under-damping, e.g., overshoot of

step responses, and test subjects complain that the simulator lacks in reality. It has

been found that the addition of roll-motion cues to visual cues permits an operator

to increase his/her phase lead at frequencies of about 3 rad/sec, thus allowing an

increase in gain for the same phase margin and a concomitant reduction in tracking

error [118].
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Located deep within the inner ear are two sets of receptors, located in the semi-

circular canals and in the vestibular sacs. These receptors convey information to the

brain regarding the angular and linear accelerations of the body, respectively. Thus,

when we turn our heads with our eyes shut, we know that we are turning, not only

because kinesthetic feedback from our necks tell us so but also because there is an

angular acceleration experienced by the semicircular canals. Because the head can

rotate in three axes, there are three semicircular canals assigned to each axis. Cor-

respondingly, the vestibular sac (along with the tactile sense from the seat of the

pants) inform passengers or drivers of linear acceleration or braking in a car. Their

organs also provide the constant information about the accelerative force of gravity

downward, and hence they are continuously used to maintain our sense of balance

(knowing which way is up, and correcting for departures) [140].

Not surprisingly, the vestibular senses are the most important for human system

interaction when the systems either move directly (as vehicles) or simulate motion ( as

vehicle simulators or virtual environments). The vestibular senses play two important

(and potentially negative) roles here, related to illusions and to motion sickness.

Vestibular illusions of motion occur because certain vehicles, particularly aircraft,

place the passenger in situations of sustained acceleration and nonvertical orientation

for which the human body was not naturally adapted. Hence, for example, when the

pilot is flying in the clouds without sight of the ground or horizon, the vestibular

senses may sometimes be tricked into thinking that up is in a different direction from

where it really is. This illusion presents some real dangers of spatial disorientation

and the possible loss of aircraft control.

The vestibular senses also play a key role in motion sickness. Normally, our visual

and vestibular senses convey compatible and redundant information to the brain

regarding how we are oriented and how we are moving. However, there are certain

circumstances in which channels become decoupled so that one sense tells the brain

one thing and the other tells it something else. There are conditions that cause

motion sickness. One example of this decoupling occurs when the vestibular cues

signal motion and the visual world does not. When riding in a vehicle with no view
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of the outside world (e.g,the ship passenger below decks with the portholes closed,

or the aircraft passenger flying in the clouds), the visual view forward, which is

typically framed by a man-made rectangular structure, provides no visual evidence

of movement (or evidence of where the true horizon is). In contrast, the continuous

rocking, rolling, or swaying of the vehicle provides very direct stimulation of movement

to the vestibular senses. When the two senses are in conflict like this, motion sickness

often follows.

Conflict between the two senses can also result from the opposite pattern. The

visual system can often experience a very compelling sense of motion in video games,

driving or flight simulators, and virtual environments, even when there is no motion

of the platform whatsoever. Here again happens a conflict, and there exists a real

danger of a loss of function (or wasted experience) when the brain is distracted by

the unpleasant sensations of motion sickness.

4.2.3 Auditory Inputs

The automobile driver uses auditory cues to maintain vehicle speed. Drivers who are

masked their ears on a vacant highway found themselves driving a speed far higher

than they intend [118]. The stimulus for hearing is sound, resulting from vibrations

(compression and rarefaction) of air molecules. The ear is the sensory transducer

and has three primary components that are responsible for differences in our hearing

experiences. The pinnea serves to collect sound and detect where it comes from

thanks to its asymmetrical shape. Mechanisms of the outer and middle ear (the ear

drum or tympanic membrane, the hammer, anvil, and stirrup bones) conduct and

amplify sound waves into the inner ear and are potential sources of breakdown or

deafness. The muscles of the inner ear are responsive to very loud noises and will

reflexively contract to attenuate the amplitude of vibration before its conveyance to

the inner ear [140]
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4.2.4 Tactile Inputs

Lying just under the skin are sensory receptors that respond to pressure on the skin,

they relay their information to the brain regarding the subtle changes in force applied

by the hands and fingers as they interact with objects in the environment. We can see

the importance of these sensory channel in two very different controls by pilots: the

landing gear and the flaps [140]. Drivers usually can judge road surface conditions

based on their feeling from steering wheels.

4.3 Interface of Driver-Vehicle Systems

4.3.1 Steering Control

There is no definite functional relationship between the turning angle of the steering

wheel made by the driver and the change in driving direction, because of the cor-

relation of turns of the steering wheel, alteration of steer angle at the front wheels,

development of lateral tire forces, and alteration of driving direction. Standard steer-

ing system is not linear because of the elastic compliance with the chassis components.

In order to move a vehicle, the driver must continually adjust themselves to the

relationship between turning the steering wheel and altering the direction of the

vehicle. The driver will monitor a wealth of information, going far beyond the visual

perceptive faculty (visible from the desired direction). These factors would include,

for example, the roll inclination of the body, the feeling of being held steady in the

seat (transverse acceleration) and the self-righting torque the driver will feel through

the steering wheel. It is therefore the job of the steering system to convert the steering

wheel angle into as clear a relationship as possible to the steering angle of the wheels

and to convey feedback the vehicle's state of movement to the steering wheel [105].
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4.3.2 Throttle/Brake Control

4.4 Simplified Vehicle Dynamics

4.4.1 Lateral Dynamics

A two-degree of freedom model, commonly referred to as the Bicycle Model, encom-

passes the dominant dynamics of the vehicle under normal operation [78, 104]. Emer-

gency maneuvers and abrupt changes in velocity are not considered in this model.

Advanced vehicle models are available in numerous literatures [78, 104, 105].

The states we consider are yaw rate b and lateral velocity v. The state space

representation is given by

(4.1)i = Ax + Bu

where

-2(Cof + Car)
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IzU
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here m = vehicle mass, a = distance from front wheels to CG (center of gravity),

b = distance from rear wheels to CG, Iz = polar moment of inertia, Caj = front

cornering stiffness, Car = rear cornering stiffness, U = longitudinal velocity, 6 f =

front steering wheel angle, and 6r = rear steering wheel angle. Common numerical

values of the associated coefficients can be found in [15, 78].
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Figure 4-1: An example of a hierarchical control system: automobile driving [141]

Multiaxis Control

A driver must often perform more than one tracking task simultaneously. He/She

may steer, while simultaneously controlling speed, to execute a passing maneuver.

Multiaxis systems can be distinguished in two ways: a system with two variables

to be controlled as well as their inputs are essentially independent of one another;

and a system with cross-coupling so that the state of the system or variable on

one axis partially constrains or determines the state of the other. An example of

two basically independent axes is that when a driver controls speed, it has a minor

effect on the lateral (steering) handling characteristics of the vehicle. In contrast,

the heading and lateral position of an automobile are highly cross-coupled, because

a vehicle heading directly affects its lateral position. In this case, the two cross-

coupled tasks are considered to be hierarchical. That is, lateral position cannot be

changed independently of heading control. The steering wheel, which directly controls

headings, is used to obtain a change in lateral position [141].

4.4.2 Longitudinal Dynamics

Consider a vehicle moving on inclined road. The external longitudinal forces acting

on the vehicle include aerodynamic drag, gravity, longitudinal tire forces, and rolling

resistance forces. These forces are described in detail in [103].

The state space representation is given by

m- = Fxf + Fxr - Faero - Rxf - Rxr - mg sin 0 (4.3)
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where Ff is the longitudinal tire force at the front tires, Fx, is the longitudinal tire

force at the rear tires, Faero is the equivalent longitudinal aerodynamic drag, Roy is

the force due to rolling resistance at the front tires, Rr is the force due to rolling

resistance at the rear tires, m is the mass of the vehicle, g is the acceleration due to

gravity, and 0 is the angle of inclination of the road on which the vehicle is traveling.

The angle 0 is defined to be positive clockwise when the longitudinal direction of

motion x is toward the left.

The control of longitudinal vehicle motion has been pursued at many different

levels. Common systems involving longitudinal control available on today's passenger

cars include cruise control, anti-lock brake systems, and traction control systems.

Other advanced longitudinal control systems include radar-based collision avoidance

systems and adaptive cruise control systems [103].
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Chapter 5

Simulator-based

Human-in-the-Loop Experiments

This chapter covers human-in-the-loop experiments using a fixed-based driving sim-

ulator. We describe: 1) experimental objectives, 2) design of experiment including

hypothesis and independent/dependent variables, 3) detailed hardware and software

setup, and 4) experiment procedures.

5.1 Experimental Objectives

The simulator-based human-in-the-loop experiments are intended to explore the char-

acteristics of drowsy driving. As is mentioned in Chapter 1, drowsy driver detection

problems should consider both vehicle and human components of transportation acci-

dents. The proposed experiments focus on human perspective of the problem. Mainly,

differences in driver performance under different sleep-deprivation levels are exam-

ined. Both common driving tasks and some non-driving tasks such as psychomotor

vigilance tasks are given to each driver.

The purpose of this experiment does not lie in proposing another drowsiness mon-

itoring technique, but in understanding in-depth characteristics of driver-vehicle sys-

tems under different sleep-deprivation levels of drivers. For instance, we will not only

compare driver performances in stimulus-response tasks between non sleep-deprived
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and partially sleep-deprived groups, but also investigate tasks which show little perfor-

mance deterioration under sleep deprivation. Although explicit sleep-onset episodes

often cause the most serious performance failures, some performance effects resulting

from sleepiness can occur without microsleeps [30, 32]. This suggests that the pop-

ular belief should be corrected that only a fall-asleep-driver causes a fatigue-related

accident. There are moments a driver still looks awake (eyes wide open) but does

not process any information. These looking without seeing moments are dangerous

and need to be captured by an effective system [106]. Moreover, we will study how

drowsy driving affects attentiveness, rapidity, and accuracy of actions. Although it

has been found that attentiveness and rapidity suffer more than accuracy under sleep

deprivation in normal life [65, 138, 139], there has been little comparable analysis in

driving situations.

We expect the experimental results to disclose the characteristics of drowsy driving,

and to enable us to design a proper drowsy driver detection system and the associated

counter-measures. The in-depth analysis will lead us to a more systematic way to

drowsy-driver detection.

5.2 Experimental Methods

5.2.1 Experimental Hypotheses

In this experiment, our main working hypothesis is that the deterioration degree

of drowsy driver performance is greater in 'high-level' decision-making tasks that

demand human motor functions involving the basal ganglia than in 'lower-level' reg-

ulation tasks involving the cerebellum. The rationale of this hypothesis lies in the

physiological basis of the sleep-wake cycle and the motor control of human nervous

system.

We first examine the role of the basal ganglia and the cerebellum in the motor

system. The motor control of human nervous system is shown in Fig. 5-1 [60], which

shows the control flow of our motions or movements. As we first receive some external

signals, they are fed into the spinal cord and the brain stem, which integrate the
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Figure 5-1: Motor control of human nervous system [60]

information to send to the upper level of motor system, the cerebral motor cortex

area [17, 60, 85]. The basal ganglia receive inputs from the cortical areas, which are

in charge of decision making or switching between tasks. It has been known that the

basal ganglia supervise human decisions on what kind of tasks human are going to

do. Once the basal ganglia and the associated cerebral motor cortex area decide what

to do, the next control level involves the cerebellum, whose function is to improve

the accuracy of movements by comparing motor commands with information on the

resultant motor actions. For examples, the cerebellum controls general tracking tasks,

such as lane tracking while driving.

Roughly speaking, the basal ganglia play an important role in generating sequen-

tial movements and triggering transitions of different brain states; the cerebellum

influences the motor systems by adjusting the motor commands while a movement

74



is in progress as well as during repetitions of the same movements. For example, it

requires considerable basal ganglionic functions for a driver to switch lanes in an at-

tempt to be away from an aggressive vehicle while it relies on the cerebellum function

to cruise on a moderately curvy road. The activities concerned with learning how to

drive a new vehicle may involve both.

Now, recall the brain parts controlling the sleep-wake cycle in Chapter 3. We have

reviewed that the hypothalamus and the reticular formation are the regulators of the

sleep-wake cycle. The hypothalamus is located in the middle part of the brain, mainly

controlling the sleep-wake cycle and body temperature. The reticular formation is

located in the brain stem and is known to generate the neurotransmitter to regulate

the sleep-wake cycle.

As it turns out, the reticular formation and the hypothalamus have more influence

on the basal ganglia than on the cerebellum. The reticular formation is responsi-

ble for the production of the main neurotransmitters involved in sleep and wakeful-

ness. These neurotransmitters primarily play an excitatory role in the activation and

arousal of the associated brain areas. Cells releasing these neurotransmitters project

into the cerebral cortex and forebrain including the basal ganglia, but not into the

cerebellum. During sleep or drowsiness, the activities of the neurotransmitter to re-

lease cells decrease, and thus the concentration levels of the above neurotransmitters

in the basal ganglia and other cortical areas are affected to a greater extent than in

the cerebellum. Some neuroanatomical studies [87] of the hypocretin system show

that hypocretin may have more influences on the prefrontal areas of the brain than

on the lower movement control system including the cerebellum.

Given the above arguments, it is reasonable to examine if the motor functions

involving the basal ganglia deteriorate more than those involving the cerebellum dur-

ing drowsiness. Recent studies [20, 132, 145] tried to find a mapping between driving

tasks and areas of brain activations by using imaging techniques such as fMRI (Func-

tional Magnetic Resonance Imaging). They examined the activated brain areas of a

subject under a variety of simulated driving circumstances. It is beyond the scope

of this thesis to find the exact mapping between brain areas and driving tasks for
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various sleep levels.

We study several driving tasks and secondary tasks that have different nature or

characteristics, trying to find out if there exist some tasks that are more vulnerable

to drowsiness than others. Showing how task type and sleep-deprivation level affect

driving performances, this approach would provide a design strategy for building

drowsiness-detection devices.

At this point, it is important to discuss some of the experiments performed on hu-

mans and other animals involving sleep deprivation. In a study with human subjects

Dinges and Kribbs [32] discovered that performance on shorter tasks is not impaired

when individuals are sleep deprived; however, performance on longer tasks which re-

quire sustained attention becomes impaired. In other experiments subjects report

perceptual distortions or even hallucinations [40]. Rechtschaffen's study on rats that

were sleep deprived between 5 to 33 days showed severer effects; they began to look

sick, stopped grooming themselves, and became weak and uncoordinated. Some of

them died and some had to be sacrificed. On autopsy, enlarged adrenal glands, stom-

ach ulcers, and fluid in lungs were found; note that these are the typical signs of stress

[22].

Cerebral function is more profoundly impaired by sleep deprivation than in the

functions of any other organ or part of the brain [50].

5.2.2 Independent Variables

The independent variable of the experiment is the sleep-deprivation level of subjects,

i.e., the different levels of homeostatic need for sleep. We consider subject groups

with two different sleep-deprivation levels, "partial sleep-deprivation" and "no sleep-

deprivation."

The level of sleep deprivation is determined by the amount of sleep each subject

have before the test day. The non-sleep-deprived group consists of subjects who have

been sleeping at least 7 to 8 per 24 hours for more than a week before the test day.

The partially-sleep-deprived group consists of subjects who have had less than 7 hours

in bed two days before the test and less than 4 hours in bed on the eve of the test.
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Figure 5-2: Actiwatch AW-16

As is explained in Chapter 3, there is no direct way to control a driver's vigilance

level without using drugs [122]. Thus, we control the "causes" of sleep to maximize or

minimize the probabilities of entering the drowsiness state. The non-sleep-deprived

group is scheduled to have experiments only between 9:00 am to 12:00 pm, whereas

partially-sleep-deprived group is scheduled between 2:00 pm to 4:00 pm. Such an

arrangement takes into account the wake-drowsy peaks of the circadian rhythm.

Actiwatches, small actigraphy-based data loggers that record digitally integrated

measure of gross motor activities [88], allow us to measure the amount and quality

of sleep for several days prior to the experiments. Subjects are asked to wear the

Actiwatch, which can be worn just like a watch, for one week prior to the non-sleep-

deprived session and for 2-3 days prior to the partially-sleep-deprived session. Fig. 5-2

shows the Actiwatch AW-16 used in the experiment. It is 16 grams, 28 x 27 x 10

mm, waterproof, and has 16 kbytes memory.

5.2.3 Task Definitions

For both non-sleep-deprived and partially-sleep-deprived subjects, a series of driving

and non-driving tasks are given to drivers during simulated driving environment,

which are described below.

Tracking Tasks

Five different tracking tasks are given to each subject in a random order while driving.

These are categorized such, as drivers are expected to drive in the simulator as if they

were driving in real world and were not supposed to change lanes or pass a lead vehicle

in front of them. Depending on each scenario, drivers face a straight road without
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Figure 5-3: Screen shot of Curved Lane Tracking.

any disturbance, straight road with disturbances such as wind gusts, straight road

with a lead vehicle, straight road with changes in steering dynamics, or curvy road.

Definitions of each scenario given to subjects are summarized as follows.

Curved Lane Tracking (CL) A curved roadway is presented during the exper-

iment. Drivers are supposed to keep the car centered in a serpentine road under

a specified speed range between 80 and 100 kph. The length of each serpentine is

approximately 1500m. Each test includes three CL events. Fig. 5-3 is a screen shot

from the driving simulator that shows a part of a serpentine. Its geometry can be

found in Appendix A.1. Subject drivers practice on a curvy road before they start

the main experiment. The serpentine geometry used in the practice is different from

that in the main experiment.

Straight Lane Tracking given Changes of Steering Characteristics (CS)

Drivers are supposed to keep the vehicle centered in the straight road and to maintain

a specified speed range between 80 and 100 kph, while the original steering dynamics

are altered. Each test includes three CS events, each of whose length is 1900m.

We introduce some nonlinearities to the steering alignment system which is orig-

inally modeled as a linear system. We can easily apply external or environmental

disturbances such as wind gust, bumpy roads, fogs, etc. However, we are not able
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Figure 5-4: Backlash [125]

to control the presence of environmental disturbances in driving situation. The CS

are intended to observe how drivers adapt themselves to external disturbances and to

study how to apply this event to real-driving situations. Thus, we introduce backlash

in the steering dynamics as one of the nonlinearities or changes in steering dynamics.

Backlash is a common nonlinearity that limits the performance of speed and posi-

tion control. It causes a phase delay, and thus a loss of information by chopping the

peaks of input signals [125]. The discrete-time version of the backlash model is

m(v(t) - ci) if v(t) < v,

u(t) = B(v(t)) = m(v(t) - c,) if v(t) > V, (5.1)

U(t - 1) if Vi < v(t) < V,

where, v = u(t-1) + Ci 11vr = U(t-1) + Cr. Coefficients used in the simulation are m = 1,

cl = -10 deg, and Cr = 10 deg. Fig. 5-4 describes the backlash model [125].

Straight Lane Tracking given a Lead Vehicle (LV) When a lead vehicle ap-

pears traveling with small speed variation, subject drivers are supposed to follow the

vehicle with safe margin they choose. Before the main experiment starts, drivers are

told not to pass their lead vehicle. Each test includes three LV events and each lead

vehicle presents for 100 seconds. A speed variation profile of a lead vehicle is included

in Appendix A. 1. Fig. 5-5 is a screen shot of the driving simulator that shows a lead
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Figure 5-5: Screen shot of Straight Lane Tracking given a Lead Vehicle

vehicle.

Straight Lane Tracking (LT) Drivers are supposed to keep their vehicle centered

in straight road under a specified speed range between 80 and 100 kph. Without any

disturbances or stimuli present, a 700m - long straight roadway is introduced. Each

test includes three LT events.

Straight Lane Tracking given Wind Gusts (WG) Some external pseudo-

random disturbances are introduced during the experiment. Drivers are supposed

to keep their vehicle centered in straight road under a specified speed range between

80 and 100 kph. Well defined multiple sine waves specify the pseudo-random distur-

bances [109]. Each test includes three WG events, each of which lasts for 24 seconds.

Details of the disturbance model are shown in Appendix A.1.

Stimulus-Response Tasks

We have four different stimulus-response tasks given to each subject in a random

order during simulated driving. Stimulus can be an auditory ringing signal, a visual

red triangular symbol, or an over-head lane change sign on the driving lane. They

can be either critical or negligible in terms of safe driving. Definitions of the four

stimulus-response tasks are given as follows.
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Figure 5-6: Screen shot of Double Lane Change Task.

Single Lane Change Task (SLCT) Once an overhead lane change sign appears,

drivers are supposed to change lanes immediately. Each lane change sign has an array

consisting of an arrow and two X's. The arrow indicates the target lane that drivers

need to move into. The rest of the lanes are marked with Xs to indicate that drivers

should not move in those lanes. SLCT sign refers to the moment when the lane

indicated by the arrow is adjacent to the current driving lane. Each experimental

session includes five SLCT events.

Double Lane Change Task (DLCT) Once an overhead lane change sign appears,

drivers are supposed to change lanes immediately. The lane change sign has a similar

format as described in SLCT. However, DLCT sign refers to the moment when the

lane indicated by the arrow is separated from another lane, and drivers are supposed

to shift two lanes at once. Fig. 5-6 is a screen shot of the driving simulator that shows

one of the lane change signs. Each experimental session includes five DLCT events.

Auditory Psychomotor Vigilance Task (APVT) Drivers are supposed to press

a green button on the steering wheel immediately after hearing a ringing tone. The

ringing tone lasts for about 1 second. Each experimental session includes ten APVT

events.
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Figure 5-7: Screen shot of Visual Psychomotor Vigilance Task.

Visual Psychomotor Vigilance Task (VPVT) Drivers are supposed to press a

green button on the steering wheel immediately after recognizing a red stimulus on

the screen. The stimulus is shown for 5 seconds if there is no response from subjects.

Each experimental session includes ten VPVT events. Fig. 5-7 is a screen shot of the

driving simulator that shows the red stimuli.

Emergency Maneuver (EM) Drivers are supposed to avoid a collision when a

vehicle ahead suddenly stops. Drivers are free to choose to brake or to steer away

or to do both. This task is intended to examine drivers' response to an emergent

situation. EM is presented as the last element of the experiment due to high collision

risk. (If an experimental session is resumed after an accident, we need to cope with

the simulation fidelity issue.)

Table 5.1 shows the full list of tasks defined previously. Instead of grouping the

simulated tasks into tracking tasks and stimulus-response tasks, we can consider CL,

LV, LT, WG, and SLCT as examples of common driving tasks, as opposed to CS,

DLCT, APVT, VPVT, and EM as non-common driving tasks. Their characteristics

will be investigated in Chapter 6.
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Table 5.1: Simulated Tasks

5.2.4 Dependent Variables

The dependent variables of this experiment are the performance measures of each

simulated task. Using driver-vehicle data collected during the experiment, we employ

the following metrics to assess driver performance for the corresponding tasks. A list

of raw data collected during the experiment are presented in Appendix A.1.

Performance Measures for Tracking Tasks

Root Mean Square Error with Threshold (RMT) RMT is a parameterized

variation of the conventional Root Mean Square (RMS) error, which is usually used

to measure general tracking performance. We have devised RMT instead of RMS

to capture common driving characteristics; drivers tend to ignore a certain level of

errors, as they generally try to stay within the driving lane instead of trying to follow a

single line on the road. This driving characteristic is usually called "good-enough" or

"satisficing" characteristics of drivers [61]. Thus, we introduce a threshold parameter

a to the RMS so that RMT vanishes as long as driving trajectories stay within the

threshold a.

RMT is defined as

RM = max(Jx(k)| - a, 0)2RMT ane (5.2)

where x(k) is the lateral lane position of a driver with respect to the centerline of
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Accronym Tasks
CL Curved Lane Tracking
CS Straight Lane Tracking given Changes of Steering Dynamics
LV Straight Lane Tracking given a Lead Vehicle
LT Straight Lane Tracking

WG Straight Lane Tracking given Wind Gusts
SLCT Single Lane Change Task
DLCT Double Lane Change Task
APVT Auditory Psychomotor Vigilance Task
VPVT Visual Psychomotor Vigilance Task

EM Emergency Maneuver



the driving lane, a is a threshold value varying from 0 to 50% of the road width, n is

a number of data within the sampling window, to is the initial time in the sampling

window, and tf is the terminal time in the sampling window. It is apparent that (5.2)

is reduced to a typical RMS error, , when a = 0.

Rate of EXceedance (REX) Another metric for measuring the lane tracking

performance is REX, which is based on the number or frequency of lateral deviations

exceeding a threshold. Regardless of the amplitude of deviation, REX gives the

same penalty for all deviations exceeding the threshold, and thus captures different

properties from RMT. REX is defined as

k=,,

REX = Ek=to 1(lx(k)l - a) (5.3)
n

where 1(1x(k)| - a) = 1 when Ix(k)| ;> a, and 1(Ix(k)| - a) = 0 otherwise.

Effective Time Delay (ETL) The Effective Time Delay (ETL) of continuous

tasks can be considered to be equivalent to the Reaction Time (RT) of discrete tasks

[140]. The ETL is estimated by applying McRuer's Crossover Model to some continu-

ous tasks. McRuer's Crossover Model claims that, for tracking tasks, human respond

in such a way as to make the total open-loop transfer function behave as a first order

system with gain and effective time delay [83]. Thus, the total open-loop transfer

function can be expressed as

YHYP Ke-TS (5.4)
S

where YH is human, Yp is a plant, K is a gain, and T is an effective time delay (ETL).

Performance Measures for Stimulus-Response Tasks

Reaction Time (RT) Reaction Time (RT) is a measure of how fast a driver reacts

to stimuli presented abruptly. Accordingly, RT is defined as

RT = taction - tstimulus (5.5)
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where tstimulus is the time a stimulus is presented to the driver and taction is the time

the man-vehicle system reacts to the given stimulus. The unit of RT is milliseconds.

Lapse Rate (LR) A lapse is a metric to measure a driver's inadequate performance

when he/she does not respond to a stimulus in a timely manner. For the sustained

Psychomotor Vigilance Task, a lapse is defined as a Reaction Time (RT) greater than

or equal to 500 ms [34]. On the other hand, when a sustained Psychomotor Vigilance

Task is used as a secondary task during simulated driving, a threshold of 600 ms is

claimed to be more relevant [69]. In general, a lapse can be defined as a RT greater

than or equal to a preset threshold, and the Lapse Rate (LR) can be computed from

>]== I1(RT > 0)
LR = 1=1 - (5.6)

n

where n is a total number of RTs under consideration, 0 is a lapse threshold, and

1 (RT ;> 0) = 1 when RT > 0, zero otherwise. The lapse threshold 0 may have dif-

ferent values for different types of stimuli (e.g. auditory or visual stimuli) or different

types of tasks (e.g. driving or non-driving tasks).

Correct Response Rate (CRR) Accuracy of drivers' response are measured by

Correct Response Rate (CRR). It is defined as

i1 ( Responsei)
CRR = I=1 (5.7)

n

where n is the total number of responses under consideration, 1(Responsei) = 1 when

the Response is correct, i.e., drivers do what they are supposed or instructed to do

so. On the other hand, 1(Responsei) = 0 when the Responsei is incorrect. CRR

measures the accuracy of drivers' response whereas RT and LR measure the speed of

drivers' response.

5.2.5 Laboratory Set-Up

We develop a simulation test bed that allows a subject to drive with pre-designed

driving scenarios. A simulated driving is programmed and run by STISIM Drive
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Figure 5-8: Laboratory setting

v2.06.07. STISIM Drive is a fully interactive Windows PC-based simulator [1241.

A built-in programming language, SDL(Scenario Definition Language), enables us

to generate driving scenes, road geometry, weather conditions, traffics, dashboard

design, stimuli given to the drivers, etc. Visual Basic V6 is used to model steering

dynamics change during the experiment.

STISIM Drive runs on a Dell PC-Pentium 4, 2.6 GHz, 512MB of RAM. Logitech

MoMo steering wheel and pedal set is connected to the Dell PC, and is recognized

as a control device to the STISIM Drive. The steering wheel could be rotated ±120

degrees. A projector and a wide screen (45 in x 60 in) are implemented in the lab,

showing driving scene to a subject. A 6-way power adjustable driver's seat is used

for the experiment. Fig. 5-8 shows an image of the lab setting. A detailed seat buck

design is provided in Appendix A.4.

Copilot for obtaining PERCLOS (PERcentage of eye CLOSure) value and a se-

ries of JPEG images of a driver is installed in Compaq Presario Laptop-Celeron(4),

2.40GHz, 192MB of RAM. The data are collected by LabView 7.0 through a serial

port and IMPERX frame grabber.
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Figure 5-9: Laboratory system flow diagram.

Dell PC and Compaq laptop are connected to each other by a cross cable, which

allows NTP (Network Time Protocol) to synchronize the system time of both com-

puters. NTP is installed on both computers; Dell PC and Compaq laptop work as a

server and a client, respectively. The lab system flow diagram is shown in Fig. 5-9.

Appendix A.1 includes the detailed scenario programming using SDL of STISIM

Drive and Visual Basic.

5.2.6 Experimental Procedure

Control of the Independent Variable

Subjects are asked to wear the Actiwatch all days and nights before the experiment

and at the same time, to fill out a sleep diary every day. For non-sleep-deprived

conditions, subjects are asked to wear the Actiwatch and to write the sleep diaries for

a week before the experiment. For partially-sleep-deprived conditions, subjects wear

the Actiwatch and write the sleep diaries at least two days before the experiment.

For the specific from of sleep-diary, refer to the Appendix A.2.

Experiment procedure

Each test session lasts for an hour, including a 10 minute demo drive during which a

driver learns the tasks described in Section 5.2.3 except WG, CS, and EM. WG, CS,

and EM are not included in the demo, as they are not rule-based tasks; but emergency-
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type ones, for which driver should react with their instinct. Other than those three

tasks, an experimenter explains how subjects should drive or react for relevant tasks.

Drivers are asked to practice each task until adequate performance level is achieved,

and are able to ask any questions regarding tasks and driving simulator.

The above instructional and demonstrational session is followed by the main ex-

periment scenario. During the initial 20,000 m (approximately the first 10 minutes) of

the main experiment, no perturbation inputs are present, and a driver is only asked to

drive along a straight roadway with a speed range between 80 and 100 kph. This re-

laxing interval is included as an unmasking period in order to remove hyper-vigilance

or any factor that prevents the driver from revealing sleepiness. Then, randomly

placed and ordered tasks as is described in Section 5.2.3 are given to the driver suc-

cessively. No tasks are given simultaneously to a driver. The driver is not informed

of the time and the duration of the tasks including masking period before or during

the main simulation. This part runs for up to 40 min.

An experimenter is present in the laboratory with a subject throughout the whole

test session. Conversation between the subject and the experimenter is prohibited

during the main scenario unless an emergency occurred. Sleep-deprived subjects are

provided with transportation on the test day to avoid safety-related accidents.

5.2.7 Participants

A total of 12 subjects participated in the experiment twice; under conditions of partial

sleep-deprivation and no sleep-deprivation. The ages of these subjects ranged from

29 years to 49 years, with an average of 41.7 years and a standard deviation (STD)

of 6.4 years. The average amount of sleep these subjects had per day for two weeks

prior to the sleep monitoring was 6 hours 42 minutes (STD = 47 minutes). None of

the subjects had any serious health problems or were under any medication.

For the non-sleep-deprived condition, subjects had an average of 7 hours 22 minutes

(STD = 46 minutes) of sleep per day for 7 days prior to the experiment. For the

partially sleep-deprived condition, subjects had 6 hours 11 minutes of sleep on the

night two days before the experiment (STD = 35 minutes), and had 3 hours 27
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Table 5.2: Experiment order for each subject

Subj. Number First Experiment Second Experiment
Sol No sleep-deprivation Partial sleep-deprivation
S02 Partial sleep-deprivation No sleep-deprivation
S03 Partial sleep-deprivation No sleep-deprivation
S04 No sleep-deprivation Partial sleep-deprivation
S05 No sleep-deprivation Partial sleep-deprivation
S06 Partial sleep-deprivation No sleep-deprivation
S07 No sleep-deprivation Partial sleep-deprivation
S08 Partial sleep-deprivation No sleep-deprivation
S09 Partial sleep-deprivation No sleep-deprivation
SlO Partial sleep-deprivation No sleep-deprivation
Si1 No sleep-deprivation Partial sleep-deprivation
S12 No sleep-deprivation Partial sleep-deprivation

minutes of sleep on the eve of the experiment (STD = 26 minutes) by average.

The order of the experiment was counterbalanced: one half of the randomly

selected subjects completed no sleep-deprivation session prior to the partial sleep-

deprivation session, and the other half in a reverse order. No subject yielded a crash

during the simulation. Table 5.2 shows the subjects' identification number and the

corresponding order of experiments. Detailed subject data are summarized in Ap-

pendix A.3
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Chapter 6

Analysis of Experimental Data

This Chapter, based on the simulator-based human-in-the-loop experiments set-up

presented in Chapter 5, is dedicated to the extensive analysis of experimental data

to investigate drowsy driving characteristics. We first analyze with-in subject per-

formance differences between two different sleep-deprivation levels. Then, mainly

focusing on subjects' performances in common driving tasks and secondary tasks, we

utilize nonparametric statistical tests and McRuer's Crossover Model. Finally, other

concerns such as order/learning effects or power analysis follow.

6.1 With-in Subject Performance Analysis

In this section, we study performance differences between two different sleep-deprivation

levels for various tasks. We are mainly interested in: which driver-vehicle data show

more or earlier differences between two groups?; which data show the least amount

of differences?; is there any commonalities in tasks showing performance degradation

when drivers are sleep-deprived?; etc.

Each subject has participated in the experiment twice with different sleep-deprivation

levels, and this section compares with-in subject performance differences. We use a

nonparametric statistical test called Wilcoxon Signed Rank Test [71, 72, 121] to de-

termine if there exist significant performance differences between two groups. Most

statistical tests need a variety of assumptions about the distribution of the popula-
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tion from which the samples are drawn. Situations arise in practice in which such

assumptions may not be justified or doubtful to apply [121]. We use nonparametric

tests, as they are independent of population distributions and their associated param-

eters. P-values listed in the following sections are obtained from the Wilcoxon Signed

Rank Test, unless otherwise mentioned. The significance level a is set at 0.1, as is

conventionally used in general human factor studies.

Chapter 5 describes performance metrics and data from a whole set of driving and

non-driving tasks in the experiment. Here we examine APVT (Auditory Psychomotor

Vigilance Task), CL (Curved Lane Tracking), DLCT (Double Lane Change Task),

EM (Emergency Maneuver), LT (Straight Lane Tracking), LV (Straight Lane Track-

ing given a Lead Vehicle), SC (Straight Lane Tracking given Changes of Steering

Dynamics), SLCT (Single Lane Change Task), VPVT (Visual Psychomotor Vigi-

lance Task), and WG (Straight Lane Tracking given Wind Gusts). We study char-

acteristics of drivers for each performance category; 1) lane-tracking performance, 2)

stimulus-response performance, 3) steering and throttle control, 4) lane change tasks

in McRuer's Crossover Model framework, and 5) learning effects.

6.1.1 Lane Tracking Performance

Keeping a moving vehicle on a roadway with an appropriate speed is one of the

fundamental driving skills. Deterioration in lane tracking performance can lead to

overall driving malfunction. Researchers have studied lane tracking performance as

a main indicator for detecting drowsy drivers [7, 63, 79, 136]. However, as is shown

in Chapter 2, the validity of lane tracking performance as a drowsiness indicator is

still controversial. Moreover, between alert and drowsy drivers, there has been little

studies on lane tracking performance for various road or weather conditions. This

type of study is nontrivial, as real driving happens under a dynamic situation, i.e.,

under a variety of different environmental situations. Thus, for non-sleep-deprived

and partially-sleep-deprived groups, we examine lateral lane tracking performance

under several different conditions to see drivers' ability to maneuver a vehicle inside

the road way.
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Figure 6-1: RMT sampled over 350m
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Figure 6-2: REX sampled over 350m

We examine five different tasks during lane tracking sessions: 1) Straight Lane

Tracking (LT); 2) Straight Lane Tracking given a Lead Vehicle (LV); 3) Straight

Lane Tracking given Wind Gusts (WG); 4) Straight Lane Tracking given Change

of Steering Dynamics (SC); and 5) Curved Lane Tracking (CL). Detailed scenario

settings have been described in Chapter 5. RMS error is generally used for a metric

for tracking error measures.

Fig. 6-1 and Fig. 6-2 show average performance data of 12 subjects sampled over

a distance of 350m which corresponds approximately to 13-15 seconds of the LT, LV,

WG, SC and CL tasks. X-axis represents a threshold from the centerline of the road,

which is given in percentage unit with 100% as the road width. For example, 30%

threshold means ±30% from the centerline of the road. (50% threshold covers the

whole road width.) Y-axis represents RMT in Fig. 6-1 and REX in Fig. 6-2. (Refer

to Section 5.2.4 for definitions of RMT and REX.) Solid lines indicate data from the
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Figure 6-3: p-value calculated from Fig. 6-1 and Fig. 6-2

non-sleep-deprived group, and dotted line from the partially sleep-deprived group.

Both figures show that the dotted lines are above the solid lines for each lane

tracking task, which implies that the performance of the partially sleep-deprived

group could be worse than that of the non-seep-deprived group for all tasks. (A

proper analysis will follow to see if there exist statistically significant differences

between two groups.) Clearly, both RMT and REX are functions of the threshold; as

it increases, the values of RMT and REX decrease. This is reasonable since the wider

the threshold is, the easier the driver stays within the threshold, and the smaller the

lane tracking error becomes. Moreover, both RMT and REX vs. threshold are '

shaped; RMT and REX vary rapidly around 0 to 10% of the threshold, and their rate

of change decreases as the threshold increases. This implies that the lane tracking

performance is sensitive to small threshold values. This trend is compatible with

drivers' safisficing strategy for lane tracking.

Fig. 6-1 and Fig. 6-2 show possibilities of performance degradation in partially

sleep-deprived drivers. Nonparametric statistical tests firmly claim that what we have

seen in the previous figures are indeed non-trivial. Fig. 6-3 shows p-values calculated

from data in Fig. 6-1 and Fig. 6-2. X-axis represents the same threshold as in the

previous figures. Y-axis represents p-values. The left and right figure correspond to

RMT and REX, respectively. p-values of LT, LV, WG, SC, and CL are plotted in

lines of different styles and colors. We set a = 0.1, and p-values less than a are

considered to be significant.
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Figure 6-5: Threshold vs. Sampling length vs. REX

p-values in the left figure (RMT) are generally smaller than those in the right

figure (REX). However, we can read the same trends from both RMT and REX

figures; Whereas p-values of WG, SC, and CL are smaller than oz for a good amount

of thresholds, those of LT and LV are not. This result implies that partially sleep-

deprived drivers perform worse than non-sleep-deprived groups in WG, SC, and CL,

although they perform as good as in LT and LV in our data.

We also need to consider: how soon we can detect the performance differences

between two groups and how they propagate as time evolves. We can extend Fig. 6-1

and Fig. 6-2 by introducing a sample length (how much data we need to collect)

which are shown in Fig. 6-4 and Fig. 6-5. X-axis represents the same threshold as

in Fig. 6-1 and Fig. 6-2. Y-axis is the sampling length in meters (5m-400m), which
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Figure 6-6: p-value of Fig. 6-4

shows how much data we need to detect the differences, if any. Z-axis represents

RMT in Fig. 6-4 and REX in Fig. 6-5. Surfaces with solid/dotted lines indicate data

from the non/partially sleep-deprived groups.

Fig. 6-4 and Fig. 6-5 visually confirm the same trends as those in Fig. 6-1 and

Fig. 6-2. Now we have RMT and REX surfaces instead of lines. Clearly, both RMT

and REX are functions of the threshold: as it increases, the values of RMT and REX

decrease. It is not so clear in these figures that both RMT and REX are affected

by the sampling length as much as by the threshold. Thus, the RMT and REX

surfaces are again 'L' shaped surfaces with some folds between edges. It is difficult to

see the effect of sampling length in these figures. Statistical tests may provide some

information on the effect of sampling length as well as of the threshold.

Fig. 6-6 and Fig. 6-7 present the p-values calculated from RMT and REX measures

respectively for the threshold (0-35%) and for the sampling length (5m-400m). Lower

plots in Fig. 6-6 and Fig. 6-7 are the contours of the upper plots. Fig. 6-3 is one of

95



LT LV WG SC CL

0. ~ ~ ~ ~ l 0..5 . ..1 .. 0.1
0 V 0.5 0'5

10 100 0 0 0 0

igth [im] 2 00 Length [m] 200 Length [m] 200 Length [m] 20 200 Length [m] 200
20 20 2 02

3 300 300 300 300 0
Thresh.[o 30 Thresh.[%] 30 Thresh.[%] 30 Thresh.[%J 30 30

contour contour contour contour contour
0 N\0 0 0

10 10 10 10 1010 10
/, .

20 2 0 0 20
I.Jr

£20 I ~ 20-, '20 C 200"

..............

30 30 30 30 30

300 200 100 0 300 200 100 0 300 200 100 0 300 200 100 0 300 200 100 0
Length [m] Length [m] Length [m] Length [m] Length [m]

Figure 6-7: p-value of Fig. 6-5

the vertical cross sections of Fig. 6-6 and Fig. 6-7. p-values are plotted with the color

map shown in the right-upper side of the figures; the color map has high resolution

from p= 0 to p= 0.5a = 0.05, medium resolution from p = 0.05 to p = a = 0.1,

and low resolution from p = 0.1 to p = 1. This is because p-values greater than the

threshold a are not as critical as p-values smaller than a. For example, if p-value is

either 0.3 or 0.6, we mainly focus on the fact that the p-value is greater than a, not on

the p-value itself. However, if the p-value is either 0.09 or 0.03, we may be interested

in how close the p-value is to the threshold rather than the fact that the p-value is

smaller than a.

The following interpretations apply to both Fig. 6-6 and Fig. 6-7, although Fig. 6-6

shows smaller p-values than Fig. 6-7. This is because RMT captures more detailed

performances than REX. For LT and LV, p-values for most threshold and sampling

length values are bigger than a. The curve is noise-like shape, which implies that it

is difficult to differentiate the performance between non and partially sleep-deprived
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groups.

For WG, SC, and CL, p-values for extensive threshold and sampling length val-

ues are smaller than a, which asserts that the performance differences between non

and partially sleep-deprived groups are significant in WG, SC, and CL. For WG, the

effect of the sampling length is recognizable: as it increases, its p-value decreases.

This may indicate that non-sleep-deprived group adapt themselves to disturbances

faster than partially sleep-deprived group. For CS, the p-value is approximately 0

for most sampling lengths and thresholds, which suggests that the CS task should

demonstrate distinct and significant performance differences between non and par-

tially sleep-deprived groups. For CL, the differences are present, but the effective

intervals are not as wide as for WG or CS.

We can observe that once drivers encounter abrupt changes caused by environment

(WG), vehicle (SC), or challenging road geometry (CL), their adaptability to adapt to

these changes differs, depending their sleep levels. However, if there is no excitation

or disturbances introduced (LT or LV), drivers' performance shows little difference

between different sleep levels. This implies that drowsy drivers may drive as well

as alert drivers for common driving tasks without any disturbances. More in-depth

explanation in conjunction with other performances are given in Section 6.1.7.

6.1.2 Steering Control Performance

Steering control is directly related to drivers' lane tracking performance. We have

studied in Chapter 4 that the lateral position of the vehicle can be approximately

expressed as a double integrator of steering movement of drivers. Thus, we can

expect that the performance analysis of steering may provide a similar result with

even either more sensitive or robust to sleep-deprivation levels of drivers than lane

tracking performance.

Fig. 6-8 represents p-values of steering control between non and partially sleep-

deprived drivers. All figure axes and legends are identical with those in Fig. 6-6.

It shows more noisy surfaces than Fig. 6-6. We can find surface areas with small

p-values in LV, WG, SC, and CL, though the trend is not so obvious as that of lane
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Figure 6-8: p-value of steering control

tracking performance. In Section 6.1.1, experimental data of lane tracking perfor-

mance demonstrate clear differences in WG, SC, and CL. Steering control differences

between non and partially sleep-deprived groups are not as much apparent, which

suggests that drivers' control strategies (patterns, characteristics) not be affected by

sleep deprivation.

6.1.3 Longitudinal Velocity and Throttle/Brake Performance

We are not able to find significant differences in longitudinal velocities in LT, LV,

WG, SC, and CL. Throttle and brake control show the same trend.

6.1.4 Stimulus-Response Time Tasks

While driving on the road, we look in all directions monitoring traffic, road conditions,

pedestrians, etc. At the same time, we listen to engine noise, radio, or ambulance

sounds. Along with an ability to keep the vehicle on the roadway, it is critical for
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Table 6.1: Mean, STD, and Spearman's coefficients of RT.

Mean value [sec]
APVT VPVT SLCT DLCT

No sleep-depr. 0.741 0.907 0.763 0.722
Sleep-depr. 0.927 1.078 0.814 0.857

STD [sec]
APVT VPVT SLCT DLCT

No sleep-depr. 0.248 0.251 0.099 0.099
Sleep-depr. 0.359 0.351 0.170 0.188

Spearman's correlation coefficients (p) between tasks.
APVT VPVT SLCT DLCT

APVT -
VPVT 0.9313
SLCT 0.3200 0.1800
DLCT 0.6270 0.6400 0.4574 -

a driver to cope with unexpected or emergent situations for vehicle safety. We use

various stimulus-response tasks to measure a driver's ability to react to external

stimuli. These tasks are complementary to lane tracking tasks.

Specifically arranged for stimulus-response tasks are: 1) APVT (Auditory Psy-

chomotor Vigilance Tasks); 2) DLCT (Double Lane Change Tasks); 3) SLCT (Single

Lane Change Tasks); and 4) VPVT (Visual Psychomotor Vigilance Tasks). RT (Reac-

tion Time), LR (Lapse Rate), and CRR (Correct Response Rate) are used as metrics

for these stimulus-response tasks. Refer to Chapter 5 for detailed scenario settings

and definitions of metrics.

Reaction Time

Table 6.1 shows the mean and standard deviation (STD) of RT for each sleep-

deprivation level and task type, which is visualized in the boxplot, Fig. 6-9, as well.

Each box has lines at the lower quartile, median, and upper quartile of the RT data.

The whisker extends to the most extreme value within 150% of interquartile range.

Outliers marked with + are data with values beyond the ends of the whiskers. A and

B represent no sleep-deprivation and partial sleep-deprivation, respectively.

Fig. 6-9 shows that the RT of partially sleep-deprived group are slower than that of
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Figure 6-9: Boxplot of RT from stimulus-response tasks

non-sleep-deprived group in general. This observation is confirmed by such statistical

tests as RT of APVT, VPVT, and DLCT, all of which show significant differences

between partial and no sleep-deprivation groups, with p-values of 0.0034, 0.0269, and

0.0049, respectively. Previous research [34, 69] reported consistent results in Psy-

chomotor Vigilance Tasks. However, SLCT does not show any significant difference

between different sleep-deprivation levels.

We are also interested in correlations between tasks, since some tasks show perfor-

mance deteriorations and others do not. A matrix containing the pairwise Spearman's

rank correlation coefficient, p, is given in Table 6.1. Tasks with high p, i.e., tasks as-

sociated with p-values less than a, are marked with bold font. In Table 6.1, APVT,

VPVT, and DLCT show high correlation with each other, whereas SLCT is only

marginally correlated with DLCT and shows low correlation with APVT or VPVT.

Thus, the tasks revealing significant performance differences between sleep-deprived

and non-sleep-deprived groups (APVT, VPVT, and DLCT) are correlated with each

other as well.

On the other hand, the RT can be also compared for these tasks. The RT of

VPVT is significantly different from those of APVT, SLCT, and DLCT, with p-

values of 0.0001, 0.0043, and 0.0015, respectively. A reaction to VPVT is slower than

those to AVPT, SLCT, or DLCT. The difference between APVT and VPVT can be

explained by the stimulus modality. It is known that drivers react faster to auditory
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stimuli than to visual cues [141], which is consistent with our data. The difference

between VPVT and SLCT/DLCT can be explained by the driver's corresponding

action for each task. In the response to VPVT, drivers need to make an additional

hand/arm movement by pressing a button on the steering wheel. In contrast, drivers

only need to rotate their arms to turn the steering wheel to perform lane changes in

SLCT/DLCT.

An interesting result is that the performance of SLCT does not degrade even when

the subjects are under partial sleep-deprivation. However, the performance of DLCT

does. Note that the stimulus and task protocol of DLCT are identical with those of

SLCT, while required amplitude of lane changes in DLCT is twice the lane change

in SLCT. Such a lane change (required in DLCT) is not common in a real driving

situation. Since SLCT is one of the routine driving tasks in the real world, our result

suggests that drowsy drivers be able to maintain their normal level of performance if

no external stimuli or unusual situations (such as DLCT) occur.

Lapse Rate

A lapse is a metric to measure a driver's inadequate performance when he/she does not

respond to a stimulus in a timely manner. Thus, LR particularly provides information

on retarded action, although it is calculated from RT. LR can be obtained from the

definition in Eq. 5.7. The results are shown in Table 6.2 where the lapse threshold

is set at 900 ms. The corresponding p-values for APVT, VPVT, SLCT, and DLCT

are 0.0137, 0.0195, 0.1641, and 0.0156, respectively, which agrees with those of RT

data: APVT, VPVT, and DLCT show a significant difference between partial and no

sleep-deprivation groups, whereas SLCT does not.

The lapse threshold (900ms) leading to non-trivial results is greater than the

thresholds used in previous studies [34, 69]. The reason is that our PVTs are ran-

domly mixed with other types of tasks so that the rate of stimulus presentation is

far lower than the sustained PVTs used in [34, 69]. It has been shown [19] that a

greater percentage of signals is detected and responded more quickly, as the rate of

signal presentation increases. Thus, instead of comparing LR with a given threshold,
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Table 6.2: Mean and STD of Lapse

Mean value [sec]
APVT VPVT SLCT DLCT

no sleep-depr. 0.3000 0.4000 0.1667 0.1333
Sleep-depr. 0.5167 0.5583 0.3000 0.2833

STD [sec]
APVT VPVT SLCT DLCT

no sleep-depr. 0.3275 0.3618 0.1875 0.1969
Sleep-depr. 0.4130 0.3605 0.2629 0.2167

we note the trend of LR difference, i.e., the trend of p-value, as the threshold varies.

We desire to figure out whether LR is robust enough when the lapse threshold varies

within a reasonable interval. If LR were not sensitive to the thresholds, the validity

of LR as an indicator of sleep deprivation would be solidified.

Fig. 6-10 presents the p-values as the lapse threshold varies for APVT, VPVT,

SLCT, and DLCT. It shows that APVT, VPVT, and DLCT have small p-values for

substantial intervals of the threshold, e.g., p-values are less than a for VPVT whenever

the threshold is greater than around 850 ms. This indicates that LR can be a good

performance indicator for APVT, VPVT, and DLCT, since it is not sensitive to the

lapse threshold. For SLCT, however, we can rarely see small p-values even though the

curve is "U" - shaped. We may be able to see some significant differences in SLCT

if we increase sample size or change other factors. However, as is demonstrated in

Fig. 6-10, the degree of performance deterioration under sleep deprivation in SLCT

is clearly less than that in APVT, VPVT, or DLCT. This result is consistent with

the result from RT analysis.

The p-values shown in Fig. 6-10 have been calculated from all subjects. It is

shown that the thresholds that yield small p-values are indeed optimal for each sub-

ject. Fig. 6-11 shows the LR of Subject 1,9, and 10 for various values of its thresholds.

Clearly, LR decreases as its threshold increases. However, each subject has his/her

own optimal lapse threshold: it would be around 0.7 sec for Subject 1, and around

1.0 sec for Subject 10. Subject 9 seems to have no acceptable threshold to differenti-

ate non and partially sleep-deprived groups. We will detail individual differences of
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Figure 6-10: Lapse threshold vs. p-value

subjects in Chapter 7.

Correct Response Rate

Both RT and LR measure how fast drivers respond to given stimuli. At the same

time we are interested in the validity of drivers' responses. For APVT and VPVT,

drivers are supposed to press a green button on the steering wheel immediately after

a given stimulus. The steering wheel has other buttons, and we can observe if drivers

press incorrect buttons. The data show that APVT and VPVT have no significant

differences in accuracy between non and partially sleep-deprived groups. For SLCT

and DLCT, drivers are supposed to change lanes immediately once an overhead lane

change sign appears. We can observe if drivers change lane inappropriately to wrong

lanes. The data show that SLCT and DLCT have no significant differences in accuracy

between non and partially sleep-deprived groups.

6.1.5 Application of the Crossover Model to Lane Change Tasks

In the previous sections, we consider SLCT and DLCT as stimulus-response tasks,

and their performance metrics are the reaction times of the associated tasks. At the

same time, lane change tasks can be considered as tracking tasks - tracking tasks with

unit step input. We now employ McRuer's Crossover Model to analyze SLCT and

DLCT in continuous tracking task category.

McRuer's Crossover Model [56, 66, 83, 84] claims that, for continuous tracking
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Figure 6-11: Lapse threshold vs. Lapse Rate for Subject #1,9, and 10

tasks, human adapts themselves to the system in such a way as to make the total open-

loop transfer function behave as a first-order system with gain and effective time delay.

Please, refer Section 5.2.4 for a description of the model. A detailed specification of

the Crossover Model such as crossover frequencies can be found in [82, 83, 118]. In

case of both SLCT and DLCT, human presented in Fig. 6-12 corresponds to a driver,

plant to a vehicle, reference signal to the appearance of LCT sign, output signal to the

lateral position of vehicle, and perceived error to the reference minus output signal.

Fig. 6-13 represents a set of experimental data (DLCT) from a subject, which shows

signal, output signal, and perceived error from DLCT.

Assuming that the open-loop transfer functions can be simplified as the Crossover

Model, we can estimate its gain K and effective time delay r for each subject for both

SLCT and DLCT, which are summarized in Appendix B.1. With these estimated

parameters, we can run statistical tests to determine if any significant differences

exist between non and partially sleep-deprived groups.

Table 6.3 summarizes p-values. We are not able to see any significant differences in

gain K for both SLCT and DLCT. However, only in DLCT, we can observe an appar-
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Figure 6-12: Block diagram of the Crossover Model

ent difference in effective time delay -r. This is compatible with the stimulus-response

tasks if we consider the effective time delay of continuous tasks to be equivalent to

the reaction time of stimulus-response tasks.

6.1.6 Order Effects of Experiments

Since the above results are obtained from with-in subject data, we have a pair of

data from each subject, i.e. one from non-sleep-deprived condition and the other

from partially sleep-deprived condition. As is described in Chapter 5, the order

of experiment sessions are counter-balanced; half of the randomly selected subjects

completed a session under no sleep-deprivation prior to a session under partial sleep-

deprivation, and the other half completed both sessions in a reverse order. However, it

still remains to examine if there exist any order or learning effects in the experimental

data from the repetitive experiments for each subject.

Learning effects of all the metrics introduced in the previous sections have been

examined. For lane tracking performances such as RMT and REX, we are not able to

find any significant order effects. However, for steering control, we can observe some

differences between the first and second experiment sets. Since we have not included

WG and SC in our demo drive, it is reasonable to see some order effects. For CL,

we let drivers exercise on a curvy road in demo drive, but not on the same curvature

in the main experiment such that drivers may need to adjust their control strategy.

The important thing is that the difference between the first and second experiment

set are negligible, compared with that between different sleep-deprivation levels. This
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Figure 6-13: LCT data applied to the Crossover Model

justifies to accept the results from the previous sections.

Longitudinal velocity and brake control have also shown no order effects. For

throttle control, there exist some significant differences between the first and second

experiment set. This can be interpreted as steering difference in CL explained in the

previous paragraph. For RT, LR, and CRR from stimulus-tasks, we have not been

able to detect any significant differences. Thus, we can conclude that order effects

are not negligible in our experiment.

6.1.7 Comprehensive Analysis

We can analyze the experimental results within the frame of information processing

introduced by Rasmussen [117]. The Rasmussen classification claims that human

behavior is based on a skill, rule and knowledge hierarchy. Skill-based tasks need

the least cognitive resources; little or no conscious control is used to perform an

action. These tasks include highly automated tasks such as walking. Rule-based tasks

need more information processing stages to properly perform relevant tasks. They

require us to identify the system state to execute the appropriate rules. Knowledge-

based tasks are the highest level tasks involving advanced problem solving or decision

making. Fig. 6-14 depicts the Rasmussen hierarchy.
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Table 6.3: p-values for gain K and effective time delay r between non and partially sleep-deprived

groups

SLCT DLCT
gain K 0.5543 0.5095

effective time delay - 0.1484 0.0408

Obvious examples of skill-based tasks from our simulated driving include LT and

LV; they are common driving tasks for which drivers need no conscious control. How-

ever, other common driving tasks such as WG, CS, and CL hold both skill and

rule-based task characteristics. Drivers need to pay more attention to control their

vehicles since unexpected external disturbances may occur in these tasks. In our ex-

periment, WG, CS, and CL are categorized as rule-based tasks, because they are not

practiced throughly before the experiment.

Most stimulus-response tasks such as APVT, VPVT, and DLCT have rule-based

task characteristics; a set of rules are assigned to each task, and drivers are supposed

to follow them. However, SLCT also possesses skill-based characteristics, because

drivers perform SLCT very often and are familiar with them. Thus, we classify

SLCT as a skill-based task, whereas APVT, VPVT, and DLCT as rule-based tasks.

We have not included any knowledge-based tasks in our experiment, but an ex-

ample could be path planning. On the right side of Fig. 6-14, some simulated tasks

from the experiment are listed for each hierarchy level.

In our experimental data, recall that the sleep-deprived drivers performed worse

only in tasks 1) WG, SC, CL (tracking tasks with disturbances) and 2) APVT, VPVT,

DLT (stimulus-response tasks). We were not able to find performance differences in

LT, LV, and SLCT between two different sleep-levels. When connecting these obser-

vations with the classification introduced in Fig. 6-14, we find that the performance

of partially sleep-deprived drivers degrades mainly in rule-based tasks rather than in

skill-based tasks. This result implies that drowsiness has a greater effect on tasks

related to the rule-based (medium-level) cognitive functions than skill-based (low-

level) cognitive functions. Considering that most common driving tasks are skill-

based tasks, this interpretation uncovers important characteristics of drowsy driving.
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Drowsy drivers are robust enough to continue such routine tasks as lane tracking or

single lane change tasks. However, their performance for medium-level, rule-based

tasks deteriorates. Drowsy drivers may continue common driving tasks when there is

no disturbances. The robustness of drowsy drivers in skill-based tasks confirms that

drowsy driving is unobservable in some aspects and suggest that those tasks should

not be used as drowsy driving indices.

However, this argument must be solidified by further experiments performed in a

motion-based simulator or a real-driving situation. It has been noted [44] that drivers'

lane tracking performance is better in motion-based simulators than in fixed-based

simulators. We have also observed in Chapter 4 that the vestibular inputs to drivers

are one of the critical cues for driving. Thus, further studies are needed to address

this issue to cement our claims.

We have studied rule and skill-based tasks, but not knowledge-based tasks. Higher-

level functions such as knowledge-based tasks should be addressed in further studies.
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Complex tasks are often thought to be more sensitive to sleep loss than simple tasks,

yet the tasks that most often show sleep loss effects early and profoundly are simple

sustained attention RT tasks, which can be hardly considered to be complex [32].

Simple reaction time and auditory vigilance tests, which are considered as medium-

level tasks in our experiment, are the most sensitive to sleep, and thus the most

commonly used in sleep loss research. These tests are simple, dull, monotonous, easy

to score, and not prone to large practice effects [32]. As these are so mundane, the

degree to which they primarily assess cerebral functioning is debatable.

If the cerebral cortex is the major beneficiary of sleep, then the detrimental effects

of total sleep loss would be more obvious (initially) with those tests of cerebral func-

tion that are exacting rather than with simpler tasks such as reaction time. However,

this is not the case, as there is a confounding effect of an additional performance

degradation due to tedium and a loss of interest in the task [32]. Human motivation

could be a main factor for deciding the performance in high-level tasks, and further

studies may be required to address this issue.

6.2 Power Analysis

In the previous sections, we have drawn a conclusion based on nonparametric sta-

tistical tests. While some results have shown significant differences, such critical

parameters leading to those results as sample sizes, significant criterion a, etc., have

not been investigated for experimental settings. The main goal of the power analysis

is to determine how many samples are necessary for accurate and reliable statistical

judgment, or how likely the statistical test detects the effect of a given sample size

in a particular situation [25]. Too small sample sizes would not provide reliable re-

sults, whereas too large sample sizes would waste time and resources. Here we briefly

introduce fundamentals on power analysis and statistical methods. Refer to [25] for

more details.

Power measures the sensitivity of a significant test to detect a real difference if

any. It is the likelihood of achieving the statistical significance. We list its relevant

terminologies below:
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Table 6.4: Decision vs. actual condition [70, 144]

State of the World
Ho H1

Decision Ho Correct Acceptance Type II Error (3)
H1  Type I Error (a) Correct Rejection

* Effect size is the degree to which a phenomenon under study is present on the

population.

" Ho is a null hypothesis.

" H1 is an alternative hypothesis.

* Type I Error, also known as an "error of the first kind", an a error, or a "false

positive", is the error of rejecting a null hypothesis when it is actually true.

" Type II Error, also known as an "error of the second kind", a 0 error, or a

"false negative", is the error of accepting a null hypothesis when the alternative

hypothesis is a true state of nature [25].

Given these terms, power is given as 1-#. Table 6.4 tabulates the above quantities

for actual condition and decision. Among numerous literatures on the Signal Detec-

tion Theory, Kuchar and Yang [70, 144] specifically deal with warning systems using

System Operating Characteristics. The following factors influence the power.

" Sample size: In general, the larger the sample size, the larger the power . How-

ever, increase in sample size generally incurs increase in time, money and effort.

Consequently, it is important to make sample size large enough, but to avoid

redundancy.

" Effect size: Measure of the distance between Ho and Ha. Standardized mean

difference between two groups. For the t-test, effect size index d ma -mb refers

to the underlying population rather than a specific sample where ma = mean of

group a, mb = mean of group b, and o- = standard deviation. In the case the

null hypothesis is wrong by a substantial amount, the power will be also high.
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Table 6.5: Effect size and power for sample size and data

Effect size Power

LT 0.479 0.451
LV 0.185 0.202
WG 1.78 0.999
SC 1.19 0.946
CL 1.49 0.99

" Significant criterion a: Trade-off between Type I-error a and Type II error 0.

" The level of error in experimental measurements: Measurement error acts like

'noise' that can bury the 'real' signal of experiments.

* Statistical test: Some statistical tests are inherently more powerful than others.

Discovering that the difference between two sample means is not statistically signif-

icant, we cannot reject the null hypothesis. Does this imply that there is no difference

or that the null hypothesis is true? It does not mean that the population effect Size

is literally zero, but rather that it is negligible.

In case of our data, we have a = 0.1, # = 0.2, desired power = 1 - 13 = 0.8, and

sample size N = 12. Then, from the formula from [25], the detectable effect size turns

out to be 0.8773.

Nonparametric tests (and paired t-tests) of WG, SC, and CL show significant

performance differences, which means that the effect size of WG, SC and CL is greater

than the 'detectable' effect size. Nonparainetric tests (and paired t-tests) of LT and

LV displays negligible performance differences, which means that the effect sizes of

LT and LV are not detectable, given our sample size N, a, desired power, etc.

More samples could lead to a different results. However, we can observe that

the effect sizes of WG, SC, and CL differ from that of LT and LV; the degree of

performance deterioration is larger in WG, SC, and CL than in LT and FV.

Table 6.5 summarizes the effect sizes and powers for LT, LV, WG, SC, and CL,

which are calculated from REX with threshold = 15% and sampling length = 200m.

We can observe clear differences in the effect size and its associated power value

between LT, LV and WG, SC, CL.
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Figure 6-15: Graphical representation of effect size and power

Fig. 6-15 is a graphical representation of the power analysis. Each column repre-

sents each task, i.e., LT, LV, WG, SC, and CL. Upper plots depict estimated power

vs. sample size varying from 1 to 40. X-axis corresponds to the sample size, Y-axis

to Power. Since our required power is 0.8, we can read the required sample size N

based on the effect size calculated from the experimental data. Lower plots show

estimated power vs. effect size varying from 0 to 2 for N = 12. For each effect size

calculated from the experimental data, we can read the corresponding power for each

task. (They are summarized in Table 6.5.)

Fig. 6-16 shows a graphical representation of Type I and Type II error for each

task. Our significant criterion a is set to be 0.1 and the area of the shaded region

of upper plots is 0.1. When we extend this threshold to H1 (Partially sleep-deprived

groups) , we can visualize the Type II error, which is shown in the dark shaded area

in lower plots. It is seen that the Type II errors for LT and LV are larger than those

of WG, SC, and CL.
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Figure 6-16: Graphical representation of Type I and II errors

6.3 Summary

Table 6.6 summarizes the statistical disclosure from the previous section. We have

performed extensive analysis on driver-vehicle data from the experiment presented in

Chapter 5. First, we have analyzed with-in subject performance differences between

two different sleep-deprivation levels for various driving tasks. Non-parametric statis-

tical tests have revealed significant differences between two groups. In terms of lateral

lane tracking errors, we have been able to see the performance degradation clearly in

partially-sleep-deprived groups for wind gust condition, change in steering dynamics,

and curvy roads. However, our data have shown negligible performance differences

in lane tracking errors with no disturbances on straight road and with a lead vehicle.

Most stimulus-response tasks have shown the significant performance degradation as

well: Auditory Psychomotor Vigilance Tasks, Visual Psychomotor Vigilance Tasks,

and Double Lane Changes Tasks. Our data analysis have shown that a driver's per-

formance degrade little in Single Lane Change Tasks. These observations have led

to a conclusion that under sleep-deprivation, performance in rule-based tasks deteri-

orate to a greater extent than that in skill-based tasks. Corresponding analysis on
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order effects and power analysis have been discussed as well. We have applied the

Crossover Model to both Single and Double Lane Change Tasks to understand them

as continuous tracking tasks rather than discrete stimulus-response tasks, which have

also provided consistent outcomes. Overall, we have identified the characteristics of

drowsy driving.
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Table 6.6: Summary of experimental data analysis

Performance Task Significant findings
LT x

lane tracking LV x
(RMT, REX) WG o

SC o
CL o

LT x
LV x

steering WG v
SC v
CL v

LT x
longitudinal LV x

velocity WG x
SC x
CL x
LT x
LV x

throttle WG x
SC x
CL x (order)

stimulus-response APVT o
rapidity VPVT o
(RT, LR) SLCT x

DLCT o
stimulus-response APVT x

accuracy VPVT x
(CRR) SLCT x

DLCT x

T SLCT x
DLCT o

K SLCT x
DLCT x
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Chapter 7

Design of Drowsy Driver Detection

Systems

Up to this point, we have focused on finding performance differences between drivers

who have different levels of sleep deprivation. A variety of driving or secondary tasks

are examined for the purpose. In this Chapter, our focus is on inferring drivers'

states based on their performances. This will be made possible by modeling our ex-

periments in a probabilistic graphical model, the Bayesian network (BN). We devise

a systematic way to detect human drowsiness, and a structure of the framework is

built. Utilizing experimental data obtained from Chapter 5, we also provide quanti-

tative guidelines applying both Static and Dynamic Bayesian Networks. Finally, this

Chapter concludes with guidelines for the design of drowsy driver detection systems.

7.1 Introduction to Bayesian Networks

Numerous challenges are present in fatigue modeling and monitoring. First, fatigue

is not directly observable and can only be inferred from the available observations.

(In Chapter 2 we have investigated drowsy driving detection techniques in three dif-

ferent categories: by physiological signals, by physical changes of drivers, and by

driver-vehicle data.) Second, the sensory observations are often ambiguous, incom-

plete, uncertain, and dynamically evolving over time [54]. Thus, a systematic method
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handling this uncertainty is necessary. Third, another difficulty lies in the quantifi-

cation of psychological and behavioral changes [114]. Drowsiness or fatigue are often

subjective (drivers' feeling and driver alertness states are not always same), and their

symptoms are qualitative. We need to develop a standardized metric to effectively

process observation data.

A myriad of methods have been presented for fusing information from disparate

sources. These methods include probabilistic methods (e.g., Bayes theorem), evi-

dential reasoning (e.g., Dempster-Shafer theory), Kalman filter, fuzzy theories, and

neural networks, with a majority of methods based on fuzzy theories [54]. Among

the various methods, we utilize the Bayesian network (BN) paradigm because it is

capable of incorporating prior information and of explicitly modeling uncertainties

and temporal aspects of the problem, as well as modeling data at different levels of

abstraction.

A BN is a state-of-the-art knowledge representation scheme dealing with proba-

bilistic knowledge. Also referred to as graphical model, a BN is a graphical repre-

sentation of the joint probability of a set of random variables, with the conditional

independence assumption explicitly embedded in the network [54]. A BN is capable

of modeling dependencies and uncertainties between variables [112], and recently has

been introduced in drowsiness detection techniques based on monitoring the physical

behavior or drivers. It has been shown that the BN is able to capture dynamics as-

sociated with fatigue, and a corresponding BN is developed when physical indicators

such as eye gaze are being monitored [54].

Graphical models combine probability theory and graph theory. They provide a

tool for dealing with two challenging problems: uncertainty and complexity [57].

Probabilistic graphical models are graphs in which nodes represent random variables,

and the (lack of) arcs represent conditional independence assumptions. Hence, they

provide a compact representation of joint probability distributions. The conditional

independencies mean that we can store and compute the joint probability distribution

more efficiently. For example, if we have N binary random variables, an atomic repre-

sentation of the joint, P(X1 , -- - , XN) needs 0(2 N) parameters, whereas a graphical
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Figure 7-1: QMR-DT model [90]

model may need exponentially fewer, depending on which conditional assumptions

we make [91, 112].

There are two main kinds of graphical models: undirected and directed. Undi-

rected graphical models, also known as Markov networks or Markov random fields

(MRFs), are more popular in the physics and vision communities. Directed graphical

models, also known as Bayesian networks (BNs), belief networks, generative models,

causal models, etc., are more popular with the Al and machine learning communities.

It is also possible to have a model with both directed and undirected arcs, which is

called a chain graph [90, 91].

The most widely used BNs are undoubtedly the ones embedded in Microsoft's

products, including Answer Wizard of Office 95, the Office Assistant of Office 97,

and over 30 Technical Support Troubleshooters [90]. BNs originally arose out of an

attempt to add probabilities to expert systems, and this is still the most common use

for BNs. A famous example is QMR-DT, a decision-theoretic reformulation of the

Quick Medical Reference (QMR) model [90].

In Figure 7-1, the top layer represents hidden disease nodes, and the bottom layer

represents observed symptom nodes. The goal is to infer the posterior probability of

each disease given all the symptoms, which can be present, absent, or unknown.

Another interesting fielded application is the Vista system [51]. The Vista system

is a decision-theoretic system that has been used at NASA Mission Control Center
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in Houston for several years. The system uses Bayesian networks to interpret live

telemetry and provides advice on the likelihood of alternative failures of the space

shuttle's propulsion systems. It provides tools for real-time control and quantifies

information for the user [51]

7.2 Static Bayesian Networks

We first utilize Static Bayesian networks (SBN) to infer driver drowsiness based on

our experimental data. A Bayesian network is a directed acyclic graph in which each

node is annotated with quantitative probability information. The full specification is

given as follows [53, 90, 112].

" A Bayesian network consists of a set of variables and a set of directed edges

between variables.

* Each variable has a finite set of mutually exclusive states.

" The variables together with the directed edges from a directed acyclic graph

(DAG).

" For each variable A with parents B 1, B.. ,Bs, there is a corresponding potential

table P(AIB 1, -- - , B,,)

If two variables are d-separated, then changing the uncertainty on one does not

change the uncertainty on the other [59]. (Appendix B.3 explains details of d-

separation.) The following is a useful theorem to keep in mind [53].

Theorem: If A and B are d-separated given evidence e, the P(AIe) = P(AIB, e).

In BNs, an arc from A to B can be informally interpreted as indicating that A

causes B. (The intuitive meaning of an arrow in a properly constructed network is

usually that X has a direct influence on Y.) Hence, directed cycles are disallowed.

More in-depth discussion concerning the difference between causality and mere cor-

relation can be found in [90, 59]. A general introduction to BNs can be found in

[53, 90, 91, 112].
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Figure 7-2: A bi-partite structure with only one parent node for each task performance
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Figure 7-3: A bi-partite structure with two parent nodes for each task performance
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Figure 7-4: A multi-level structure with an introduction to Drowsiness node

7.2.1 Formulation of SBN

The topology of an SBN - the set of nodes and directed arcs- specifies the conditional

independence relationships that hold in the domain. Once the topology of the BN

is laid out, we only need to specify a conditional probability distribution for each

variable, given its parents. The combination of the topology and the conditional

distributions suffices to calculate the full joint distribution for all the variables.

Topology of the SBN

We first construct the structure of an SBN for drowsy driving detection problems.

Fig. 7-2 to Fig. 7-4 show examples of possible SBN structures.

Fig. 7-2 shows a bi-partite structure with only one parent node for each task

performance. This structure directly reflects our experimental setup described in
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Chapter 5; we had one Independent variable, discrete sleep-deprivation level of drivers,

and Dependent variables were task performances. What we have controlled, i.e. sleep-

deprivation level, is modeled as a parent node in Fig. 7-2. Each task performance such

as performance of APVT, CL, DLCT, EM, LT, LV, SC, SLCT, VPVT, and WG is a

child-node of the sleep-deprivation level. They are shown as Task #1, #2, -.. ,#n in

Fig. 7-2. We do not include any direct links between each task performance. Thus,

each task performance is conditionally independent given its parent, sleep-deprivation

level.

Fig. 7-3 is an extension of Fig. 7-2 in which a Circadian rhythm node is introduced.

In Chapter 3, we reviewed that two major causes of sleep are sleep-debt and circadian

rhythm. Although we have only considered sleep-deprivation level in our experiment,

circadian rhythm certainly affects task performance [36, 48, 93, 122, 122, 133] and

is included as another parent node of each task performance. Thus, this model is a

bi-partite structure with two parent nodes for each task performance. As in Fig. 7-

2, each task performance is directly affected by sleep-deprivation level and circadian

rhythm. Tasks are conditionally independent given the state of sleep-deprivation level

and circadian rhythm.

We can expand the bi-partite model shown in Fig. 7-3 by introducing Drowsiness

node in between the two sleep-causes and the task performances. Fig. 7-4 presents the

expanded model. The Drowsiness node is defined as a representation of the drivers'

mental state or feeling; it is an unobservable and uncontrollable state. Drowsiness is

a child node of the Sleep-deprivation and Circadian rhythm nodes. At the same time,

Drowsiness is the only parent node of each task performance. This structure is basi-

cally same as the model depicted in Fig. 7-3, but the introduction of the intermediate

node, Drowsiness, allows a reduction in the number of conditional probability tables

necessary to form a model. We have a total of 2n links between nodes in Fig. 7-3 and

only n + 2 in Fig. 7-4.
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Table 7.1: Conditional Probability Table

Stimulus-response tasks
parent APVT VPVT SLCT DLCT
node TAPVT FAPVT TVPVT FVPVT TSLCT FSLCT TDLCT FDLCT

T 0.571 0.429 0.571 0.429 0.357 0.643 0.571 0.429
F 0.357 0.643 0.500 0.500 0.214 0.786 0.357 0.643

Tracking tasks
parent LT LT WG SC CL
node TLT FLT TLV FLV TWG FWG Tsc Fsc TCL FCL

T 0.500 0.500 0.286 0.714 0.571 0.429 0.429 0.571 0.500 0.500
F 0.357 0.643 0.286 0.714 0.286 0.714 0.286 0.714 0.357 0.643

Quantitative component of the SBN

Once the topology of the Bayesian network is laid out, a CPT (Conditional Probability

Table) for the each node is required to complete the formulation of BN. In order to

directly utilize our experimental data and to simplify the model, we adopt the bi-

partite model presented in Fig. 7-2 from now on.

Since all subjects have participated in two sessions with different sleep-deprivation

levels, we can obtain a full CPT directly from the experiment. In this case, we

assume all nodes are Boolean, i.e. Sleep-deprivation is either no sleep-deprivation or

partial sleep-deprivation and each task performance is either lapse (bad, degraded) or

no-lapse (good, normal). We use the following formula to estimate each conditional

probability [59].

p(B IA) Num.(B = true n A = true) +1 (7.1)
Num.(A = true) + 2

Num.(B = true n A = false) + 1
Num.(A = false) + 2

To obtain an estimate of the probability that B is true given that A is true, we count

the number of cases in which A and B are both true, and divide by the number of

cases in which A is true. The probability of B is true given A is false can be estimated

in a same way. Since we deal with experimental data, we apply Bayesian correction
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Table 7.2: Estimated probability of sleep-deprivation based on each task performance

Successful Alarm False Alarm

p(TITApvT) 0.6154 p(TIFApvT) 0.4000
p(TITvpVT) 0.5333 p(T|FvpVT) 0.4615
p(TITsLcT) 0.6250 p(TIFSLCT) 0.4500
p(TITDLCT) 0.6154 p(TIFDLCT) 0.4000

p(T|TLT) 0.5833 p(TIFLT) 0.4375
p(TITLv) 0.5000 p(TIFLv) 0.5000
p(T|TWG) 0.6667 p(TIFWG) 0.3750
p(T|Tcs) 0.6000 p(TlFcs) 0.4444
p(T|TCL) 0.5833 p(TIFcL) 0.4375

[59] to our estimates. Thus, we add 1 to the count in the numerator, and 2 (since we

have binary variables) to the denominator.

We define states of the sleep-deprivation node as T = partial sleep-deprivation and

F = no sleep-deprivation. For stimulus-response tasks, the true state of each task is

defined to occur when Rtaski Otaski, where Otaski is a pre-set threshold for taski.

For tracking tasks, the true state is defined to occur when RMTtaskj Otask, where

0 task, is a pre-set threshold for task,. For example, TAPVT means RTAPVT OAPVT.

Accordingly, the false state FAPVT is when RTAPVT < OAPVT.

The threshold 0 should be carefully set, and thus the effect of various threshold

values on the model is discussed in Section 7.2.2. We first examine one example case

for an arbitrary threshold. The Conditional Probability Table (CPT) for each task

node is shown in Table 7.1. The thresholds 0 for stimulus-response are set at the mean

RT (or RMT) value of non-sleep-deprived drivers plus 50% of STD of the drivers:

OAPVT = 0.865 sec, OVPVT = 1.032 sec, OSLCT = 0.812 sec, and ODLCT = 0.771 sec.

For tracking tasks, the CPT is calculated from RMT when sampling length = 350m

and RMT threshold a = 20%. For Sleep-deprivation node, p(T) = p(F) = 0.5 since

we have equal numbers of both non and partially sleep-deprived sessions.

7.2.2 Simulation Results via Experimental Data

We have formulated a full SBN for drowsy driver detection based on driver-vehicle

data. In this section, we discuss the SBN performance, inferences of driver alertness
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Table 7.3: Estimated probability of sleep-deprivation based on multiple task performances

Successful Alarm False Alarm

p(TITAPVT,VPVT) 0.6465 p(TIFAPVT,VPVT) 0.3636
p(TITAPVT,SLCT) 0.7273 p(T|FAPVTSLCT) 0.3529
p(T|TAPVT,DLCT) 0.7191 p(TIFAPVT,DLCT) 0.3077
p(T|TVPVT,SLCT) 0.6557 p(T|FVPVT,SLCT) 0.4122
p(TITVPVT,DLCT) 0.6465 p(TIFVPVT,DLCT) 0.3636
p(T|TSLCT,DLCT) 0.7273 p(T|FSLCT,DLCT) 0.3529

p(T|TAPVT,VPVT,SLCT) 0.7529 p(TIFAPVT,VPVT,SLCT) 0.3186
p(T|TAPVT,SLCT,DLCT) 0.7453 p(TIFAPVT,SLCT,DLCT) 0.2759
p(T|TAPVT,SLCT,DLCT) 0.8101 p(T|FAPVT,SLCT,DLCT) 0.2667
p(TTVPVT,SLCT,DLCT) 0.7529 p(TIFVPVT,SLCT,DLCT) 0.3186

p(TTAPVT,VPVT,SLCT,DLCT) 0.8298 p(TFAPVT,VPVT,SLCT,DLCT) 0.2376

states based on driver-vehicle data. We also analyze results when we have various

threshold values 0 defined in the previous section.

Successful Alarm and False Alarm

We first examine positive and negative outcomes of the inference based on the driving

performance, i.e., driver-vehicle data. Successful Alarm (SA) is a positive and False

Alarm (FA) is a negative consequence of the inference. Table 7.2 shows both SA and

FA when performance of only one task is considered.

We can also calculate the inference when we have multiple performance of tasks.

Table 7.3 shows the inference probability when we only consider combinations between

stimulus-response tasks.

Table 7.3 clearly shows the trend that if a driver performs badly in multiple tasks,

the probability of that driver being sleep-deprived p(SD) increases. We can observe

this in the first two columns of the Table. At the same time, p(SD) decreases when

a driver shows good performance in multiple tasks, shown in last two columns of the

Table.

We pre-defined lapse thresholds when we computed the CPT. These threshold

values directly affect the CPT and inference probabilities (SA and FA), and thus

we should examine effects of the lapse threshold on the CPT, SA, and FA. We first

examine the CPT for various threshold values. Fig. 7-5 shows each component of the
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Figure 7-5: Threshold vs. conditional probabilities:
drivers

threshold = x-STD + Mean of non-sleep-deprived

CPT, i.e. p(TTaskjT) and p(TTaSk|F), as threshold values vary for each task. The

threshold 0taski varies from the mean value of non-sleep-deprived drivers minus 100%

of STD, to the mean plus 150% of STD. Values of all components of the CPT decrease

when the threshold value increases. Lapse thresholds need to be set at a level such

that the difference between each p(TTask T) and p(TTaskF) is noticeable. We have

examined one example with a fixed threshold in this section, the mean plus 50% of

STD.

We now investigate both SA and FA for various threshold values. The System

Operating Characteristic (SOC) curve [70 is introduced to study trade-offs between

the probabilities as the threshold varies.

An SOC curve is shown in Figure 7-6, where SA and FA from the different

lapse thresholds based on a single task are presented: p(TITAPVT) and p(TIFAPVT),

p(TITVPVT) and p(TFVPVT), p(T[TSLCT) and p(TFSLCT) , and p(T[TDLCT) and

p(TIFDLCT). The thresholds varied from the mean value of non-sleep-deprived drivers

minus 100% of STD to the mean plus 150% of STD. The SOC of SLCT did not per-

form as promisingly as that of APVT, VPVT, or DLCT (with more FA and less SA
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Figure 7-6: SOC curve of stimulus-response tasks

However, if we pick a threshold greater than

that SLCT gives a good performance as well

approximately +50%

(Table 7.2 and Table

Thus, we need to consider SA, FA, and CPT to determine an optimal lapse thresh-

old.

Individual SOC Curves

We can also formulate SBN for each individual subject. The topology of an individual

SBN is same as we have adopted. However, the CPT should be estimated from

experiments of each subject. Fig. 7-7 and 7-8 show SOC curves from subject #9 and

#10 respectively. Each of them is different from the SOC curve shown in Fig. 7-6,

and each has its own shape. For subject #9, SOC curves for all stimulus-response

tasks overlap very much in the middle of the domain. This implies that all stimulus-

response tasks examined in the experiment are insensitive to sleep-deprivation for

subject #9. However, for subject #10, APVT provides a superior drowsiness index

relative to all other tasks. SOC curves from the rest of subjects are shown in Appendix

B.2. We observe that each individual has their own characteristics (distinguishable

SOC curves).
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Figure 7-7: SOC curve: Subject #9 Figure 7-8: SOC curve: Subject #10

7.3 Dynamic Bayesian Networks

We have investigated Static Bayesian networks mainly considering causality between

variables, but we have not examined temporal aspects of the drowsy driver detec-

tion problems. Drowsiness is cause by either sleep-deprivation or circadian rhythm;

many other environmental factors such as boredom or motivation can mask/unmask

sleepiness as well (Chapter 3). Thus, drowsiness definitely possesses a time-dependent

characteristic, and the temporal aspect should be considered in the detection model-

ing.

Dynamic Bayesian networks (DBNs) are directed graphical models of stochastic

processes. They generalize Hidden Markov models (HMMs) and linear dynamical

systems (LDSs) by representing the hidden and observed states in terms of state vari-

ables, which can have complex interdependencies. The graphical structure provides

an easy way to specify these conditional independencies and hence provides a com-

pact parameterization of the model [90, 91]. (Temporal Bayesian network would be

a better name than Dynamic Bayesian network, since it is assumed that the model

structure does not change, but the term DBN has become entrenched.)
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Figure 7-9: Temporal model of drowsiness detection problems

7.3.1 Formulation of DBN

Working with domains that evolve over time, we can introduce a discrete time stamp

and have a model for each unit of time. We call such a local model a time slice. The

time slices are connected through temporal links to constitute a full model. If the

structure of the time slices is identical, and if the temporal links are the same, we say

that the model is a repetitive temporal model. If the conditional probabilities also

are identical, we call the model strictly repetitive [531. We assume a DBN for drowsy

driver detection problem is strictly repetitive.

Topology of the DBN

In Fig. 7-9, each time slice at to, t1 , t2 is contained in a square box. The topology of

each time slice is identical to the SBN introduced in Fig. 7-2. However, in each time

slice, we have a Drowsiness node instead of a Sleep-deprivation node; the Drowsiness

node implicitly includes both sleep-deprivation and circadian rhythm. In order to

capture the temporal aspects of drowsiness, we need to introduce a link between each

time slice. The temporal link is shown in a dashed line in Fig. 7-9. The structure can
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Figure 7-10: A compact specification of the model in Fig. 7-9

be depicted compactly in Fig. 7-10; the double arrow (==>) indicates a temporal link

from time slice t to slice t + 1.

Quantitative component of the DBN

Since we assume the DBN is strictly repetitive, we only need to specify the transi-

tion model for the temporal link, i.e., p(Xt+iIXt). (We assume that each time slice

is identical to the SBN specified in the previous section. Thus, conditional prob-

abilities within each time slice can directly adopted from the CPT of the SBN.)

Since we do not have experimental data on the temporal aspects of drowsiness, we

need to estimate the transition model from previous studies. It has been noted that

drowsiness or sleepiness has a "sleep inertia", that makes drowsiness continue once

it happens [44]. This fact suggests to us that the transition probability p(Xt+1iXt)

should not be small, although we do not know the exact transition probability. Thus,

the following analysis deals with various values of p(Drowsinesst+i|Drowsinesst) and

p(Non-drowsinesst+1 I Non-drowsinesst).

7.3.2 Simulation Results via Experimental Data

Assuming that each time slice corresponds to the moment when any task is performed,

we can first infer the driver drowsiness (or alertness) states based on repetitive per-

formances of each task. Fig. 7-11 and Fig. 7-12 show the estimated probabilities

from the DBN. Since our experiments have examined APVT and VPVT 10 times per
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Figure 7-11: DBN inference: Subject #9

session, we have 10 time slices for APVT and VPVT. SLCT and DLCT have only 5

time slices. Each figure has data from non and partially sleep-deprived groups shown

in solid and dashed lines, respectively. The lines indicate the probability of drivers

being sleep-deprived based on the evidence for each time slice. For subject #9, it is

almost impossible to differentiate driver alertness states based on stimulus-response

tasks. However for subject #10, we can distinguish driver alertness states based on

APVT, VPVT, and DLCT performances.

Based on the inference results, we can divide subjects into two groups: a group

whose inference results based on driver performances are satisfactory and a group

whose results are not satisfactory. The satisfactory result means that the estimated

probability p(SD) from non and partially sleep-deprived groups is clearly differen-

tiable. For example, Subject #9 (shown in Fig. 7-11) is an example of a non-

differentiable subject, whereas Subject #10 (shown in Fig. 7-11) is differentiable.

For majority of subjects (9 out of 12 subjects), inferring driver alertness states based

on driving performance is possible. However, for the rest of the subjects, driver-

vehicle data (driving performance) may not be good enough to infer their alertness

states.
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Figure 7-12: DBN inference: Subject #10

7.4 Guidelines for Designing Drowsy Driver Detection Sys-

tems

We have comprehensively analyzed characteristics of sleep-deprived drivers through

a simulator-based human-in-the-loop experiment in Chapter 5. In this Chapter, we

have provided inferences of driver alertness based on the BN paradigm and the ex-

perimental data. Based on drowsy driving characteristics along with the simulated

inference results, we propose the following for further directions of design of drowsy

driver detection systems.

9 Monitoring driver-vehicle allows drowsy driving detection, and further

studies on varied driving tasks are necessary. The simulation results shown

in Section 7.2 and 7.3 demonstrate that drowsy driver detection based on driver

performance is feasible. By examining various driving tasks, we have been able to

differentiate driver alertness states; estimated probabilities of drivers being sleep

deprived p(SD) show obvious differences for most subjects based on performance

of non- and partially sleep-deprived drivers. Thus, we claim that further studies

on driver-vehicle data should be continued for developing drowsy driver detection

systems.
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" Not all tasks are equally sensitive to drowsy driving. In our experimental

data, we have observed that drowsiness has a greater effect on rule-based tasks

than on skill-based tasks. In Section 7.2 and 7.3, we confirm the findings by

inferring driver alertness states using the BN paradigm. Thus, we suggest that

driving performance of rule-based tasks should be more carefully investigated

for an effective design of drowsy driver detection systems. Rule-based tasks we

examined in the experiment were reaction time tasks (Psychomotor Vigilance

Tasks) and tracking tasks with unexpected disturbances. Other rule-based tasks

such as stopping at traffic signals should be examined. Skill-based tasks - which

cover most driving tasks - should also be considered in the detection system.

Although they cannot be used as early indicators of drowsy driving, deteriora-

tion of such tasks may indicate existence of other driving impairments such as

inebriation.

" Individual or group differences need to be considered in the design.

We have found statistically significant differences between non and partially

sleep-deprived groups in the sample population. However, individual subjects

exhibit their own characteristics. Each individual has different tasks sensitive

to drowsiness. Some sleep-deprived drivers actually performed better or as well

as in a non-sleep-deprived condition. We suggest further study to determine

whether other observations (physical changes, physiological signals, etc) provide

distinctive information for these subjects. Furthermore, how other factors such

as boredom or motivation can affect sleep-deprived drivers should be studied at

the same time; how to deal with the drivers with high motivation, how long they

can mask their drowsiness, can we consider the masked state safe, etc. We also

suggest investigation of group characteristics, for groups divided by age, gender,

proficiency, or cautiousness. For example, it has been known that younger and

older drivers learn to use new systems differently. Older drivers have been shown

to be distracted from the driving task when the cause of the warning was not

clearly evident. In contrast, younger operators, by definition with fewer years

of driving experience, were shown to have more trust in warning systems, often
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choosing to rely on the system alone rather than using it as a driver assist

[26, 86]. This type of information should be considered in the design of drowsy

driver detection systems. We have also reviewed in Chapter 2 that there are

high-risk population groups for drowsy driving. Their group characteristics may

be useful for designing drowsy driver detection systems.

e Collaborations between policy makers and research engineers are es-

sential. Considering the nature of fatigue problems in automobiles, we suggest

that systematic countermeasure development is crucial. For example, if we want

to utilize the BN paradigm in the vehicle, we first need to have a priori informa-

tion of drivers to set up the BN. Drivers' information may be able to obtained

systematically through fatigue-related public policies or regulations. For ex-

ample, we may consider including fatigue-related tests for commercial drivers

along with their training processes. The information obtained from the test

may provide driver characteristics necessary for the implementation of individu-

alized detection systems. Drivers are poor judges of their own condition - others

should be involved in the determination of whether a driver is adequately rested

[47]. Thus, we stress the importance of systematic collaborations between policy

makers and research engineers for effective fatigue management in automobiles.
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Chapter 8

Conclusions and Future Work

In this thesis we have identified characteristics of drowsy driving and devised a system-

atic way to infer the state of driver alertness based on driver-vehicle data. Simulator-

based human-in-the-loop experiments have not only shown a danger of drowsy driv-

ing, but have also revealed drowsy driving characteristics. Identification of drowsy

driving characteristics and analysis of the sleep-wake cycle mechanism have laid the

foundation for the systematic development of detection systems. Inferences of driver

alertness states utilizing the BN paradigm and experimental data have confirmed

that although detection techniques are essential the ultimate challenge lies in the

human. A wide spectrum of human individual characteristics should be addressed in

the design of drowsy driver detection systems. We encourage collaborations between

policy makers and research engineers for managing fatigue problems in transportation

effectively.

In this Chapter we summarize each part of the thesis, then present ideas for further

research.

8.1 Summary

In Chapter 2, we have extensively reviewed research on fatigue management in trans-

portation systems, including on-going research projects in the U.S.A and Europe.

We have examined existing measures of drowsy driving from the point of view of
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transportation policies and detection technique, and investigated drowsy driving de-

tection techniques in three different categories: by physiological signals, by physical

changes of drivers, and by driver-vehicle data. Then, statistics and some known facts

of drowsy driving have been presented, including crash characteristics and high-risk

population groups in drowsy driving. It has been shown that fatigue management in

transportation is a very active and critical research area.

In Chapter 3, we have reviewed the mechanism of the human sleep-wake cycle along

with causes of sleep. Contrary to common belief that sleep is a passive state caused

by a decrease in a stimulus level to human, we have presented recent exposition that

sleep is indeed an active state of the brain and is involuntary. The reticular formation

and the hypothalamus are key regulators of sleep and wakefulness. The circadian

pacemaker and homeostasis are two primary neurobiological forces that govern the

sleep-wake cycle. However, boredom and environmental factors such as noise, light,

and stress just mask or unmask sleep. We have briefly reviewed the physiology of

sleep-wake regulation, introduced EEG signal patterns and REM/NREM sleep along

with age effect, and provided definitions of related terminologies and examples of

subjective assessments of sleepiness. This Chapter provides in-depth description of

the characteristics of drowsiness.

In Chapter 4, we have studied driver-vehicle systems in general and investigated

well-defined and ill-defined components of driver-vehicle systems. We have reviewed

various types of inputs to driver-vehicle systems, such as visual, vestibular, auditory,

and tactile inputs, and we have analyzed control interface of driver-vehicle systems

including steering and throttle/brake control as well. Finally, simplified longitudinal

and lateral vehicle dynamics have been presented. This Chapter is oriented toward

understanding general characteristics of driving and of driver-vehicle systems.

In Chapter 5, we have designed and performed human-in-the-loop experiments

using a fixed-based driving simulator, aiming to identify valid drowsy driving charac-

teristics. We have clearly stated our experimental objectives and a hypothesis that

drowsiness affects various driving tasks non-uniformly, inspired by brain functions

related to the human motor control system and the sleep-wake cycle regulators. De-
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sign of experiments including the assignment of independent and dependent variables,

have been delineated in detail. We have controlled sleep-deprivation levels of drivers

before each experiment session and examined a myriad of driving/non-driving tasks

during the experiment. STISIM has been utilized as a fixed-based driving simulator,

and a detailed experimental set-up has been described as well. A total of twelve

subjects have participated in both non-sleep-deprived and partially-sleep-deprived

sessions. This Chapter provides the detailed methodology of identifying characteris-

tics of drowsy driving.

In Chapter 6, we have extensively analyzed the driver-vehicle data obtained from

the experiments described in Chapter 5. Studying with-in subject performance dif-

ferences between two different sleep-deprivation levels for various driving tasks, we

have used non-parametric statistical tests to determine the existence of significant

differences between two groups. In terms of lateral lane tracking errors, we have

been able to see the significant performance degradation in partially-sleep-deprived

groups for the wind gust condition, change in steering dynamics, and curvy roads.

However, our data showed negligible performance differences in lane tracking errors

with no disturbances on straight road and with a lead vehicle in front of the drivers.

Most stimulus-response tasks have showed significant performance degradation as

well; Auditory Psychomotor Vigilance Tasks, Visual Psychomotor Vigilance Tasks,

and Double Lane Change Tasks were affected. However, our analyses have showed lit-

tle performance degradation in Single Lane Change Tasks. This suggests that under

sleep deprivation, performance in rule-based tasks deteriorates to a greater extent

than that in skill-based tasks. Corresponding analysis on order effects and power

analysis have been discussed as well. The Crossover Model has been applied to both

Single and Double Lane Change Tasks to understand them as continuous tracking

tasks rather than discrete stimulus-response tasks, which has also provided consis-

tent outcomes. This Chapter contributes to the identification of the characteristics

of drowsy driving.

Finally, in Chapter 7 we have devised a systematic way to detect human drowsiness.

The Bayesian network paradigm has been introduced, along with its basic concepts
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including d-separation. We have configured a topology of a Static BN for drowsy

driver detection based on driver-vehicle data. Quantitative components of a Static

BN have been extracted from the experimental data. Inference of driver alertness

states from the Static BN have been calculated and summarized in both tabular

forms and SOC curves. Then, a Dynamic BN has been introduced to capture temporal

aspects of drowsiness. It has been shown that individual subject characteristics should

be addressed when designing drowsiness detection systems, although overall sample

trends in performance degradation have been found and overall inference results have

shown non-trivial results. This Chapter provides a systematic methodology to detect

drowsy drivers, and motivates future research on detection of drowsy driving.

8.2 Future Work

8.2.1 In-Vehicle Application

We have shown that drowsy driver detection is feasible based on driver-vehicle data.

However, there are many obstacles to overcome, which motivates further supportive

research. First, reliability and validity of the technique should be improved for real-

world application. Experiments using the protocol presented in Chapter 5 need to be

extended to motion-based simulators and field tests to fully consider all influences to

drivers such as vestibular sensory inputs. Secondly, collaborative research between

public policy makers and research engineers should follow. For example, we may con-

sider including fatigue-related tests for commercial drivers along with their training

processes. The information obtained from the test may provide driver characteristics

necessary for the implementation of individualized detection systems.

8.2.2 General Driver Monitoring Systems

We can extend the drowsy driver detection methodology to detection of other driving

impairments. Once we understand the characteristics of impaired driving under the

influence of alcohol, motion-sickness, stress, or inattention, we can extend the drowsy

driver detection method introduced in Chapter 7 to general impaired driving detection
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Figure 8-1: Detection of impaired drivers

systems. For example, we can include the associated nodes for each impaired driving

condition in the BN structure to precisely assess the driver's state. Fig. 8-1 shows an

extended version of Fig. 7-2 including alcohol and inattention nodes as other possible

causes of impaired driving. We expect each impaired driving state to possess distinct

characteristics. For example, it is known that the alcohol influences the function of

the cerebellum, whereas drowsiness affects the function of the basal ganglia more than

that of the cerebellum. This fact suggests that the resulting performance degradation

from each different driving impairment should show different characteristics. We also

need to precisely develop dynamic BN models to fully consider circadian rhythm and

other temporal aspects of drowsiness.

8.2.3 Higher-Level Complex Tasks

The experiments in Chapter 5 have covered a variety of rule-based and skill-based

tasks, which represent tasks typically required for driving. However, some driving-

related tasks such as path-planning or navigation should be considered as knowledge-

based tasks since they involve more cognitive resources and higher-level functions of

the brain. We may need to accommodate new factors such as motivation or boredom

to fully deal with high-level cognitive tasks. Research on high-level cognitive tasks

would provide in-depth understanding of fatigue problems in general. Human ability
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is known to be very robust, yet is affected by a myriad of different circumstances.

Collaborations among engineering, neuroscience, and human factors are necessary for

this study.

8.2.4 Fatigue Management in Various Transportations

There is no doubt that automobiles are the most prevalent form of transportation

in most countries. However, it has been noted that accidents caused by fatigue in

other areas of transportation such as aviation, marine-transportation, railroads, and

in other industrial areas are severe [74, 119]. Because fatigue management research

has been performed in many other areas, active collaborations between these groups

are highly recommended. Each transportation method has its own dynamics and

characteristics. Hence, the fatigue management method should be specialized dis-

tinctly to enhance the safety of each transportation mode.

8.2.5 Countermeasure Development

Although detection and counteraction of drowsy driving are two different problems,

there is no doubt that they are closely linked together. We need to develop effective

countermeasures for drowsy driving along with more reliable detection techniques.

Some previous research on fatigue countermeasures from both a policy and a technical

standpoint can be found in [1, 18, 62, 75, 79, 102, 119] The countermeasures can be

grouped into alarm or alert maintainers [79]; alarms are activated only after some

degree of driver alertness has be lost, and alert maintainers are designed in the hope

that the required level of alertness for safe driving will not be lost. For example,

effectiveness of various alarm modalities such as visual, auditory, tactile, or thermal

would be important to develop countermeasures for drowsy driving.
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Appendix A

Experiment Design

A.1 Experiment Scenario Programming

The contents of this section except programming codes are directly quoted from

STISIM help documents [109, 124].

Driving tasks and scenarios are easily specified with simple commands listed in

an events file. A simple Scenario Definition Language (SDL) has been developed

by Systems Technology Inc. to minimize the effort required to specify experimen-

tal designs. Open Module Programming (OMP) provides the user with a means of

extending the capabilities of the STISIM Driving simulator beyond what has been

provided by Systems Technology Inc.

The following script is an example of SDL script used in the experiment for Subject

#2. Definition of each event shown in the code follows.

An Example of SDL script for Subject #2

METRIC

0, BSAV, 1, .03, Experiment Data, 1, 39, 7, 6, 4, 5, 2, 3, 10, 24, 30, 31, 11, 26, 27, 28,

42, 40, 9, 19

0, ROAD, 5, 4, 3, 1, 0.15, 3, 3, 0.15, 0.15, 0, -1, -1, 0, 10, 0, 10, -5, 3, -5, 3, 0

0, OM, 1, 0

50, TREE, 70, 0, *1~18;-4;-15, 25, 30, 0

20105, SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_01.LMM

20440, OM, 1, 0
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21140, OM, 1, 1

23040, OM, 1, 0

23594, PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

23809, DA, 1, 0, 0, .5; .7;

24194, SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_03.LMM

24527, DA, 1, 0, 0, .5; .7;

24812, PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

25071, WG, 1, 0, 4

26112, PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

26335, DA, 1, 0, 0, .5; .7;

26550, PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

26872, WG, 1, 0, 4

27915, DA, 1, 0, 0, .5; .7;

28977, DA, 1, 0, 0, .5; .7;

29275, DA, 1, 0, 0, .5; .7;

29674, C, 150, 20, 120, 20, 0.002

29974, C, 150, 20, 120, 20, -0.003

30144, C, 150, 20, 120, 20, 0.001

30314, C, 150, 20, 120, 20, -0.004

30514, C, 150, 20, 120, 20, 0.005

30704, C, 150, 20, 120, 20, -0.003

30904, C, 150, 20, 120, 20, 0.002

31169, FLLW, 22, 100, 0{5}, 12, 10, 2, 100, C:\STISIM\Jihyun\Data\SpeedProfile.Sin, 1, 0, 10

34207, SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_02.LMM

34452, OM, 1, 0

35152, OM, 1, 1

37052, OM, 1, 0

37966, FLLW, 22, 100, 0{5}, 12, 10, 2, 100, C:\STISIM\Jihyun\Data\SpeedProfile.Sin, 1, 0, 10

41080, WG, 1, 0, 4

42217, PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

42480, PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

42733, DA, 1, 0, 0, .5; .7;

43006, SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_03.LMM

43316, DA, 1, 0, 0, .5; .7;

43609, SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_01.LMM

43915, PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

44195, OM, 1, 0

44895, OM, 1, 1
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46795,

47265,

47515,

47780,

48063,

48365,

48579,

48995,

49256,

52396,

52696,

52866,

53036,

53236,

53426,

53626,

53893,

54215,

54515,

54685,

54855,

55055,

55245,

55445,

55925,

56181,

56589,

OM, 1, 0

PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

DA, 1, 0, 0, .5; .7;

SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_02.LMM

SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_03.LMM

PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

DA, 1, 0, 0, .5; .7;

PR, C:\STISIM\SOUND\RINGIN.WAV, 0, 10

FLLW, 22, 100, 0{5}, 12, 10, 2, 100, C:\STISIM\Jihyun\Data\SpeedProfile.Sin, 1, 0, 10

C, 150, 20, 120, 20, 0.002

C, 150, 20, 120, 20, -0.003

C, 150, 20, 120, 20, 0.001

C, 150, 20, 120, 20, -0.004

C, 150, 20, 120, 20, 0.005

C, 150, 20, 120, 20, -0.003

C, 150, 20, 120, 20, 0.002

SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_01.LMM

C, 150, 20, 120, 20, 0.002

C, 150, 20, 120, 20, -0.003

C, 150, 20, 120, 20, 0.001

C, 150, 20, 120, 20, -0.004

C, 150, 20, 120, 20, 0.005

C, 150, 20, 120, 20, -0.003

C, 150, 20, 120, 20, 0.002

SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_03.LMM

SOBJ, 100, 5, 0,0,0,0, C:\STISIM\Data\Signs\SnglOvrHd_02.LMM

V, 27, 100, 0{5}, 1, 2, 57289{15}, 0, 0, 2

90000, ES

The event files has a floating file format, this means that each line of the file does

not have the same number of parameters in them. The general format for each line

of the file is:

ON DISTANCE, EVENT SPECIFIER, PARAMETER 1,..., PARAMETER N

The ON DISTANCE parameter is the longitudinal distance down the road since

the start of the simulation run that the driver has driven when the event will initially

appear on the screen. The following explains each supported event used in our script.

We use Metric unit for the script as shown in the first line thus the distance is in m.
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Explanations of each event starts from PARAMETER 1 and only includes what the

previous script has.

BSAV - Begin saving dynamic data for the output file

PARAMETER 1 = 1; Save data based on the number of seconds that have elapsed

since the last time the program saved an increment of data.

PARAMTEER 2 = .03; The save increment.

PARAMTEER 3 = Experiment Data; This is a string variable that allows us to mark

a particular data block with its own individual title.

PARAMETER 4 = 1, 39, 7, 6, 4, 5, 2, 3, 10, 24, 30, 31, 11, 26, 27, 28, 42, 40, 9, 19;

These parameters represent the data variables that we would like save.

1 = Elapsed time since the beginning of the run (seconds)

39 = Computer system time stamp in hours, minutes, seconds, and milliseconds.

This allows the simulator data to be time synchronized with other computers

7 = Driver's lateral lane position with respect to the roadway dividing line, positive

to the right (m)

6 = Total longitudinal distance that the driver has traveled since the beginning of

the run (m)

4 = Driver's longitudinal velocity (m/s), 5 = Driver's lateral velocity (m/s)

2 = Driver's longitudinal acceleration (m/s 2 )

3 = Driver's lateral acceleration (m/s 2)

10 = Vehicle heading angle (degrees)

24 = Vehicle yaw rate (radians/second)

30 = Total pitching angle, includes both ground slope and vehicle motion (radians)

31 = Total rolling angle, includes both ground slope and vehicle motion (radians)

11 = Steering wheel angle input (degrees)
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26 = Steering input counts

27 = Throttle input counts,

28 = Braking input counts

42 = Current state of all of the input buttons

40 = Driver's response time (seconds) to any divided attention tasks

9 = Current roadway curvature (1/m)

19 = Roadway traffic data. For each vehicle that is in the roadway display, this

parameter will save the following data: Vehicle identification number, Difference

in longitudinal speed between the driver's vehicle and the roadway vehicle (m/s),

Longitudinal position of the roadway vehicle with respect to the driver's vehi-

cle (m), Lateral position of the roadway vehicle with respect to the roadway's

dividing line (m)

C = Add curvature to the roadway display

PARAMETER 1 = 150; The longitudinal distance (m) that the beginning of the

curve is away from the driver when the curve first appears.

PARAMETER 2 = 20; Entry spiral length (m).

PARAMETER 3 = 120; The longitudinal length of the curved section of roadway

(m).
PARAMETER 4 = 20; Exit spiral length (m). An exit spiral is a transition section

of roadway from a curve to a straight section of road.

PARAMETER 5 = { -0.004, -0.003, 0.001, 0.002, 0.004, or 0.005}; Constant roadway

curvature (1/the radius of curvature, 1/m). A positive curvature means that the

roadway will curve to the right while a negative value of curvatures means the roadway

will curve to the left.

DA = Add a divided attention symbol to the display

PARAMETER 1 = 1; Left triangle symbol.
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Figure A-1: Lead vehicle model type

PARAMETER 2 = 0; Driver is suppose to respond to symbols, all events will continue

to appear whether the driver respond or not

PARAMETER 3 = 0; Volume control

PARAMETER 4 = 0.5; 0.7; Change the positioning of the symbol box. Left edge of

the box = 0.5, top edge of the box= 0.7 where the screen is defined as left edge = 0,

bottom edge = 0, right edge = 1, top edge = 1.

ES = End simulation run

End a simulation run.

FLLW = Follow a lead vehicle

PARAMETER 1 = 22; The initial speed, in m/s, of the lead vehicle that will be

followed.

PARAMETER 2 = 100; The longitudinal distance, in m, that the lead vehicle is away

from the driver when the lead vehicle initially appears.

PAREMETER 3 = 05; The lateral lane position, in m. 0 means lateral position of

the object is specified with respect to the roadway dividing line.

PARAMETER 4 = 12; Lead vehicle model type number. Fig. A-1 shows the vehicle

model used in the experiment.

PARAMETER 5 = 10; Time delay, in seconds, before the sine wave input kicks in.

PARAMETER 6 = 2; Gain on the lead vehicle's speed profile.
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Figure A-2: Velocity profile of lead vehicle

PARAMETER 7 100; Length of time, in seconds, that the vehicle following task

will be displayed.

PARAMETER 8 = C:\STISIM\Jihyun\Data\SpeedProfile.Sin; Name ans loca-

tion of a file that contains the sinusoidal input profile. Fig. A-2 shows the velocity

profile of the lead vehicle in kilometer per hour.

PARAMETER 9 = 1; Flag that specifies whether to save the raw data to the STISIM

Drive data file.

PARAMETER 10 = 0; Warning distance (in in).

PARAMETER 11 = 10; Volume control

OM = Open Module

PARAMETER 1 = 1; Not used in the experiment.

PARAMETER 2 = 0 or 1; A default linear steering dynamics when 0 and a nonlinear

steering dynamics when 1.

OM saves both the original steering input controlled by drivers and the modified

(by backlash dynamics) steering input feed into the vehicle. The following is a part

of the OM programming using Microsoft Visual Basic 6.0, which shows the backlash

algorithm.
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With Backlash

.Slope = 1#

.Cl = -2777.8

.Cr = 2777.8

End With

If ConvertedOMValue(1) = 1# Then

' Backlash

Backlash. Vl

Backlash.Vr

If Steering

NewSteering

Else

If Steering

NewSteering

Else

NewSteering

End If

End If

- NewSteering / Backlash.Slope + Backlash.Cl

- NewSteering / Backlash.Slope + Backlash.Cr

<= Backlash.Vl Then

= Backlash.Slope * (Steering - Backlash.Cl)

>= Backlash.Vr Then

= Backlash.Slope * (Steering - Backlash.Cr)

= NewSteering

Update Steering values

OrgSteering = Steering

Steering = NewSteering

Else

' When backlash off

If ConvertedOMValue(i) = 0# Then

OrgSteering = Steering

NewSteering = Steering

End If

OrgSteering

NewSteering

= Steering

= Steering

End If
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Make the driver inputs available to the other methods

With Driver

.Brake = Brake

.Steer = Steering

.Throttle = Throttle

.Buttons = DInput

End With

Setup the return from function

ControlInputs = True

Exit Function

Handle any errors

ErrorOccurred:

ErrorMessage = ProcessError("ControlInputs")

ControlInputs = False

PR = Play recording

PARAMETER 1

that contains the

PARAMETER 2

PARAMETER 3

= C:\STISIM\SOUND\RINGIN.WAV; The complete name of the file

message to be played, including the path.

= 0; Play the recording and continues to run the simulation

= 10; Volume control.

ROAD = Display a specific roadway

PARAMETER 1

PARAMETER 2

PARAMETER 3

PARAMETER 4

PARAMETER 5

= 5; Width, in m, of each roadway lane.

= 4; Total number of lanes that will be displayed.

= 3; Total number of right hand side lanes.

= 1; Roadway's dividing line striping option: dashed line.

= 0.15; The distance, in m, from the edge of the roadway to the
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Change to Lane #1 Change to Lane #2 Change to Lane #3

Figure A-3: Lane change jpeg images used for overhead signs

inside edge of the edge line.

PARAMETER 6 = 3; The length, in m, of the lane marker stripes.

PARAMETER 7 = 3; The longitudinal distance, in m, between the end of one stripe

and the beginning of the next stripe.

PARAMETER 8 = 0.15; Width, in m, of the lane division markers.

PARAMETER 9 = 0.15; Width, in m, of the edge lines.

PARAMETER 10 = 0; Transition length, in m, to change from previous ROAD event.

PARAMETER 11 = -1; Cross-slope for the right hand side travel lanes, in percent

grade. Negative values for the cross-slope mean that the road is sloping down as you

go from the centerline to the roadway's outer edge.

PARAMETER 12 = -1; Cross-slope for the left hand side travel lanes, in percent

grade. Negative values for the cross-slope mean that the road is sloping down as you

go from the centerline to the roadway's outer edge.

PARAMETER 13

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

14

15

16

17

18

19

20

21

= 0; Cross-slope of the right hand side shoulder.

= 10; Width, in m, of the right had side shoulder.

= 0; Cross-slope of the left hand side shoulder.

= 10; Width, in m, of the left had side shoulder.

= -5; Slope of the right hand side foreslope, in percent grade.

= 3; Width, in m, of the right hand side slope.

= -5; Slope of the left hand side foreslope, in percent grade.

= 3; Width, in m, of the left hand side slope.

= 0; Width, in m, of the center median.
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Figure A-4: Vehicle model for EM event

SOBJ = Add a static object

PARAMETER 1 = 100; The longitudinal distance, in m, that the static object is

away form the driver when it first appears.

PARAMETER 2 = 5; Lateral position, in m, from the specified location to the bottom

left corner of the static object.

PARAMETER 3 = 0; Height, in m, from the ground to the origin of the static object

model.

PARAMETER 4 = 0; Rotation angle, in degrees, of the static object about its vertical

axis.

PARAMETER 5 = 0; Rotation angle, in degrees, of the static object about its pitch

axis.

PARAMETER 6 = 0; Rotation angle, in degrees, of the static object about its roll

axis.

PARAMETER 7 = C: \STISIM\Data\Signs\SnglOvrHd_02. LMM; File name of the

model file defining the static object. Fig. A-3 shows one of the overhead lane change

signs used in the experiment.

TREE = Display trees on the side of the road

PARAMETER 1 = 70; Maximum number of trees that will be displayed at any one

time.

PARAMETER 2 = 0; No longer used but has been left so that older scenario files
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Figure A-5: Tree type: #1 and #8

will be compatible.

PARAMETER 3 = *1j8;-4;-15; Types of tree that will be display. Randomly chosen

from tree types from 1 to 18 excluding 4 and 15, which are palm trees. For example,

tree type 1 and 8 are shown in Fig. A-5.

PARAMETER 4 = 25; Minimum lateral position from the specified position to the

trees, in m.

PARAMETER 5 = 30; Maximum lateral position from the specified position to the

trees, in m.

PARAMETER 6 = 0; The trees will appear on both side of the road.

V = Vehicle ahead of driver in driver's lane

PARAMETER 1 = 27; The speed, in m/s, of the new vehicle.

PARAMETER 2 = 100; The longitudinal distance, in m, that the vehicle is away

from the driver when the vehicle initially appears.

PARAMETER 3 = 05; The vehicle's initial lateral position, in m.

PARAMETER 4 = 1; Brake lights become brighter when the vehicle begins braking.

PARAMETER 5 = 2; Vehicle model type number. Fig. A-4 shows the model used

for the V event in the experiment.

PARAMETER 6 = 57289{15}; The absolute longitudinal distance down the road

where the object is currently positioned as the trigger.
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Figure A-6: One period of pseudo-random disturbances for WG

PARAMETER 7 = 0; Lateral position specification specifying how the vehicle will

move laterally.

PARAMETER 8 = 0; New speed, in m/s, that the vehicle will traveling at the end

of the transition period.

PARAMETER 9 = 2; The amount of time, in m/s, that the transition will occur

over.

WG = Wind gusts

PARAMETER 1 = 1; Steering wheel gain, in radians.

PARAMETER 2 = 0; Throttle controller gain.

PARAMETER 3 = 4; Run length multiplier;

PARAMETER 4 = blank; The default WINDGUST.PAR file is used. The file spec-

ifies that 3 separate sine waves that will be summed together into 1 final wave. The

total length of the final wave will be 6 seconds. Each of the 3 sine waves specified has

an amplitude of 1 and their periods vary from 6 to 1. The sine wave with a period

of 6 will have 6 maximum peaks occur during the 6 second wave, the wave with a

period 3 will have 3 maximum peaks occur, and the wave with 1 period will have a

single maximum peak. Fig. A-6 shows the superposed sine wave used in the WG.
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Table A.1: Simulated Tasks

Simulated Tasks STISIM event
CL (Curved Lane Tracking) C

CS (Straight Lane Tracking given Changes of Steering Dynamics) OM
LV (Straight Lane Tracking given a Lead Vehicle) FLLW

LT (Straight Lane Tracking) ROAD
WG (Straight Lane Tracking given Wind Gusts) WG

SLCT (Single Lane Change Task) SOBJ
DLCT (Double Lane Change Task) SOBJ

APVT (Auditory Psychomotor Vigilance Task) PR
VPVT (Visual Psychomotor Vigilance Task) DA

EM (Emergency Maneuver) V

Table A.1 summarizes the simulated tasks and the corresponding STISIM events

which enabled us to program the tasks. We used Previously Defined Event (PDE)

file to model each task. PDE allows us to group a set of events into a single file.

A.2 Forms used in Experiment

Fig. A-7 and Fig. A-8 are Pre-Experiment Questionnaire given to all the subjects.

Fig. A-9 and Fig. A-10 are sleep diaries for non-sleep-deprived and partially sleep-

deprived conditions respectively. All subjects are required to write down their bed

time and get up time days before the experiment. Fig. A-11 is a participant informed

consent form which all the subjects are required to read it before the experiment stats.

They are required to sign the form if they decided to participate in the experiment.

A copy of the signed form (both signatures from the participant and a witness) is

given to the participant.

A.3 Participant Data

Table A.2 summarizes data from all participants.

First column: Subject Number

Second column: Gender. M = male and F = female.

Third column: Age
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Table A.2: Participant data

Subj. Numb. Gender Age Normal sleep Ideal sleep Snoring Sleep prob. Drowsy driving

SOl M 31 7.0 9.0 2.0 1.0 1.0
S02 M 46 6.0 8.0 2.0 2.0 1.0
S03 M 38 8.0 7.5 3.0 2.0 2.0

S04 M 45 7.0 8.0 3.0 2.0 2.0

S05 M 40 5.0 6.0 4.0 3.0 1.0
S06 M 48 7.0 8.0 1.0 1.0 2.0

S07 M 46 6.0 7.0 5.0 3.0 1.0
S08 M 43 7.0 8.0 5.0 1.0 3.0
S09 M 45 7.0 9.0 5.0 4.0 4.0
S10 M 49 7.0 8.0 3.0 1.0 3.0
Sli M 29 7.0 8.0 4.0 1.0 1.0
S12 M 40 6.0 8.0 2.0 4.0 3.0

Avg. N/A 41.7 6.7 hours 7.9 hours 3.3 2.1 2.0

Std. N/A 6.4 46.7 min 48.1 min 1.4 1.2 1.0

Fourth column: The estimated number of hours of sleep each subject had per day

during past 2 weeks

Fifth column: Ideal amount of sleep per day the subject feel

Sixth column: Snoring score (1 = Not at all, 3 = Sometimes, and 5 = Excessively)

Seventh column: Influence of sleep problems to work or family life (1 = Not at all,

3 = Sometimes, and 5 = Excessively)

Eight column: Frequency of dozing off while driving (1 = Not at all, 3 = Sometimes,

and 5 = Excessively)

A.4 Miscellaneous

Fig. A-12 is a start-up image of STISIM driving simulator for the experiment. Fig.

A-13 shows a dimension of the driver's seat.
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Ford/MIT alliance project: Detection ofhuman drowsiness in simulated driving
Pre-Experiment questinnaire

I. Please circle one.

1. Fstimate the average number of hours ofsleep you had per day during the last2 weeks.

Less than 3 4 5 6 7 8 9 More then 10

2. What do you feel is your ideal amount of sleep per day?

Less then 3 4 5 6 7 8 9 Mote thn 10

II. Please circle one base d on the following scale.

1

No
Not d all.

2 3

Neutnl
Sometimes

4 5

Yes.
Excessively

3. Have you been told you snare?

2 3 4 5

4. Is your work or family life affected by sleep problems?

2

2

3

3

4

4

Figure A-7: Pre-Experiment Questionnaire - page 1 of 2
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5.Do you find yourself dozing while driving?

1

5

5

I

I



III. Please enswer the following questions.

6. Do you have any sleep disorders?

7. Do you have any other healthproblems?

8. Are you on any me dication?

Figure A-8: Pre-Experiment Questionnaire - page 2 of 2
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Sleep diary

Name:

Time-in-bed should be MORE THAN 8 hours for everyday.

<Example>>

Figure A-9: Sleep-diary for non-sleep-deprived subjects
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Day Date Bed time Get up time Comments

1 July , 06

2 July , 06

3 July , 06

4 July , 06

5 July ,06

6 July , 06

7 July ,06

Day Date Bedtime Get up time Comments

March4, 2006 11:20 pm 7:30 am I felt still fatigued when I
Saturday woke up._

2 March5, 2006 11:00 pm 6:15 am I had a really good sleep.
Sunday I



Sleep diary

Name:

Day Date Bed time Get up time Comments

1 June ,06

2 June ,06

3 June ,06

4 June ,06

5 June ,06

6 June ,06

7 June ,06

Day : Time-in-be d should be LESS THAN 7 hours.

Day T ime-in-be d should be LESS THAN 4 hours.

You are not allowe d to take a nap! Sony. Q
Do not consume any alc ohol- or caffeine- containig beverage e.g., be er, wine, tea or coffe e on

the day of your sleep study.

<<Example>>

Day Date Be d time Get up time Comments

March4, 2006 I felt still fatigued when I
1 Saudy11:20 pm 7:30 am wk p

S atur d y woke up.

2 March5, 2006 11:00 pm 6:15 am I had a really good sleep.
Sunday

Figure A-10: Sleep-diary for partially sleep-deprived subjects
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Detection of Human Drowsiness in Simulated Diiving
Ford/UT AMiance Project

PARTICIPANT INFORMED CONSENT

Purpose of this Research: The purpose of this study is to improve safety in driving via the detection and
countermeasure of human drowsiness.

Study Procedure: This study will take place at 3A129, Building 5 where a driving simulator is located. While
driving the simulator, some people experience motion sickness. If you feel uncomfortable at any time, tell the
experimenters immediately. You can stop the experiment at any time. If you volurteer to participate in this study,
we would ask youto do the following things:

* Make sure that you an not subjected to serious medication that may prevent you flom driving
continuously for 2 hours on our simulator.

* Make sun that you do not drink any alcohol-or caffeine-containing beverage, e.g., beer, wine, tea, or
coffee, within 6 hours prior to the test.

" Attend a warm-up session: The investigator will explain how to operate the steering wheel and brake
/throttle pedal. Pactice on the program until an adequate level of performance is achieved, which means
that you feel comfortable operating the system.

" The main simulated driving session will last about 100 minutes.
We will be collecting data including steering and brakefthruttle control irnputs and will be recording (using video
device) your driving behavior.

Poteuial Ridsm: There ae no anticipated risks.

Potential Bemiefits: While there is no foreseeable benefit to you as a participant in this study, your efforts will

help -us design methods to detect drowsiness of drivers and thus to pomote safe driving for people in general.

Confltntiality of Data - Partipant Idenity: The data gathered in this experimert is the property of
FordvIIT alliance and will be kept confidential. Each participant's name will be separated from their data. A
coding scheme will be used to identify each participant's data by gender and number only (e.g., Male, Participant
No. 3). Video clips (or still images) of your test session may be used in FordRIT presertations and may be
released to the press. Your name will not be mentioned.

Freedom t, Withdraw: The study should take pproximately 2 hours to complete. If you have anypoceduul
questions about the study, please do not hesitate to ask the experimenter at any time. You are free to withdraw
from the study at any time witlout question.

Participant's Permision: I have read and understand the informed consent and corditiors of this study. I am
not stbject to serious medication that prevents me from 2 hour simulated driving and do not believe there is any
reason -hy I should not participate in this study. I have been advised that if I have any doubts about my desires to
participate in the study, I should not do so.

Nare (PlNTED) Date

Signture Wtiess ('xperinter)

Ccpyrg h @ 19c99I00 1X r Cm y

Figure A-11: Participant Informed Consent Form
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Figure A-12: Startup image of experiment
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Appendix B

Supplementary Experimental

Results

B.1 Estimated Parameters in the Crossover Model

Table B.1 and B.2 provide the estimated parameters in the Crossover Model for each

subject.

Table B.1: The Crossover Model: gain K

Tasks SLCT DLCT
Sleep-Depr. level Non-Sleep-Depr. Partial-Sleep-Depr. Non-Sleep-Depr. Partial-Sleep-Depr.

Subject Gain
1 0.9497 0.6605 1.1739 0.5591
2 0.3543 0.3310 0.2710 0.2523
3 0.4209 0.3711 0.3592 0.3733
4 0.4753 0.3463 0.2761 0.3301
5 0.5950 0.7483 0.4438 0.6266
6 0.6021 0.5010 0.4113 0.3328
7 0.6129 0.3084 0.5201 0.8049
8 0.7915 0.5626 0.5108 0.1205
9 -0.3620 0.7371 0.5820 1.3599
10 0.4085 0.2134 0.4001 0.2408
11 0.7224 0.5643 0.5994 0.4390
12 0.6425 0.6870 0.4587 0.5379

mean 0.5178 0.5026 0.5005 0.4981
STD 0.3254 0.1845 0.2367 0.3306

p-value 0.5543 0.5095
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Table B.2: The Crossover Model: effective time delay r

Tasks SLCT DLCT
Sleep-Depr. level Non-Sleep-Depr. Partial-Sleep-Depr. Non-Sleep-Depr. Partial-Sleep-Depr.

Subject Effective Time Delay [sec]
1 1.14 0.93 1.19 1.07
2 1.46 1.99 1.65 2.07
3 1.25 1.19 1.30 1.37
4 1.39 1.88 2.02 1.66
5 1.05 0.81 0.82 0.87
6 0.80 1.13 0.98 1.56
7 0.91 1.13 0.98 1.56
8 1.28 1.42 0.93 1.11
9 0.93 1.11 1.24 1.28
10 1.00 0.73 1.10 1.63
11 0.82 0.86 0.90 0.90
12 1.03 0.93 0.93 1.05

mean 1.0833 1.1749 1.1675 1.3190
STD 0.2173 0.4015 0.3565 0.3571

p-value 0.1484 0.0408

B.2 Individual SOC curves

Fig. B-1 to Fig. B-12 represent SOC curves obtained from stimulus-response task

performance.

B.3 Definition of d-separation

When the state of a variable is known we say that it is instantiated. [53, 59]

Serial connections Fig. B-13 shows that A is a parent node of B, B is a parent node of

C. If B is uninstantiated then, evidence about A influence the certainty of B, which

then influences the certainty of C (Forward serial connection). Similarly, evidence

about C flows through B to A (Backward serial connection). If B is instantiated,

then the evidence does not propagate through from A to C or from C to A; A and

C become independent.

Diverging connections Consider the situation in Fig. B-14; A has children B, C, - , E.

Evidence transmit thorough A unless it is instantiated.
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Figure B-1: SOC curve: Subject #1
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Figure B-2: SOC curve: Subject #2
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Figure B-3: SOC curve: Subject #3
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Figure B-4: SOC curve: Subject #4
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Figure B-5: SOC curve: Subject #5 Figure B-6: SOC curve: Subject #6
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Figure B-8: SOC curve: Subject #8
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Figure B-9: SOC curve: Subject #9
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Figure B-10: SOC curve: Subject #10

1

0.9

0.8

0.7

0.6

S0.5

0.4

0.3

0.2

0.1

- APVT
- - - VPVT
'"'.'SLCT

DLCT

V'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FA

Figure B-12: SOC curve: Subject #12
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Figure B-11: SOC curve: Subject #11
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Figure B-13: Serial connection. [53]

B C cni [E

Figure B-14: Diverging connection. [53]

A

Figure B-15: Converging connection. [53]

Converging connections The situation in Fig. B-15 is converging connection, A has

parents B, C, - - - , E. Evidences transmit between B, C, - , E only if A or descendant

of A is initiated. If we see evidence for A, then B, C - , E become dependent. This

explains explaining away effect; if we find A has occurred and then get information

that C has occurred, the certainty of B will decrease.

Definition Two distinct variables A and B in a causal network are d - separated if,

for all parts between A and B, there is an intermediate variable V (distinct from A

and B) such that either

" The connection is serial or diverging and V is instantiated

" The connection is converging, neither V nor any of V's descendants have received

evidence.
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