13,739 research outputs found

    Rough Set Applied to Air Pollution: A New Approach to Manage Pollutions in High Risk Rate Industrial Areas

    Get PDF
    This study presents a rough set application, using together the ideas of classical rough set approach, based on the indiscernibility relation and the dominance-based rough set approach (DRSA), to air micro-pollution management in an industrial site with a high environmental risk rate, such as the industrial area of Syracuse, located in the South of Italy (Sicily). This new data analysis tool has been applied to different decision problems in various fields with considerable success, since it is able to deal both with quantitative and with qualitative data and the results are expressed in terms of decision rules understandable by the decision-maker. In this chapter, some issue related to multi-attribute sorting (i.e. preference-ordered classification) of air pollution risk is presented, considering some meteorological variables, both qualitative and quantitative as attributes, and criteria describing the different objects (pollution occurrences) to be classified, that is, different levels of sulfur oxides (SOx), nitrogen oxides (NOx), and methane (CH4) as pollution indicators. The most significant results obtained from this particular application are presented and discussed: examples of ‘if, … then’ decision rules, attribute relevance as output of the data analysis also in terms of exchangeable or indispensable attributes/criteria, of qualitative substitution effect and interaction between them

    Incorporating stakeholders’ knowledge in group decision-making

    Get PDF
    International audienc

    Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment

    Get PDF
    Sustainability assessments require the management of a wide variety of information types, parameters and uncertainties. Multi criteria decision analysis (MCDA) has been regarded as a suitable set of methods to perform sustainability evaluations as a result of its flexibility and the possibility of facilitating the dialogue between stakeholders, analysts and scientists. However, it has been reported that researchers do not usually properly define the reasons for choosing a certain MCDA method instead of another. Familiarity and affinity with a certain approach seem to be the drivers for the choice of a certain procedure. This review paper presents the performance of five MCDA methods (i.e. MAUT, AHP, PROMETHEE, ELECTRE and DRSA) in respect to ten crucial criteria that sustainability assessments tools should satisfy, among which are a life cycle perspective, thresholds and uncertainty management, software support and ease of use. The review shows that MAUT and AHP are fairly simple to understand and have good software support, but they are cognitively demanding for the decision makers, and can only embrace a weak sustainability perspective as trade-offs are the norm. Mixed information and uncertainty can be managed by all the methods, while robust results can only be obtained with MAUT. ELECTRE, PROMETHEE and DRSA are non-compensatory approaches which consent to use a strong sustainability concept, accept a variety of thresholds, but suffer from rank reversal. DRSA is less demanding in terms of preference elicitation, is very easy to understand and provides a straightforward set of decision rules expressed in the form of elementary “if … then …” conditions. Dedicated software is available for all the approaches with a medium to wide range of results capability representation. DRSA emerges as the easiest method, followed by AHP, PROMETHEE and MAUT, while ELECTRE is regarded as fairly difficult. Overall, the analysis has shown that most of the requirements are satisfied by the MCDA methods (although to different extents) with the exclusion of management of mixed data types and adoption of life cycle perspective which are covered by all the considered approaches

    Generalizing GAMETH: Inference rule procedure..

    Get PDF
    In this paper we present a generalisation of GAMETH framework, that play an important role in identifying crucial knowledge. Thus, we have developed a method based on three phases. In the first phase, we have used GAMETH to identify the set of “reference knowledge”. During the second phase, decision rules are inferred, through rough sets theory, from decision assignments provided by the decision maker(s). In the third phase, a multicriteria classification of “potential crucial knowledge” is performed on the basis of the decision rules that have been collectively identified by the decision maker(s).Knowledge Management; Knowledge Capitalizing; Managing knowledge; crucial knowledge;

    Challenges in Capitalizing Knowledge in Innovative Product Design Process.

    Get PDF
    Capitalizing on company’s knowledge is increasingly being recognized in a private organizations environment since managing knowledge productivity is considered a source of competitive advantage. In this paper we present a generalization of GAMETH framework, that play an important role in identifying crucial knowledge used and created in innovative product design process. Thus, we have developed a method based on three phases. In the first phase, we have used GAMETH to identify the set of “reference knowledge”. During the second phase, decision rules are inferred, through rough sets theory, from decision assignments provided by the decision maker(s). In the third phase, a multicriteria classification of “potential crucial knowledge” is performed on the basis of the decision rules that have been collectively identified by the decision maker(s).Dominance Rough set approach; Decision rules; Multi- criteria classification; crucial knowledge; Knowledge Capitalizing;

    Multiple Criteria Assessment of Insulating Materials with a Group Decision Framework Incorporating Outranking Preference Model and Characteristic Class Profiles

    Get PDF
    We present a group decision making framework for evaluating sustainability of the insulating materials. We tested thirteen materials on a model that was applied to retrofit a traditional rural building through roof's insulation. To evaluate the materials from the socio-economic and environmental viewpoints, we combined life cycle costing and assessment with an adaptive comfort evaluation. In this way, the performances of each coating material were measured in terms of an incurred reduction of costs and consumption of resources, maintenance of the cultural and historic significance of buildings, and a guaranteed indoor thermal comfort. The comprehensive assessment of the materials involved their assignment to one of the three preference-ordered sustainability classes. For this purpose, we used a multiple criteria decision analysis approach that accounted for preferences of a few tens of rural buildings' owners. The proposed methodological framework incorporated an outranking-based preference model to compare the insulating materials with the characteristic class profiles while using the weights derived from the revised Simos procedure. The initial sorting recommendation for each material was validated against the outcomes of robustness analysis that combined the preferences of individual stakeholders either at the output or at the input level. The analysis revealed that the most favorable materials in terms of their overall sustainability were glass wool, hemp fibres, kenaf fibres, polystyrene foam, polyurethane, and rock wool

    Robust ordinal regression for value functions handling interacting criteria

    Get PDF
    International audienceWe present a new method called UTAGMS–INT for ranking a finite set of alternatives evaluated on multiple criteria. It belongs to the family of Robust Ordinal Regression (ROR) methods which build a set of preference models compatible with preference information elicited by the Decision Maker (DM). The preference model used by UTAGMS–INT is a general additive value function augmented by two types of components corresponding to ‘‘bonus’’ or ‘‘penalty’’ values for positively or negatively interacting pairs of criteria, respectively. When calculating value of a particular alternative, a bonus is added to the additive component of the value function if a given pair of criteria is in a positive synergy for performances of this alternative on the two criteria. Similarly, a penalty is subtracted from the additive component of the value function if a given pair of criteria is in a negative synergy for performances of the considered alternative on the two criteria. The preference information elicited by the DM is composed of pairwise comparisons of some reference alternatives, as well as of comparisons of some pairs of reference alternatives with respect to intensity of preference, either comprehensively or on a particular criterion. In UTAGMS–INT, ROR starts with identification of pairs of interacting criteria for given preference information by solving a mixed-integer linear program. Once the interacting pairs are validated by the DM, ROR continues calculations with the whole set of compatible value functions handling the interacting criteria, to get necessary and possible preference relations in the considered set of alternatives. A single representative value function can be calculated to attribute specific scores to alternatives. It also gives values to bonuses and penalties. UTAGMS–INT handles quite general interactions among criteria and provides an interesting alternative to the Choquet integral
    corecore