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Abstract— The objective of this paper is to introduce K-DSS,
a Decision Support System for identifying and evaluating crucial
Knowledge. K-DSS is an implementation of a two phases-based
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I. I NTRODUCTION

CAPITALIZING on the company’s knowledge is increas-
ingly being recognized. Capitalizing on all the com-

pany’s knowledge requires an important human and financial
investments. To optimize the capitalizing operation, one should
focalize on only the so called “crucial knowledge”, that is,the
most valuable knowledge. This permits particularly to save
time and money.
In practice, decision makers use tacit and explicit knowledge
available in various forms (e.g. decision support system,
knowledge-based system, database, documents) in the orga-
nization to select, from a set of options, the alternative(s)
that better response(s) to the organization objectives. The
main objective of capitalizing is to extract tacit knowledge
[19], that are not explicitly defined and which are considered
crucial for improving decisions and their outcomes [6]. As
mentioned in [18], “tacit knowledge is quite beneficial to
a faster decision making process”. Thus, companies should
invest in engineering methods and tools in order to preserve
the knowledge, especially of tacit nature, related to the deci-
sion making process. K-DSS, a Decision Support System for
identifying and evaluating crucial Knowledge, is one of such
tools.
Most importantly, K-DSS is an implementation of a two
phases-based methodology conducted and practically validated
in the PSA Peugeot Citroën automobile company in France.
More specifically, we have focalized on the FAP (for Particle-
based Filter) development projects: FAPx, FAPy, FAPz and
FAPw (x, y, z and w denote the successive generation of
FAP system). FAP is a depollution sub-system integrated in
the exhaust system. The objective of PSA Peugeot Citroën
company is to transfer the knowledge developed in FAPx for
use:

• with other types of vehicles;
• with projects concerned with definition of the new sys-

tems of FAP (i.e. FAPy, FAPz et FAPw).
The objective of this paper is to describe K-DSS. Attention

is especially devoted to present the conceptual and functional
architectures of K-DSS. The implementation of K-DSS is also
addressed.
The remain of the paper goes as follows. Section II very briefly
introduces the proposed methodology. Section III presentsthe
conceptual architecture of K-DSS. Section IV describes the
functional architecture of K-DSS. Section V provides a brief
description of the developed system. Section VI concludes the
paper.

II. M ETHODOLOGY

The adopted methodology is composed of two phases.
A detailed description of it is available in [22]. The first
phase is relative to constructive learning devoted to infer
the preference model of the decision makers. Practically, it
consists in inferring, through the DRSA (Dominance-based
Rough Set Approach) [8] method—which is an extension of
rough set theory [20] and which is devoted to multi-criteria
sorting problems—of a set of decision rules from some holistic
information—in terms of assignment examples—provided by
the decision makers. This phase includes also the identi-
fication, using GAMETH (Global Analysis METHodology)
framework [10], of a set of “knowledge of reference” and
their evaluation with respect to a convenient set of criteria.
Inspiring from the systemic approach of [17] and by using
the bottom-up approach, three sub-families of criteria where
constructed: (i)knowledge vulnerability familythat are de-
voted to measure the risk of knowledge lost and the cost
of its (re)creation; (ii)knowledge role familythat are used
to measure the contribution of the knowledge in the project
objectives. Each criterion of this family corresponds to an
objective; and (iii) use duration familythat is devoted to
measure the use duration of the knowledge basing on the
company average and long term objectives.
To evaluate each knowledgeKi in respect to the each objective
Oj , we have developed the computing model illustrated in
Figure 1. As it is shown in this Figure, the computing model is
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Fig. 1. Contribution degree computing model

an oriented four levels graph. The first level corresponds tothe
piece of knowledgeKi to be evaluated. The second level corre-
sponds to processesP1 · · ·Pn1

; n1 is the number of processes.
The third level corresponds to projectsR1 · · ·Rn2

; n2 is the
number of projects. The last level corresponds to the objective
Oj . The valuationV(Ki−Pk)1, · · · , V(Ki−Pk)rα

of the vertex
(Ki, Pk) is provided byrα decision makers. The valuation
V(Pk−Rz)1, · · · , V(Pk−Rz)rβ

and V(Rz−Oj)1, · · · , V(Rz−Oj)rγ

correspond to vertexes(Pk, Rz) and (Rz, Oj), respectively.
Note that the dimension of valuation vectors is not static
and vary along with the number of decision makers (denoted
above asrα, rβ and rγ for the first, second and third level,
respectively) which are able to evaluate the considered vertex.
The evaluations of knowledge in respect to families (i) and
(iii) are provided by the decision maker(s).
Once all knowledge are evaluated in respect to all criteria,the
next step is an iterative procedure permitting to conjointly infer
the decision rules. Two decision classes have been defined:
Cl1: “non crucial knowledge” andCl2: “crucial knowledge”.
This procedure is composed of four substeps. Basing on the
set of “knowledge of reference” and the decision classes, the
first substep consists to determine with each decision maker
the assignment of these “knowledge of reference” into the
decision classesCl1 and Cl2. The second substep permits
to infer a set of decision rules for each assignment example
determined in the previous substep. The third substep consists
to modify the assignment examples or the evaluation with the
concerned decision maker. This substep is an iterative one
and is devoted to resolve inconsistency problems. Finally,we
identify, with the help of the decision makers, a subset of
collectively accepted decision rules.
In the second phase, the analyst uses the preference models
of the different stakeholders defined in the first phase to
assign new knowledge, called “potential crucial knowledge”,
to the classesCl1 or Cl2. More specifically, a multi-criteria
classification of “potential crucial knowledge” is performed

on the basis of the decision rules that have been collectively
identified by the decision makers in the first phase. The
generated “potential crucial knowledge” are analyzed and then
evaluated against the criteria identified in the first phase.Then,
they are assigned to one of two decision classesCl1 or Cl2.
Finally, we remark that the methodology was developed and
validated within real-world data in the PSA Peugeot Citroën
company but it is generic enough that may be easily conduced
within other similar companies.

III. A RCHITECTURE OFK-DSS

As for most of DSS, K-DSS contains four main com-
ponents: (i) graphical interface; (ii) model basewhich is
the repository of all the algorithms need to implement the
proposed methodology; (iii)databasewhich is the repository
of data and eventually the parameters needed for executing the
algorithms; and (iv)knowledge basewhich is the repository
of all the pieces of knowledge represented in terms of facts
and rules.

A. Graphical interface

The graphical interface defines how the different resources
of K-DSS (algorithms, database, knowledge base) are used.
The interface of K-DSS is based on the GUI (Graphical
User Interface) environment, i.e., an hierarchy of menus and
sub-menus offering to the user transparency, simplicity and
conviviality in the exploitation of the system.

B. Model base

The model base of K-DSS regroups all the algorithms
required to implement the methodology. More specifically, it
contains: (i) the algorithms for computing the contribution
degrees of the knowledge into the objectives, and (ii) the
algorithms used to infer decision rules.
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Fig. 2. UML-based conceptual schema of the database

1) Algorithms for computing contribution degrees:The
system contains the three following algorithms:

• Maxp∈P Mine∈p Mind∈D vd(e)
• Maxp∈P Mine∈p Mediand∈D vd(e)
• Maxp∈P Mine∈p Maxd∈D vd(e)

whereP is the set of paths fromKi to Oj ; p is a path from
the set of pathsP ; D = {d1, · · · , dr} is the set of decision
makers; andvd(e) is the evaluation of the vertexe from pathp

designing the contribution degree of a knowledge to a process,
a process to a project or a project to an objective, according
to decision makerd.
In our study, the responsibles of FAP project have privileged
the first algorithm. Due to the innovative nature of the FAP
development project, the decision makers show a risk-averse
behavior by taking on each vertex the highest value in order
to maximize the contribution. However, the decision makers
show a less risk-averse attitude for well established projects.
In this case, the decision makers prefer to take on each vertex
the lowest value. They can also adopt a neutral behavior by
taking on each vertex the median value. Incorporating these
three algorithms into the system enhances the flexibility ofK-
DSS by offering to decision makers the possibility to select,
with the help of the analyst, the most appropriate algorithm.
Note that other algorithms may be added to the system.

2) Algorithms for the inference of decision rules:The
model base contains two algorithms for decision rules induc-

tion. Generally, the induction algorithms permit to produce
either (i) a minimal covering set of decision rules, i.e., a subset
of non-redundant and complete decision rules as for example
the DOMLEM (see [9]) algorithm; or (ii) a set containing
all the decision rules as for example the algorithms LEM2
(Learning from Examples Module, version 2; which is a part
of the data mining system LERS—Learning from Examples
based on Rough Sets—; see [12], [13]) or Explore (see [25]).
Here, we have used the DOMLEM and Explore algorithms.
These two algorithms use the rough set theory [20].

C. Database

The UML-based conceptual schema of the database is
shown in Figure 2. The central class in the model is the class
“Knowledge”. It is described with an unique number (K-Num),
a name (K-Name), a description (K-Description), eight at-
tributes (Complexity-Level, Substitutability-Level, Validation-
Level, Transferability-level, Rarety-Level, Acquisition-Cost,
Production-Time, Accessibility-Level) corresponding tothe
eight criteriag1, · · · , g8 composingknowledge vulnerability
family, use duration (Use-Duration) corresponding to the only
criterion, g15, of use duration family, (Knowledge-Type) (i.e.
“knowledge of reference” or “potential crucial knowledge”).
Note finally that a piece of knowledge may be composed
of several elementary knowledge. This is enhanced with the
aggregation relation defined on the class “Knowledge”.
The classes “Explicit-Knowledge” and “Tacit-Knowledge”
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are specializations of the class “Knowledge”. The “Explicit-
Knowledge” class permits to identify for each explicit knowl-
edge the set of supports (documents, database, knowledge
base system) on which this knowledge is inscribed. If the
knowledge is tacit, it is characterized with the person who
gathers it. This information is deduced from the relationship
“Gathers-By” between “Tacit-Knowledge” and “Actor”. The
class “Actor” contains the information relative to the different
actors (Name, Telephone, Email, Role, Service-Length). The
class “Actor” is specialized into three classes: “Supplier”,
“Collaborator” and “PSA Actor”.
The three classes “Process”, “Project” and “Objective” permit
to handle the information relative to the names and descrip-
tions of processes, projects and objectives, respectively. The
association class “Evaluate-K-P” between “Actor”, “Process”
and “Knowledge” stores the contribution degree of a knowl-
edge into a process (Contribution-Degree-K-P) attributedby a
given actor.
As it is illustrated in Figure 2, an actor evaluate zero, one
or many knowledge regarding one or many processes. The
association classes “Evaluate-P-R” between the classes “Pro-
cess”, “Project” and “Actor”; and “Evaluate-R-O” between the
classes “Objective”, “Project” and “Actor” store the contri-
bution degrees “Contribution-Degree-P-R” and “Contribution-
Degree-R-O”, given by an actor to mesure the contribution of
a process into a project; and of a project into an objective,
respectively.
As shown in Figure 2, an actor evaluates one or many
processes according to one or many projects. Similarly, it
evaluates one or several projects according to one or several
objectives. For a given project and a given process, it exists
zero, one or several evaluations provided by zero, one or
several actors. This is also true for a given project and a given
objective.
The association class “Decision” contains the decision given
by an actor concerning a given knowledge. According to the
model of Figure 2, an actor assigns one or several knowledge
to the classesCl1 or Cl2. A given knowledge can not be
assigned to different categories for the same decision maker.
Due the fact that the same knowledge may be evaluated by
different actors, the creation of class “Decision” is necessary.

D. Knowledge base

To construct the knowledge base, we have used the ex-
pert systems generator JESS (Java Expert System Shell1).
Since we are interested only with crucial knowledge, the
rules base contains only the rules permitting to assign with
certainty “potential crucial knowledge” to the class “Cl2:
crucial knowledge”. This because in our application only two
classes have been defined and the rules relative to the class
“crucial knowledge” will be redundant. However, if several
classes have been defined, we should maintain all the rules.
A rule in JESS is defined through the functiondefrule. An
example relative to our application is given in Figure 3. The
fact base contains the initial facts relative to knowledge of

1JESS is a free package, which is available on
http://herzberg.ca.sandia.gov/jess/

reference issued from the decision table. A fact in JESS is
defined through the functiondefacts. Figure 4 gives a JESS
definition of a fact relative to the application.

(defrule rule1
(Knowledge (K-Num?K)

(K-Description?KD)
(K-Name?KN)
(K-Description?KD)
(Complexity-Level?CL)
(Substitutability-Level?SL)
(Validation-Level?VL)
(Transferability-level?TL)
(Accessibility-Level?AL)
(Rarety-Level?RL)
(Acquisition-Cost?AC)
(Acquisition-Time?PT)
(Use-Duration?UD)

=> (printout outfile “crucial knowledge”)
)

Fig. 3. An example of a rule definition

(defactsknowledge
(Knowledge (K-NumK1)

(K-Nameknowledge relative to additive dosage)
(K-Description )
(Complexity-Levelcomplex)
(Substitutability-Levelsubstitutable)
(Validation-Levelexperimental)
(Transferability-levelhardly transferable)
(Accessibility-Leveleasy)
(Rarety-Levelrare)
(Acquisition-Costlow)
(Acquisition-Timehigh)
(Use-Durationhigh)

)

Fig. 4. An example of a fact definition

IV. FUNCTIONAL ARCHITECTURE OFK-DSS

Figure 5 describes the functional architecture of K-DSS.
Two phases may be distinguished in this figure. The first phase
is relative to the construction of the preference model. The
preference model is represented in terms of decision rules.The
second phase concerns the classification of potential crucial
knowledge by using the rules collectively identified (by all
the decision makers) in the first phase.
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A. Phase 1. Construction of the preference model

The first step consists in identifying, from the ones pro-
posed, an algorithm for computing the contribution degrees.
The selection is collectively established by all the decision
makers with the help of the analyst. Whatever the selected
algorithm, it uses the matrices Knowledge-Process (K-P),
Process-pRoject (P-R) and pRoject-Objective (R-O) extracted
from the database—more specifically from the three associa-
tion classes “Evaluate-K-P”, “Evaluate-P-R ” and “Evaluate-
R-O ”—to compute the contribution degree of each piece
of knowledge into each objective. To avoid data redundance,
these matrices are not explicitly stored in the database but
generated during processing. Only their intentional definitions
are permanently stored in the system.
Once these matrices are generated, the contribution degrees are
first stored (temporally) in a decision table and then introduced
in the database. The structure of the decision table is shown
in Figure 6. As for matrices, only the intentional definitionof
the decision table is maintained in the system.
The decision table contains also the evaluation of the “knowl-
edge of reference” concerning the vulnerability and use du-
ration criteria extracted from the database (from the class
“Knowledge” precisely). These evaluations are collectively
defined and introduced by the analyst in the database. The
analyst should introduce in the decision table, and for each
decision makerk, the decisions concerning the assignment of
“knowledge of reference” into the classesCl1 andCl2.
The decision table contains, in addition to the columns relative

to vulnerability and those relative to contribution degreeand
use duration criteria, as many columns as decision makers.
Once the decision table is generated, it will be used as the input
of the induction algorithm selected by the decision makers
(DOMLEM or Explore). This algorithm permits to generate
the list of the initial rules for each decision makerk. It is
important to mention again that only rules relative to classCl2
are stored. Then, each decision maker should select a subset
from these initial rules. The next step in this phase consists to
collectively select, from the set of decision rules individually
identified by the different decision makers, a subset of decision
rules that will be used latter by JESS for the classification
phase. Note that the rules generated by DOMLEM or Explore
are in text format; they are automatically traduced into a
format compatible with the one of JESS and then stored in
the rule base.

Knowledge Criteria Decision
of reference g1 · · · gm

K1 f(K1, g1) · · · f(K1, gm) C1/C2
· · · · · · · · · · · · · · ·

Kn f(Kn, g1) · · · f(Kn, gm) C1/C2

Fig. 6. Decision table for one decision maker

B. Phase 2. Evaluation of potential crucial knowledge

The second phase consists in classifying the new knowledge
called “potential crucial knowledge”. As the previous one,this
phase starts by identifying the algorithm to use to compute

System interface

Model base

- MaxMinMin algorithm

- MaxMinMediane algorithm

- MaxMinMax algorithm

Induction algorithms:

- DOMLEM 

- LEM2

Rule base

      (inference engine) 

Fact base
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Selection of an algorithm 
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decision rules by 

decision maker k

User/system task
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Phase 2

Phase 1 and Phase 2

Fig. 5. Functional architecture of K-DSS
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the contribution degree of each piece of knowledge into each
objective. This algorithm uses as input the information relative
to the performances of potential crucial knowledge previously
introduced in the matrices K-P, P-R and R-O. The results are
stored in a performance table. The structure of the performance
table is shown in Figure 7. The information contained in
the performance table are then transformed into facts. The
inference engine incorporated in JESS verifies first if exists
at least one rule (in the rule base) that verifies the different
facts and if this holds, the knowledge is classified as crucial;
otherwise the piece of knowledge is considered non crucial.
An update of rule and fact bases any time a fact is verified by
at least one rule is performed.

Potential crucial Criteria
knowledge g1 · · · gm

K1 f(K1, g1) · · · f(K1, gm)
· · · · · · · · · · · ·

Kn f(Kn, g1) · · · f(Kn, gm)

Fig. 7. Performance table

V. I MPLEMENTATION

In section we provide a brief description a prototype im-
plementing K-DSS. K-DSS was implemented with Visual
Basic. The user can use the different capabilities of GUI
interfacing system to, among others, introduce required data,
infer decision rules, classify knowledge intoCl1 or Cl2.
Figures 8, 9 and 12 presents three printed screens from K-
DSS. The screen in Figure 8 permits to generate Matrix K-
P containing the evaluation of each knowledge in respect to
each process. As it is shown in this screen, the user selects
the piece of knowledge to evaluate and then introduces the
evaluation directly or by selecting the desired evaluationfrom
the provided drop-down list. The user may also add/remove a
process from the list initially shown. Similar interfaces are
used for process-project and project-objectives evaluations.
They permit to generate Matrix P-R and Matrix R-O, respec-
tively.

Fig. 8. Knowledge-Process evaluation interface

Once all the data are introduced, the user may use the
interface shown in Figure 9 to compute the contribution
degrees of each knowledge to each objective. First, s/he should
select the computing algorithm. As mentioned earlier, three
algorithms are provided by the system: (i)Maxp∈P Mine∈p

Mind∈D vd(e), (ii) Maxp∈P Mine∈p Mediand∈D vd(e);
and (iii) Maxp∈P Mine∈p Maxd∈D vd(e). Figure 10 pro-
vides the general schema of theMaxMin algorithm, which
is the common part to the three computing algorithms. Minor
modifications are required to implement the three algorithms.

Fig. 9. Contribution degree computing interface

To infer decision rules, we have used JESS. To incorporate
JESS in our system, we have developed an executable file
(inference.exe) in JAVA to import JESS DLLs (see Figure 11).
K-DSS and JAVA dialogue is completely transparent to users.
As shown, in Figure 11, K-DSS automatically generates an
input text file (input.txt) which in used byinference.exe. The
results generated by JAVA are then stored, byinference.exe
in an output text file (outpout.txt). This last one is then used
by K-DSS to provide results (in terms of decision rules) to
the user.
The decision rules are first generated by DOMLEM or
Explore. These rules are initially expressed in the following
mathematical form:

If f(x, g3) ≥ 2∧f(x, g6) ≥ 2∧f(x, g12) ≥ 4∧f(x, g15) ≥ 2
Thanx ∈ Cl2

The rules are automatically traduced, by K-DSS, to apply to
the syntax of JESS. For example, the rule cited above will be
traduced as follows:

IF Ki.Substituable-Level is “at least weak” and
Ki.Rarety-Level is “at least rare” and
Ki.Competitivity is “at least high” and
Ki.use-duration is at least “average”

THEN Ki is at least in Cl2

This rule means that knowledgeKi is considered to be
crucial (i.e.Ki belongs to the classCl2), if it is difficult to
replace it, it is scares, has an important impact on commercial
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position of the company and with a convenient use duration.

————————————————————————–
Algorithm Contribution-Degree

BEGIN

n1: number of the number of processes

n2: number of the number of projects

’Step 1: computing contribution degree Knowledge-Project

For i= 1 to n2

max← 0 ; min←0 ; Proc← 0

For j=1 to n1

If TabK-P[j] < MatP-R [i][j] Then

min ← TabK-P[j]

else

min ← MatP-R [i][j]

EndIf

If min > max Then

max ← min; proc← j

EndIf

EndFor

’The retained path is the one passing through proc

Res[i] ← max

EndFor

’Step 2: Computing contribution degree Knowledge-Objective

max← 0 ; min← 0

For i=1to n2

If TabR-O[i] < Res[i] Then

min← TabR-O[i]

Else

min ← Res [i]

EndIf

If min > max Then max ← min EndIf

EndFor

Contribution-degree-K-O ←max

END

————————————————————————–

Fig. 10. Contribution degree computing algorithm

Once all the decision rules are generated, the user may use
the interface shown in Figure 12 to visualize the evaluation
of each knowledge in respect to each criteria. Then, s/he
should assign these knowledge into classesCl1 or Cl2. Natu-
rally, humain may provide some incoherent information when
classifying these knowledge. To illustre this fact, consider
knowledgeK7 and K8 in the list shown in Figure 12 and
suppose thatK7 andK8 have the same evaluation in respect
to all criteria. In this case, they should normally be assigned
to the same class and not to different classe—as it is shown
in Figure 12.
It is possible that the evaluation of a knowledge in respect
to a given criterion is unavailable. This lack of information
is designed by “?” symbol in the screen of Figure 12. This
fact was one of many reasons for adopting DRSA instead
of several other classification techniques as those based on
outranking relation (e.g. Electre Tri), additive utility function
(e.g. UTDAS) or hierarchical process discrimination (e.g.

MHDIS) or other methods proposed in artificial intelligence
where incoherences are eliminated before analysis. In fact,
DRSA, which is based on rough set theory, is able to detect
incoherence in the decision table, which are latter taken into
account in the final decisions and not eliminated in early steps
as the case with the above-cited techniques.

Fig. 11. K-DSS and JESS dialogue system

VI. CONCLUSION AND FUTURE WORKS

We have introduced K-DSS, a Decision Support System for
identifying and evaluating crucial Knowledge. K-DSS is an
implementation of a two phases-based methodology conducted
and validated in the PSA Peugeot Citroën automobile company
in France. Here, attention is especially devoted to present
the conceptual and functional architectures of K-DSS. The
implementation of K-DSS is also addressed.
In addition to reenforcing the capabilities of K-DSS, several
points related to the methodology itself need to be investigated.
Here, we mention two points. The first one concerns the
need that the contribution degrees computing model take into
account the natural (temporal) evolution of different projects
concerned by the capitalization operation. For example, during
our experiences at PSA Peugeot Citroën automobile company,
some knowledge relative to the use of a chemical substance
in the FAPz system were qualified as very important by the
actors. Eight months later, this substance is no latter usedin
the project. One possible solution to tackle this problem is
to use robustness analysis [21]. More precisely, this type of
uncertainty may be modelled in terms of scenarios correspond-
ing to the possible combinations of different values attributed
by each actor to the contribution of each knowledge to each
objective.
The second point is related to the first one and concerns the
need to take into account imprecision and uncertainty at the
database level. Fuzzy set seems to be a natural way to cope
with this problem. This was partially shown in [2] where we
have defined the class Knowledge as fuzzy concept. We have
then associated to this class two extent properties [1], [5]:
Pknowledge = {p1, p2} wherep1 andp2 are based onlevel-of-
tacit anddegree-of-maturityattributes, respectively—these two
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Fig. 12. Decision table interface

attributes are not defined in the original model. By associating
appropriate weighesw1 andw2 to the extent proprietiesp1 and
p2, the degree of membershipof a piece of knowledgeKi to
fuzzy class Knowledge may be computed as follows [1], [5]:

µK(Ki) =

∑n
i=1 ρP i

K
(vi) · wi

∑n
i=1 wi

,

where the numbervi is the value of the attribute ofKi on
which the extent propertypi is defined andρP i

K
(.) represents

the extent to which entityKi verifies propertypi of fuzzy
classK. The idea may easily be generalized to other classes
of the model.
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