31 research outputs found

    High Performance Computing Based Methods for Simulation and Optimisation of Flow Problems

    Get PDF
    The thesis is concerned with the study of methods in high-performance computing for simulation and optimisation of flow problems that occur in the framework of microflows. We consider the adequate use of techniques in parallel computing by means of finite element based solvers for partial differential equations and by means of sensitivity- and adjoint-based optimisation methods. The main focus is on three-dimensional, low Reynolds number flows described by the instationary Navier-Stokes equations

    MPSalsa Version 1.5: A Finite Element Computer Program for Reacting Flow Problems: Part 1 - Theoretical Development

    Full text link

    A newton-type method for fluid computation

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Scalability of preconditioners as a strategy for parallel computation of compressible fluid flow

    Full text link

    Seventh Copper Mountain Conference on Multigrid Methods

    Get PDF
    The Seventh Copper Mountain Conference on Multigrid Methods was held on April 2-7, 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The vibrancy and diversity in this field are amply expressed in these important papers, and the collection clearly shows the continuing rapid growth of the use of multigrid acceleration techniques

    Convection in the Melt

    Get PDF
    A physical problem involving the melting/freezing of a phase-change material (PCM) is the applied setting of this research. The development of models that couple the partial differential equations for energy transport and fluid motion with phases of differing densities is a primary goal of the research. In Chapter 2, a general framework is developed for the formulation of conservation laws that admit interfaces. A notion of weak solution is developed and its relation with classical and other weak formulations is discussed. Conditions that hold across various kinds of interfaces are also developed. The formulation is examined for the conservation of mass, momentum and energy in Chapter 3. In Chapter 4, a numerical method for the solution of conservation law equations is given. The method uses a Crank-Nicolson time discretization and solves the implicit equations with a Newton/Approximate Factorization technique. The method captures interfaces and is consistent with the control volume weak formulations of Chapter 2. The numerical solution converges to the distributional solution of the conservation law. In Chapter 5, three applications of the theory are developed and numerical computations are presented. First, a one dimensional problem is studied involving conservation of mass. momentum and energy in a phase-change material with a liquid density larger than that of the solid. The second application is a suction problem in two dimensions. The bulk movement of a liquid and void are simulated with and without the effects of surface tension. The third application is to a three-dimensional simulation of the heating of a cylindrical canister of PCM in 1-g and 0-g. For this simulation the Marangoni stress is the important driving force on the flow

    The Sixth Copper Mountain Conference on Multigrid Methods, part 1

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on 4-9 Apr. 1993, at Copper Mountain, CO. This book is a collection of many of the papers presented at the conference and as such represents the conference proceedings. NASA LaRC graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth
    corecore