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OutlineThis thesis is onerned with the study of methods in high-performane omputing (HPC) forsimulation and optimisation of �ow problems that typially our in the framework of miro�ows.We onsider the adequate use of tehniques in parallel omputing by means of �nite elementbased solvers for partial di�erential equations (PDEs) and by means of sensitivity- and adjoint-based optimisation methods. The main fous is on low Reynolds number �ow desribed by theNavier-Stokes equations (NSE) with an additional onvetion-di�usion equation desribing thedistribution of speies onentration within the �uid. Conlusively, we aim to optimise suh amiro�uidi system by applying an eletri potential di�erene to in�uene the mixing of speiesusing eletrokineti properties of the �uid (see Barz et al. [10, 11℄).The topi of optimisation and optimal ontrol under onstraints of partial di�erential equationsis a very ative area of researh. Many authors have ontributed their results, starting from thevery early work of Lions [105℄. For an overview of methods and perspetives of optimal ontrolproblems espeially in the framework of �uid �ows, we refer to the work of Gunzburger [73℄.This thesis follows the lassial attempts by means of sensitivity- and adjoint-based optimisationmethods while the fous is set on the numerial requirements and implementation of these well-known approahes on high-performane omputers. We show that the requirements with regardto omputational power are quite strong when 3D instationary problems are to be solved.In Chapter 1 we introdue the �ow problems and the resulting omplexity for an instationary3D setting. The seond hapter is devoted to the physial derivation and mathematial frameworkof weak formulation for the PDEs desribing the onsidered setting of miro�ows. Furthermore, thebakground of optimisation with PDEs is presented. Chapters 3 and 4 show the atual apabilityof numerial solvers based on �nite element disretisation ombined with multilevel preonditionersand HPC-tehnologies in the framework of Domain Deomposition. Dediated methods for opti-misation of instationary problems using parallel omputing tehniques are presented afterwardsin Chapter 5. The thesis is ompleted by numerial results on simulation and optimisation ofmiro�ows in Chapter 6. These results show the di�erent requirements of presented optimisationapproahes when solving PDE onstrained optimisation problems and prove the e�etive usage ofHPC-tehnologies in order to solve even omplex 3D instationary problems.ZusammenfassungIn dieser Arbeit werden Methoden des Hohleistungsrehnens für die Simulation und Optimierunglaminarer Strömungen untersuht, wie sie typisherweise im Bereih der Mikro�uidik auftreten.Wir betrahten dabei den adäquaten Gebrauh von Methoden des parallelen Rehnens im Rahmenvon Finiten Elemente basierten Lösern für partielle Di�erentialgleihungen sowie für sensitivitäts-und adjungierten-basierte Optimierungsverfahren. Der Shwerpunkt liegt hierbei auf Strömungs-problemen bei niedriger Reynolds Zahl, welhe durh die Navier-Stokes Gleihungen beshriebenwerden. Zusätzlih wird eine Konvektions-Di�usion Gleihung betrahtet um die Verteilung einerSpezienkonzentration innerhalb des Fluids erfassen zu können. Zur Optimierung solher Systemeder Mikro�uidik wird shlieÿlih eine Potentialdi�erenz zwishen Ein- und Ausgang der Geometriegenutzt, so dass durh elektrokinetishe Vorgänge die Vermishung zweier Spezien begünstigt wird(siehe Barz et al. [10, 11℄).Die Thematik der Optimierung und optimalen Kontrolle unter der Nebenbedingung partiellerDi�erentialgleihungen ist ein sehr aktives Forshungsgebiet. Beiträge hierzu reihen von einerersten ausführlihen Analyse von Lions [105℄ bis zu zahlreihen aktuellen Arbeiten. Für einenÜberblik der aktuellen Methoden und Ergebnisse sowie einen Ausblik im Bereih der optimalenKontrolle für Strömungsprobleme sei auf das Buh von Gunzburger [73℄ verwiesen. In dieser Arbeitverfolgen wir den klassishen Ansatz der sensitivitäts- und adjungierten-basierten Optimierung,wobei das Hauptaugenmerk auf die numerishen Voraussetzungen und die Implementierung aufParallelrehnern gelegt ist. Insbesondere werden instationäre dreidimensionale Probleme gelöst fürwelhe der Rehenbedarf entsprehend hoh ist.In Kapitel 1 werden die strömungsmehanishen Beispiele der Arbeit präsentiert und die resul-tierende Komplexität für die numerishe Behandlung abgeshätzt. Das zweite Kapitel beinhaltet
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Chapter 1IntrodutionIn many appliations of researh and development projets onerned with omputational �uid dy-namis (CFD), the ultimate goal nowadays is related to the optimisation and optimal ontrol of theonsidered system or proess. In this ontext, the solution proess is usually muh more involvedthan a purely forward simulation leading to a desriptive or preditive view of the treated system.Optimisation and optimal ontrol require an iterative proess involving the setting and manipula-tion of ontrol variables suh that the system or proess gets improved. Suh an improvement has�nally to be measured and veri�ed to judge the suess of optimisation.In this thesis, the fous is on appliations as they typially appear in miro�uidi systems, i.e. indevies with a typial sale of 100 µm. The plaement of di�erent miroomponents with severallaboratory funtions like pumps, valves, or detetors in ombination with mirohannels forms theonept of the lab on a hip (LOC) that deals with handling of extremely small �uid volumes andfast analysis times due to short di�usion distanes. Miro�uidi proesses that may take plaewithin an LOC are transport, separation or mixing of (bio)hemial speies within a �uid [93℄. Aruial fat for these tasks is the usually purely laminar nature of the �ow �elds in suh devies.The absene of turbulenes is bene�ial with regard to numerial simulation but disadvantageousfor engineering problems if a mixing of speies is aimed for (e.g. to enable a hemial reation).As a typial senario, we investigate within a twie-folded mirohannel the homogeneous and fastmixing of pure water with water in whih Rhodamine B as �uoresent dye is dissolved - aordingto the setting of Barz et al. [10, 11℄. From the engineering point of view the measurement of dyeonentration by means of a miro laser-indued �uoresene method (µLIF) and of veloity �eldby miropartile image veloimetry (µPIV) requires a suitable experimental setup whih may limitthe intended experiments. Numerial simulation, on the other hand, allows to explore the systemin advane and gives helpful hints for e.g. the design of mirodevies. Obviously, the abstrationof physial proess to numerial simulation neessitates the deployment of a mathematial model,a disretisation approah to the derived equations, as well as the entire solution proess on theomputer. All these steps are error-prone suh that the results at the very end have to be omparedto experiments in order to validate the quality of the simulation. However, an essential bene�tof numerial simulation is the possibility to manipulate parameter and/or geometry in nearlyarbitrary way (one a model and the aording software is at hand) whih then an be used tooptimise the system or proess under investigation.For the onsidered setting of mass transport and mixing in mirohannels, we have to desribethe physial proess in more details. The mixing of two (or more) liquids an generally be separatedinto two main steps (f. [12℄):1. inreasing of the ontat area between liquids,2. essential mixing by moleular di�usion aross the ontat area.In �ows through geometries with marosopi dimensions, turbulene is often employed to enhanethe mixing proess. In mirosopi geometries, the generation of a turbulent �ow regime is ratherdi�ult and, therefore, other onepts are used for mixing. Two approahes to inrease the mixingare ommonly used, namely ative methods by employing external fores to the system (e.g. ele-trial fores) and passive methods that are based on a variation of the geometry. The approah



4 INTRODUCTION

Figure 1.1: Glass layer of the miro�uidi hip and the experimental setup. Pitures are kindly providedby Dominik P. J. Barz [10, 11℄.for an eletrially exited miromixer given by Meisel and Ehrhard [116℄ is based on a twie-foldedhannel segment in ombination with an indued eletroosmoti seondary �ow. For the detailedexperimental setting, see the desription in [10, 11℄ and the Appendix - the main omponents(struture of miro�uidi hip and basi setup) are depited in Figure 1.1. The fundamental phys-iohemial proess used within this setting is the eletroosmoti exitation of the �uid relatedto the presene of a so-alled eletrial double layer (EDL). This layer is present adjaent to thehannel walls that usually possess an eletrially harged surfae and therefore a ertain eletrialpotential whih indues a higher ion onentration of the - apart from that - eletrially neutral�uid [12, 94℄. If now eletrodes are positioned within the reservoirs of the two liquids to be mixedand a spei� voltage is applied to a third eletrode within the outlet reservoir, the time-dependentpotential di�erene ∆φ(t) indues an instationary �uid �ow within the EDL. This seondary �owan be used to modify the pressure-driven base �ow and thus inreases the ontat area betweenthe liquids.Sine the width of the EDL is usually in the order of 10−9�10−8 m, denoted by the so-alledDebye length ℓD, numerial simulation of these systems in a full three-dimensional instationarysetting requires a very �ne disretisation to resolve the various physial e�ets. The ratio of EDLsize to size of the mirohannel is usually 1 : 10000 indiating that the resulting algebrai systemsto be solved will be at least of order 105 in eah spae dimension. If a uniform mesh is assumed the3D disretisation will then easily lead to 1015 unknowns. To redue the numerial omplexity ofthese systems a possible way might be the usage of loally re�ned disretisation and non-uniformmeshes. A di�erent approah is proposed by Barz et al. who neglet the eletrial double layer nearhannel walls and simulate only the bulk �ow within the hannel using slip boundary onditions tomodel the in�uene of the EDL. Nevertheless, the resulting algebrai systems to be solved withina timestepping algorithm are still on the order of 105−106 unknowns suh that it is sensible to useiterative linear solvers like Krylov subspae methods on parallel omputers to takle the problemin reasonable time. A ritial point for the onvergene behaviour of iterative Krylov subspaemethods is the presene of suitable preonditioners. To this end, we introdue Multilevel ILUpreonditioners based on the ILU++ pakage by Jan Mayer [112℄ and extend these to be used inparallel by means of Blok Jaobian and Shur omplement data strutures.Besides the above introdued simulation and optimisation of an eletrially exited �uid �ow ina mirohannel, the topi of optimisation and optimal ontrol for �ow problems is also regarded forthe more aademial example of the well-known bakward faing step �ow. For these studies onparallel solver/preonditioner and optimisation routines, we treat the Navier-Stokes equations withthe ontrol objetive of redution of the reirulation/vortex area behind the step of a mirohannel- see Figure 1.2 for the unontrolled ase. A ommon setting is given by boundary ontrol nearthe edge of the step where blowing and sution of �uid is assumed. By this additional stream there-attahment length of main �uid �ow is aimed to be minimised. The hoie of ost funtional
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Figure 1.2: Fluid �ow behind a bakward faing step with streamlines indiating the reirulation.to realise this aim is variously addressed in the literature and in this thesis only a traking-typeformulation is hosen, i.e. the di�erene to Stokes �ow, possessing a minimal reirulation tendeny,is observed.In general the optimisation problems in this thesis base on an abstrat problem: let y denotea set of state variables and u be a ontrol variable of any kind. The system of partial di�erentialequations desribing the �uid �ow is given by the equation E(y, u) = 0. Furthermore, a ost orobjetive funtional J(y, u) is assumed that has to be minimised under the onstraint E(y, u) = 0.Hene, beside pure simulation tasks, we also treat problems of the form
min J(y, u) suh that E(y, u) = 0.Two approahes to takle this problem are studied, namely1. adjoint-based boundary ontrol in onjuntion with Navier-Stokes equations optimising the�ow �eld of bakward faing step problem,2. sensitivity-based optimisation of the miromixer in Figure 1.1 by ontrol of the potentialdi�erene ∆φ(t).These optimisation methods an prinipally be distinguished by the determination of the gradientof the objetive funtional. Assuming a time dependent setting, methods that rely on the solutionof the adjoint equation require forward-in-time solution of the state equations and bakward-in-time solution of the adjoint equations, whereas sensitivity-based methods only marh forward intime. For nonlinear problems, a hallenging task is related to the fat that the state variables haveto be available to the adjoint equation solver. Sine the adjoint equation solver marhes bakwardin time, this means that one must store the state variables for every timestep. For large saleproblems, this step, whih amounts to store very large data set, may be intratable in pratie orbeome a real bottlenek for the overall solution proess. An approah ombining hekpointingtehniques to redue the needed storage resoures with parallel I/O is presented in this ontext. Amain emphasis is put on the adequate use of reent tehnologies related to large high-performaneomputing (HPC) platforms like for the parallel preonditioner used for simulation tasks.Summarising, to takle the simulation and optimisation of an eletrially exited miromixer,we �rst abstrated from this to a pure �uid �ow setting desribed by the instationary Navier-Stokesequations. For this the sequential multilevel preonditioner ILU++ was extended by parallel datastrutures whih were implemented and tested on atual high performane omputers to form anappropriate parallel preonditioner for iterative Krylov subspae methods. Afterwards also thetwo mentioned optimisation approahes were inorporated into the developed software. Herein, weexplored a suitable ombination of hekpointing shemes and parallel I/O tehniques that wereespeially fruitful for expliit timestepping shemes with lumped mass-matrix. Extensive numerialtests were performed to validate the proposed approahes and to give an estimate on the bene�ts



6 INTRODUCTIONof adjoint-based optimisation in ontrast to the sensitivity-based approah. While the latter oneobviously possesses a muh easier implementation, the �rst one enables a wider treatment of thesystem to be optimised � we omment on the ratio of e�ort to pro�t in Chapter 6. As a resultof these steps, we are able to improve the three-dimensional simulation results for the eletriallyexited miromixer and to give useful hints in optimising the applied potential di�erene to inreasethe mixing quality.



Chapter 2Simulation and Optimisation of FluidFlowAs presented in the introdution, we are faed with simulation and optimisation/optimal ontrolof problems arising in the �eld of �uid dynamis. In this hapter, a derivation of the govern-ing equations of �uid dynamis and modelling results for the eletrokineti e�ets will be given.Afterwards, the mathematial setting is prepared that is needed for the �nite element based dis-retisation, namely the weak formulation of underlying partial di�erential equations. Besides thepure simulation based framework, we also show the ommon approahes in optimisation with par-tial di�erential equations and apply these to get the on�guration for the onsidered �ow problems.Consequently, this hapter is neither devoted to a rigours derivation of governing equationsnor to a omplete analysis of them. We only aim at providing the reader with the basis in bothphysis and funtional analysis as they are needed for any further disussion. For a more detailedoverview on the topis of this hapter, we give partiular bibliographial referenes.2.1 Modelling Fluid FlowThe mathematial desription of �uid �ow, the �uid dynamis, is a sub-disipline of ontinuummehanis. In ontrast to partile mehanis dealing with the equilibrium and motion of systems ofpoint masses, ontinuum mehanis is a means of studying the deformation and �ow of a ontinuousmedium by ignoring its mirosopi/moleular nature, i.e. it deals with mass-ontinua that areloated in the Eulidean spae R3. It is a simpli�ation that makes it possible to investigatethe movement of matter on sales larger ompared to typial distanes between moleules. Thus,in studying the movement of a �uid the fat that it is made up of moleules is ignored � butfortunately, in general one is not interested in the individual behaviour of a single moleule, butin the average motion of a large number of moleules.A key di�erene between lassial dynamis and �uid dynamis is the ontinuum hypothesisor ontinuum approximation. Within this the �uid veloity, density and stress tensor, that areintrodued later on, are to be interpreted as appropriate averages of mehanial properties ofthe moleules. Furthermore, these quantities are assumed to be interpreted at eah position in avolume and to be ontinuously spread.Assumption 2.1.1 (Continuum hypothesis)We assume that in the region governed by a �uid a ontinuous and di�erentiable mass-densityis given by funtion ρ(x, t) > 0 suh that the mass M(t) of an arbitrary subvolume V (t) an bealulated by the integral
M(t) =

∫

V (t)

ρ(x, t) dV.This means that any small volume element in the �uid is always supposed to be as large as neededto de�ne a moleular average by ontaining a reasonable big number of moleules.



8 SIMULATION AND OPTIMISATION OF FLUID FLOW2.1.1 Basi Equations of Fluid DynamisThe following derivation of equations is based on some fundamental assumptions on the �uid:
• relativity and quantum mehanis are ignored,
• the length sale of the �ow is always taken to be large ompared to the moleular mean-freepath, so that the �uid an be treated as a ontinuum (ontinuum hypothesis),
• in the sense of the ontinuum hypothesis we label the smallest entity in the �uid as �uid-partile and assume that the position of a partile an be desribed by its oordinates in theEulidean spae R3,
• the �uid is assumed to be of uniform, homogeneous omposition, i.e. di�usion and hemialreations are not onsidered.Based on the ontinuum hypothesis the equations of motion for �uid �ow an be derived in a generalformat by applying the priniples of mehanis, i.e. onservation of mass (ontinuity), balane oflinear momentum (Newton's seond law) and angular momentum.Let Ω ⊂ R3 be a �uid volume that moves in spae under ation of internal and external fores.Consider a testvolume V (t) ⊂ Ω that is open and bounded � this volume is �lled with partilesof the �uid. Furthermore, we de�ne the movement of a partile η ∈ V (t) by a funtion Φ(η, t)suh that at time t > 0 the partile η is loated at the point x = Φ(η, t). We assume that Φ is assmooth as needed, i.e. Φ is invertible and Φ,Φ−1 ∈ C1(Ω).Generally two di�erent desriptions of the motion of �uids an be onsidered1. Lagrangian desription: for �xed partile η (the Lagrangian oordinate) one follows thetrajetory t → Φ(η, t). Thus, the Lagrangian oordinate system moves with the �uid � thisdesription of motion is very useful in solid mehanis.2. Eulerian desription: for �xed point x ∈ V (t) (the Eulerian oordinate) one observes thetrajetory t→ Φ(·, t)−1(x). The Eulerian oordinate system is �xed and one studies the �ow(veloity �eld) at a �xed point x as a funtion of time.In the sense of the Eulerian desription we de�ne the veloity of a �uid partile at point x =

Φ(η, t) ∈ R3 by
v(x, t) :=

∂

∂t
Φ(η, t).This vetor �eld an be expressed in the artesian form

v(x, t) = e1v1(x1, x2, x3, t) + e2v2(x1, x2, x3, t) + e3v3(x1, x2, x3, t)with orthonormal basis vetors ei and usually one seeks for knowledge of the salar variables vi inthe observed �uid domain Ω.Let f(x1, x2, x3, t) represent any property of the �uid and we ask for the temporal hange forthis quantity. An observation loated at a �xed point in a hosen oordinate system naturallygives the loal temporal derivative ∂f
∂t (x1, x2, x3, t). On the other hand the temporal hange of apartile of �xed identity (Lagrangian view) in the �ow �eld v(x, t) is given by

df

dt
= lim

∆t→0

1

∆t

[

f(x1 + v1 ·∆t, x2 + v2 ·∆t, x3 + v3 ·∆t, t+∆t)− f(x1, x2, x3, t)
]

.This gives the proper expression for the total time derivative of f of a partiular partile
df

dt
=
∂f

∂t
+ v1

∂f

∂x1
+ v2

∂f

∂x2
+ v3

∂f

∂x3

=
∂f

∂t
+ (v · ∇)f.

(2.1)The quantity df
dt is variously termed the substantial derivative, partile derivative, material deriva-tive or Lagrangian derivative giving the relation between loal temporal derivative and so alledonvetive derivative (v · ∇).



2.1 Basi Equations of Fluid Dynamis 9As shown in the introdutory part of this hapter the ontinuum hypothesis allows the formu-lation of results not for single moleules (or partiles) but for an arbitrary hosen domain of the�uid. To express the temporal hange of a given quantity in suh a testvolume V (t), whih ofourse itself is in�uened by the motion of the �uid, we state the following fundamental theorem(f. [50, h. 1.4℄ or [154, h. 1.5℄ for proof).Theorem 2.1.1 (Reynold's transport theorem)Let f : Ω× I → R be a di�erentiable funtion for x ∈ Ω and t ∈ I ⊂ R (time interval). Forevery open and bounded volume V (t) ⊂ Ω there holds
d

dt

∫

V (t)

f(x, t) dx =

∫

V (t)

(
∂f

∂t
(x, t) +∇ · (f(x, t)v(x, t))) dx

=

∫

V (t)

(
∂f

∂t
(x, t) dx+

∫

∂V (t)

f(x, t)v(x, t) · n ds

(2.2)with n the unit outward normal vetor on ∂V (t).Conservation of MassAssuming a ontinuous and di�erentiable mass-density given by funtion ρ(x, t) ∈ R, the mass
m(V (t)) of an arbitrary testvolume V (t) with surfae ∂V (t) is given by

m(V (t)) =

∫

V (t)

ρ(x, t) dxthat is onstant in time (onservation of mass), i.e. d
dtm(V (t)) = 0. By equation (2.2) we deduethat

d

dt

∫

V (t)

ρ(x, t) dx =

∫

V (t)

(
∂

∂t
ρ(x, t) +∇ · (ρ(x, t)v(x, t))

)

dx = 0.Sine the volume V (t) was hosen arbitrarily the integrand must vanish. This usage of the Dubois-Reymond lemma for su�iently smooth funtions is used throughout in the sequel to transforman integral equation to a partial di�erential equation (see e.g. [104℄ for proof). Therefore, we endup with the ontinuity equation
∂

∂t
ρ+∇ · (ρv) = 0. (2.3)Balane of Linear and Angular MomentumConsider an arbitrary testvolume V (t) inside the �uid with surfae S and outward normal n.Two kinds of external fores ating on this volume an be distinguished. First volume-fores, likegravity, that are of the form

Fvol(V (t)) =

∫

V (t)

ρ(x, t)f(x, t) dxwith an exterior volume-fore f per unit mass � these fores apply to the entire mass of the �uidelement, i.e. at on eah point x ∈ V (t). Seond surfae- or ontat-fores that are given by thematerial outside of the volume V (t) on the material interior to the �uid element V (t). These foresare desribed by a vetor fore s(x, t) ating on a unit area of S, whih is alled the stress vetor.By Cauhy's priniple s(x, t) only depends on the normal n and by the ation-reation priniplemust ful�l sn(x, t) = −s−n(x, t), where we denote the dependeny on the normal by an index.



10 SIMULATION AND OPTIMISATION OF FLUID FLOWTotal surfae fores are therefore given by
Fsurf (V (t)) =

∫

∂V (t)

s(x, t) ds.As we show later on the surfae-fores are given by a stress tensor σ and an be written as
sn(x, t) = n · σ = σT · n, [sn(x, t)]i =

3∑

j=1

σji(x, t)nj , i = 1, 2, 3.By the priniples of onservation of linear and angular momentum we have the relation of theseexternal fores to the temporal hange of momentum, i.e.
d

dt

∫

V (t)

ρ(x, t)v(x, t) dx =

∫

V (t)

ρ(x, t)f(x, t) dx+

∫

∂V (t)

s(x, t) ds (2.4)
d

dt

∫

V (t)

x× (ρ(x, t)v(x, t)) dx =

∫

V (t)

x× (ρ(x, t)f(x, t)) dx+

∫

∂V (t)

x× s(x, t) ds (2.5)with arbitrary referene point x and the ross produt denoted by ×.As in the derivation of (2.3) appliation of Reynold's transport theorem and the Gaussiantheorem to equation (2.4) yields (for i = 1, 2, 3)
∂

∂t
(ρ(x, t)vi(x, t)) +∇ · (ρ(x, t)vi(x, t)v(x, t)) = ρ(x, t)fi(x, t) + [∇ · σ(x, t)]i.Written in vetor notation, one gets the so alled onservative form of the momentum equation

∂

∂t
(ρv) +∇ · (ρvv) = ρf +∇ · σ. (2.6)Here we used the notation vv = v ⊗ v = [vivj ]i,j for short to express the outer vetor produt.Using the hain rule for ∂

∂t (ρv) and ∇ · (ρvv) = v∇ · (ρv) + ρ(v · ∇)v, the equation of momentuman be written as
v

(
∂

∂t
ρ+∇ · (ρv)

)

+ ρ
∂

∂t
v + ρ(v · ∇)v = ρf +∇ · σ,where the �rst term vanishes due to the ontinuity equation (2.3). The resulting equation is allednon-onservative form of the momentum equation

ρ
∂

∂t
v + ρ (v · ∇)v = ρf +∇ · σ. (2.7)For the balane of angular momentum (2.5) a similar but tedious alulation using again Reynold'stransport theorem and the Gaussian theorem yields the �nal result (using the Einstein summationonvention)
∫

V (t)

εijkσjk dx = 0showing that σ is a symmetri tensor, i.e. σ = σT . For a detailed derivation of this tensor notationin the �eld of ontinuum mehanis we refer to [17℄. All in all the basi equations of �uid mehanisfor a single-phase ontinuous medium that does not exhibit eletri, magneti or hemial e�etsare given by the unknowns
• density ρ = ρ(x, t) ∈ R,
• veloity vetor v = v(x, t) ∈ R3,
• stress-tensor σ = σ(x, t) ∈ R3,3.



2.1 Constitutive Equations 11The derived onservation equations are (with given body fore per unit mass f)
• onservation of mass (ontinuity equation): ∂tρ+∇ · (ρv) = 0,
• balane of linear momentum (momentum equation): ρ∂tv + ρ(v · ∇)v = ρf +∇ · σ,
• balane of angular momentum: σ = σT .The next setion is devoted to lose the given system of unknowns and equations by formulatingonstitutive equations for partiular types of materials.2.1.2 Constitutive EquationsThe derived equations are very generi and in priniple valid for all �uids � up to now no restritionor assumption on the underlying material has been taken. By this generality we are faed with theproblem that the number of unknowns and equations do not math. Nevertheless, it is sensiblethat all equations are given by the �uid one wants to desribe, so that in addition to the generalgoverning equations only material spei� equations should appear. Suh a relation between stresstensor σ, veloity v and density ρ usually depends on the �uid and is given by a suitable hoieaording to experimental results.Stress TensorThroughout derivation of the onservation equations we have taitly assumed that the surfaefores on a volume element are given by the stress vetor

s(x, t) = sn(x, t) = n · σ(x, t) = σT (x, t) · nwith a stress tensor σ1. We now brie�y want to desribe the meaning of this tensor without adetailed derivation � for this purpose we refer to [6℄, [104℄, [130℄ or [154℄.Surfae stress s(x, t) in general is a measure of the intensity of total internal fores atingwithin the �uid aross imaginary internal surfaes, desribing the in�uene of material outside aonsidered volume V (t) to the material interior V (t). Let dF denote an in�nitesimal part of thisfore and let dA be an in�nitesimal surfae element on ∂V (t) whih overs x, then by
s(x, t) = sn(x, t) = lim

dA→0

dF

dAthe stress vetor ating on x is de�ned. This fore not only depends on the point x and time t,but also on the orientation of the surfae element dA, i.e. on the outward normal n. By Cauhy'sstress priniple the omponents of the stress vetor s ating on a surfae dA are fully desribed bythe stress tensor σ and the outward normal n on dA
[sn(x, t)]i =

∑

j

σji(x, t)nj .This linear relation for the stress vetor s at all positions x to all diretions n, as stated by theCauhy stress law, an be used to show desriptively an interpretation of the Cauhy stress tensor
σ at a point x in an orthonormal system ei. If we take a surfae element dA perpendiular to theunit-vetor ek (see Figure 2.1 for the ase e3) then the i-omponent of the stress vetor ating onthis element in a point x is given by

[sek ]i =
∑

j

σjiδjk = σkiwhere we wrote sek to emphasise the stress vetor on an element with outward normal ek. So wehave the following interpretation: σij is the magnitude of the j-omponent of stress vetor s (fore1It should be mentioned that the notation for the stress vetor is not unique in literature. There are two possibleways to de�ne the stress tensor σ, whih base on transposed meaning of the omponents σij . Fortunately, the stresstensor was previously shown to be symmetri so that also the de�nition sn(x, t) = σ(x, t) · n mathes.
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Figure 2.1: Components of the stress tensor: σij stress in j diretion on a fae normal to the i axis.per unit area) exerted aross a plane surfae element normal to the i-diretion, at position x inthe �uid and at time t. By this lari�ation we see that the diagonal elements of σ represent thenormal stresses, i.e. normal omponent of surfae fore ating on a plane parallel to the oordinateplanes, while the o�diagonal elements of σ are tangential/shearing stresses.Fluids at RestA �rst observation is given for so alled Stokes' �uids : when the �uid is in rest, only normal stressesare exerted. Furthermore, the stress-tensor is observed to be spherially symmetrial and dependsdiretly on the thermodynami pressure p = p(x, t) (for a derivation see [13℄), therefore
σ|v≡0 = −pI.This means that the shear stresses vanish and only normal stresses appear that are equal to thepressure. For a �uid in motion there is obviously no reason to expet this result being valid.Stress-strain Law for Newtonian FluidsIf the �uid is in motion additional shear stresses must be onsidered altogether with the normalstresses. For the desription of these frition-fores, whih model the transport of momentum bymoleular motion, the symmetri tensor τ (visous or deviatori stress tensor) is added

σ|v 6=0 = −pI + τ.The question now is how this visous stress is related to other observable properties of ommon�uid motions. As a primary soure of information experiments for whih one ould propose manysuh relations (alled onstitutive equations) an be made. But also from the theoretial pointof view some approah an be done: frition in �uids generally manifests itself through shearingfores whih retard the relative motion of �uid partiles. A measure of the relative motion of �uidpartiles is given by the deformation rate tensor.De�nition 2.1.1The tensor D = 1
2 (∇v + (∇v)T ) is alled the deformation rate tensor. The tensor W = 1

2 (∇v −
(∇v)T ) is alled the rotation rate tensor. They build the symmetri and antisymmetri deompo-sition of the veloity gradient: ∇v = D+W . A �uid is a medium whose stress-strain law is of theform σ = f(D).



2.1 Eletrial Exitation of the Fluid and Mass-Transport 13The onrete identi�ation of the material-funtion f is the subjet of rheology. Here for thesake of simpliity we deal only with so-alled Newtonian �uids, for whih the hypothesis of a lineardependene of the stress tensor on the deformation rate tensor is made. The partiular form of thelinear funtion f for a Newtonian �uid is given by so-alled Stokes' Postulates whih are made onthe basis of experiments and require that:1. σ = −pI + f(D) with a linear ontinuous funtion f .2. The �uid is an isotropi medium, i.e. its properties are the same in all spae diretions.This means that the funtion f is invariant to orthogonal transformations, i.e. f(SDST ) =
Sf(D)ST for all transformations S with SST = I, det(S) = 1.3. If the �uid is at rest, there are no visous stresses, i.e. f(0) = 0.These onditions lead to a stress-strain law of Newtonian �uid termed the Cauhy-Poisson law �for proof see [6℄ or [50, h. 1.8℄

σ = (−p+ λ∇ · v)I + 2µDwith λ (volume visosity) and µ (shear or dynami visosity) being onstants or salar funtionsof thermodynamial quantities. Hene, we have the general equations of motion for a Newtonian�uid
∂tρ+∇ · (ρv) = 0,

ρ∂tv + ρ(v · ∇)v +∇p−∇(λ∇ · v) −∇ · (2µD) = ρf .InompressibilityThe ondition of inompressibility an be stated at least in twofold manner:
• an inompressible �uid has onstant volume: using Reynolds transport theorem (2.2) with
f ≡ 1 results in ∇ · v = 0,
• an inompressible �uid has onstant density: we diretly get ∇ · v = 0 from the ontinuityequation.Nevertheless, these de�nitions aim at the same result and the stress-tensor of an inompressibleNewtonian �uid simpli�es to

σ = −pI + 2µDwhih gives the momentum equation
ρ(∂tv + (v · ∇)v) +∇p−∇ · (2µD) = ρf .Using the notation ν = µ/ρ for the kinemati visosity and assuming that the shear visosity µ isonstant within the �uid, we simplify∇·(2µD) = µ(∆v+∇(∇·v)) = µ∆v, due to inompressibility.Therefore we end up with the inompressible Navier-Stokes equations

∂tv − ν∆v + (v · ∇)v +
1

ρ
∇p = f ,

∇ · v = 0.

(2.8)Next, the general body fore f and also suitable boundary onditions need to be derived in detailsuh that the system (2.8) an be de�ned in a strit mathematial setting.2.1.3 Eletrial Exitation of the Fluid and Mass-TransportBesides the generation of �uid �ow by the lassial appliation of a pressure di�erene, e.g. bymehanial pumps or gravity fore, there are also several other opportunities. One possibility inthe setting of miro�ows is eletroosmose. The fundamental e�et for suh an eletrial exitationis related to the presene of a onsiderable harge density near hannel walls, where ions of oppositesign are attrated to the eletrial harged surfae � an e�et alled eletri double layer (EDL).



14 SIMULATION AND OPTIMISATION OF FLUID FLOWThe thikness of EDL is de�ned by the region where the eletri neutrality of the �uid is violatedand is usually on the order of 10−9 m. For a detailed desription of eletrial exitation withinmiro�ows we refer to [12℄ and referenes therein. To generate an eletroosmoti �ow, a tangentialeletri �eld is applied to the EDL whih auses an ion drag that indues a �uid �ow. If now theratio of surfae to volume is as large as in mirohannels, the �ow within the EDL e�ets also theentire �ow �eld within the hannel by visous fores.The in�uene of suh an eletri �eld on the momentum equation of an inompressible �uidan be onsidered as an external fore in equation (2.8) (f. [11℄)
fe = qE. (2.9)This Coulomb fore fe desribes the fore exerted by the eletri �eld E upon the total eletriharge density q within the �uid. It was shown in [11℄ that under ertain onditions, namely ahomogeneous ion onentration and eletrodes loated far away from the point of interest (f. Figure1.1), the eletrial �eld an be assumed as independent of �ow and onentration �elds, at leastfor a ertain time. Hene, an eletrostati formulation by Gauss' law relating the distribution ofeletri harge to the resulting eletri �eld seems justi�ed, i.e. with the permittivity of the �uid εand the eletri potential φ we have

∇ · (εE) = ∇ · (−ε∇φ) = q. (2.10)It remains to desribe the harge density of the �uid q to get a governing equation for the eletrialsituation within the �uid. Within the EDL, the harge density is q 6= 0 due to a exess of ions andan be expressed by
q = F

∑

j

zjcj (2.11)with cj denoting the onentration of the ion speies j, zj denoting the valeny number of the ionspeies and F the Faraday onstant. Outside of the EDL, within the so-alled bulk region, theliquid an be approximated to be in eletrial neutrality and we have
∑

j

zjcj,bulk ≈ 0.In this ase, i.e. the harge density q is zero like in eletrial neutral �uids, equation (2.10) reduesto the Laplae equation ∆φ = 0 assuming a spatial onstant permittivity ε of the �uid. Moreover,it is obvious that eletrial fores an only be indued within a small region near the hannel walls,namely the EDL.For the ion onentration within the EDL cj,EDL a Boltzmann distribution is used (f. [12℄)suh that the eletri potential φ within the �uid (using (2.10), (2.11) and a spatial onstantpermittivity) is desribed by the so-alled Poisson-Boltzmann equation
∆φ = −F

ε

∑

j

zjcj,bulk exp

(

−zjFφi
RT

)

. (2.12)Here, cj,bulk is the (onstant) onentration of the ion speies j within the bulk �ow and φi is thepotential indued by the wall surfae harge. R and T denote the gas onstant and temperature.Suitable boundary onditions for the potential φ are given by Dirihlet values at the eletrodesand no-�ux ondition at the hannel walls.Equation (2.12) has now to be added to the Navier-Stokes equations (2.8) to determine theeletrial fore for the momentum equation
fe = −q∇φ.Sine the eletri double layer is usually very small even ompared to a mirohannel width,numerial omputations have to be performed on very �ne meshes to resolve the e�ets near thehannel walls resulting in very high or even prohibitive omputational osts. The work of Barz etal. [11℄ shows that the in�uene of the EDL an be aptured by suitable slip boundary ondition



2.1 Non-dimensionalisation and Initial-/Boundary-Conditions 15for the veloity-�eld within the bulk region vbulk, namely
vbulk

∼= −C∇φ, vbulk · n = 0on the interfae of bulk �ow and EDL. The seond ondition is automatially ful�lled sine a no-�ux ondition for the potential φ is used, i.e. vbulk · n = −C∇φ · n = −C∂nφ = 0. In detail, theoutome of the method of mathed asymptoti expansions reveals the following set of equations
∂tv − ν∆v + (v · ∇)v +

1

ρ
∇p = 0,

∇ · v = 0,

∆φ = 0,

(2.13)whih has to be employed to simulate the �ow and eletri potential in the liquid bulk outside theEDL. Comparing (2.13) to (2.8) we see that the eletrial fore fe vanishes whih is due to theeletrial neutrality within the liquid bulk. The eletrial double layer, in whih an eletroosmoti�ow is indued by the eletrial �eld, is exluded of the numerial treatment � the in�uene on theliquid bulk is aptured by the boundary onditions.Finally, we extend the system (2.13) by the transport of some speies of onentration c withinthe �uid desribed by the onvetion-di�usion equation
∂tc−D∆c+ v · ∇c = 0. (2.14)Assuming that there are no soures or sinks within the volume V , the rate of hange for a salarquantity in an arbitrary volume is given by total �ux into and out of V , i.e.

d

dt
c = ∂tc+∇ · (cv) = D∆c.Herein the right hand side D∆c desribes the di�usive �ux and sine we assume an inompressibleNewtonian �uid it holds ∇ · (cv) = v · ∇c.Remark 2.1.1In the derived governing equations (2.13) the bulk �ow �eld [v, p] is only oupled to the potential φby boundary onditions on the interfae to the eletri double layer. The Laplae equation desribingthe potential is fully deoupled from the bulk �ow �eld. Hene, one might �rst solve for the potential

φ and then solve the Navier-Stokes equations to get the �ow �eld. In the same manner, we assumethat the onvetion-di�usion equation (2.14) is only oupled to the bulk veloity v and there is nofeedbak to neither the �ow �eld nor the potential (whih holds only when liquids ontaining almostno harges are mixed). Therefore, also the onvetion-di�usion equation might be solved deoupled,i.e. after the �ow �eld v is omputed.2.1.4 Non-dimensionalisation and Initial-/Boundary-ConditionsWe previously derived the governing equations for the experimental setting in Chapter 1, namelythe inompressible Navier-Stokes equations desribing the �ow �eld of a Newtonian �uid in ombi-nation with the potential equation to over eletroosmoti e�ets (2.13) and the onvetion-di�usionequation to desribe the onentration �eld of some speies/dye (2.14). The variables within thissystem are the physial quantities
• veloity v in m

s ,
• pressure p in Pa = kg

ms2 ,
• eletri potential φ in V = m2kg

s3A ,
• onentration of the dye c in kg

m3 .



16 SIMULATION AND OPTIMISATION OF FLUID FLOWAgain, we emphasise that these equations desribe only the bulk �ow whenever eletroosmotie�ets are taken into aount.In order to ompare �uid �ow, one usually sales the equations by harateristi quantities toeliminate the physial dimensions. Common behaviour of �uid �ow an hene be haraterised byparameters like kinemati visosity ν, density ρ, harateristi veloity sale v0 and harateristilength sale d0. Furthermore, a onvetive time sale t0 = d0/v0, pressure sale p0 = (v0µ)/d0,onentration sale c0 and applied potential sale φ0 are de�ned, suh that
X =

x

d0
, T =

tv0
d0
, V =

v

v0
, P =

pd0
µv0

, Φ =
φ

φ0
, C =

c

c0
.Substitution of these quantities in equations (2.13) and (2.14) results in

v20
d0
∂TV− νv0

d20
∆V+

v20
d0

(V · ∇)V+
νv0
d20
∇P = 0,

v0
d0
∇ ·V = 0,

ϕ0

d20
∆Φ = 0,

v0c0
d0

∂tC −
Dc0
d20

∆C +
v0c0
d0

V · ∇C = 0.Introduing the dimensionless Reynolds number
Re =

ρv0d0
µ

=
v0d0
νand Shmidt number

Sc =
ν

Dwe an therefore write for short
Re[∂tv + (v · ∇)v] −∆v +∇p = 0,

∇ · v = 0,

∆φ = 0,

∂tc−
1

Re · Sc∆c+ v · ∇c = 0,

(2.15)whih is used for any further onsideration2. The Reynolds number desribes the relation betweeninertia and visous fores, while the Shmidt number desribes the ratio of momentum di�usivity(visosity) and mass di�usivity. The derivation of governing equations now has to be ompletedwith additional boundary onditions on ∂Ω and initial onditions at t = 0 in order to desribe thephysial problem entirely.Initial ConditionsThe veloity �eld v0 at t = 0 obviously has to be solenoidal, i.e. ∇ · v0 = 0, and for simpliity oneoften hooses v0 ≡ 0, assuming that there is no initial �ow. An initial ondition for the pressure
p and the potential φ is not needed, whereas the onentration c at t = 0 needs to be hosenwith are. We assume that c(x, t) ∈ [0, 1] for all x ∈ Ω and t ≥ 0. As initial distribution of theonentration �eld two major possibilities are given1. c(x, 0) = 0 in Ω � means that the starting/in�ow phase has to be simulated in whih onlyone speies onentration is initially present,2. c(x, 0) = c0(x) ∈ [0, 1] in Ω � means that a given distribution is assumed and only thedevelopment of onentration has to be simulated.2For sake of simpliity we skipped the upper-ase notation. The reader will obviously identify the dimensionlesssystem by appearane of Reynolds and/or Shmidt number.



2.1 Non-dimensionalisation and Initial-/Boundary-Conditions 17Boundary ConditionsLet the boundary ∂Ω by subdivided into disjoint parts
• Γin desribing the in�ow part of the hannel,
• Γout desribing the out�ow part of the hannel,
• Γ0 desribing the rigid walls of the hannel or (in ase of additional eletroosmoti �ow) theinterfae between bulk �ow and eletri double layer.Obvious onditions an be posed for the onentration �eld c. On the in�ow setion Γin, we assumeDirihlet-values by a given funtion cin desribing a separation in 1 and 0 to model the ontatarea of two in�ow-hannels that are �lled only by one of the onentrations (f. Figure 1.1). For

Γout ∪ Γ0 a vanishing �ux is used, i.e. ∂nc = 0.The eletri potential φ on Γ0 is also determined by a no �ux ondition ∂nφ = 0. On thein�ow and out�ow parts of ∂Ω, presribed inlet and outlet potentials φin and φout are given whihare saled by the applied potential di�erene φ0 between the reservoirs. Sine only the potentialdi�erene ∆φ between Γin and Γout is of interest, we assume for the sake of simpliity φin = 0 and
φout = ∆φ.For the Navier-Stokes equations within the hannel, the setting of boundary onditions is avery sophistiated topi. While the ondition at rigid walls is usually determined by a so-alledno-slip ondition for visous �uid

v|Γ0
= 0,the onditions set on in�ow and out�ow boundaries are manifold like:

• Dirihlet onditions for the veloity whih are based on the observation of paraboli Poiseuille�ow pro�le (the Poiseuille �ow is given by an analytial solution of the Navier-Stokes equa-tions driven by a onstant pressure gradient within ylindrial in�nite long straight hannels[139℄),
• so alled do-nothing ondition ∂nv − pn = 0 whih is naturally given in the framework ofweak formulation and is most often used to desribe a free out�ow boundary,
• given pressure di�erene, i.e. given mean pressure 1

|Si|

∫

Si

p ds = Pi on eah outlet Si.We depit these possibilities in detail when the weak formulation of the Navier-Stokes equationsis introdued and refer to [18, 67℄ for the �rst two approahes and to [84℄ for the third.When a pure pressure-driven �ow will be simulated/optimised, the no-slip ondition on rigidwalls is used in ombination with a given in�ow veloity pro�le plus do-nothing ondition for theout�ow � alternatively also the pressure di�erene formulation might be used. Alternatively, whenadditional eletroosmoti e�ets are taken into aount, the omputational domain is restritedto the bulk �uid �ow region only, i.e. the very thin eletrial double layer near hannel walls isomitted. Hene, the no-slip ondition for the veloity �eld annot be used. Barz et al. [11℄ showedthat a separation of the bulk �ow and the �ow within the EDL need obviously to treat the eletrialfore f = fe in (2.8) in di�erent manner sine a onsiderable harge density q is only given withinthe EDL. The asymptoti approximations and leading-order analysis arried out in [11℄ reveals asolution of the veloity �eld within the EDL that diretly depends on the gradient of the appliedpotential φ. Consistently the numerial bulk solution should math the EDL solution suh that aslip boundary ondition for the bulk solution
v|Γ0

= −Π2∇φ = Π2E.is given showing that any wall-tangential omponent of the applied eletrial �eld drives the bulk�ow. Indeed, sine for the potential φ a no-�ux ondition ∂nφ = 0 is given at the virtual boundarybetween bulk �ow and EDL, the wall-normal omponents of the applied eletrial �eld do notin�uene the bulk �ow. The dimensionless parameter (see the Appendix for used quantities)
Π2 =

ℓDϕ0qζ
v0d0µ



18 SIMULATION AND OPTIMISATION OF FLUID FLOWwas derived in [11℄ by non-dimensionalisation of the Navier-Stokes equations within the EDL andan be interpreted as the ratio of eletrial to visous fores � it strongly depends on the eletriproperties of the �uid and the hannel walls.2.2 Analytial FrameworkBefore onsidering optimisation problems for �uid �ow, one obviously �rst has to answer thequestion whether there is at all a solution to the underlying equations and whether this solutionis unique. For this, we want to point out the weak formulation of Navier-Stokes equations and foromplete eletrokineti problem, i.e. with additional potential and onvetion-di�usion equation.Furthermore, some existene and uniqueness results for weak Navier-Stokes equations are itedbut are not presented in detail, sine we only utilise the weak formulation of partial di�erentialequations to have a starting point for the �nite element based disretisation in the next hapter.Remark 2.2.1In the following we will almost always restrit formulations to the Navier-Stokes equations, forsome reasons
• the governing equations (2.15) of the eletroosmoti driven bulk �ow �eld, i.e. the Navier-Stokes equations, might be solved deoupled from the Laplae and onvetion-di�usion equa-tion,
• we will also onsider optimisation problems without any eletrokineti e�ets,
• the Navier-Stokes equations require a more sophistiated analysis than Laplae and onvetion-di�usion equation.For analysis of Laplae and onvetion di�usion equation we refer to e.g. [34, 68℄.As we will show in the next setion, the solvability of optimisation problems generally relies onthe possibility to de�ne an operator, alled ontrol-state operator, that assigns a unique solution ofthe partial di�erential equation to eah ontrol given. This means, e.g. for boundary ontrol, thatwe have to show whether there exists a unique solution of the Navier-Stokes equations to givenboundary data g on Γc ⊂ ∂Ω. We therefore onsider in this setion the dimensionless Navier-Stokesequations with general Dirihlet boundary values

Re[∂tv + (v · ∇)v]−∆v +∇p = f in Ω× (0, T )

∇ · v = 0 in Ω× (0, T )

v = g on ∂Ω× (0, T )

v = v0 in Ω for t = 0

(2.16)and give an overview of the present existene and uniqueness results. An extension to di�erentboundary onditions will also be presented, as far as it is needed in the framework of onsideredmiro�ows.2.2.1 Funtion Spaes and NotationWe introdue the following notation for a bounded, onneted, open set Ω ⊂ Rd, d ∈ N (usually
d = 2, 3) with a Lipshitz-ontinuous boundary ∂Ω. These de�nitions are standard and for moredetailed aounts onerning these spaes we refer to [2, 62℄.A real valued funtion f : Ω → R is de�ned in the Lebesgue-spae Lp(Ω), 1 ≤ p ≤ ∞ if it isLebesgue-measurable und its norm

‖f‖Lp(Ω) =







(
∫

Ω

|f(x)|p dx
)1/p

, 1 ≤ p <∞

esssup
x∈Ω

|f(x)| = inf
µ(N)=0

sup
x∈Ω\N

|f(x)|, p =∞



2.2 Funtion Spaes and Notation 19is �nite. Let (X, ‖ · ‖) be a Banah spae of funtions on Ω and let a time-interval be given as
I = (a, b) ⊂ R. Any so-alled abstrat funtion f(t) : (a, b) → X is de�ned in Lp(a, b;X), 1 ≤
p ≤ ∞ if f is Lebesgue-measurable and its norm

‖f‖Lp(a,b;X) =







(
b∫

a

‖f(t)‖pX dt

)1/p

, 1 ≤ p <∞

esssup
a<t<b

‖f(t)‖X , p =∞is �nite. The de�nition of abstrat funtions f ∈ Lp(a, b;X) also allows a more general de�nitionof an integral, namely the Bohner integral whih redues to the Lebesgue integral for X = R(f. [163℄).Next we reall the de�nition of Sobolev spaes Hm(Ω) or more general Wm,p(Ω). For a multi-index α = (α1, ..., αd) and |α| = α1 + ...+ αd ∈ N0 we have the partial derivative of f by
Dαf(x) =

∂|α|f

∂xα1

1 · · · ∂xαd

d

(x), x = [x1, . . . , xd] ∈ Ωwith
Deif(x) =

∂f

∂xi
(x).Let f ∈ Lp(Ω), α a multiindex, then f (α) ∈ Lp(Ω) is alled the weak derivative of f (or derivativein distributional sense) if for all ϕ ∈ C∞

0 (Ω) the following identity holds
∫

Ω

fDαϕ dx = (−1)|α|
∫

Ω

f (α)ϕ dxthen we identify: Dαf = f (α). The Sobolev spae Wm,p(Ω) is de�ned as
Wm,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), ∀α : |α| ≤ m}.

Wm,p(Ω) is a vetorspae and with the norm
‖f‖Wm,p(Ω) =




∑

|α|≤m

‖Dαf‖pLp(Ω)





1/pit is a Banah-spae for all m ∈ N0. Furthermore, we de�ne Wm,p
0 (Ω) as the losure of C∞

0 (Ω) inthe Wm,p norm. For p = 2, Wm,2(Ω) =: Hm(Ω) is a Hilbert-spae with salar-produt
(f, g)Hm(Ω) :=

∑

|α|≤m

(Dαf,Dαg)L2(Ω) =
∑

|α|≤m

∫

Ω

DαfDαg dx, f, g ∈ Hm(Ω).Obviously, for the ase m = 0 we have that H0(Ω) = L2(Ω) and we will denote the salar-produtand norm by (·, ·) resp. ‖ · ‖, i.e. we omit the index. Any further investigation on the weak form ofNavier-Stokes equations relies mainly on the spae H1(Ω) for the veloity �eld v in whih it holds3
(f, g)1 = (f, g)H1(Ω) =

∫

Ω

fg dx+

∫

Ω

∇f · ∇g dx,

‖f‖1 = ‖f‖H1(Ω) = (‖f‖2 + ‖∇f‖2) 1
2 .3One should keep in mind that all derivatives are given in the sense of distributions, i.e. ∇f = [ ∂f

∂x1
, . . . ,

∂f
∂xd

]with 〈 ∂f
∂xi

, ϕ〉 = −
∫
Ω
f

∂ϕ
∂xi

dx,∀ϕ ∈ C∞

0 (Ω).



20 SIMULATION AND OPTIMISATION OF FLUID FLOWThe treatment of the pressure within (2.16) is usually handled by the spae
L2
0(Ω) = {f ∈ L2(Ω) :

∫

Ω

f dx = 0}sine the formulation ∇p allows to determine the pressure only up to an additive onstant.We lose the de�nitions by introduing dual and trae spaes (f. [144℄). A funtional F de�nedon H1(Ω) is in the dual spae H−1(Ω) if and only if
‖F‖−1 = sup

‖u‖1=1

|F (u)| <∞.Evaluation of a funtional F ∈ H−1(Ω) at u ∈ H1(Ω) is often also denoted by the duality pairing
〈F, u〉. Let the boundary of Ω be a C2-boundary Γ = ∂Ω, then a ontinuous linear operator
γ : H1(Ω) → L2(Γ) is given suh that γ(u) is the restrition of u onto Γ for all u ∈ H1(Ω)∩C2(Ω̄).
H1

0 (Ω) is equal to the kernel of γ and the image γ(H1(Ω)) is a dense subset of L2(Γ) whih is denotedby H1/2(Γ).It remains to de�ne the notation for vetor valued funtion spaes: we suppress the dimensionindex and instead use a bold fae notation, i.e.
Hk(Ω) = [Hk(Ω)]d = {vi ∈ L2(Ω) : Dαvi ∈ L2(Ω), ∀α : |α| ≤ k, i = 1, . . . , d},
Hk

g(Ω) = {v ∈ Hk(Ω) : v = g on ∂Ω} ⊂ Hk(Ω),

H−1(Ω) = [H−1(Ω)]d = {F : H1
0(Ω) → R : ‖F‖−1 <∞ ∀v ∈ H1

0(Ω)},
H1/2(Γ) = {v : vi ∈ H1/2(Γ), i = 1, . . . , d}.These spaes are equipped with the norms (denoted by ‖ · ‖) or semi-norm (denoted by | · |)
‖v‖2k =

d∑

i=1

‖vi‖2k, ‖vi‖2k = ‖vi‖2 +
k∑

|α|=1

‖Dαvi‖2, v ∈ Hk(Ω),

|v|21 =

d∑

i=1

( d∑

j=1

‖ ∂vi
∂xj
‖2
)

, v ∈ H1(Ω),

‖F‖−1 = sup
06=v∈H1

0
(Ω)

〈F,v〉
|v|1

, F ∈ H−1(Ω),where in H1
0(Ω) the seminorm | · |1 is equivalent to ‖ · ‖1.2.2.2 Weak FormulationThe Navier-Stokes equations were derived in Chapter 2.1 on the basis of physial laws and obser-vations. So a solution should also be kind of physially reasonable � within the o�ial problemdesription of the Millennium Problem [49℄ this is

v, p ∈ C∞(Rd × [0,∞)) and ∫
Rd

|v(x, t)|2 dx < C for all t ≥ 0.This formulation appears very restritive in the setting of regularity properties for the solution
[v, p]. A less restritive onept for determining solutions to the Navier-Stokes equations (thatis by the way also very useful for �nite element based disretisation) is to weaken the spaes inwhih a solution is searhed for. To this, the formulation (2.16) is modi�ed to an integral meanrepresentation, i.e. after multipliation with suitable test funtions one integrates over the domain
Ω. Furthermore, integration by parts based on Green's formula is used to loosen the regularityproperties for solutions of the Navier-Stokes equations by reduing the order of di�erential opera-tors. These steps ahieve that an existene and uniqueness theory within more onvenient spaes



2.2 Weak Formulation 21an be established whih afterwards might be restored to the original problem. As long as the pair
[v, p] in its so-alled weak formulation is su�iently smooth to allow for the used integration byparts, it is obviously also a strong solution of (2.16).We state the fundamental theorem of partial integration in its general form using Sobolev spaesof frational order � for the ase p = q = 2 the trae spae H1/2 was already de�ned, for otherases refer to [144℄.Theorem 2.2.1Let Ω ⊆ Rd, d ≥ 2, be a bounded Lipshitz-domain with boundary Γ. Further let 1 < p < ∞ and
1/p+ 1/q = 1, then for all u ∈W 1,p(Ω) and v ∈W1,q(Ω) holds the trae-ondition

u|Γ ∈W 1−1/p,p(Γ), v · n|Γ ∈W 1−1/q,q(Γ)and ∫

Ω

u∇ · v dx =

∫

Γ

u v · n dS −
∫

Ω

∇uv dxwith n being the outer normal on Γ.Based on Theorem 2.2.1 we de�ne the bilinear forms used in the sequel for the weak formulationof the Navier-Stokes equations.
a(u,v) =

∫

Ω

∇u : ∇v dx =

∫

Ω

d∑

i,j=1

∂ui
∂xj

∂vi
∂xj

dx ∀u,v ∈ H1(Ω), (2.17)whih is ontinuous on H1(Ω)×H1(Ω), i.e. there exists a onstant C > 0 suh that
|a(u,v)| ≤ C‖u‖1‖v‖1 ∀u,v ∈ H1(Ω)and oerive (or ellipti) on H1
0(Ω)×H1

0(Ω), i.e. there exists a onstant α > 0 suh that
|a(v,v)| ≥ α‖v‖21 ∀v ∈ H1(Ω).Furthermore, we de�ne the bilinear form

b(v, q) = −
∫

Ω

q∇ · v dx ∀v ∈ H1(Ω) and q ∈ L2(Ω), (2.18)whih is ontinuous on H1(Ω)× L2(Ω) and the trilinear form
c(w,u,v) =

∫

Ω

(w · ∇)u · v dx =

d∑

i=1

∫

Ω

(w · ∇ui)vi dx ∀u,v,w ∈ H1(Ω), (2.19)that is ontinuous on H1(Ω)×H1(Ω)×H1(Ω) for d ≤ 4 and Ω bounded with Lipshitz-boundary.Proofs for ontinuity and oerivity are standard and an be found for example in [61℄.De�nition 2.2.1 (Weak solution of Navier-Stokes equations)A pair [v, p] is alled weak solution of (2.16), if v(·, 0) = v0 and for almost all t ∈ (0, T ) it holds:
[v(·, t), p(·, t)] ∈ H1

g(Ω)× L2
0(Ω) is a solution of

Re[〈∂tv, ϕ〉+ c(v,v, ϕ)] + a(v, ϕ) + b(ϕ, p) = 〈f , ϕ〉 ∀ϕ ∈ H1
0(Ω),

b(v, ξ) = 0 ∀ξ ∈ L2
0(Ω),

(2.20)for given f ∈ H−1(Ω) and v0 ∈ {u ∈ H1(Ω) : b(u, q) = 0, ∀q ∈ L2(Ω)}.



22 SIMULATION AND OPTIMISATION OF FLUID FLOWFor the weak formulation (2.20) the presribed Dirihlet boundary ondition v = g on Γ×(0, T )is an essential one and has to be ful�lled by the hosen funtion spaeH1
g(Ω), i.e. we seek a funtion

v ∈ vg +H1
0(Ω) where the trae of vg yields the boundary ondition g = γ(vg). We will also showsome natural boundary onditions that appear within the weak formulation in the next setion. Forany details on existene and uniqueness of solutions to the weak form of Navier-Stokes equations,we refer to the literature like [62, 101, 144, 153℄. However, we present some main results for thease of stationary and instationary Navier-Stokes equations and also for the onvetion-di�usionequation. The Laplae equation desribing the potential �eld is the standard ellipti problem inpartial di�erential equation � a quite omplete introdution an be found in [34℄.Solution of the Navier-Stokes Equations Within Solenoidal SpaesThe dimensionless stationary Navier-Stokes equations with homogeneous Dirihlet boundary on-ditions

Re(v · ∇)v −∆v +∇p = f in Ω

∇ · v = 0 in Ω

v = 0 on ∂Ωan (alternatively to (2.20)) be written in the weak formulation: for given f ∈ V ∗ seek v ∈ V suhthat
1

Re
a(v, ϕ) + c(v,v, ϕ) = 〈f , ϕ〉 ∀ϕ ∈ V. (2.21)This notation uses the funtion spae

V = {v ∈ H1
0(Ω) : b(v, q) = 0, ∀q ∈ L2

0(Ω)}of solenoidal vetor �elds and its dual spae V ∗ with the duality pairing 〈f ,u〉 = ∫
Ω
f ·u dx. Thus,neither the pressure p appears in the formulation nor the ontinuity equation � both are expressedby the hoie of funtion spae V . The used formulation (2.21) in the solenoidal spae V andiretly be dedued from the above de�nition, i.e. if [v, p] ∈ H1

0(Ω) × L2
0(Ω) ful�ls (2.20) then valso solves (2.21). By this reformulation elegant statements on existene and uniqueness an bemade (see [35℄ or [126℄ for proof), but it remains to answer the question whether also the oppositediretion holds true.Theorem 2.2.2For every f ∈ V ∗ and d ≤ 3 there exists a solution v ∈ V of the stationary Navier-Stokes problem(2.21). If Re2β‖f‖V ∗ < 1 this solution v ∈ V is unique � here β > 0 is given by the ontinuity ofthe trilinear form (2.19), i.e. it is the smallest onstant in

c(w,u,v) ≤ β‖w‖1‖u‖1‖v‖1, ∀w,u,v ∈ V.For the instationary problem one usually de�nes the additional funtion spae
H = {v ∈ L2(Ω) : ∇ · v = 0, v · n|∂Ω = 0}whih together with the solenoidal spae V forms the Gelfand triple with ompat embeddings(see [152℄ for details)

V →֒ H ∼= H∗ →֒ V ∗.The time-derivative has to be interpreted in a weak sense ∂tv(t) ∈ V ∗ suh that the problem reads:for given v0 ∈ H and f ∈ L2(0, T ;V ∗) seek v ∈ L2(0, T ;V ) suh that a.e. in (0, T )

〈∂tv(t), ϕ〉 +
1

Re
a(v(t), ϕ) + c(v(t),v(t), ϕ) = 〈f , ϕ〉 ∀ϕ ∈ V (2.22)and v(0) = v0. Existene for the instationary equations an be shown for v ∈ L2(0, T ;V ) ∩

L∞(0, T ;H) but uniqueness is only given for d = 2 (see [61℄ or [153℄ for proof).



2.2 Weak Formulation 23General Weak Solution of the Navier-Stokes EquationsBy restating the entire saddle point struture of (2.20) as a single equation (2.21) or (2.22), wefound existene and uniqueness results for the veloity �eld v in solenoidal spaes. The way bakshould then ideally yield a solution to the weak formulation (2.20) that ontains also the pressure
p. To answer the question whether there exists a unique p ∈ L2

0(Ω) satisfying in the stationaryase
(p,∇ · ϕ) = 〈f , ϕ〉 − a(v, ϕ) −Re · c(v,v, ϕ) ∀ϕ ∈ H1

0(Ω)we introdue a general framework for abstrat variational problems (taken from [62℄), that will alsobe used later on for the �nite element disretisation. Let X, M be Hilbert spaes and X∗, M∗their dual spaes. With the ontinuous bilinear forms
a(·, ·) : X ×X → R , b(·, ·) : X ×M → Rwe de�ne the abstrat saddle point problem: for given l ∈ X∗ seek [u, λ] ∈ X ×M suh that

a(u, v) + b(v, λ) = 〈l, v〉 ∀v ∈ X,
b(u, µ) = 0 ∀µ ∈M.

(2.23)Furthermore, let V = {v ∈ X : b(v, µ) = 0, ∀µ ∈M} so that the above problem an also be statedas: seek u ∈ V suh that
a(u, v) = 〈l, v〉 ∀v ∈ V.Theorem 2.2.3Assume that the bilinear form a(·, ·) is V -ellipti, i.e. there exists a onstant α > 0 suh that
a(v, v) ≥ α‖v‖2X ∀v ∈ V.Then the abstrat problem (2.23) possess a unique solution if and only if the bilinear form b(·, ·)satis�es the inf-sup ondition
inf
µ∈M

sup
v∈X

b(v, µ)

‖v‖X‖µ‖M
≥ β > 0. (2.24)In the framework of weak Navier-Stokes equations the spaes X = H1

0(Ω), M = L2
0(Ω) �tinto this abstrat setting. The elliptiity or more general the solvability of v ∈ V is given by theresults above, so that it remains to prove the existene of pressure p and the inf-sup ondition toensure that a solution to (2.21) resp. (2.22) also indues a solution to (2.20). Both are given bythe following lemma taken from [50℄ and we an onlude that the formulations within solenoidalspaes and originally hosen Sobolev spaes are equivalent.Lemma 2.2.1Let l ∈ H−1(Ω) suh that 〈l,v〉 = 0 ∀v ∈ {u ∈ C∞

0 (Ω) : ∇ · u = 0}. Then there exists a funtion
p ∈ L2(Ω) suh that

〈l,v〉 = (p,∇ · v), ∀v ∈ H1
0(Ω).For eah p ∈ L2

0(Ω) there exists a unique funtion v ∈ {u ∈ H1
0(Ω) : a(u,v) = 0 ∀v ∈ V } suhthat

∇ · v = p, |v|1 ≤ c‖p‖with a onstant c > 0 independent of p. Therefore
inf

p∈L2
0
(Ω)

sup
v∈H1

0
(Ω)

(p,∇ · v)
|v|1‖p‖

= inf
p∈L2

0
(Ω)

sup
v∈H1

0
(Ω)

‖p‖
|v|1

≥ 1

c
> 0.



24 SIMULATION AND OPTIMISATION OF FLUID FLOWConvetion-Di�usion EquationThe onvetion-di�usion equation desribing the transport of onentration within the mirohan-nel was given by
∂tc−D∆c+ v · ∇c = 0.We an express this equation in weak form as: for given c0 ∈ H1(Ω) seek c ∈ cin + H1(Ω) suhthat a.e. in (0, T )

〈∂tc(t), ψ〉+D a(c, ψ) + (v · ∇c, ψ) = 0 ∀ψ ∈ {u ∈ H1(Ω) : u|Γin = 0}and c(0) = c0. Existene and uniqueness results are assured by Lax-Milgram lemma using theontinuity and oerivity of the bilinear form assoiated with the spatial operator (see hapter 12in [126℄). The ruial point within this equation is hene not the solution itself but the numerialbehaviour. It is a well-known fat that solutions on oarse meshes tend to osillatory behaviour.This property is usually desribed by the (mesh) Pelet number
Pe =

v0h

Dwhih indiates onvetion dominated �ows whenever Pe > 1. To suppress numerial osillationsone might ertainly use �ne meshes (adjust mesh size h) or use stabilisation methods (f. [126, 131℄)like upwind methods or Streamline-Upwind Petrov-Galerkin �nite element method (SUPG).2.2.3 Boundary ConditionsThe ommon analysis of Navier-Stokes equations is given only for homogeneous Dirihlet boundaryonditions as shown before. An extension to nonhomogeneous boundary onditions an be foundfor example in [50℄ or [62℄, showing that for some ompatability onditions on the boundary data
g a solution [v, p] exists.For our purpose it will be of major importane to have additional boundary onditions thatare kind of physially motivated. Reall that we subdivided the boundary of the �uid domain Ωinto disjoint parts ∂Ω = Γ0 ∪ Γin ∪ Γout. First we present the used boundary onditions for purepressure-driven �ow, i.e. without external applied potential �eld. Afterwards, we will take theadditional boundary ondition v|Γ0

= −Π2∇φ into aount to hek whether this ondition, thatarises from the physial model, �ts into the weak formulation of Navier-Stokes equations.Suppose we �rst have only a no-slip boundary ondition to model the solid walls of a hannel,furthermore we might presribe an in�ow veloity pro�le. These Dirihlet boundary onditions�t into the framework of variational formulation with test funtions ϕ ∈ H1
0(Ω) and the solution

v ∈ H1
g(Ω). To impose a boundary ondition on the out�ow region Γout, we hoose

ϕ ∈ H1
Γin∪Γ0

(Ω) = {u ∈ H1(Ω) : u|Γin∪Γ0
= 0}so that the weak formulation of stationary Navier-Stokes equations is: seek v ∈ vg +H1

Γin∪Γ0
(Ω),

p ∈ L2(Ω) suh that
a(v, ϕ) +Re · c(v,v, ϕ) + b(ϕ, p)−

∫

Γout

(∂nv − pn)ϕ ds = 0 ∀ϕ ∈ H1
Γin∪Γ0

(Ω),

b(v, ξ) = 0 ∀ξ ∈ L2(Ω).Sine the test funtions ϕ do not vanish on Γout we get the additional term
∫

Γout

(∂nv − pn)ϕ ds = 0 ∀ϕ ∈ H1
Γin∪Γ0

(Ω)whih relates the pressure to the veloity �eld. For hannels with unknown out�ow ondition one



2.2 Boundary Conditions 25often uses the additional boundary onditions (do-nothing ondition)
∂nv = pn on Γout. (2.25)This Neumann type boundary ondition is an unavoidable onsequene of the fat that we workwith weak formulation of the Navier-Stokes equations and also determines the pressure within theNavier-Stokes equations (initially the pressure only appears as gradient and is therefore only givenup to a onstant). The physial meaning of this boundary ondition is yet not lear (see [18℄ and[67℄) and gives orret numerial results only for simple Poiseuille �ows in straight hannels. Inthe following we will refer to the ombination of presribed Dirihlet values on Γin in ombinationwith do-nothing ondition in Γout as the do-nothing formulation.A more physial approah to boundary onditions is given in [84℄ where a presribed pressuredi�erene between in�ow and out�ow boundary is required, i.e.

Re(v · ∇)v −∆v +∇p = f in Ω

∇ · v = 0 in Ω

v = 0 on Γ0

p = Pin(t) on Γin

p = Pout(t) on ΓoutThe experimental setup as presented in Chapter 1 also laims the pressure-driven �ow within themirohannel by a height di�erene between in�ow and out�ow region. We therefore onlude theweak formulation: seek v ∈ H1
Γ0
(Ω), p ∈ L2(Ω) suh that (i = in, out)

a(v, ϕ) +Re · c(v,v, ϕ) + b(ϕ, p)−
∑

i

∫

Γi

(∂nv − Pin)ϕ ds = 0 ∀ϕ ∈ H1
Γ0
(Ω),

b(v, ξ) = 0 ∀ξ ∈ L2(Ω).If additionally the in�ow and out�ow regions are perpendiular to the hannel, it an be shown[84℄ that the normal derivative of v vanishes. This means that the remaining term
∑

i

∫

Γi

Pinϕ dsan be interpreted as an external fore within the momentum equation driving the hannel �ow.In the following we will refer to this seond setting of boundary onditions as the pressure-dropformulation. For simpliity we use Pout(t) = 0 and fore the �uid �ow by setting Pin(t) = ∆p.Even if spei�ation of pressure di�erene ∆p seems more physial, the problem of determiningthe orret value remains. To ensure the orret Reynolds number, we proeed as follows: sinethe mean in�ow veloity
v0 =

1

|Γin|

∫

Γin

v dswas used for non-dimensionalisation of the Navier-Stokes equations, we ompute this value numer-ially and �t the pressure-drop boundary suh that the mean in�ow veloity within the numerialsimulation equals one. A rough estimation of this value might be given by fundamental laws oflaminar �ows within ylindrial pipes [55℄ of length L
∆p = λlam

Lρv20
2d0where the parameter λlam depends on the Reynolds number and is given by experiments in formof so alled Nikuradse graph (f. [141℄). For laminar �ows one uses λlam = 64/Re.We end the setion on weak formulation with some remarks on the treatment of boundaryonditions for the bulk veloity within eletrokineti �uid �ow setting. The physial model requires



26 SIMULATION AND OPTIMISATION OF FLUID FLOWa slip ondition on the interfae between bulk �ow and �ow in the eletri double layer, i.e.
v|Γ0

= −Π2∇φ.First, we mentioned that this ondition naturally implies the usage of pressure drop formulationfor Γin and Γout, sine a presribed veloity pro�le vg would also depend on ∇φ and hene annotbe stated by arguments of Poiseuille like �ows. Seond we have to �nd an interpretation of this slipboundary ondition in the framework of weak formulation. For a general treatment the onstant
−Π2 is of minor importane so that we only onsider the ondition v|Γ0

= ∇φ. A weak formulationfor the potential �eld φ aording to the previous de�nitions is: seek φ ∈ φout+H1
Γin∪Γout

(Ω) suhthat
(∇φ,∇χ) = 0 ∀χ ∈ H1

Γin∪Γout
(Ω).Therefore ∇φ is only de�ned in the sense of distributions, whereas in the physial model we wouldhave to require that φ ∈ C1(Ω). So the boundary ondition for bulk veloity v|Γ0

= ∇φ has to berede�ned for the weak formulation. Sine ∇φ is a distribution, we propose to de�ne the boundaryondition as the limit of a onvolution (Faltung) with a Dira-sequene ηε
∇φ(x) = lim

ε→0
(ηε ∗ ∇φ)(x) = lim

ε→0

∫

Ω

ηε(x − y)∇φ(y) dy.The funtions ηε ∈ L1
loc(Ω) have to ful�li/ ηε ≥ 0, ∀ε > 0,ii/ ∫

Rd

ηε(y) dy = 1, ∀ε > 0,iii/ ∀r > 0 :
∫

Rd\Br(0)

ηε(y) dy→ 0 for ε→ 0.For funtional analytial aspets we refer to [163℄ and only want to present a way to onstrut thefuntions ηε that takes the �nite element based disretisation into aount. In so doing we have toforestall some notations of �nite element disretisation that will be introdued in the next hapter.To evaluate the Dirihlet boundary value v(x) = ∇φ(x), x ∈ Γ0, de�ne the Dira-sequene ηεas the Lagrangian basis funtion at x on the atual mesh, i.e. ηx,h ∈ C∞
0 (Ω). Identifying ε withthe mesh size h we have to show for ηx,h the three onditions above. Obviously, ηx,h ≥ 0 and sinethe support of ηx,h is only given by neighbouring ells of x, onditions i/ and iii/ are ful�lled. Itremains to sale ηx,h by a fator c suh that

∫

supp(ηx,h)

cηx,h(y) dy = 1.Let Ki denote the ells suh that supp(ηε) = ⋃
i

Ki. Then we an determine the fator
c =




∑

i

∫

Ki

ηx,h(y) dy





−1

=






∑

i

∫

K̂

ηx,h(Fi(ξ)) det(DFi) dξ






−1

=






∑

i

|Ki|
∫

K̂

ηx,h(Fi(ξ)) dξ






−1where we used the transformation Fi : K̂ → Ki from referene ell to ellKi and det(DFi) = |Ki|(f. [34, 120℄).We onlude that evaluation of Dirihlet boundary value ∇φ(x) on atual mesh with mesh size
h is given by

∇φ(x) =






∑

i

|Ki|
∫

K̂

ηx,h(Fi(ξ)) dξ






−1

∑

i

∫

Ki

ηx,h(y)∇φ(y) dy.



2.3 Optimisation of Fluid Flow 27Finally, the integrals over Ki, K̂ will be evaluated numerially by virtue of the �nite elementapproximation φh. For the speial quadrature rule taking only the 2d verties of ells Ki, K̂ asquadrature-points, we have ηx,h vanishing at all verties exept x, so that
∫

Ki

ηx,h(y)∇φ(y) dy ≈
|Ki|
2d
∇φh|Ki(x),

∫

K̂

ηx,h(Fi(ξ)) dξ ≈
|K̂|
2d

=
1

2d
.All in all we get the approximation of ∇φ(x) to be

∇φ(x) =

∑

i

|Ki| ∇φh|Ki(x)

∑

i

|Ki|showing that for φh ∈ C1(Ω) we have ∇φ(x) = ∇φh(x) and for φh ∈ C0(Ω) that the loal gradientshave to be weighted by size of the ells.2.3 Optimisation of Fluid FlowThe �eld of optimisation or optimal ontrol of �uid �ow problems (or more general of systemsgoverned by partial di�erential equations) is reently a very ative one. Contributions to the �eldof optimisation and optimal ontrol of Navier-Stokes equations are manifold, whereas most onsiderthe two dimensional ase, see e.g. [85, 100, 145℄. A fairly omplete overview and introdution isgiven in the book of Gunzburger [73℄. We will take a look on di�erent approahes to optimise asystem governed by partial di�erential equation, give a brief summary on theory of existene anduniqueness of solutions to the optimisation problem and in the end formulate the entire optimisationproblems and approahes used within this thesis.2.3.1 Optimisation with Partial Di�erential EquationsOne of the earliest referenes for the analytial framework of optimal ontrol problems for partialdi�erential equations is the work of Lions [105℄. Some general onditions for optimal solutions analso be derived from programming priniples in Banah spaes whih were under investigation in[111, 156℄ and referenes therein.Our intention is now to introdue the reader to a general setting of optimisation with partialdi�erential equation and to elaborate the onrete approah in the next subsetion. A startingpoint is to identify the ommon ingredients of suh optimisation problems, namely
• an objetive that has to be optimised � this is almost always formulated as a ost funtional,
• one or more ontrol or design parameter that an be modi�ed to ahieve an optimisation,
• onstraints whih have to be ful�lled within the optimisation problem.Let us denote the set of partial di�erential equations that have to be ful�lled by

A(y, u) = 0 in Ω (2.26)where we assume the state variable y ∈ Y and the ontrol variable u ∈ U within suitable Banahspaes Y and U . For optimal ontrol problems, the operator A(y, u) is typially given by
A(y, u) = A(y, u) + C(u)with a (nonlinear) operator A and a ontrol operator C. Furthermore, the partial di�erential



28 SIMULATION AND OPTIMISATION OF FLUID FLOWequation might be instationary, i.e.
∂ty +A(y, u) = 0 in Ω× (0, T ),

y(·, 0) = y0 in Ω.
(2.27)Hene, we already have de�ned the ontrol parameter and some onstraints in form of the un-derlying partial di�erential equation whih limits the admissible state spae Y . Additional sideonstraints might be given for the ontrol variable u exlusively, like bounds

‖u‖U ≤ κ.In the following let us assume that the admissible spaes for state and ontrol variables are givenby Yad resp. Uad. What remains is to de�ne an objetive or ost funtional J(y, u). Usually suha funtional an be split into parts involving only the state and only the ontrol variables
J(y, u) = J1(y) + J2(u).For instationary problems a temporal averaging is ommon, i.e. if state and ontrol are timedependent

J(y, u) =

T∫

0

J1(y) dt+ J3(y(T )) +

T∫

0

J2(u) dt.All in all the entire optimisation problem reads:
min

(y,u)∈Yad×Uad

J(y, u) suh that equation (2.26) (resp. (2.27)) is ful�lled. (2.28)A ruial point within the solution proess is the de�nition of so-alled ontrol-to-state mapping.De�nition 2.3.1Consider the system of partial di�erential equations (2.26) resp. (2.27). The mapping u 7→ y where
y ∈ Yad is a solution of (2.26) resp. (2.27) with the ontrol parameter u ∈ Uad, is denoted by S,i.e. y = S(u).Any further statements on existene and uniqueness of a solution to the optimisation problemwill strongly depend on this mapping S � we refer e.g. to [105, 59, 157℄ for a more detailed analysis.For sake of simpliity we assume that this mapping is well-posed, although this is not a trivial taskfor all problems stated before (if at all possible).De�nition 2.3.2A ontrol ū ∈ Uad is alled optimal ontrol and ȳ = S(ū) ∈ Yad is alled orresponding optimalstate if

J(ȳ, ū) ≤ J(y, u) ∀u ∈ Uad and y = S(u) ∈ Y.The existene result for the general optimisation problem in Banah spaes an be found in [88℄� here we only ite the prinipal assumptions on whih the proof bases. Let J : Y × U → R and
A : Y × U → Z be ontinuous, Y, U and Z Banah spaes where Y and U are re�exive. Thenproblem (2.28) has an optimal solution ū with optimal state ȳ under the assumptions:
• Uad is onvex, bounded and losed,
• Yad is onvex, losed and (2.28) has a feasible point, i.e.

{(y, u) ∈ Yad × Uad : equation (2.26) (resp. (2.27)) is ful�lled} 6= ∅,
• the ontrol-to-state operator S : Uad → Y is ontinuous and bounded,
• (y, u) ∈ Y × U 7→ A(y, u) ∈ Z is ontinuous under weak onvergene,



2.3 Optimisation with Partial Di�erential Equations 29
• J is weakly lower semiontinuous.For our purpose, we reall the main setting of optimisation problems under instationary partialdi�erential equations, that is based on [115℄. To this we use the weak formulation of Navier-Stokesequations or more general instationary problems, i.e. for given ontrol u ∈ U seek y ∈ Y suh thatfor almost all t ∈ (0, T ) it holds

〈∂ty, ϕ〉Y ∗,Y + 〈A(y, u), ϕ〉Y ∗,Y = 0 ∀ϕ ∈ Yand y(·, 0) = y0. The operator A : Y × U → Z = Y ∗ is in general de�ned for suitable Hilbertspaes Y for the state and U for the ontrol. For the speial ase of Navier-Stokes equationsthis operator is given by the spatial di�erential operators de�ning the linear forms (2.17), (2.18)and (2.19). Moreover, let H be a Hilbert spae whih builds together with Y a Gelfand triple
Y →֒ H ∼= H∗ →֒ Y ∗. A typial hoie for these spaes is as before

Y = {v ∈ H1(Ω) : v|ΓD = 0} and H = L2(Ω)where ΓD denotes the part of the boundary of Ω with presribed Dirihlet boundary onditions.For a time interval (0, T ) we introdue the Hilbert spae W (0, T ) de�ned as
W (0, T ) = {v : v ∈ L2(0, T ;Y ) and ∂tv ∈ L2(0, T ;Y ∗)}.Furthermore, we use the inner produt of L2(0, T ;H) given by

(u, v) = (u, v)L2(0,T ;H) =

T∫

0

(u(t), v(t))H dt,suh that the weak formulation of state equation an be expressed as: for given ontrol u ∈ L2(0, T ;U)seek y ∈ W (0, T ) suh that
(∂ty, ϕ) +

T∫

0

〈A(y(t), u(t)), ϕ(t)〉Y ∗,Y dt = 0 ∀ϕ ∈ W (0, T ) (2.29)and y(0) = y0. By these de�nition the setting of weak instationary Navier-Stokes equation �tsinto the general optimisation problem above, i.e. y ∈ W (0, t), u ∈ L2(0, T ;U). The onreteformulation of ost funtional will be introdued later.Coming bak to the general setting, we assume that via the ontrol-to-state operator S : U → Ywe have a unique solution y to eah ontrol u, so that we an de�ne the redued ost funtional
j : U → R by j(u) = J(S(u), u). Hene, problem (2.28) an be stated as an unonstrained (atleast only onstrained by u ∈ Uad) optimisation problem

min
u∈Uad

j(u). (2.30)Let Uad ⊂ U be non-empty and onvex, J : Y × U → R and A : Y × U → Z be ontinu-ously di�erentiable. If additionally for all u ∈ Uad the state equation possesses a unique solution
y = S(u) ∈ Y and ∂A

∂y (S(u), u) has a bounded inverse, then ū being a solution of redued optimi-sation problem (2.30) satis�es the �rst order neessary optimality ondition (see [88℄)
〈Dj
Du

(ū), u− ū〉U∗,U ≥ 0 ∀u ∈ Uad. (2.31)For the speial ase U = L2(Ω) or U = L2(Γ), Γ ⊂ ∂Ω, and Uad = {u ∈ U : a ≤ u ≤ b},i.e. so-alled box onstraints, we an identify the gradient ∇j(u) = Dj
Du (u) by means of the Rieszrepresentation. Then one gets the well-known equivalent representations of (2.31)i/ ū ∈ Uad, (∇j(ū), u − ū)0 ≥ 0, ∀u ∈ Uad,



30 SIMULATION AND OPTIMISATION OF FLUID FLOWii/ ū ∈ Uad, ∇j(ū)(x)







= 0 if a(x) < ū(x) < b(x),

≥ 0 if a(x) = ū(x) < b(x),

≤ 0 if a(x) < ū(x) = b(x),iii/ for any ε > 0 : ū = PUad
(ū− ε∇j(ū)) with PUad

(u) = min(max(a, u), b).A further simpli�ation an be derived whenever the bounds equal a = b =∞ suh that Uad = Uand the �rst order optimality ondition is hene given by
∇j(u) = 0, ∀u ∈ U.In order to solve the optimisation problem (2.30) we thus need a representation to evaluate at leastthe �rst derivative Dj

Du . We will present (following [88℄) two approahes that are used in the sequel,namely the adjoint-based and sensitivity-based approah. The seond derivative of j(u) might alsobe used for higher order methods (see [28℄ or [86℄), but we will not onern this point and use onlyQuasi-Newton methods like LBFGS method � a detailed overview on used optimisation algorithmsis given in hapter 5.1. For the ase of J being onvex on Uad the �rst order neessary ondition(2.31) is also su�ient for global optimality.The Adjoint ApproahWe state the abstrat optimisation problem (2.28) for the stationary ase as4:
min

(y,u)∈Yad×Uad

J(y, u) suh that A(y, u) = 0 in Ω.Assume that the ost funtional J : Y × U → R and the state equation operator A : Y × U → Zare ontinuously di�erentiable. Let
L(y, u, z) = J(y, u) + 〈z, A(y, u)〉Z∗,Z (2.32)de�ne the Lagrangian funtional L : Y × U × Z∗ → R involving a Lagrange multiplier z ∈ Z∗.Then one gets the optimality system by the stationary points of L whih are andidates for optimalsolutions (for proof see e.g. [73, 157℄).Theorem 2.3.1Assume that for given ontrol u ∈ Uad the state y ∈ Yad satis�es the state equation

∂L

∂z
(y, u, z)ϕ = 〈ϕ,A(y, u)〉Z∗,Z = 0 ∀ϕ ∈ Z∗ (2.33)and that the adjoint state z ∈ Z∗ satis�es the adjoint equation

∂L

∂y
(y, u, z)ϕ = 〈∂J

∂y
(y, u), ϕ〉Y ∗,Y + 〈z, ∂A

∂y
(y, u)ϕ〉Z∗,Z = 0 ∀ϕ ∈ Y (2.34)then the expression for the �rst derivative of (2.30) holds (gradient equation or optimality ondi-tion):

〈Dj
Du

(u), ϕ− u〉U∗,U = 〈∂L
∂u

(y, u, z), ϕ− u〉U∗,U

= 〈∂J
∂u

(y, u), ϕ− u〉U∗,U + 〈z, ∂A
∂u

(y, u)ϕ− u〉Z∗,Z ≥ 0 ∀ϕ ∈ Uad.

(2.35)Sine j(u) = L(S(u), u, z) for arbitrary z ∈ Z∗, a more onvenient way to express the gradient4for sake of simpliity we restrit ourselves to stationary problems and ask the reader to transfer all statementsto the instationary ase whenever needed



2.3 Optimisation with Partial Di�erential Equations 31representation an be given by diret di�erentiation
〈Dj
Du

(u), δu〉U∗,U = 〈∂L
∂y

(S(u), u, z),
DS

Du
(u)δu〉Y ∗,Y + 〈∂L

∂u
(S(u), u, z), δu〉U∗,U .Choosing z = z(u) suh that the adjoint equation (2.34)

〈∂J
∂y

(y, u), ϕ〉Y ∗,Y + 〈z, ∂A
∂y

(y, u)ϕ〉Z∗,Z = 〈∂J
∂y

(y, u), ϕ〉Y ∗,Y + 〈
[
∂A

∂y
(y, u)

]∗

z, ϕ〉Y ∗,Y = 0, ∀ϕ ∈ Yis ful�lled (where [·]∗ denotes the adjoint operator), we get
〈Dj
Du

(u), δu〉U∗,U = 〈∂L
∂u

(S(u), u, z(u)), δu〉U∗,U ∀δu ∈ Uad.Thus, by virtue of (2.35)
Dj

Du
(u) =

∂L

∂u
(S(u), u, z(u)) =

∂J

∂u
(S(u), u) +

[
∂A

∂u
(S(u), u)

]∗

z(u). (2.36)The Sensitivity ApproahInstead of using the adjoint approah to desribe the gradient of redued ost funtional j(u) onemight also use the hain rule to get the sensitivity
Dj

Du
(u)d =

∂J

∂y
(S(u), u)

DS

Du
(u)d+

∂J

∂u
(S(u), u)d.The partial derivatives ∂J

∂y ,
∂J
∂u are usually not that hard to derive analytially, whereas the sensi-tivity/diretional derivative DS
Du (u)d is. An easy (but ostly) approah would be a �nite di�erenequotient

DS

Du
(u) ≈ S(u)− S(ũ)

u− ũ .Alternatively we an also di�erentiate the state equation A(S(u), u) = 0 in diretion d to get thesensitivity equation
∂A

∂y
(S(u), u)

DS

Du
(u)d = −∂A

∂u
(S(u), u)d (2.37)suh that the diretional derivative Dj

Du (u)d requires the solution of system (2.37) for eah diretion.Adjoint Approah vs. Sensitivity ApproahBeside the two approahes (adjoint and sensitivity), whih both aim at omputation of derivativeoperator Dj
Du (u), one might also solve the optimality system onsisting of the oupled equations(2.33), (2.34) and (2.35) at one. This so alled one-shot approah is usually not feasible due to thelose oupling of equations and (after disretisation) due to the resulting huge nonlinear systems.Furthermore, for instationary problems the adjoint equation is stated bakward-in-time leading toadditional ompliations when standard timestepping disretisation will be used. So we restrit tothe two presented approahes.For the adjoint approah omputation of Dj

Du (u) is given in three steps1. solve state equation5 to get state y = S(u):
〈A(y, u), ϕ〉Y ∗,Y = 0, ∀ϕ ∈ Y5we used Z = Y ∗ and assumed that the operator A de�nes a symmetri linear form



32 SIMULATION AND OPTIMISATION OF FLUID FLOW2. solve adjoint equation to get adjoint state z(u):
〈
[
∂A

∂y
(S(u), u)

]∗

z(u), ϕ〉Y ∗,Y = −〈∂J
∂y

(S(u), u), ϕ〉Y ∗,Y , ∀ϕ ∈ Y3. determine Dj
Du (u) =

∂J
∂u (S(u), u) +

[
∂A
∂u (S(u), u)

]∗
z(u)to get the whole derivative Dj

Du (u) independently of the dimension of U . On the other side thesensitivity approah only yields diretional derivatives Dj
Du (u)d in diretion d suh that for B beinga basis of U we need to ompute Dj

Du (u)b, b ∈ B. Eah omputation requires the steps1. solve state equation to get state y = S(u): A(y, u) = 02. solve sensitivity equation to get sensitivity yb = DS
Du (u)b:

∂A

∂y
(S(u), u)yb = −

∂A

∂u
(S(u), u)b3. determine Dj

Du (u)b =
∂J
∂y (S(u), u)yb +

∂J
∂u (S(u), u)b.This summary shows that at a �rst glane one should obviously use the adjoint approah to getthe gradient of the redued ost funtional. Independently of the number of design parametersthere is always only one (linear) adjoint system to be solved to get the gradient of the reduedost funtional, whereas the number of (linear) sensitivity systems grow linearly with the numberof design parameter. But there are still some drawbaks: while the sensitivities an simply bedetermined by solving the linearised state equation (a step that is ommon within eah nonlinearpartial di�erential equation solver), the adjoint equations have to be derived analytially �rst.Moreover, for instationary problems the adjoint equation needs to be solved bakward in time,whereas the sensitivities an be omputed within eah timestep of the state equation solver. Alast remark on the sensitivity approah might be given by the physis of the system. In manyappliations the possible ontrol u within ontrol spae Uad an be expressed in the form

u(x, t) =

K∑

k=1

αkfk(x, t)with K being a small number. Thus the variation of ontrol is per se limited so that sensitivity
Dj
Du (u)αk might diretly be omputed. In the end if the number of parameters αk grows or ifthe ontrol is even given as an in�nite dimensional funtion, e.g. u ∈ L2(∂Ω), the adjoint basedapproah seems to be favourable.2.3.2 Flow Control and OptimisationThe �eld of optimal ontrol in �uid mehanis within omputational siene has beome a large-sale researh disipline starting in the 1990s with pioneering works like [1℄. For an overview onfuntional analyti bakground on optimal ontrol of the instationary Navier-Stokes equations bydistributed ontrol, we refer to [159℄ and referenes therein. A review and plenty referenes of theadjoint equation-based approah for �ow ontrol an be found in [71℄. The use of seond ordermethods and instantaneous ontrol is shown in [87℄. Both works give a omplete bakground fromthe analytial point of view but the solved problems are related to two dimensions and no partiularinterest was put on the numerial requirements. The speial ase of Dirihlet boundary ontrol foroptimisation problems based on (stationary) Navier-Stokes equations an be found in [75℄.As we presented previously we aim at using the adjoint approah as well as the sensitivityapproah for optimisation. A omparison of the apabilities of both approahes will only be done bymeans of an aademial example using the instationary Navier-Stokes equations � this should thenalso give hints how to takle the onsidered optimisation problem of the eletroosmoti miromixer.To this end let us �x the onsidered problem of optimising the �uid �ow of bakward faing stepgeometry �rst.



2.3 Flow Control and Optimisation 33Pressure Driven FlowWe seek an optimal ontrol to the instationary Navier-Stokes equations whih minimises a ostfuntional of traking type. For a presribed solution vd ∈ H1(Ω), whih might be given on thewhole domain Ω or on parts of it, we want to minimise the distane between the solution v ofNavier-Stokes equations and vd � for instationary problems in the mean over time interval (0, T ).The observation volume Ωs ⊂ Ω might be restrited to the area of reirulation behind the step,
min
v,c

J(v, c) =
β1
2

T∫

0

‖v − vd‖2L2(Ωs)
dt+

β2
2
‖v(T )− vd‖2L2(Ωs)

+
λ

2

T∫

0

‖c‖2L2(Γc)
dt. (2.38)Instead of expliit box onstraints for admissible ontrol c, we penalise the ost funtional by anadditional term involving the ontrol c. Suh an enhanement of stability of the optimisationproblem by augmenting through regularisation term is ommonly used within the literature. Theveloity �eld vd is given by the stationary solution of Stokes equations leaving all other data(Reynolds number and boundary values) within the state equation untouhed. For other types ofost funtionals in the framework of �ow ontrol we refer to [85, 100℄ and for results on existeneof solutions see [75, 79, 77, 58℄.For onveniene of the reader we resume the setting of the problem:

• state equations are given with do-nothing boundary formulation as introdued before
Re [∂tv + (v · ∇)v] −∆v +∇p = 0 in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),

v = 0 on Γ0 × (0, T ),

v = c on Γc × (0, T ),

v = vin on Γin × (0, T ),

∂nv − pn = 0 on Γout × (0, T ),

v(·, 0) = v0 in Ω,

(2.39)
• initial ondition v0 is a given funtion in H1(Ω) that mathes the boundary onditions,
• desired state vd is in H1(Ω),
• the regularisation parameter λ is a positive onstant and the oe�ients β1, β2 are non-negative onstants of whih at least one is positive.The Dirihlet boundary onditions for v are extended by a boundary Γc on whih the ontrol cats � a onrete de�nition of the spae used for c will be given later. Up to now we only think ofthe ontrol as an additional in�ow/out�ow where sution or injetion of �uid through ori�es anbe applied.To solve the optimisation problem (2.38) under onstrains (2.39) by means of adjoint approah,we need to derive the adjoint equation and the gradient equation (�rst order optimality ondition)to form the optimality system. First order neessary optimality onditions an be found in manyreferenes � the �rst proof of neessary onditions for the distributed optimal ontrol problemrelated to the Navier-Stokes equations was given in the early work [1℄. Other proofs an be foundin [76, 77℄, [87℄ (where also some regularity problems are addressed) and [100℄. Neessary optimalityonditions for three-dimensional �ow are established in [27℄. A rigorous framework for boundaryontrol of the Navier-Stokes equations an be found in [60, 86℄. Thus, we skip the derivation andjust present the optimality system in weak form. De�ne the spae (with arbitrary Γ ⊂ ∂Ω)

H1
Γ(Ω) = {u ∈ H1(Ω) : u = 0 on Γ}and let Γd = Γ0 ∪ Γin ∪ Γc. To obtain a solution of the optimal ontrol problem, we have to solve(using (2.17), (2.18), (2.19)):
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• for v ∈ vin + L2(0, T ;H1

Γ0
(Ω)), p ∈ L2(0, T ;L2(Ω)) the Navier-Stokes equations with initialondition v(·, 0) = v0:

Re [〈∂tv, ϕ〉 + c(v,v, ϕ)] + a(v, ϕ) + b(ϕ, p) = 0 ∀ϕ ∈ H1
Γ0∪Γin

(Ω)

b(v, ξ) = 0 ∀ξ ∈ L2(Ω)

v|Γc = c

(2.40)
• for z ∈ L2(0, T ;H1

Γd
(Ω)), q ∈ L2(0, T ;L2(Ω)) the adjoint equations with initial ondition

z(·, T ) = β2(vd − v(·, T )):
Re [−〈∂tz, ϕ〉 + c(ϕ,v, z) + c(v, ϕ, z)] + a(z, ϕ) + b(ϕ, q) = (β1(vd − v), ϕ)0 ∀ϕ ∈ H1

Γd
(Ω)

b(z, ξ) = 0 ∀ξ ∈ L2(Ω)(2.41)
• for c ∈ L2(0, T ;L2(Γc)) the gradient equation:

T∫

0

∫

Γc

(λc + ∂nz− qn)χ ds dt = 0 ∀χ ∈ L2(Γc). (2.42)Just for ompleteness we denote the strong formulation of the adjoint equations (see [87℄ for adetailed derivation):
Re
[
−∂tz− (v · ∇)z + (∇v)T · z

]
−∆z+∇q = β1(vd − v) in Ω× (0, T ),

∇ · z = 0 in Ω× (0, T ),

z = 0 on Γd × (0, T ),

∂nz− qn+ (v · n)z = 0 on Γout × (0, T ),

z(·, T ) = β2(vd − v(·, T )) in Ω.

(2.43)The optimality ondition an thus be stated as
λc− qn+ ∂nz = 0 on Γc × (0, T ). (2.44)We see the strongly oupled variables {v, p, z, q, c} within the system (2.40), (2.41) and (2.42)whih is due to the nonlinear harater of the Navier-Stokes equations and of the ost funtional.Having the problem stated, we should state some remarks on the type of ontrol. The Dirihletboundary ontrol c is formally de�ned as the trae of a funtion in H1(Ω) and thus c ∈ H1/2(Γc).De�nition of the ost funtional (2.38) should therefore inorporate this fat and use the H1/2-norm instead of L2-norm on Γc whih means that additional spae derivatives of c must be used.A more generi approah instead would be given by the ost funtional

min
v,c

J(v, c) = J̃(v) +
λ

2

T∫

0

∫

Γc

(|c|2 + λ1|∂xc|2 + λ2|∂tc|2) ds dtleading to an optimality ondition that is a boundary value problem in spae-time for a partial dif-ferential equation along the ontrol boundary Γc (f. [58℄). Nevertheless, also the weaker approahusing the L2(Γc)-norm leads at least numerially to reasonable results, if possibly the regularisa-tion parameter λ is hosen large enough � see [87, 100℄. In addition we remark that the optimalityondition (2.42) and therefore the redued gradient ∇j(c) = λc− qn+∂nz an only be interpretedin the sense of distributions. The optimisation algorithm will obviously be based on evaluationof ∇j(c) to get new boundary ontrol cnew , so that we have to evaluate ∇j(c) to be able to setDirihlet values � a task that was already under onsideration in the last setion where we showeda way to interpret the boundary ondition v|Γ0
= ∇φ.Alternatively the problem of using the orret norm for ontrol within the ost funtional an



2.3 Flow Control and Optimisation 35be avoided, when we use the sensitivity approah. Sine we will ompare the two optimisationapproahes later in the numerial results, we only brie�y de�ne the bak�ow optimisation problemalso in terms of sensitivities. Let the setting be given as before exept the ontrol c on Γc whihis now de�ned as
v = c =

K∑

k=1

αkfk(x, t) on Γc × (0, T ) (2.45)with onstant funtions fk : Γc × (0, T ) → R3 modelling the in�ow on ontrol boundary Γc.This simpli�ation using a linear ombination of ansatz funtions is very handy for notations,nevertheless the ontrol c might also be given as a nonlinear funtion. Only the appearane of(design-)parameter αk is ruial in this formulation. The ost funtional will then be given as
min
v,αk

J(v, αk) =
β1
2

T∫

0

‖v − vd‖2L2(Ωs)
dt+

β2
2
‖v(T )− vd‖2L2(Ωs)

+
λ

2

K∑

k=1

|αk|2. (2.46)Determination of the gradient by diret (formal) di�erentiation yields for k = 1, . . . ,K

DJ

Dαk
= λαk + β1

T∫

0

∫

Ωs

(v − vd)vαi dx dt+ β2

∫

Ωs

(v(T )− vd)vαk
|t=T ds, (2.47)where vαk

= Dv

Dαk
denotes the sensitivities that are given by the sensitivity equations

Re [∂tvαk
+ (vαk

· ∇)v + (v · ∇)vαk
]−∆vαk

+∇pαk
= 0 in Ω× (0, T ),

∇ · vαk
= 0 in Ω× (0, T ),

vαk
= 0 on (Γ0 ∪ Γin)× (0, T ),

vαk
=

∂c

∂αk
on Γc × (0, T ),

∂nvαk
− pαk

n = 0 on Γout × (0, T ),

vαk
(·, 0) = 0 in Ω.

(2.48)
We see that the sensitivity equations are nothing more than the linearised state equations (2.39).Eletrially Exited FlowTo end the setion on �ow ontrol we also want to denote the sensitivity based optimisationapproah for the eletrially exited �uid �ow. Reall the governing equations for the bulk �owwithin the mirohannel

Re[∂tv + (v · ∇)v]−∆v +∇p = 0 in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),

∆φ = 0 in Ω× (0, T ),

∂tc−
1

Re · Sc∆c+ v · ∇c = 0 in Ω× (0, T ),

(2.49)with suitable boundary and initial onditions as introdued before. The reader should be awarethat c now denotes the onentration �eld c : Ω → R and no longer the ontrol. It was alreadyaddressed that the potential φ was motivated in order to manipulate the �ow �eld v to get a better(we will have to de�ne what this means) distribution of onentration c. Hene, the ontrol shouldbe applied to the potential �eld φ. Sine a physial meaningful in�uene on φ an only be given bythe potential di�erene ∆φ between Γin and Γout, we seek to ontrol the boundary values φ|Γoutand taitly assume that φ|Γin = 0.The applied potential on Γout an be supposed to be spatially onstant as we only simulatethe small meander part of the whole mirohannel and expet a linear behaviour of φ within thestraight parts starting from the reservoirs. Thus the modi�ation of φ|Γout will only be temporally



36 SIMULATION AND OPTIMISATION OF FLUID FLOWwith respet to the amplitude and a possible frequeny. If for any reason a periodi alternatingpotential di�erene seems justi�ed, a Fourier series an be used to desribe the temporal hange,i.e. we get the ontrol boundary ondition
φ(t) = φc(t, αk) =

α0

2
+

n∑

k=1

αk cos(kωt) +

2n∑

k=n+1

αk sin((k − n)ωt) on Γout × (0, T ) (2.50)with the frequeny ω = 2π/T . This approah ends up with 2n + 1 parameters to be ontrolled,whih for small n seems reasonable, sine sensitivity equations are stated also forward-in-time inontrast to the adjoint equations (f. (2.43)) � we will go into detail about this fat in Chapter5.1. Obviously there are a lot of other attempts to desribe the boundary ondition (2.50) likea e.g. polynomial series. Whih way is the best has to be based on physial observations andnumerial simulations as we will do in Chapter 6.The sensitivity equations an in any ase be derived also independently of the hoie of ostfuntional (we again use ·αk
= ∂·

∂αk
for the sensitivities):

Re [∂tvαk
+ (vαk

· ∇)v + (v · ∇)vαk
]−∆vαk

+∇pαk
= 0 in Ω× (0, T ),

∇ · vαk
= 0 in Ω× (0, T ),

∆φαk
= 0 in Ω× (0, T ),

∂tcαk
− 1

Re · Sc∆cαk
+ vαk

· ∇c+ v · ∇cαk
= 0 in Ω× (0, T ).

(2.51)Boundary onditions were also linearised and using the pressure-drop formulation are:
vαk
|Γ0

= −Π2∇Φαk
, ∂nvαk

|Γin∪Γout = 0,

pαk
|Γin∪Γout = 0,

φαk
|Γin = 0, φαk

|Γout =
∂φc
∂αk

, ∂nφαk
|Γ0

= 0

cαk
|Γin = 0, ∂ncαk

|Γ0∪Γout = 0.
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Chapter 3Disretisation and Sequential SolverAs shown in the previous hapter, adjoint-based optimisation as well as sensitivity-based opti-misation for �uid �ow problems yield systems of similar type. First there is obviously the stateequation given by Navier-Stokes equations (with additional equations for potential and onentra-tion), but also the adjoint equations and sensitivity equations are of linearised Navier-Stokes type.We pointed out that takling the optimisation problem using an optimisation algorithm based onthe redued ost funtional, neessitates the solution of both state and adjoint/sensitivity equationsto derive the gradient.The following hapter will therefore onentrate on numerial solution of these equations,i.e. disretisation of the underlying partial di�erential equations by means of �nite element methodand solution of algebrai system by suitable linear solvers. Sine major issues arise from the saddlepoint struture of Navier-Stokes equations, we will stik to the abstrat equations
∂tv −∆v +N(v) +∇p = 0,

∇ · v = 0,
(3.1)from whih state equations itself and also sensitivity/adjoint equations an be reovered. Convetion-di�usion and Laplae equation in the omplete system might be deoupled from the Navier-Stokesequations so that this strategy seems justi�ed. Prinipally we will work out numerial methods forsolving the disrete system using iterative solvers and Multilevel ILU-based preonditioners - thissequential solver/preonditioner will be the basis for parallel solver/preonditioner introdued inChapter 4.3.1 Finite Element Method for Navier-Stokes EquationsA further simpli�ation of the general problem (3.1) allows to treat also the Stokes problem bynegleting the nonlinear term N(v). We will thus �rst show the disretisation for Stokes equa-tions only and then mention aspets, how these results an be transferred to the equations underonsideration - namely the nonlinear state equations and the linear adjoint/sensitivity equations.These steps obviously omprise the disretisation itself in spae-variables but also linearisation ofthe nonlinear system and aspets of disretisation in time. Beside the here used disretisation by�nite element method there are other approahes for the disretisation of Navier-Stokes equationsor more general for �uid �ow problems - these omprise �nite di�erene or �nite volume methods(f. [125℄) as well as lattie Boltzmann methods (f. [98℄).The spatial disretisation of Navier-Stokes equations by means of �nite element approximationbases on disrete representation of the weak formulation for the underlying ontinuous equations.For the sake of simpliity we restrit ourselves to systems with homogeneous Dirihlet boundaryonditions for the veloity, i.e. v|∂Ω = 0 and refer to Setion 2.2 for used notation.Remark 3.1.1 (Treatment of general boundary onditions)The weak formulation (2.20) is equipped with inhomogeneous Dirihlet boundary onditions, whihare essential for this formulation, i.e. they are imposed by the funtion spae H1

g(Ω). For the more



40 DISCRETISATION AND SEQUENTIAL SOLVERgeneral ase of hannel �ows, we also have to treat the out�ow ondition ∂nv− pn on Γout or thepreviously presented weak formulation of pressure-drop. In the ase of inhomogeneous boundaryonditions on Γd ⊆ ∂Ω, we assume a funtion g ∈ H1/2(Γd) given as trae of a funtion in H1(Ω)whih have to ful�l ∫

Γd

g · n ds = 0whenever Γd = ∂Ω due to ontinuity equation. The test funtions ϕ will always be given in H1
Γd
(Ω),i.e. have homogeneous boundary onditions on Γd.Within �nite element disretisation the inhomogeneous boundary onditions are usually treatedby a boundary interpolant gh, f. [138℄. One �rst hooses a funtion gh that is in Vh,Γd
, therestrition of the �nite element spae Vh ⊂ H1(Ω) to the boundary Γd, and approximates g. Thenthe approximate problem is stated for vh ∈ Vh suh that vh|Γd

= gh.Using Lagrangian �nite element spaes the interpolant gh an simply be hosen as the funtionvalues of g at degrees of freedom on Γd. The theoretial aspets like div-stability and error-estimatesarry over to the ase of inhomogeneous boundary ondition exept for the onstants - we refer to[51, 62, 78, 74℄ for details.The boundary onditions for Γout on the other hand are not that ompliated. As alreadymentioned the do-nothing ondition
∫

Γout

(∂nv − pn) · ϕ ds ∀ϕ ∈ V ⊂ H1(Ω)naturally appears when deriving the weak formulation of Navier-Stokes equations (2.20). The onlyhange that has to be made is about the funtion spae V for test funtions ϕ. Instead of imposingzero boundary ondition on the whole boundary ∂Ω, i.e. using H1
0(Ω), we now use

V = {v ∈ H1(Ω) : v = 0 on ∂Ω\Γout}.For the pressure-drop formulation we only have to impose zero boundary ondition on the han-nel walls, for trial and test funtions, sine the boundary ondition is inorporated into the weakformulation.For the homogeneous weak form of (2.20) we now introdue the Galerkin formulation of �niteelement approximation. In the usual manner �rst one hooses approximating �nite dimensionalspaes Vh and Sh for the veloity and pressure, where the index h shows dependene on anassoiated mesh with harateristi size h. Then one replaes the in�nite dimensional spaes in(2.20) by the �nite ones, i.e. seek vh(t) ∈ Vh ⊂ H1
0(Ω) and ph(t) ∈ Sh ⊂ L2

0(Ω) suh that
vh(0) = Ih(v0) and for almost all t ∈ (0, T ) it holds1

Re [(∂tvh, ϕh) + c(vh,vh, ϕh)] + a(vh, ϕh) + b(ϕh, ph) = 〈f , ϕh〉 ∀ϕh ∈ Vh

b(vh, ξh) = 0 ∀ξh ∈ Sh

(3.2)where Ih(v0)(x) is a suitable approximation to the initial data. In this work we only onsiderthe onforming Galerkin formulation, i.e. the �nite dimensional spaes Vh and Sh are subsets of
H1

0(Ω) resp. L2
0(Ω). The last step to get an algebrai system for the �nite element approximationto Navier-Stokes equations is to identify bases for Vh and Sh and to express the trial and testfuntions as linear ombinations of the basis-funtions. Additionally a linearisation method mustbe applied sine the resulting system is nonlinear - we will disuss this aspet in the following.Furthermore for the instationary ase a time-disretisation has to be performed. We will use asemi-disrete approah, resulting in a nonlinear system for eah timestep that is obviously sim-ilar to the stationary system. Conrete numerial methods for the linear system arising in eahtimestep/linearisation-step will be the subjet of the next setion.The presented results onerning the �nite element method are of summarising harater sine1for sake of simpliity and readability we will use Re = 1 in the following



3.1 The Stationary Case: Spae Disretisation 41the emphasis of this work is put on implementation issues. For a more detailed overview on the�nite element method for Navier-Stokes equations there exists a whole bunh of literature - forthe more theoretial aspets we refer to [61, 62, 152℄, while the books [37, 47, 72, 126℄ also overaspets of implementation and appliations. The books of Gresho and Sani [68, 67℄ provide anextensive overage of the �nite element method related to inompressible �ows, the reader will also�nd detailed referene tables within.Finite Element MeshSine the �nite element approximation spaes Vh, Sh rely on the de�nition of underlying meshes,we have to view the domain Ω (bounded, open and onneted) as disretised into Ωh where Ωhdoes not need to be equal to Ω. Let Th(Ωh) be a partition (also alled mesh) of the domain Ωhinto M onvex elements/ells Km 6= ∅ suh that
Ωh =

M⋃

m=1

Km, K̊m ∩ K̊n = ∅ for m 6= n

∂Km is Lipshitz-ontinuous for all Km ∈ Thwhere K̊m is the interior of ell Km. The ondition K̊m ∩ K̊n = ∅ means that two ells at mostshare edge/verties in 2D or fae/edges/verties in 3D. We de�ne the harateristial mesh size hto be the maximum diameter of all ells, i.e.
hm = diam(Km) ≤ h ∀Km ∈ Th.Together with the de�nition

ρm = sup{diam(B) : B is a ball ontained in Km}we de�ne the regularity of a ell Km to be
σm =

hm
ρmand say that the mesh Th is regular if there exists a onstant σ ≥ 1 independent of h and Km,suh that

σm ≤ σ ∀Km ∈ Th.In this work we only onsider polygonal domains Ω ⊂ R2 or polyhedral domains in R3 whih gives
Ω = Ωh and denote the �nite element mesh by Th. If not stated di�erently the boundary of Ω isdenoted by Γ. Furthermore we only use �nite elements that are de�ned on quadrilaterals in 2Dor hexahedrons in 3D. The use of isoparametri elements would also allow urved boundaries, ifthese boundaries are smooth enough. For an overview on general onstrution of �nite elementswe refer e.g. to hapter 4 in [37℄ or hapter 6 in [120℄.3.1.1 The Stationary Case: Spae DisretisationWe will �rst show the disretisation with respet to the spatial variables, i.e. we restrit ourselvesto the homogeneous stationary Navier-Stokes equations. Hene, after the de�nition of subspaes
Vh ⊂ H1

0 (Ω) and Sh ⊂ L2
0(Ω) we seek for vh ∈ Vh, ph ∈ Sh suh that

a(vh, ϕh) + c(vh,vh, ϕh) + b(ϕh, ph) = 〈f , ϕh〉 ∀ϕh ∈ Vh,

b(vh, ξh) = 0 ∀ξh ∈ Sh.
(3.3)To be even more restritive we �rst neglet the nonlinear term c(vh,vh, ϕh) and show aspets ofsuitable �nite element approximation for the homogeneous Stokes equations

a(vh, ϕh) + b(ϕh, ph) = 〈f , ϕh〉 ∀ϕh ∈ Vh,

b(vh, ξh) = 0 ∀ξh ∈ Sh.
(3.4)



42 DISCRETISATION AND SEQUENTIAL SOLVERIn omparison to oerive partial di�erential equations, we already showed in Setion 2.2 thatthe inf-sup ondition onneting the spaes Vh and Sh is of major importane for saddle pointproblems. While the inlusions Vh ⊂ H1
0 (Ω), Sh ⊂ L2

0(Ω) preserve ontinuity of a(·, ·), b(·, ·)and oerivity of a(·, ·) when using a onformal Galerkin method, there is in general no reason forthe inf-sup ondition to be valid in the disrete spaes. Hene for the disrete spaes Vh, Sh theessential onditions are:1. Continuity for the linear forms (2.17)-(2.19): a ∈ L(Vh ×Vh,R), b ∈ L(Vh × Sh,R) and
c ∈ L(Vh ×Vh ×Vh,R), i.e. there exist positive onstant κa, κb and κc (independent of h)suh that

|a(uh,vh)| ≤ κa‖uh‖1‖vh‖1 ∀uh,vh ∈ Vh,

|b(vh, qh)| ≤ κb‖vh‖1‖qh‖0 ∀vh ∈ Vh, qh ∈ Sh,

|c(wh,uh,vh)| ≤ κc‖uh‖1‖vh‖1‖wh‖1 ∀uh,vh,wh ∈ Vh.These onditions are valid for the entire spaes H1(Ω), L2(Ω) and therefore arry over tothe spaes Vh, Sh. For the �rst two onditions f. [34℄ and the third ondition is proven inChapter 2.1 [62℄.2. Coerivity ondition for the linear form a(·, ·): there exists a positive onstant γa (indepen-dent of h) suh that
sup

06=vh∈Zh

a(zh,vh)

‖vh‖1
≥ γa‖zh‖1, ∀zh ∈ Zh. (3.5)This ondition inorporates the inompressibility onstraint of Navier-Stokes equations bymeans of the spae Zh := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Sh} of disretely divergene freefuntions, to the well known oerivity ondition. Its validity follows from the oerivity ofthe linear form a(·, ·), i.e. a(v,v) ≥ γa‖v‖21 for all v ∈ H1

0(Ω) and the inlusion Zh ⊂ H1
0(Ω).3. Ladyzhenskaya-Babuska-Brezzi (LBB) or inf-sup ondition: there exists a positive onstant

γb (independent of h) suh that
inf

06=qh∈Sh

sup
06=vh∈Vh

b(vh, qh)

‖vh‖1‖qh‖0
≥ γb. (3.6)Sine even the onform Galerkin approah Vh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω) does not guaranteethat the inf-sup ondition is ful�lled, this ondition has to be proven for eah hoie of �niteelement spaes separately.Under these onditions, similar to Setion 2.2, we have the entral theorem for the approximatesolution vh, ph of the Stokes problem (3.4) (f. [47, 62℄ for proof).Theorem 3.1.1Assume that Vh and Sh are �nite-dimensional subspaes of H1

0(Ω) resp. L2
0(Ω). The disreteproblem (3.4) is well-posed in the sense of Hadamard:

• there exists a unique solution vh, ph

• the solution ontinuously depends on the data f , i.e.
‖vh‖1 ≤

1

γa
‖f‖−1 and ‖ph‖0 ≤ 1

γb
(1 +

κa
γa

)‖f‖−1if and only if the disrete spaes ful�l the inf-sup ondition (3.6).In this ase the solution vh, ph satis�es the estimates
‖v − vh‖1 ≤ c1 inf

uh∈Vh

‖v − uh‖1 + c2 inf
qh∈Sh

‖p− qh‖0

‖p− ph‖0 ≤ c3 inf
uh∈Vh

‖v − uh‖1 + c4 inf
qh∈Sh

‖p− qh‖0
(3.7)



3.1 The Stationary Case: Spae Disretisation 43where the onstants ci just depend on κa, κb, γa and γb and are independent of h whenever γb isindependent of h.This theorem shows that one the inf-sup ondition is satis�ed, the error in the �nite elementapproximation depends only on the ability to approximate in the hosen �nite element subspaes.A detailed introdution to �nite element interpolation theory an be found in [34, 120, 148℄ - inthe following we only show approximation properties for the used Lagrange �nite elements.We have seen that for well-posedness and onvergene of the disrete solution of the homoge-neous Stokes equations (3.4) it is primarily the disrete inf-sup ondition that has to be proved,sine the ontinuity and oerivity onditions are given by the hoie of a onform Galerkin ap-proah. For this task we want to mention an often used riterion by Fortin [53℄Lemma 3.1.1 (Fortin riterion)Assume that the inf-sup ondition for the ontinuous spaes X = H1
0(Ω), M = L2

0(Ω) is satis�edwith onstant β∗ > 0. Furthermore assume that there exists an operator τh : X → Vh ⊂ X suhthat
b(u− τh(u), qh) = 0 ∀u ∈ X, qh ∈ Sh ⊂M

‖τh(u)‖1 ≤ C∗‖u‖1 ∀u ∈ Xwhere C∗ > 0 does not depend on h. Then, the inf-sup ondition (3.6) is satis�ed with γb = β∗

C∗
.Also the opposite diretion is valid.Now we ome bak to the inhomogeneous Navier-Stokes equations (3.3) and ask for the sameapproximation results as in Theorem 3.1.1. Sine a detailed derivation of suh error-estimates isbeyond the sope of this work, we just state the main results and refer to [36, 91, 61, 62, 152℄ for alldetails. First we assume that there exists a unique solution to the stationary weak Navier-Stokesequations v ∈ V = {u ∈ H1

0(Ω) : ∇ · u = 0}, p ∈ L2
0(Ω), so that for some δ > 0

Re2κ̃‖f‖V∗ < 1− δ, κ̃ = sup
u,v,w∈V

|c(w,u,v)|
|w|1|u|1|v|1

. (3.8)Additionally we need two approximation properties of the spaes Vh and Sh:H1/ there exists a mapping τh ∈ L(H2(Ω) ∩H1
0(Ω),Vh) suh that

(qh,∇ · (u− τh(u)) = 0 ∀qh ∈ Sh, u ∈ H2(Ω) ∩H1
0(Ω)

‖τh(u)− u‖1 ≤ Ch‖u‖2 ∀u ∈ H2(Ω) ∩H1
0(Ω)H2/ the orthogonal projetion operator ρh on Sh satis�es

‖q − ρh(q)‖0 ≤ Chm‖q‖m ∀q ∈ Hm(Ω) ∩ L2
0(Ω), m = 0, 1.Theorem 3.1.2Under the approximation properties H1, H2 and (3.8), the problem (3.3) for h su�iently smallhas a unique solution vh, ph and

lim
h→0
|v − vh|1 = 0.If in addition the solution v, p belongs to H2(Ω)× (H1(Ω)∩L2

0(Ω)), we have the following estimate
|v − vh|1 ≤ Ch(‖v‖2 + ‖p‖1).For the proof we refer to [61℄ and just remark that besides the ondition for uniqueness this theoremrelies on the inf-sup ondition and the interpolation property of �nite element spaes. Indeed, usingFortin riterion together with an interpolation error result like it is shown next, we see that theproperties H1 and H2 are ful�lled.
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Figure 3.1: Mapping FK from referene to arbitrary ell in 3D using 8 basis funtions at the verties.3.1.2 Taylor-Hood ElementThe inf-sup ondition (3.6) was shown to be ruial for the approximation in the �nite dimensionalspaes Vh, Sh, so that we need to introdue a pair satisfying this ondition. In the following wesolely use Lagrange �nite elements, in whih all degrees of freedom are point values at spei� nodalpoints. Beside the Lagrange elements there are also so alled Hermite �nite elements, involvingdiretional derivatives as degrees of freedom. We refer to [120℄ or [34℄ for a detailed introdution tothe theory of �nite elements. Following the de�nition of [34℄ a Lagrange �nite element is a triplet
{K,P,Σ} wherei/ K is a ompat, onneted, Lipshitz subset of Rd with non-empty interior. Furthermore onede�nes a set of points {a1, . . . , anlo} in K alled nodes or Lagrange nodes and the subset Kitself is denoted as a ell.ii/ P is a vetor spae of funtions p : K → R alled the loal interpolation spae.iii/ Σ is a set of nlo linear forms {Φ1, . . . ,Φnlo} ating on the elements of P suh that Φi(p) =

p(ai), i = 1, . . . , nlo. Furthermore the linear mapping
p ∈ P 7→ (Φ1(p), . . . ,Φnlo(p)) ∈ Rnlois bijetive - so alled P -unisolvene of the set Σ. The linear forms Φi are alled loal degreesof freedom and due to the evaluating harater at the nodes ai, one often identi�es the nodeswith the degrees of freedom.A diret onsequene of the P -unisolvene is the existene of a basis {p1, . . . , pnlo} in P suh that

Φi(pj) = pj(ai) = δij , i, j = 1, . . . , nlo. This basis is alled loal shape funtions or nodal basis.Let now Th be a mesh of the domain Ω. Instead of speifying a Lagrange �nite element for eahell K ∈ Th we de�ne a referene ell K̂ and transform the referene �nite element (K̂, P̂ , Σ̂). Forthe two-dimensional ase we de�ne the element [0, 1]2 as referene ell K̂ - in three dimensions weuse [0, 1]3. On the referene ell basis/shape funtions p̂i and referene nodes âi are assumed tobe given by the hosen Lagrange �nite element approah. In order to determine basis funtions pion an arbitrary mesh ell K with nodal points ai, we de�ne a mapping FK : x̂ ∈ K̂ 7→ x ∈ K by
x = FK(x̂) =

n∑

i=1

aip̂i(x̂), (3.9)where the number n ≤ nlo of basis funtions depends on the loal interpolation spae and theintended harater of the transformation. Obviously one gets K = FK(K̂) and aj = FK(âj). Sinein general the mapping FK is nonlinear, the ells K are arbitrary straight or urved-sided elementsaording to the number of basis funtions de�ning FK in (3.9). See Figure 3.1 for the mappingin 3D using 8 basis funtions at the verties of the unit-hexahedron. Now the basis funtions on a



3.1 Taylor-Hood Element 45ell K are given by
pi(x) = p̂i(F

−1
K (x)) with x = FK(x̂).This de�nition only holds for FK being invertible, whih is equivalent to a non-vanishing Jaobianand hene to a ell K being onvex. Summing up, a generi Lagrange �nite element (K,PK ,ΣK)in the mesh Th is suh that

K = FK(K̂)

PK = { p : K → R , p = p̂ ◦ F−1
K , p̂ ∈ P̂}

ΣK = {p(FK(âi)), i = 1, . . . , nlo}.Before de�ning the here used Lagrange �nite elements in depth, we need to introdue the loal andglobal interpolation operator. Let (K,P,Σ) be a generi �nite element as shown above. Assumethat there exists a normed vetor spae V (K) suh that P ⊂ V (K) and suh that the degrees offreedom Φi(v), i = 1, . . . , nlo are well de�ned for all v ∈ V (K). We de�ne the loal interpolationoperator IK unambiguously (beause of P -unisolvene) by
IK : v ∈ V (K) 7→ IKv =

nlo∑
i=1

Φi(v)pi =

nlo∑
i=1

v(ai)pi ∈ P. (3.10)For the Lagrange �nite elements the spaes V (K) = C0(K) or V (K) = Hs(K) with s > d/2 aresuitable. The global interpolant Ihv on the mesh Th is then spei�ed elementwise using the loalinterpolation operator (3.10)
(Ihv)|K = IK(v|K), ∀K ∈ Thand hene we have the global interpolation operator Ih

Ih : v ∈ D(Ih) 7→ Ihv =
∑

K∈Th

nlo∑
i=1

v(aK,i)pK,i ∈ Vh, (3.11)where the domain D(Ih) is C0(Ωh) orHs(Ωh) with s > d/2. The odomain of Ih is alled the global�nite element approximation spae Vh and sine we are working with onformal �nite elements ithas to ful�l Vh ⊂ H1(Ω). To ensure this onformity we need an additional ondition for the mesh
Th: any fae of a ell Km is either also a fae of another ell Kn or part of the boundary ∂Ω. Ifnow two neighbouring ells Km and Kn with sets of degrees of freedom {aKm/n,i}, i = 1, . . . , nloful�l

Fm,n = {aKm,1, . . . , aKm,nlo} ∩Kn = {aKn,1, . . . , aKn,nlo} ∩Km = Fn,mwe have the set of global Lagrange nodes/degrees of freedom of Th
Nh = {a1, . . . , aN} =

⋃

K∈Th

{aK,1, . . . , aK,nlo}.Then it is su�ient for Vh to be H1-onform (f. [47℄) that funtions in Vh are ontinuous at thenodes in Nh, i.e. v(aKm,i) = v(aKn,i), ∀i ∈ Fm,n. Furthermore the set Nh of global degrees offreedom allows for the de�nition of global basis funtions in Vh via
ϕi ∈ Vh and ϕi(aj) = δij , i, j = 1, . . . , Nand hene the desription of the global interpolation operator Ih (3.11) as
Ih : v ∈ D(Ih) 7→ Ihv =

N∑

i=1

v(ai)ϕi ∈ Vh. (3.12)Obviously the global basis funtions ϕi are ompositions of the loal funtions pK,i.Now we are able to introdue the Taylor-Hood Element and more general Qk/Qk−1 elementswith k > 1. A major reason for this hoie should be mentioned beforehand: as opposed to the lass
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Figure 3.2: Taylor-Hood element on quadrilateral and hexahedron: bi-/tri-quadrati veloity and bi-/tri-linear pressure. Only visible degrees of freedom are shown - × veloity nodes and ◦ pressurenodes.of pieewise linear or bilinear veloity �elds ombined with pieewise onstant or linear pressure,this element is de�ned on the same mesh for both �nite element spaes Vh and Sh. All otherombinations of linear/onstant or linear/linear elements are only inf-sup stable if the veloity�eld is de�ned on the �ner mesh Th/2. For other stable elements or stabilisation tehniques toirumvent the inf-sup ondition, we refer to [37, 126℄ and referenes therein.Due to the above de�nition of Lagrange �nite elements, it is enough to speify the loal inter-polation spae P̂ and the set of Lagrange nodes âi. Let Qk(K̂) denote the spae of polynomialson K̂ of degree less than or equal to k in eah of the oordinate diretions
Qk(K̂) = {q̂ =

k∑

i,j=0

αij x̂1
ix̂2

j , αij ∈ R} in 2D,
Qk(K̂) = {q̂ =

k∑

i,j,l=0

αijlx̂1
ix̂2

j x̂3
l, αijl ∈ R} in 3D.The interpolation spae on an arbitrary mesh ell K is then aording to the previous de�nedmapping FK

PK = Qk(K) = {q = q̂ ◦ F−1
K : q̂ ∈ Qk(K̂)}and the loal shape funtions are given by the Lagrange polynomials in the variables xi. The setof nodes âi, whih we identi�ed with the degrees of freedom, depends on the polynomial order kand is shown for the ase k = 1, 2 in Figure 3.2. Finally the global H1-onform Lagrange �niteelement spae of order k is

Qk(Th) = {u ∈ C0(Ω) : u|K ∈ Qk(K), ∀K ∈ Th} (3.13)and the Taylor-Hood element pair is de�ned by (f. Figure 3.2)
Vh = {uh ∈ [Qk(Th)]d : uh|Γ = 0} ⊂ H1

0(Ω) with k = 2,

Sh = {qh ∈ Ql(Th) ∩ L2
0(Ω)} ⊂ H1(Ω) ∩ L2

0(Ω) with l = 1.
(3.14)Having de�ned the global approximation spae (3.13) and the global interpolation operator Ih(3.12), we now have the following error-estimate to judge the quality of Qk elements - for a proofwe refer to [47℄ or [62℄ and remark that an analogue result holds for the 3D ase.



3.1 Linearisation of Navier-Stokes Equations 47Theorem 3.1.3 (Lagrange �nite element interpolation error)Let the Lagrange �nite element spae Qk(Th) be as in (3.13) and assume that Th is a regular meshof the polygonal domain Ω ⊂ R2. Let the global interpolation operator to the spae Qk(Th) bedenoted by Ikh . Then, there exists a onstant c suh that for all h > 0 and v ∈ Hk+1(Ω)

‖v − Ikhv‖0 +
k+1∑

m=1

hm
( ∑

K∈Th

‖v − Ikhv‖2m
) 1

2 ≤ chk+1|v|k+1.In partiular, sine Qk(Th) is H1-onform
|v − Ikhv|1 ≤ chk|v|k+1.To state the �nal error-estimate for the Taylor-Hood element it is now enough to prove theinf-sup ondition and use Theorem 3.1.1 in ombination with the interpolation Theorem 3.1.3above. The validity of inf-sup ondition for the Taylor-Hood element an be proven in di�erentway, e.g. by Verfürth's proof [47, 158℄ or usage of maro elements [62℄ - we just give the resultingerror-estimate for the �nite element interpolation of Stokes-equation.Theorem 3.1.4 (Taylor-Hood error-estimate)Let Ω be a bounded, plane polygon and let the solution (v, p) of the homogeneous Stokes problemsatisfy

v ∈ Hk+1(Ω) ∩H1
0(Ω), p ∈ Hk(Ω) ∩ L2

0(Ω), k = 1, 2.If the mesh Th is regular, the solution (vh.ph) of the weak problem (3.4) with spaes Vh, Sh de�nedin (3.14) satis�es the estimate:
|v − vh|1 + ‖p− ph‖0 ≤ chk(|v|k+1 + |p|k), k = 1, 2. (3.15)When Ω is onvex, the additional estimate holds:
‖v − vh‖0 ≤ chk+1(|v|k+1 + |p|k), k = 1, 2. (3.16)This inf-sup stable element was originally stated by Taylor and Hood [151℄ for triangles butStenberg showed the same results also for the ase of quadrilaterals [146℄ and hexahedrons [147℄.Espeially for the ase of k = 2 the estimates (3.15) and (3.16) show one order higher auraythan an be ahieved by any element involving linear veloity, whih is a further reason to preferthe Taylor-Hood element versus any ombinations of linear/onstant or linear/linear elements.3.1.3 Linearisation of Navier-Stokes EquationsThe �nite element approximation of Navier-Stokes equations (3.3) leads to a nonlinear systemof algebrai equations. These equations might be written down expliitly after identi�ation ofbases for Vh, Sh in terms of the disrete versions of linear forms (2.17) - (2.19). For sake ofsimpliity we will show the linearisation by Newton's method in terms of equation (3.3) and onlyafterwards identify the linear algebrai system. Other linearisation methods like �xed Jaobianmethod, Broyden's method or Oseen linearisation were not under investigation due to the (at leastloally) quadrati onvergene of Newton's methods [62, 78℄. The main disadvantage of Newton'smethod, namely the fat that at eah step a new Jaobian has to be omputed, an be shown tobe of minor onern sine this step an be parallelised perfetly on high-performane omputers.Let Vh, Sh be a stable pair of �nite element spaes and let [vk

h, p
k
h] ∈ Vh × Sh be the urrentiterate, then the next iterate of Newton's method might be omputed by solving the linearised
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a(vk+1

h , ϕh) + c(vk+1
h ,vk

h, ϕh) + c(vk
h,v

k+1
h , ϕh) + b(ϕh, p

k+1
h )

= 〈f , ϕh〉+ c(vk
h,v

k
h, ϕh) ∀ϕh ∈ Vh,

b(vk+1
h , ξh) = 0 ∀ξh ∈ Sh,

(3.17)where vk+1
h ful�ls the same boundary onditions as vk

h. A more onvenient way to perform Newtoniteration is given by the defet-orretion notation: for a general nonlinear problem F (x) = 0 aformal Taylor-expansion around x̄ yields
F (x) = F (x̄) +DF (x̄) · δx+ 1

2!
D2F (x̄) · δx2 + . . .+

1

n!
DnF (x̄) · δxn +Rn(x)with δx = x − x̄ and the remainder term Rn(x) = 1

(n+1)!D
n+1F (ξ) · δxn+1, ξ lying on the linesegment between x and x̄. After dropping terms of order higher or equal to 2, the Newton iterationreads

DF (xk) · δx = −F (xk), xk+1 = xk + δx. (3.18)Using this notation allows a formulation in terms of the residual −F (xk), whih will also beused in the sequel for timestepping methods. Furthermore this form prevents numerial errors forDirihlet boundary values as we an set these values diretly in the disrete vetors xk and justset the orresponding rows in DF (xk) to identity. A speial version of Newton's method (withinglobalisation and inexat linear solver) in terms of algorithmi proedure is given in Algorithm 2.To end this subsetion we want to present the resulting algebrai system for Newton's method.Let [vk
h, p

k
h] be the solution of the last Newton step and [ϕh, ξh] be the test funtions, then lineari-sation of the weak momentum and ontinuity equation is given by

D[vk
h,p

k
h]

[
a(vk

h, ϕh) + c(vk
h,v

k
h, ϕh) + b(ϕh, p

k
h)
]
[δv, δp]

= a(δv, ϕh) + c(δv,vk
h, ϕh) + c(vk

h, δv, ϕh) + b(ϕh, δp),

D[vk
h,p

k
h]

[
b(vk

h, ξh)
]
[δv, δp]

= b(δv, ξh).Hene, Newton iteration (3.18) for stationary Navier-Stokes equations is given by
(
A+ L(vk) BT

B 0

)(
δv
δp

)

= res((vk
pk

)

),

(
vk+1

pk+1

)

=

(
vk

pk

)

+

(
δv
δp

)

. (3.19)Here we already used the algebrai notation that an be derived after identi�ation of bases in the�nite element spaes Vh, Sh. Let {ϕj
h} be a basis of Vh and let {ξlh} be a basis of Sh, then weare able to formulate the approximative solution in terms of �nite element oe�ients [v, p], i.e.

vh =

dn∑

j=1

vjϕ
j
h with n trial funtions per veloity omponent and vj ∈ R

ph =
m∑

l=1

plξ
l
h with m trial funtions for the pressure and pl ∈ R

(3.20)and v = [vj ]j=1,...,dn, p = [pl]l=1,...,m. We use the notation [v, p] to indiate the vetor representingthe �nite element oe�ients, whih should not be mixed up with the ontinuous funtions v, pfor veloity and pressure. Furthermore, one gets the �nite element matries
[M ]ij = (ϕj

h, ϕ
i
h), [A]ij = a(ϕj

h, ϕ
i
h) i, j = 1, . . . , dn

[B]lj = b(ϕj
h, ξ

l
h) l = 1, . . . ,m, j = 1, . . . , dn

[C(vk)]ij = c(ϕj
h,v

k
h, ϕ

i
h) i, j = 1, . . . , dn

[L(vk)]ij = c(ϕj
h,v

k
h, ϕ

i
h) + c(vk

h, ϕ
j
h, ϕ

i
h) i, j = 1, . . . , dn

(3.21)



3.1 The Instationary Case: Time Disretisation 49the external fore vetor
[F ]i = 〈f , ϕi

h〉 i = 1, . . . , dnand the residual vetor for i = 1, . . . , dn and l = 1, . . . ,mres((vk
pk

)

) =

(
〈f , ϕi

h〉 − a(vk
h, ϕ

i
h)− c(vk

h,v
k
h, ϕ

i
h)− b(ϕi

h, p
k
h)

−b(vk
h, ξ

l
h)

)

=

(
F −Avk − C(vk)vk −BT pk

−Bvk
)

.

(3.22)The system (3.19) shows the typial struture of a disrete saddle point problem having a sti�-ness matrix with a zero blok in the lower right part, whih again underlines the need of stabledisretisation.3.1.4 The Instationary Case: Time DisretisationConsider now the semi-disrete weak instationary Navier-Stokes problem (3.2), for whih the anal-ysis has been provided in [83℄ and following papers by Heywood and Rannaher - we just remarkthe main result on onvergene.Remark 3.1.2 (Convergene of approximate solutions)Assume that Vh and Sh is a pair of �nite element spaes satisfying the inf-sup ondition (3.6).Furthermore assume that for all u ∈ H1
0(Ω) and q ∈ L2

0(Ω) the �nite element approximationsatis�es
inf

uh∈Vh

‖u− uh‖1 + inf
qh∈Sh

‖q − qh‖0 = O(h).Notie that espeially the above de�ned Taylor-Hood element pair is suitable for this ondition.Then one an prove the error-estimate for the solution of the semi-disrete sheme, assuming thatthe solution v, p has suitable regularity.
‖v(t)− vh(t)‖0 ≤ C1(t)h

2, ‖p(t)− ph(t)‖0 ≤ C2(t)hwhere the onstants Ci(t) might exponentially grow if the data is not small enough.For the numerial solution of (3.2) we follow the θ-family methods as disretisation in timefollowed by a Newton iteration in spae using inf-sup stable �nite element pair as desribed in thepreeding subsetion. This way is often alled method of lines meaning that �rst a disretisationof spae variables is done, whih formally results in a system of ordinary di�erential equations.Afterwards a ommon time disretisation sheme is used to solve the system of the form
(∂tvh, ϕh) = F (f ,vh, ph;ϕh) ∀ϕh ∈ Vh. (3.23)To be as general as needed we do not state the ODE-system, but use the disrete weak formulation(3.2) to de�ne the timestepping methods used here.Given a �xed numberN > 0, the time interval [0, T ] is partitioned into subintervals [ti, ti+1], i =

0, . . . , N − 1 with ∆ti = ti+1 − ti and tN = T . For the sake of simpliity we hose equidistant
∆ti = ∆t = T/N and use the notation tk = k∆t, vk

h = vh(x, tk) and pkh = ph(x, tk) for the disreteapproximation in the k-th timestep. Aordingly, we de�ne fk = f(x, tk) to be the external foreevaluated at disrete steps. The θ-family of methods now determines the new solution at time
tk+1 = tk+∆t by a weighted average of ∂tvh(tk) and ∂tvh(tk+1) with a parameter θ in the interval
[0, 1]:

vh(tk+1)− vh(tk)

∆t
= θ∂tvh(tk+1) + (1− θ)∂tvh(tk) +O((

1

2
− θ)∆t,∆t2).The terms ∂tvh(·) will be replaed using (3.23). This disretisation is onditionally stable for θ <

1/2 and unonditionally stable for θ ≥ 1/2. Furthermore, the trunation error O((1/2−θ)∆t,∆t2)shows that seond order auray is only given for the hoie θ = 1/2 whih is the well knownCrank-Niolson sheme. For these lassial results we refer to [26℄ or the more involved books



50 DISCRETISATION AND SEQUENTIAL SOLVERsheme step α1 α2 α3 α4 α5 ∆tforward Euler tk−1 → tk 0 ∆tn ∆tn ∆tn 0 ∆tnbakward Euler tk−1 → tk ∆tn ∆tn 0 0 ∆tn ∆tnCrank-Niolson tk−1 → tk ∆tn/2 ∆tn ∆tn/2 ∆tn/2 ∆tn/2 ∆tnFS (substep 0) tk−1 → t0k βθ∆tn θ∆tn γθ∆tn θ∆tn 0 θ∆tnFS (substep 1) t0k → t1k γθ̃∆tn θ̃∆tn βθ̃∆tn 0 θ̃∆tn θ̃∆tnFS (substep 2) t1k → t2k = tk βθ∆tn θ∆tn γθ∆tn θ∆tn 0 θ∆tnTable 3.1: Timestepping parameter for several one-step shemes.[81, 162℄. Other time-disretisation methods like leap-frog sheme or Adams-Bashforth methodthat are also seond order aurate, or even higher-order Runge-Kutta methods are not treatedhere, sine we onentrate on single step method, i.e. those that only need the last state vh(tk) todetermine the new solution vh(tk+1).Hene, our timestepping sheme relies on the problem: for given initial state v0
h ∈ Vh �nd

(vk
h, p

k
h) ∈ Vh × Sh for k = 1, 2, . . . , N by solving the nonlinear system
(vk

h, ϕh) + α1 n(v
k
h, ϕh) + α2 b(ϕh, p

k
h) = (vk−1

h , ϕh)

−α3 n(v
k−1
h , ϕh) + α4(f

k−1, ϕh) + α5(f
k, ϕh) ∀ϕh ∈ Vh

b(vk
h, ξh) = 0 ∀ξh ∈ Sh

(3.24)with n(vk
h, ϕh) = a(vk

h, ϕh) + c(vk
h,v

k
h, ϕh). The upper index now indiates the disrete timestepand no longer the index of Newton iteration. We will larify this notation whenever onfusionmight arise. The hosen formulation (3.24) - see also [92℄ - easily allows to desribe ommon usedone-step fully impliit or expliit timestepping shemes by setting the parameters αi appropriately- for impliit/expliit Euler, Crank-Niolson and frational-step θ-sheme (FS) onsider Table 3.1.Sine the disrete system of the Navier-Stokes-equations is usually highly sti�, often only impliitor semi-impliit shemes are hosen. Nevertheless we also want to omment on the expliit Euler,sine no nonlinear system needs to be solved in eah timestep. Only a kind of mass-matrix has to befatorised one and an be used throughout all timesteps by means of matrix-vetor multipliation.Crank-Niolson ShemeThe disrete system for timestepping based on Crank-Niolson sheme is

(vk
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∆t
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]
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h) =

∆t

2
〈fk + fk−1ϕh〉, ∀ϕh ∈ Vh,

b(vk
h, ξh) = 0 ∀ξh ∈ Sh.After identi�ation of basis funtions (3.20) the resulting nonlinear algebrai will be solved byNewton's method similar to the stationary ase. We therefore introdue the residual at the k-thtimestep and i-th Newton step as (ompare to (3.22) for notation)res((vk,i

pk,i

)

) =
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(vk−1
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∆t
2
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k−1ϕh〉

−b(vk,i
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)and solve the system via Newton's method
(
M + ∆t

2 [A+ L(vk,i)] ∆tBT
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)

),
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)

=
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+
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)

.After say imax Newton steps, the approximate solution at timestep k is given as
(
vk

pk

)

=

(
vk,imax
pk,imax) .



3.1 The Instationary Case: Time Disretisation 51For the initial iterate in timestep k one should use the solution of the last timestep, i.e. [vk,0, pk,0] =
[vk−1, pk−1] sine for small timesteps ∆t and/or little hange in the veloity- and pressure-�eld thehange between two suessive timesteps is small.While the impliit Euler sheme is perhaps the most lassial timestepping sheme and obviouslyeasy to implement, the Crank-Niolson sheme attains better auray at the same omplexity fornonlinear systems to be solved at eah timestep. Both methods are moreover unonditional stable,suh that the advantage of impliit Euler sheme might only be given by its numerial dampingproperty.Expliit/Forward EulerFor the expliit time-disretisation of Navier-Stokes equations one enounters the system

(vk
h, ϕh) + ∆t b(ϕh, p

k
h) = (vk−1

h , ϕh) + ∆t
[
〈fk−1, ϕh〉 − n(vk−1

h , ϕh)
]

∀ϕh ∈ Vh
b(vk

h, ξh) = 0 ∀ξh ∈ Sh

(3.25)or equivalently the algebrai system
(
M ∆tBT

B 0

)(
vk

pk

)

=

(
Mvk−1 +∆t

[
F k−1 −Avk−1 − C(vk−1)vk−1

]

0

)

. (3.26)We see that the saddle point struture is still present, but that the system matrix is linear andonstant for all timesteps. Hene it an be fatorised one and only update steps have to beperformed afterwards.Conlusively we show that this expliit sheme an be interpreted in the sense of the wellknown Chorin-Temam projetion method. The priniple of the projetion method is a separationof veloity and pressure �eld operators whih leads to an intermediate state for the veloity that hasto be projeted onto the spae of solenoidal funtions. It was originally stated as a frational-stepsheme in the work of Chorin [33℄ and Temam [152℄ - for details we refer there. The �rst step inthis method only treats the ontinuity equation in (3.2) and aims at determining an intermediateveloity �eld vk+1int by solving
(
vkint − vk−1

h

∆t
, ϕh) + a(v∗, ϕh) + c(v∗,v∗∗, ϕh) = 〈fk−1, ϕh〉 ∀ϕh ∈ Vh. (3.27)The veloities v∗,v∗∗ an be hosen aording to the desired timestepping method, i.e.

v∗ = v∗∗ = vk−1
h results in expliit Euler method,

v∗ = vk−1
h and v∗∗ = vkint results in a semi-impliit method,

v∗ = v∗∗ = vkint results in impliit Euler method.The seond step determines the solution [vk
h, p

k
h] by projetion of the intermediate veloity vkintsolving

(vk
h, ϕh) + ∆t b(ϕh, p

k
h) = (vkint, ϕh) ∀ϕh ∈ Vh,

b(vk
h, ξh) = 0 ∀ξh ∈ Sh.

(3.28)We see that the resulting problem for the seond step has the struture of the Stokes problem andthat the arising matrix equals the one in (3.25). If we now take the expliit version of �rst step,i.e. v∗ = v∗∗ = vk−1
h , we an diretly insert the term for the intermediate veloity (vkint, ϕh) from(3.27) into (3.28) and �nd the proposed expliit timestepping sheme (3.26).In ontrast to the lassial two step Chorin-Temam sheme, we avoid replaing the seond stepby a reformulation as pressure Poisson-equation. This an be done by using the inompressibility-ondition ∇·vk+1 = 0 and applying the divergene operator to the onservation of mass equation,yielding the Poisson problem for the pressure

∆pk+1 =
1

∆t
∇ · vk+1int in Ω.



52 DISCRETISATION AND SEQUENTIAL SOLVERThis equation now needs to be equipped with boundary onditions for the pressure variable, whihare not stated in the original setting and therefore lead to ontroversy about the right hoie.For an extensive disussion to the pressure Poisson equation espeially onerning the boundaryonditions, we refer to [66℄. The ontroversy about non-physial boundary onditions for thepressure is a potential drawbak of the Chorin-Temam projetion method, whih an be preventedby using the proposed sheme (3.25).Nevertheless the advantage of expliit shemes is the fat that a kind of onstant iteration matrixan be stated for eah timestep tk → tk+1. In the ase of paraboli di�erential equations withoutonstraints (like the ontinuity equation) this matrix simply turns out to be the mass matrix. Ane�etive way to approximate the mass matrix by a diagonal matrix is known as lumping. The mass-matrix M = mij = (ϕj
h, ϕ

i
h) is replaed by the diagonal matrix M with mii =

n∑

j=1

mij . It an beshown that this approximation an be interpreted as a quadrature rule only using funtion valueson Lagrangian nodes - see [32, 118℄ for details and error approximations. Using the lumped mass-matrix obviously results in an expliit timestepping sheme, whih is ompletely free of the needto invert any matrix. Hene, the sheme will possess ideal harateristis for parallel omputationas we show in Chapter 5.2 for the optimisation of an instationary salar-valued problem. A �nalremark on expliit timestepping is inevitable: ompared to the impliit shemes, one will alwaysbe faed with a stepsize restrition of the form ∆t ≤ Ch2 to ensure stability.Frational Step θ ShemeBesides these lassial one-step time disretisation shemes, the formulation (3.24) allows also forthe frational step θ-sheme, whih bases on three substeps with suitable hosen parameter αi -f. Table 3.1. In ontrast to the Euler shemes above, the frational step θ-sheme uses three steps(with n(vk
h, ϕh) = a(vk

h, ϕh) + c(vk
h,v

k
h, ϕh)):step1
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h , ϕh)− γθ∆t n(vk−θ

h , ϕh) + θ∆t(fk−1, ϕh) ∀ϕh ∈ Vh,

b(vk
h, ξh) = 0 ∀ξh ∈ Sh.Originally, the sheme was proposed as an operator splitting method [25, 64, 63℄ separating thenonlinear onvetive term and the inompressibility ondition. One full timestep ∆t in the fra-tional step θ-sheme onsists of a yle of three substeps tk−1 → tk−1+θ → tk−θ → tk and eahsubstep is approximately of the same omputational omplexity as one step of the standard Crank-Niolson-sheme. To see this we an write all three steps as nonlinear algebrai system
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Mvk−1 − α3
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)

.As indiated by the hoie of parameter αi, both Crank-Niolson-sheme and frational step θ-sheme have α1 6= 0 and α2 6= 0 resulting in the same omplexity for solving a nonlinear system.We want to end this setion by a brief overview on analytial results onerning the frational step
θ-sheme. Following the standard approah [26℄ of stability analysis for numerial methods for



3.2 Iterative Solver and Preonditioner 53ODEs, we use the salar-valued model for t ∈ (0, T )

du(t)

dt
= λu(t) and u(0) = u0with solution u(t) = eλtu0. Now the iteration uk = Rθ(∆tλ)u

k−1, x = ∆tλ yields for the frationalstep θ-sheme a rational approximation to the exponential funtion, i.e. the stability funtion
Rθ(x) =

(1 + βθ̃x)(1 + γθx)2

(1 − βθx)2(1− γθ̃x)
= ex +O(x3).The parameters are to be hosen suh that θ ∈ [1/2, 1), θ̃ = 1 − 2θ, β ∈ [0, 1] and γ = 1 − β.For θ = 1 − 1/

√
2 the sheme has seond order auray and for β > 1/2 it is strongly A-stable -f. [97, 117℄ for a proof. If one additionally hooses β = (1− 2θ)/(1− θ) we have that βθ = γθ̃ andhene α1 identially for eah substep, whih means that the di�usion and onvetion operators anbe treated in the same way in eah substep. Compared to the previous mentioned shemes, thefrational step θ-sheme ombines the advantages of impliit Euler and Crank-Niolson-sheme,namely the seond order auray and (by strong A-stability) the full smoothing property, whihis essential in the ontext of rough initial or boundary data. Supplementary to these theoretialresults, the frational step θ-sheme also showed very good numerial properties [90℄.3.2 Iterative Solver and PreonditionerAs shown in the previous setion we use Newton's method to solve the nonlinear system arising from�nite element based disretisation of the Navier-Stokes equations. In reent years espeially forlinear systems arising from the �eld of partial di�erential equations preonditioned Krylov subspaemethods have made good progress to be ompetitive with sparse diret solvers. As the size of thelinear system is beoming larger (due to re�nement of the mesh Th) and its nonzero struture isbeoming denser (due to more ouplings in 3D disretisations and unstrutured meshes) iterativemethods are even superior to diret solvers in the sense of omputational time and memory osts.Another advantage of iterative solvers ompared with diret solvers is the possibility to ontrolthe error and therefore the e�ort of the solver. Sine the disretisation of the underlying partialdi�erential equation is given with an inherent disretisation error it is of minor importane to solvethe arising linear system with higher auray than this error. Furthermore, the linear systems haveto be solved in an outer/Newton loop whih also allows for an inexat inner solver with possibleadaptive onvergene riteria. Nevertheless, it is well known that the onvergene behaviour of aniterative Krylov solver strongly depends on an adequate use of preonditioners. For these reasonsin the sequel we will present a multilevel ILU-based preonditioner for the iterative linear solverand also study some adaptive onvergene riteria for the linear solver within Newton's method.3.2.1 Multilevel ILU PreonditionerDisretisation and linearisation of the Navier-Stokes equations lead to a linear saddle point problemof the abstrat form - see (3.19)
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b

, (3.29)whih has to be solved in eah step of an iterative nonlinear solver, e.g. Newton's method (seeAlgorithm 2). A similar system also arises for the instationary equations, where only the terms
A+L(vk) and BT have to be modi�ed. In this subsetion we present an ILU-based preonditionerfor iterative solvers of linear systems of the form (3.29). If not stated di�erently the preonditioneris inorporated into a right preonditioned restarted GMRES solver for the solution of the linearsystem Ax = b to generalise notation2 (see [65, 95, 134℄ for the algorithmi desription and [46℄ for2we will use the notation A for the entire system matrix throughout this setion



54 DISCRETISATION AND SEQUENTIAL SOLVERa theoretial analysis). For the preonditioning step vi+1 = AMvi within Arnoldi-proess and forthe update/restart xk = x0+MkV yk, we hoose the matrixM to be a multilevel inomplete LDU-fatorisation of the linearised system-matrixA as desribed in the sequel. Hene, the preonditioner
M an be applied e�iently by using bak substitution to solve linear systems having triangularoe�ient matries. Before going into the spei�s, we summarise the approah.First, we apply preproessing to make the oe�ient matrix A more suitable for inompletefatorisation. To this end, several approahes were onsidered. The �rst possibility is to normalise
A, i.e. to simply sale olumns and subsequently the rows of A to norm 1, whih is very heap toalulate and results in some ases in a better balaned matrix. The seond possibility onsideredwas to �rst normalise A and then to apply the standard PQ-reordering [135℄ to aim at making aninitial blok of A more suitable for inomplete LDU-fatorisation by improving diagonal dominaneand sparsity. A third possibility under onsideration was to permute the rows of A and to saleboth the rows and olumns so that A is transformed into an I-matrix, i.e. a matrix having elementsof absolute value of 1 on the diagonal and elements of at most absolute value of one elsewhere.Heuristially, it is lear that I-matries should be more suitable for (inomplete) LDU-fatorisationsthan general matries and this has also been on�rmed experimentally, see [15℄. Note furthermorethat I-matries are preserved if rows and olumns are permuted using the same permutation.Hene, also a permutation an be determined next suh that an initial blok of the oe�ientmatrix has better diagonal dominane and sparsity properties as desribed in [114℄.One result should be mentioned in advane: normalisation of A appeared to perform better formatries arising from the disretisation of 3D problems, while for the 2D ase PQ-reordering gotbetter performane - preproessing to an I-matrix was not suitable at all. Espeially generationof I-matrix with additional permutation, took relatively long omputational time or needed large�ll-in not to drop entire rows, whih often led to arithmeti over- and/or under�ows. For thesereason we will onentrate on normalisation and PQ-reordering of A for the Navier-Stokes solverin further researh and therefore only PQ-reordering will be explained in detail.After applying the permutation, we ompute an inomplete LDU-fatorisation based on Crout'simplementation of Gaussian elimination and threshold based dropping to preserve sparsity. If apivot having an absolute value of less than min_pivot (usually 0.01) enounters while the elimi-nation proess, we terminate the regular fatorisation phase aimed at obtaining triangular fators
L and U and proeed instead in alulating an approximate Shur omplement S. This ompletesthe �rst level of the multilevel fatorisation.Setting A = S, we proeed reursively and obtain further levels until the oe�ient matrixhas been fatored entirely. The whole preonditioning proess is summarised in the �owhart 3.3.We need to emphasise that at the beginning of eah level, we preproess the new matrix justas the original oe�ient matrix and that the possibility of using preproessing between levelsdistinguishes this approah from single-level fatorisations.Preproessing by PQ-ReorderingFor eah index k = 1, . . . , n, n being the dimension of A, we determined a weight wk by

wk =
1

nnz(Ak,:)
·

max
j=1,...,n

|Ak,j |

||Ak,:||1
.Here, Ak,: refers to the kth row of A. Furthermore, nnz denotes the number of non-zero elements ofa vetor and || · ||1 the 1-norm. Clearly, large values for wk indiate that the kth row is fairly sparseand/or has an element whih is fairly large in absolute value when ompared to the remainingelements of that row. Hene, we selet the row for whih wk is largest to be the �rst row of thepermuted matrix and we permute the olumn of A ontaining largest element by absolute valueof the row seleted onto the diagonal. We proeed with the remaining rows analogously. In otherwords, we hoose the row for whih wk is seond largest to be the seond row of the permutedmatrix and permute olumns so that the largest element by absolute values is again moved ontothe diagonal provided that this is possible. It ertainly is possible that the largest element byabsolute value of a partiular row is in a olumn whih has already been seleted and permuted ina previous step. In this ase, we annot move the largest element by absolute value of this row onto



3.2 Multilevel ILU Preonditioner 55begin:matrix Apreproessmatrix
A → Ã

fatorisation:eliminaterow andolumn wholematrixfa-torised?omputeShur om-plement S pivotless thanmin_pivot? end:
M ≈ A−1

yesnonoyesA = S, next level
Figure 3.3: Multilevel preonditioning proess.the diagonal. Hene, we rejet this row and move it to a high index arbitrarily. In this manner,we obtain a new matrix whih has better properties for a large initial blok and a �nal blok ofrejeted rows. For details and other approahes see [135℄.Multilevel FatorisationsFor simpliity, we begin by desribing a omplete multilevel LDU fatorisation as developed in [23℄and [135℄. We split the preproessed square oe�ient matrix Ã into a blok matrix

Ã =

(
B F
E C

)suh that the diagonal bloksB and C are square matries. Next, we alulate an LDU fatorisation
B = LBDBUB of B and obtain

(
B F
E C

)

=

(
LB 0
EB I

)(
DB 0
0 S

)(
UB FB

0 I

)

.Thus, LB is a unit lower triangular, UB is a unit upper triangular and DB is a diagonal matrix.The matries EB and FB are formally given by EB = EU−1
B D−1

B and FB = D−1
B L−1

B F and
S = C − EBDBFB denotes the Shur omplement. However, in pratie, these matries arealulated by Gaussian elimination and not by the formulas above. Next, we proeed reursivelyby setting A = S, preproess to obtain a new Ã and fatoring one more. After a ertain numberof levels, we �nish by ompletely fatoring the �nal Shur omplement.Note that in pratie, the blok struture of Ã does not need to be determined in advane. It ispossible to begin fatorisation, to terminate whenever this seems to be a good idea and to proeedin alulating the Shur omplement. Hene, the blok struture is determined during the ourseof fatorisation. For the results in this work, we terminated the level whenever the absolute valueof the pivot was less than 0.01.The atual fatorisation used is based on Crout's implementation of Gaussian elimination inthe form presented in [103℄. To use this fatorisation, the matrix A needs to be available in eitherompressed sparse row or olumn format, see [133℄. In a Crout fatorisation, L is alulated byolumns and U by rows, so that the former is stored naturally in ompressed sparse olumn formatand the latter in ompressed sparse row format. However, during the kth step of elimination, weneed to aess both the kth row and olumn of A, L and U as shown in Algorithm 1. Obviously,as eah matrix is only available in one format, aessing them by both by rows and olumns is
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row z

olumn wFigure 3.4: Computational pattern for Crout fatorisation at k-th step where k-th row of U (denoted by
z) and k-th olumn of L (denoted by w) are omputed by means of the entries in blue area.not possible in this form. However, rows and olumns are aessed in their natural order, so it ispossible to implement some additional, rather intriate, data strutures of dimension 3n for eahmatrix to solve this problem, see [103℄ for details.Algorithm 1 ILUC - Crout version of ILU.for k = 1, ..., n doinitialise row z : z1:k−1 = 0, zk:n = ak,k:nfor i = 1, ..., k − 1 and lki 6= 0 do

zk:n = zk:n − lkiui,k:nend forinitialise olumn w : w1:k = 0, wk+1:n = ak+1:n,kfor i = 1, ..., k − 1 and uik 6= 0 do
wk+1:n = wk+1:n − uiklk+1:n,iend forapply dropping rule to row z and olumn w

uk,: = z
l:,k = w/ukk, lkk = 1end forThe Dropping RuleAlthough a larger number of di�erent dropping rules are available to ensure sparsity suh as thestandard dual threshold strategy, see [133℄, or the inverse-based approah, see [22℄ and [103℄, wehose to use a tehnique whih attempts to minimise the propagation of errors during the ourseof fatorisation, see [113℄. This tehnique is somewhat better than the standard strategy and asgood as the inverse-based strategy for most problems. However, the inverse-based strategy requiresmore omputational time, so we used the error-based approah. Let w denote the kth olumn of L,

zT the kth row of U and d the pivot being alulated in the kth step of elimination (see Figure 3.4for the omputational pattern). In subsequent elimination steps, the Shur omplement would bemodi�ed by the matrix wdzT if no dropping were performed. Hene, the error made in droppingelement wi in w an be estimated by |wi| · |d| · ||z||1. The error-based strategy drops wi if
|wi| · ||z||1 < τholds for a given (�xed) threshold τ ≥ 0. Atually, it would seem more natural to drop wi if

|wi| · |d| · ||z||1 < τ , however this would result in many elements being dropped whenever |d| is very



3.2 Numerial Results for the Multilevel ILU Preonditioner 57Parameter desription reommend/used valueThreshold dropping tolerane τ = 10−t t ∈ [1, 3]min_pivot tolerane for termination of onelevel 0.01Preproessing_Type di�erent orderings of initial ma-trix 0 = normalisation of A,1 = PQ-reordering,several other I-matrix basedreorderings and permutationsare availablePreonditioner_Number type of inomplete fatorisation 1010 for multilevel ILUC fa-torisationmax_levels maximum number of levels 10Table 3.2: Parameters for the multilevel ILU preonditioner by ILU++.small. Experimentally, this appears to be harmful. Similarly, an element zi is dropped only if
||w||1 · |zi| < τ.Implementation DetailsThe whole framework of multilevel preonditioner desribed above is given by the objet-orientedC++ software pakage ILU++ [112℄. The interfae is very simple and the user an ompute a solutionof a linear system in a single step. The allsolve_with_multilevel_preonditioner(ROW,val,ja,ia,...,param)omputes the preonditioner, applies a linear solver and returns the solution. It is assumed thatthe oe�ient matrix A is stored in ompressed sparse row format. val, ja and ia are standardtemplate library vetors ontaining the adjaeny struture and values of A. A similar all an beused if the data are stored in traditional C-style arrays or for matries in ompressed sparse olumnformat. param is an objet ontaining the atual parameters used for setting up the preonditioner.However, for our tests, we used an alternative whih allowed us to inorporate the ILU++multilevel preonditioner in several iterative solvers. This approah required two steps to setupthe preonditioner and single all to apply the preonditioner to a vetor. First, we need to delarethe preonditioner with the alliluplusplus::multilevel_preonditioner Pr.Next, we setup the preonditioner for a matrix A stored in ompressed sparse row format by allingPr.setup(val, ja, ia, ROW, param).The parameters of ILU++ preonditioner, as indiated in the Table 3.2, an be set in the param�eld. After setting up the preonditioner, it may be applied to a standard template library vetorv by allingPr.apply_preonditioner(v).Again, a similar all exists if v is a C-style array.3.2.2 Numerial Results for the Multilevel ILU PreonditionerAll alulations were done by the �nite element software HiFlow2 with an interfae to the preon-ditioner ILU++, ompiled with the GNU g ompiler in version 4.4.3. We used a ompute-serverwith Intel Xeon X5540 CPU at 2.53 GHz and 6 GB of main memory for all 2D alulations,whereas for the 3D alulations a main memory of 12 GB was used. Here we show the in�uene ofdi�erent thresholds on the solution time and memory osts (�ll-in ratio) for di�erent problems ofhannel �ows in 2D and 3D as presented in Chapter 1. Instead of solving Navier-Stokes equations,
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Figure 3.5: Results for the multilevel preonditioner with normalisation and PQ-reordering in the 2Dase of bak�ow geometry using di�erent threshold.we �rst hoose to solve only Stokes equations at Reynolds number 42.0 to get rid of in�uenesof the nonlinear Newton-solver on the linear solver. Furthermore, we ompared the behaviour ofthe solver when di�erent preproessing routines, i.e. normalisation and PQ-reordering, were per-formed on the initial matrix A. For all tests (exept for the diret solver) we terminated the linearsolver after 5000 GMRES-steps (with restart eah 30 steps) or when the residual in k-th steps,i.e. rk = b−Axk, ful�ls
‖rk‖2 < max(10−9 · ‖r0‖2, 10−12).The 2D CaseIn the 2D ase suitable preonditioners (with respet to fast omputational times) were ahievedwith normalisation and PQ-reordering - but it should be mentioned that the PQ-reordering pro-dues more stable solvers in the sense of arithmeti over�ows. As shown in Figure 3.5 for thebak�ow geometry a mesh dependent threshold t ∈ [2.0, 2.5] results in best solution time. Whilethe number of GMRES-steps dereases the bigger the threshold is hosen, the �ll-in obviously in-reases, where we observe a slightly higher �ll-in for the normalisation ompared to PQ-reordering.Dependene on the mesh, i.e. on the size of the system matrix, an be explained heuristially: atsmall sizes the matrix-vetor multipliation is obviously fast, so that additional osts for setup ofthe preonditioner and additional elements within the preonditioner weight at lot. The bigger



3.2 Numerial Results for the Multilevel ILU Preonditioner 59Geometry system matrix GMRES/ILU++ GMRES/ILU(0) UMFPACKsize nnz steps time steps time time2Dbak�ow 32243 1290969 148 3.47 se >5000 >83 se 0.88 se2Dbak�ow 127843 5151529 357 40 se >5000 >351 se 6.34 se2Dbak�ow 509123 20581449 328 331 se >5000 >1366 se 53 se2Dmeander 15443 595449 51 0.72 se >5000 >37 se 0.23 se2Dmeander 59683 2358889 200 8.24 se >5000 >158 se 1.24 se2Dmeander 234563 9389769 158 93.6 se >5000 >711 se 7.5 seTable 3.3: Comparison of iterative and diret solver for the 2D ase. For the GMRES results thebest/fastest version of ILU++ preonditioner is used.the matrix size the more time is spend on a simple matrix-vetor multipliation and therefore adenser preonditioner is of smaller onsequene for the total solver time. This observations holdstrue until the threshold is suh high that the setup of preonditioner dominates the whole solutionproess. For the multilevel approah while setting up the preonditioner almost always just two orthree levels are used and in the ase of normalisation of A we even restrit to only one level, sineafter a small pivot ours the Shur omplement matrix at next level would not be permuted (justnormalised) and therefore the matrix would not be in a better shape.Finally for matries arising from 2D-disretisations a omparison to a diret solver like UMFPACK[38℄ shows disadvantage for preonditioned iterative solvers if the absolute omputational time forthe linear solver is of importane - see Table 3.3 for details. Only if in addition the storage hasstrit limitations an iterative solver will be superior to a diret solver. Nevertheless, ompared toone of the most often used preonditioners, namely ILU(0) deomposition of the system matrix,we ahieve muh better results sine the GMRES solver with ILU(0) preonditioner throughoutneeded more than 5000 steps and a dediated pivoting method due to the lower right zero-blokin the sti�ness matrix.Remark 3.2.1Besides the pure algebrai observations on solver time and �ll-in, a notieable di�erene for thesolver an be observed, when boundary onditions are hanged. In Figure 3.6 we ompared thepressure-drop boundary ondition to the do-nothing ondition (as introdued in Chapter 2), andnotied a better behaviour for the pressure-drop ondition. Thus, also the algebrai solver seems tobe in�uened by a more physial hoie.The 3D CaseIn the 3D ase we ahieve quite the same results. For system matries A as shown in Table 3.5,we found that normalisation of A results in a faster preonditioner than PQ-reordering, whih isobvious sine no permutation is done. Compared to the 2D ase, where normalisation of A oftenled to arithmeti under- or over�ow, the struture of 3D matries seems to be more robust in thatsense. Furthermore, the �ll-in is muh lower, sine the entries of the matrix A are of order O(h3)instead of O(h2), with h being the size of a mesh-ell. However, a threshold about 2.0 is alsoenough to ahieve good, i.e. fast, preonditioners. Comparisons with a diret solver in the 3D ase,as shown in Table 3.5, shows the advantage of preonditioned iterative solvers over diret methods.The latter takes muh more omputational time or even ran out of memory, whih is given due tomore ouplings of degrees of freedom in the 3D ase and therefore a denser disretisation matrix,for whih the fatorisation is harder to ompute and results in more �ll-in. We ompared the �ll-infor L, U matries of the UMFPACK solver and L, D, U matries of the ILU++ preonditioner inboth 2D and 3D ase of bak�ow geometry (f. Table 3.4) to underline the di�erene of 2D and3D disretisation matries.Main onlusions one an draw for the proposed multilevel preonditioner in the 3D ase (weonly report the results of the bak�ow geometry - see Figure 3.7 - these oinide with the ones formeander geometry):
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Figure 3.6: Results for the multilevel preonditioner with PQ-reordering in the 2D ase of meandergeometry using di�erent threshold. Comparison of di�erent boundary-onditions used fordisretisation.
Geometry solver/preond size of A nnz(A) nnz(LU) �ll-in2Dbak�ow UMFPACK 32243 1290969 7494013 5.812Dbak�ow ILU++ (t = 2.0) 32243 1290969 3179869 2.463Dbak�ow UMFPACK 62344 12408076 111783808 9.013Dbak�ow ILU++ (t = 2.0) 62344 12408076 6908249 0.56Table 3.4: Fill-in for diret solver UMFPACK and ILU++ preonditioner.



3.2 Numerial Results for the Multilevel ILU Preonditioner 61Geometry system matrix GMRES/ILU++ UMFPACKsize nnz storage steps time time3Dbak�ow 8666 1595386 18.4 MB 20 0.37 se 0.92 se3Dbak�ow 62344 12408076 143 MB 32 5.49 se 41.6 se3Dbak�ow 472748 97872616 1130 MB 93 116 se out of memory3Dmeander 8034 1232626 14.2 MB 13 0.22 se 0.31 se3Dmeander 51368 9227116 106 MB 27 3.32 se 5.44 se3Dmeander 363948 71349736 821 MB 95 84.3 se 274 seTable 3.5: Numerial settings of the preonditioner tests on 3D disretisations. Additionally the resultsof the iterative solver is given ompared to a diret solver.
• allowing slightly more �ll-in (by inreasing the threshold) results in a major derease ofGMRES-iterations,
• �ll-in for the preonditioner is nearly negligible for thresholds beneath 2.5,
• time for solving the linear system depends diretly on the threshold - more threshold resultsin lower solver-times but more time is spent for setup of the preonditioner, whih giveshigher overall solution-time,
• optimal threshold in the sense of overall solution-time is in the range of [1.5, 2.25] dependingon the size of the matrix, i.e. the level of mesh re�nement, whih is less than in the 2D ase,
• while using approximately the same omputational time, PQ-reordering allows less �ll-in butuses more GMRES-steps ompared to normalisation of A,
• for the PQ-reordering of A in most ases 2 or 3 levels of the multilevel approah are enough,while for normalisation of A restrition to one level is hosen as mentioned above.So we onlude that a multilevel preonditioner based on preproessing and ILU-deompositionwith variable threshold dropping rule is superior to a diret solver for the disretisation of 3D Stokesand Navier-Stokes equations. For almost all testases a threshold of τ = 10−t with t ∈ [1.5, 2.25]ahieved the best performane in the sense of overall omputational time for the linear solver andsimultaneously uses a reasonable �ll-in.Remark 3.2.2All results were given on the basis of disretisation of Stokes equations, suh that Newton's methodonly needs one single step. However, the results were the same for the full Navier-Stokes equations,when the average of all Newton-steps is taken - see Figure 3.8. We almost always needed 6 Newtonsteps to get the desired relative residual of 10−9 for the nonlinear equation, where the stoppingriteria for the linear solver in eah step are hosen as before - this turns out to be not that goodidea, as we will see below.Outlook on Parallel Solver Using Multilevel ILU PreonditionerThe presented results are just based on sequential solver. For �ner meshes and espeially for 3Ddisretisations the number of degrees of freedom easily grows up to an order of 106, whih prohibitsthe use of sequential solver for reasons of omputational time and memory osts. A possible wayto use multilevel ILU preonditioners in the framework of parallel solvers will be given in Chapter4 where we present two approahes:1. parallel blok Jaobi preonditioner with loal multilevel ILU deomposition as shown in thissetion,2. inexat parallel Shur omplement solver based on multilevel ILU deomposition as preon-ditioner for global iterative method.
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Figure 3.7: Results for the multilevel preonditioner with normalisation and PQ-reordering in the 3Dase of bak�ow geometry using di�erent threshold.
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Figure 3.8: Results for the multilevel preonditioner with normalisation of A in the 3D ase of bak�owgeometry using di�erent threshold. Comparison of mean value for all Newton-steps of Navier-Stokes solver to Stokes solver.3.2.3 Inexat Newton Method with Adaptive Foring TermsAlgorithm 2 Inexat damped Newton method.let x0, ηmax ∈ [0, 1), t ∈ (0, 1) be given; set k = 0while ‖F (xk)‖ > max(atol, rtol · ‖F (x0)‖) and k < maxits dohoose foring term ηk ∈ [0, ηmax] and δxk suh that
‖F (xk) + F ′(xk)δxk‖ ≤ ηk‖F (xk)‖while ‖F (xk + δxk)‖ > [1− t(1 − ηk)]‖F (xk)‖ dohoose damping parameter λ ∈ [0, 1] e.g by Armijo Baktraking rule

δxk = λδxk and ηk = 1− t(1 − ηk)end whileupdate solution xk+1 = xk + δxk; k = k + 1end whileIn the previous subsetion we worked out results for linear solver only using Stokes equations asmodel problem. The results for Navier-Stokes equations are the same if the average of all Newton-steps is taken. Nevertheless, there remains some doubt if we solve nonlinear systems with Newton'smethod and do not use a diret solver in eah step. The ommon onvergene theory of Newton'smethod depends on the fat, that the resulting linear systems are solved exatly, i.e. we have thelassial Newton iteration for the nonlinear equation F (x) = 0:
xk+1 = xk +∆xk, where F ′(xk)∆xk = −F (xk). (3.30)If we now replae this iteration by:

xk+1 = xk + δxk, where F ′(xk)δxk = −F (xk) + rk,
‖rk‖
‖F (xk)‖

≤ ηk, (3.31)whih means that we solve the linear system only up to a relative residual of ηk, the question ariseswhih tolerane ηk must be reahed by the linear solver not to destroy the onvergene propertiesof Newton's method.In standard literature this seond type of Newton iteration is alled inexat Newton methodsine the arising linear systems are no longer solved exatly. By using iterative methods like



64 DISCRETISATION AND SEQUENTIAL SOLVERGMRES we now have to distinguish between an outer iteration (the Newton step) and an inneriteration (the GMRES step) and have to answer the questions how the inner iteration an in�uenethe onvergene of outer iteration and how the outer iteration might lead to adaptive onvergeneriteria for the inner iteration. In what follows we will present two ways to takle this problem -�rst we brie�y reall the main results of onvergene theory for inexat Newton methods (basedon [39℄ and [45℄), whih give an insight on the in�uene of inner iteration to the outer one. Seondwe will present results on a�ne invariane studies of Newton's method (following the work ofDeu�hard [42℄) whih allow to reate adaptive onvergene riteria for the inner iteration basedon the atual status of outer iteration. Suh an adaptive way to set the toleranes ηk, also alledforing terms, was already presented in earlier works, e.g. [5, 40, 44, 124℄, but these are moreheuristially motivated.Analysis of inexat Newton method used for numerial solution of �nite dimensional nonlinearsystems as shown in Algorithm 2 an be found in [95, 121℄. If a su�iently good initial guess x0 isat hand, we an skip the globalisation and get the following loal onvergene result (see [39℄ forproof), if the foring sequene {ηk} is uniformly less than one.Theorem 3.2.1 (Loal onvergene of inexat Newton method)Let F : D ⊂ Rn → Rn be a nonlinear funtion with and let x∗ ∈ Rn suh that F (x∗) = 0. If Fis ontinuously di�erentiable in a neighbourhood of x∗, F ′(x∗) is regular and ηk ≤ ηmax < t < 1,then there exists an ε > 0 suh that, for ‖x0 − x∗‖ ≤ ε, the sequene of inexat Newton iterates
{xk} onverges to x∗. Moreover the onvergene is linear in the sense that

‖F ′(x∗)(xk+1 − x∗)‖ ≤ t‖F ′(x∗)(xk − x∗)‖.The proof, like the lassial onvergene of Newton's method (Newton-Kantorovih or Newton-Mysovskii theorem), bases on two main assumptions, namely
F ′(x)−1 exists and is bounded ‖F ′(x)−1‖ ≤ β <∞ for x ∈ D,
F ′(x) omplies a Lipshitz ondition ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖ for x, y ∈ D. (3.32)Furthermore, the ondition of x0 being su�iently lose to x∗ an be haraterised by means ofthe so-alled Kantorovih quantity

h0 := ‖∆x0‖βγ, ∆x0 = x1 − x0,whih is assumed to be su�iently small. In general this quantity annot be omputed for pratialimplementations, suh that one annot guarantee an initial guess to be su�iently good. Hene,globalisation tehniques are introdued to assure onvergene even for bad initial guess, like theproposed Armijo damping in Algorithm 2. For this we have the following onvergene theoremgiven by Eisenstat and Walker [45℄Theorem 3.2.2 (Global onvergene of inexat Newton method)Assume that Algorithm 2 does not break down. If x∗ is a limit point of {xk} suh that F ′(x∗) isinvertible, then F (x∗) = 0 and xk → x∗. Furthermore, initial δxk and λ = 1 will pass dampingstep for all su�iently large k.The preeding theorems guarantee at least linear onvergene of the global inexat Newtonmethod with damping but do not point out a strategy for hoosing the foring terms ηk. This taskis addressed in many papers, e.g. [5, 40, 44, 124℄, and some hoies were already under investigationin the ontext of solving Navier-Stokes equations, see [140℄. For any further studies we will use thefollowing somewhat heuristi proposals by Eisenstat and Walker [44℄
• hoie 1: given η0 ∈ [0, 1), hoose

ηk =
‖F (xk)− F (xk−1)− F ′(xk−1)δxk−1‖

‖F (xk−1)‖
for k = 1, 2, ... (3.33)
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• hoie 2: given α ∈ (1, 2], γ ∈ [0, 1] and η0 ∈ [0, 1), hoose

ηk = γ
( ‖F (xk)‖
‖F (xk−1)‖

)α for k = 1, 2, ... (3.34)and by Dembo and Steihaug [40℄
• hoie 3: ηk = min{ 1

k+2 , ‖F (xk)‖} for k = 1, 2, ...

• onstant: ηk = 10−1, 10−3, 10−5 for all k.These strategies were not based on onvergene analysis rather on e�ieny and auray mathingproperties of inner and outer iteration, but the onvergene of the inexat Newton method an beproven. A di�erent way is proposed by the a�ne invariane approah in [42℄. Herein the lassialNewton-Kantorovih or Newton-Mysovskii theorems are replaed by a�ne invariant versions andonstrution of adaptive Newton algorithms is done by the paradigm to "realise a�ne invariantomputational estimates of a�ne invariant Lipshitz onstants that are heaply available in theourse of the algorithms".Sine we use GMRES algorithm, we restrit the a�ne invariane theory to the speial ase ofa�ne ontravariane, whih leads to results formulated in terms of residuals F (xk) preferable inthe ontext of GMRES. Let therefore B ∈ Rn,n be an arbitrary regular matrix and onsider thelass of problems
G(y) = F (By) = 0, x = By.Observe that the assumptions (3.32) an also be stated as

‖(F ′(x̄)− F ′(x))(x̄ − x)‖ ≤ γ‖x̄− x‖2 = γ‖F ′(x)−1F ′(x)(x̄ − x)‖2 ≤ γβ2‖F ′(x)(x̄ − x)‖2,where the Lipshitz onstant ω = γβ2 is a�ne ontravariant sine both sides are independent of B
G′(y)(ȳ − y) = F ′(x)B(ȳ − y) = F ′(x)(x̄ − x).The way to derive pratial Newton methods with adaptive hoie of foring terms is now:1. identify theoretial loal Lipshitz onstant ω suh that ω = sup

x,y,z∈D
g(x, y, z) with g(x, y, z)ontaining only a�ne invariant terms,2. de�ne omputational loal estimates [ω] = g(x̂, ŷ, ẑ) for spei� x̂, ŷ, ẑ and [ω] ≤ ω.We use the notation [h] as introdued in [42℄ to desribe an estimate of the theoretial value h.Without going into details we only present the main theorem for inexat Newton method withinner GMRES solver in the sense of a�ne invariane theory as proven in [42℄.Theorem 3.2.3 (Convergene of inexat Newton method with inner GMRES)Let F : D ⊂ Rn → Rn , F ∈ C1(D), D onvex. Denote by x0 ∈ D the initial guess for inexatNewton iteration (3.31). Assume the a�ne ontravariant Lipshitz ondition

‖(F ′(y)− F ′(x))(y − x)‖ ≤ ω‖F ′(x)(y − x)‖2 for 0 ≤ ω <∞, x, y ∈ D.Let the level set L0 := {x ∈ Rn : ‖F (x)‖ ≤ ‖F (x0)‖} ⊆ D be ompat. For eah iterate xk ∈ Dde�ne hk := ω‖F (xk)‖. Then the residual norm of inexat Newton iteration an be bounded as
‖F (xk+1)‖ ≤ (ηk +

1

2
(1 − η2k)hk)‖F (xk)‖. (3.35)The onvergene rate an be estimated as follows:1. Assume that the initial guess x0 gives rise to h0 < 2. Then some θ̄ in the range h0

2 < θ̄ < 1an be hosen. Let the inner GMRES iteration be ontrolled suh that ηk ≤ θ̄ − 1
2hk. Then



66 DISCRETISATION AND SEQUENTIAL SOLVERthe inexat Newton iterates {xk} onverge at least linearly to some solution x∗ ∈ L0 at anestimated rate
‖F (xk+1)‖ ≤ θ̄‖F (xk)‖.2. If, for some ρ > 0, the initial guess x0 guarantees that h0 < 2

1+ρ and the inner iteration isontrolled suh that
ηk

1− η2k
≤ 1

2
ρhk, (3.36)then the onvergene is quadrati at an estimated rate

‖F (xk+1)‖ ≤
1

2
ω(1 + ρ)(1− η2k)‖F (xk)‖2. (3.37)As for the lassial onvergene theorem we get onvergene as long as ηk ≤ η̄ < 1, butadditionally we are now able to use this theoretial onvergene result for pratial implementationof adaptive Newton method. If a user presribed initial foring term η0 is given, an a-posterioriestimate of the unknown Kantorovih quantity hk for the quadrati onvergene estimate (3.37)an be done by

[hk]2 :=
2 ‖F (xk+1)‖

‖F (xk)‖

(1 + ρ)(1− η2k)
≤ hkand also an a-priori estimate is at hand

[hk+1] :=
‖F (xk+1)‖
‖F (xk)‖

[hk]2 ≤
‖F (xk+1)‖
‖F (xk)‖

hk = hk+1. (3.38)Sine the above theorem laims the inner iteration to be ontrolled via (3.36) we obtain the adaptiveonvergene riteria
ηk

1− η2k
≤ 1

2
ρ[hk]based on omputational available estimates. For onvergene of Newton's method, i.e. ‖F (xk)‖ → 0as k → ∞ and therefore hk → 0, this requirement is simply ηk → 0 whih re�ets the fat thatthe inner iteration has to be more aurate when Newton's method reahes the solution. A seondestimation an be done by the inequality

‖F (xk+1)− rk‖ = ‖F (xk + δxk)− rk‖ = ‖F (xk) +
1∫

0

F ′(xk + tδxk)δxk dt− rk‖

≤
1∫

0

‖[F ′(xk + tδxk)− F ′(xk)]δxk‖ dt ≤
1∫

0

1

t
ω‖F ′(xk)tδxk‖2 dt

=

1∫

0

tω‖F ′(xk)δxk‖2 dt =
1

2
ω‖F (xk)− rk‖2 =

1

2
ω(1− η2k)‖F (xk)‖2

=
1

2
(1− η2k)hk‖F (xk)‖,where we used the a�ne ontravariant Lipshitz ondition of theorem above and the well-knownproperty of GMRES that
‖r0 − rk‖2 = (1− η2k)‖r0‖2 with r0 = F (xk).Hene we get a seond a-posteriori estimate

[hk]1 :=
2‖F (xk+1)− rk‖
(1 − η2k)‖F (xk)‖

≤ hk
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[hk+1] :=

‖F (xk+1)‖
‖F (xk)‖

[hk]1 ≤ hk+1.We now want to show that both estimates an also be interpreted as the hoies by Eisenstat andWalker. Therefore take the onvergene ondition of inner iteration (3.36) �rst with ρ = 1 �xedand with the a-posteriori estimate [hk]1 whih gives
ηk

1− η2k
≤ 1

2
[hk]1 =

‖F (xk+1)− rk‖
(1 − η2k)‖F (xk)‖

≤ hk
2

⇒ ηk ≤
‖F (xk+1)− rk‖
‖F (xk)‖

.Obviously this ondition results in what was already proposed in (3.33) when we shift the index of
ηk to ηk+1. Let now ρ > 0 be arbitrary and evaluate (3.36) with the a-priori estimate (3.38) whihgives

ηk
1− η2k

≤ 1

2
ρ[hk] =

1

2
ρ
‖F (xk)‖
‖F (xk−1)‖

[hk−1]2 =
ρ

(1 + ρ)(1− η2k−1)

( ‖F (xk)‖
‖F (xk−1‖

)2

≤ ρhk
2and therefore

ηk ≤
ρ(1− η2k)

(1 + ρ)(1− η2k−1)

( ‖F (xk)‖
‖F (xk−1‖

)2

.By an adequate hoie of the parameter γ and α in (3.34) we an reover this spei� estimation.Hene, the more heuristi hoies of Eisenstat and Walker (3.33) and (3.34) turn out to be givenas omputational estimates of Kantorovih quantity if the onvergene results of inexat Newtonmethod are based on a�ne invariant Lipshitz ondition.Numerial ResultsIn order to judge the above adaptive hoies of foring terms in the framework of Navier-Stokessolver, we ompared the following riteria for ηk:
• hoie 1: ηk =

|‖F (xk)‖−‖F (xk−1)+F ′(xk−1)δxk−1‖|
‖F (xk−1)‖

• hoie 2: ηk = γ( ‖F (xk)‖
‖F (xk−1)‖

)α with α = 2 and γ = 0.1, 0.5, 0.9

• hoie 3: ηk = min{ 1
k+2 , ‖F (xk)‖}

• onstant: ηk = 10−1, 10−3, 10−5

• a�ne invariane: ηk

1−η2
k
≤ 1

2ρ[hk] =
ρ
2

‖F (xk)‖
‖F (xk−1)‖

[hk−1]2 with ρ = 0.9 and a-priori estimate forKantorovih-quantity [hk] ≤ hk.For the �rst 4 hoies we used damped inexat Newton method as shown in Algorithm 2 withArmijo baktraking update. In the a�ne invariant ase, we implemented the adaptive hoie ofdamping fator as reported in [42℄. The model-problem was given by sequential Navier-Stokessolver at Reynolds number 42.0 with multilevel inomplete LDU preonditioner and 3D bak�owgeometry, mesh-level 4 resulting in 472748 degrees of freedom (see Table 3.5 for details).Foring term ηk proposed as in hoie 2 gave the best (in terms of overall omputationaltime) results for the parameter γ = 0.5 so that we will ompare this to all other hoies. If we�rst ompare to onstant foring values as done in Figure 3.9, we see the e�ets of under- andoversolving. For the very weak hoie of ηk = 10−1 Newton's method does not lead to loalquadrati onvergene and therefore requires too many steps. On the other side a strit hoieof ηk = 10−5 ensures loal quadrati onvergene but at the osts of too many GMRES steps inthe �rst outer iterations leading to high overall solution time. Somehow a luky and ompetitivehoie is ηk = 10−3 but this was just the ase for this single example.
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• espeially the a�ne invariane hoie by Deu�hard ahieves the same numerial results asthe hoie 2 of Eisenstat and Walker - a fat that was already mentioned above theoretially,
• the best overall results in term of fast onvergene and less GMRES steps was ahieved byhoie 2.
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Chapter 4Domain Deomposition and ParallelSolverThe algebrai systems arising from disretisation of 3D problems under investigation (f. Setion3.2) are typially of order 105 − 106 and already hit the wall for pure simulation using sequen-tial algorithms. Sine the introdued optimisation based on the adjoint or sensitivity equationsneessitates the repeated solving of suh equivalent systems, the nonlinear resp. linear algebraisolver will be the ritial part of the overall solution proess. A possible way out might be a model-redution approah leading to smaller systems or an extension of the previously presented solver toparallel arhitetures. In this work the latter approah is hosen and we will show in this hapterhow the �nite element based disretisation an be used to derive parallel solver frameworks. Thehallenge of parallel solvers for large-sale problems is the irreduibility of the system, i.e. eahdegree of freedom depends upon all others - no degree of freedom may be removed and be solvedfor in isolation, exept for the deomposition of potential, Navier-Stokes and onvetion di�usionequation.First we will in general present the idea of domain deomposition tehniques aimed to reatesmaller and/or less di�ult problems that an be solved in parallel. Afterwards we will show twoways how the multilevel ILU based preonditioner introdued in the previous hapter an also beused in a parallel setting, namely within a row blok data struture and within Shur omplementapproah in domain deomposition.4.1 Introdution to DDMDomain deomposition methods (DDM) sound like a relatively straightforward paradigm to par-allelise the underlying problems, namely the domain, say Ωh from Setion 3.1, is deomposedinto several other domains. However, the meaning of the term domain deomposition dependsstrongly on the underlying ontext, so that a �rst distintion seems neessary. In general domaindeomposition might be referred to:
• oupling of di�erent physial models in di�erent regions of the underlying problem with theinterfae between the domains handled by various onditions,
• optimal disretisation tehniques for the underlying equations that might vary in di�erentregions,
• e�ient iterative solvers and preonditioning methods for the arising system of equationsthat base on data distribution over several proesses,
• speial parallelisation tehniques on modern superomputers desribing the proess of dis-tributing data from a omputational model among the proesses in a distributed memorysystem.



72 DOMAIN DECOMPOSITION AND PARALLEL SOLVERA lever ombination of these steps in simulation and optimisation for partial di�erential equationsis the key for fast and reliable numerial solvers. For a omprehensive introdution to the studyof domain deomposition methods we refer to [110℄, while an overview of urrent work in this �eldof researh an be found in the series Domain Deomposition Methods in Siene and Engineering[16℄.In this work we onentrate on the last two points assuming a given disretisation of the under-lying equations based on onforming �nite element method on regular meshes as de�ned in Setion3.1. Hene we laim that the disretisation and deomposition itself is somewhat optimal, but onemight also use separate �nite element disretisation on nonoverlapping subdomains with mesheson the subdomains that do not math on the interfae. Suh disretisation methods for partialdi�erential equations are known as mortar methods [161℄ and represent a domain deompositiontehnique in the sense of the �rst two points. The hallenging task for this approah is obviouslythe onformity of the solution over subdomain interfaes whih is enfored by Lagrange multipli-ers. Mortar disretisation are then naturally solved by iterative domain deomposition methodssuh as FETI (see [48, 155℄ and referenes therein). A omprehensive presentation of domaindeomposition methods for the solution of algebrai systems arising from the approximation ofpartial di�erential equations an be found in the monographs and surveys of Chan and Mathew[30℄, Toselli and Widlund [155℄, Quarteroni and Valli [127℄ and Smith, Bjørstad and Gropp [143℄.Even if we refer to domain deomposition in the proper meaning of the word, i.e. partitioningof the omputational domain, a further di�erentiation for the resulting solution approahes ismeaningful. The variety of possible methods might be lassi�ed by the moment of deompositionin the overall solution proess:ontinuous: deomposition is applied to the partial di�erential equations,disrete: deomposition is applied to the system of equations after disretisation.Alternatively, one might distinguish the methods by the kind of deomposition:overlapping: neighbouring subdomains overlap eah other - leading to the lass of Shwarzmethods,non-overlapping: neighbouring subdomains only share boundaries (points, lines, surfaes)- leading to the lass of substruturing methods.Finally a third lassi�ation an be derived:diret methods: these methods involve the onstrution by expliit ondensation of lower-dimensional systems for degrees of freedom that at as separators - for di�erential equations,this is the Steklov-Poinaré operator, in linear algebra, it is the Shur omplement,iterative methods: in its simplest version this involves an iteration over the subdomains,where the unknown boundary data is repeatedly updated by neighbouring domains - againthis is the lass of Shwarz methods.Common to all these methods is a deomposition of the original domain into smaller subdomains.This splitting leads to overlap regions or new boundaries between two or more subdomains, alledarti�ial boundary or seleton. Suh parts of any subdomain boundary have to be distinguishedfrom the original boundary ∂Ω, sine there might be subdomains with only arti�ial boundaries.De�nition 4.1.1Let Ω ⊂ Rd by an open, onneted, bounded set and de�ne a deomposition into M subdomains by
Ω =

M⋃

i=1

Ωiwhere Ωi ⊂ Ω are open, onneted and bounded sets. If Ωi ∩ Ωj = ∅ for i 6= j and i, j = 1, . . . ,Mthe deomposition is non-overlapping, otherwise it is overlapping. In the non-overlapping ase,
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vertex based
edge based

element basedFigure 4.1: Types of domain deomposition for the mesh Th.de�ne Γij = Γji = Ωi ∩Ωj , i 6= j as the interfae between two subdomains and
Γ =

⋃

i6=j

Γijas the seleton1. For the overlapping ase, de�ne Γij = ∂Ωi ∩Ωj 6= Γji as the boundary of Ωi thatlies in Ωj .This de�nition holds true for any domain Ω independent of a possible assoiated �nite elementmesh Th. For the ase that a set of ells is given, a further di�erentiation an be done (f. Figure4.1): vertex-based deomposition: edges and ells may straddle between subdomains, onlyverties are unambiguously assigned to subdomains,edge-based deomposition: edges are not allowed to split between di�erent subdomains,element-based deomposition: eah ell/element is unambiguously assigned to a subdo-mains.When solving problems that arise from disretisation of partial di�erential equations by means of�nite element method, the element based deomposition o�ers best properties as we will show later.In the sequel the main ideas of diret and/or iterative solvers as well as preonditioners based ondi�erent kinds of domain deomposition are pointed out using a generi partial di�erential equation.Therefore let L be a di�erential operator de�ned on the domain Ω and we onsider for simpliityonly the Dirihlet boundary-value problem
Lu = f in Ω,

u = g on ∂Ω. (4.1)Remark 4.1.1We only for short denote the main onept of parallel arhitetures used in the sequel - for adetailed overview we refer to [128, 129℄. Nowadays a lear separation of types of systems by eitherthe memory aess pattern or the instrution and data set proessing seems more and more trikydue to upoming multiore and oproessor tehnologies. To our use we stik to the SIMD designmeaning that a single instrution is performed in parallel by multiple proessing units using multipledata. This sheme diretly re�ets the idea of domain deomposition as presented before and we willtherefore almost always identify a subdomain Ωi with a proessing unit Pi. For the sake of generality1Sine in this hapter the fous is not on the boundary of ∂Ω, there should be no onfusion about the notationof Γ even if we used this notation previously also for ∂Ω.



74 DOMAIN DECOMPOSITION AND PARALLEL SOLVERwe do not speify any onrete meaning of a proessing unit (this might e.g. be a CPU or GPU) butinstead refer to general proesses whih work in parallel on di�erent data. Whether eah proessowns its own memory or shares it with several others (like on any atual used multi-ore proessor)is of minor onern within this thesis. We only expet that the proessing units are interonnetedby a spei� topology whih might be a bus or any network allowing a message passing between eahproessing unit. As one of the standard spei�ations of a language-independent ommuniationprotool used to program parallel omputers we use the Message Passing Interfae (MPI) [54℄.4.1.1 Overlapping MethodsIf the domain deomposition is applied on the ontinuous level of the partial di�erential equationsand additionally a partiular overlap of subdomains is assumed, the lass of alternating Shwarzmethods an be derived [137℄. Let us denote by uij the values of solution u lying on Γij , i.e. in Ωj .We restrit the global problem (4.1) to the subdomains Ωi and seek for a loal solution ui in Ωi,suh that
Lui = f in Ωi,

ui = g on ∂Ω ∩ ∂Ωi,

ui = uij on Γij .

(4.2)Obviously, if solutions ui and uj of subdomains Ωi, Ωj with i 6= j oinide in the overlapping area
Ωij = Ωi ∩ Ωj , the global solution to problem (4.1) an be omposed as

u =
M⋃

i=1

ui.However, it is not lear how to set the boundary-values uij in (4.2) unless the solution is known. Thelass of Shwarz methods hene solves the loal problems (4.2) alternately on di�erent subdomains
Ωi - giving the original name alternating Shwarz method. Starting with an initial guess for theglobal solution, the problem on a subdomain is solved using the guess as part of the requiredboundary onditions. Two shemes an be distinguished depending on the update of values uij fornext subdomain.Multipliative Shwarz method: Given an initial guess for the global solution u, thealgorithm iterates over all subdomains Ωi and solves the loal problems (4.2) leading toa new global solution. Hene the algorithm is pure sequential and would only allow forparallelisation, if the subdomains are grouped to sets without overlap by a olouring suhthat no two subdomains whih share ommon points have the same olour. Eah proessowning a set of non-overlapping subdomains an then solve the loal problems in parallel andafterwards an exhange of loal solutions will be performed building the new global iterate.Additive Shwarz method: Here the subdomains are distributed to proesses withoutregarding the overlap. Eah proess solves the loal problem (4.2) using the last availablesolution uij from the global iterate. Only after all subdomain solutions ui are omputed anexhange between all proesses is done, representing the new iterate global solution. Thisimprovement have been introdued in [43℄.The Shwarz methods are one of the �rst domain deomposition tehniques used (f. [106, 107℄)and so a wealth of theory is available espeially for the ase of ellipti partial di�erential equations,ranging from the onditions required for onvergene to estimates of the rate of onvergene asa funtion of the amount of overlap (f. [155℄). At least the onvergene of Shwarz alternatingmethods for the stationary Navier-Stokes equations has been proven in [109℄ if the Reynold numberis su�iently small. Nevertheless, nowadays the Shwarz method is more often used as a preondi-tioner for an iterative solver suh as a Krylov subspae method. An extensive introdution to theShwarz method used as a preonditioner in the framework of ellipti partial di�erential equationsan be found in [143℄. Beside more theoretial aspets also implementation issues are faed andan extension of Shwarz methods as multilevel preonditioners is presented. We will not proveonvergene results for the Shwarz preonditioner (f. [80℄ for this) but note that for many ellipti



4.1 Overlapping Methods 75di�erential equations using overlapping Shwarz methods in onjuntion with a Krylov subspaemethod the following onvergene behaviour an be shown:
• number of iterations (to redue the initial residual norm by a �xed fator) grows with theinverse of the subdomain size,
• number of iterations is independent of the mesh size, provided that the overlap region is keptproportional to the size of the subdomains,
• poor onvergene is given for overlap near zero but improves rapidly as the overlap inreases,
• number of iterations for the multipliative variant is about half that for the additive algo-rithm.To sum up, domain deomposition by Shwarz methods (used as solver or preonditioner) falls inthe lass of overlapping/iterative shemes and might be judged by the following points:advantages: original problem an be retained, one only needs a restrition to subdomains,espeially the additive version allows for straightforward parallelisation,disadvantages: sophistiated mesh handling for overlap and management for exhangeof loal solutions, rate of onvergene usually dereases exponentially when the amount ofoverlap is redued, indiating an unavoidable omputational overhead by repeated solves onthe overlap regions.To end the setion on overlapping methods, we want to mention that besides the ontinuous pointof view also the disrete way of the overlapping Shwarz methods might be used. Instead of de�ningexpliit overlapping subdomains Ωi, one starts from the global linear system

Ax = b, A ∈ RI×I ,where I is the index set of all degrees of freedom in the �nite element mesh, and de�nes anoverlapping partition of this index set
Ii := {j ∈ I : degree of freedom j ∈ Ωi}, i = 1, . . . ,M.We note that the index sets Ii might also be de�ned without expliit knowledge of the subdomains

Ωi. Furthermore let x ∈ RI be the global solution vetor and denote by Ri : R
I → RIi therestrition to the i-th index set Ii, i.e.

[Rix]j = [x]j , ∀j ∈ Ii.Aordingly RT
i : RIi → RI is the projetion de�ned by

[RT
i xi] =

{

[xi]j , j ∈ Ii
0, elseand

Ai := RiAR
T
i = AIi,Iithe loal system matrix on the index set Ii. Now we are able to de�ne the iterative Shwarz methodon the algebrai level:Multipliative Shwarz method: let ek = x − xk be the global error in k-th step and

Aek = b − Axk the residual. For the i-th index set Ii ⊂ I, assume that the global error isgiven by means of
ek = RT

i viwith a vetor vi ∈ RIi that has to be de�ned. The restrited residual in Ii is hene
RiAek = RiAR

T
i vi = Aivi = Ri(b−Axk)



76 DOMAIN DECOMPOSITION AND PARALLEL SOLVERwith the loal system matrix Ai and the new iterate for the global solution is
xk+1 = xk + ek = xk +RT

i vi = xk +RT
i A

−1
i Ri(b−Axk).We see that the new iterate orresponds to an update by solving the system one on theindex set Ii (resp. on the subdomain Ωi) using the old iterate xk for boundary values. Ifthis proedure is repeated over all index sets, one ends up with the multipliative Shwarzmethod as shown before, i.e.

xk+ i
p
= xk+ i−1

p
+RT

i A
−1
i Ri(b −Axk+ i−1

p
), i = 1, . . . , pfor the step from index set i − 1 to index set i (assuming p index sets at all). The errorpropagation for this sheme is therefore

ek+ i
p
= (I −RT

i A
−1
i RiA)ek+ i−1

p
, i = 1, . . . , pand for a whole iteration step xk → xk+1

ek+1 = (I − Pp) · · · (I − P2)(I − P1)ek, Pi = RT
i A

−1
i RiAexplaining the name multipliative Shwarz method. One speial form is given for the asethat Ii∪Ij = ∅, ∀i 6= j - at this the multipliative Shwarz methods turns out to be equivalentto the blok Gauss-Seidel sheme.Additive Shwarz method: as mentioned for the ontinuous ase, all orretion might beomputed in parallel using the last global iterate xk, i.e.

xk+1 = xk +

p
∑

i=1

RT
i A

−1
i Ri(b−Axk).Now the error propagation is given by

ek+1 = (I −
p
∑

i=1

Pi)ek.Again the ase Ii ∪ Ij = ∅, ∀i 6= j for the additive Shwarz method gives a well-knownsheme, namely the blok Jaobi method.Convergene results for the algebrai form of Shwarz method an be found in Chapter 11 of [80℄.4.1.2 Non-overlapping MethodsConsider the ontinuous global problem (4.1) and a non-overlapping deomposition of Ω, i.e. Ωi ∩
Ωj = ∅ for all i 6= j. We formulate the loal problem on subdomain Ωi

Lui = f in Ωi,

ui = g on ∂Ω ∩ ∂Ωi,

ui = U on Γij .

(4.3)The treatment of oupling between subdomains (interfae oupling) is now more sophistiated.Sine no overlap to the neighbouring domains is given, the de�nition of Dirihlet boundary-values
U on the seleton as before is no longer meaningful. These values would be preserved throughoutall Shwarz type iterations and hene no gain for the global solution is given. Instead a di�erentapproah is used that an be viewed twofold:
• beside a pure Dirihlet ondition, additional oupling/transmission onditions are imposedon eah subdomain to ensure global interfae transition,
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• the original global problem is redued to an equivalent one posed only on the interfae ofsubdomains, i.e. an interfae operator is introdued.For the �rst point of view the method pursued by P.L. Lions [108℄ (in the ase that L is theLaplae operator) is very natural and simple, namely that one reformulates the onstraints on Γijand requires a Robin type boundary ondition (with relaxation parameter β > 0)

∂niui + βui = −∂njuj + βuj on Γij .Hene, not only the absolute values on the seleton Γij should math between two neighbouringsubdomains, additionally the normal derivatives should oinide - ni meaning the outward normalon Γij for Ωi towards Ωj and so ni = −nj.A generalisation of this transmission ondition on Γij for arbitrary partial di�erential operator
L obviously neessitates more generi onditions to represent the relationship. We follow thenotation in [127℄ and introdue the transmission onditions

Φ(ui) = Φ(uj) on Γij ,

Ψ(ui) = Ψ(uj) on Γij ,where the funtions Φ, Ψ depend upon the nature of the underlying operator L. Having a problemspei� de�nition of these funtions at hand, one an state an iteration-by-subdomain shemesimilar to the additive Shwarz method in the overlapping ase. Assume that the loal solution atstep k is given by uki for eah subdomain i = 1, . . . ,M . First average at the interfae among thevalues of Φ using a parameter α, i.e.
Φav

ij = αΦ(uki ) + (1 − α)Φ(ukj ) on Γij .Then on eah subdomain a problem of Φ-type is solved
Lu

k+ 1
2

i = f in Ωi,

u
k+ 1

2

i = g on ∂Ω ∩ ∂Ωi,

Φ(u
k+ 1

2

i ) = Φav
ij on Γij .Seond also the values of Ψ need to be averaged (again weighted by a parameter β), i.e.

Ψav
ij = βΨ(u

k+ 1
2

i ) + (1− β)Ψ(u
k+ 1

2

j ) on Γijand �nally M independent problems of Ψ-type are to be solved
Luk+1

i = f in Ωi,

uk+1
i = g on ∂Ω ∩ ∂Ωi,

Ψ(uk+1
i ) = Ψav

ij on Γij .For the Poisson problem with Φ(v) = v and Ψ(v) = ∂nv this sheme means a separation of Dirihletand Neumann subproblems. Generally, several other ombinations of the transmission onditionsfor the loal subproblems are used like Dirihlet-Neumann, Neumann-Neumann or Robin onditions- one should notie that for eah partial di�erential operator L the transmission onditions need tobe adopted appropriately. We refer to [127℄ for an overview on transmission onditions for di�erentboundary value problems inluding the Stokes problem. In the framework of �ow problem thereexist plenty of works proposing di�erent onditions, showing that a kind of standard formulationeven for one spei� partial di�erential equation is not present.The presented subdomain iteration approah using transmission onditions an also be inter-preted as an interfae equation in terms of the Steklov-Poinaré operator (f. [3℄ and referenestherein). Common to eah iterative method yling over subdomains is an update of the valueson the seleton Γ for the transmission onditions Φ and Ψ. Without loss of generality we assumethat Φ is given by Φ(v) = v, i.e. a mathing of pointvalues on the seleton, and that Ψ is a linear



78 DOMAIN DECOMPOSITION AND PARALLEL SOLVERfuntion. If the values on Γ are known, say λ = Φ(u|Γ) = u|Γ, the independent problems on eahsubdomain would be
Lui = f in Ωi,

ui = g on ∂Ω ∩ ∂Ωi,

ui = λ on Γij ,

Ψ(ui) = Ψ(uj) on Γij .

(4.4)We an furthermore split the solution ui = u0i + ufi into two parts u0i and ufi being the solution ofthe Dirihlet problems
Lu0i = 0 in Ωi,

u0i = g on ∂Ω ∩ ∂Ωi,

u0i = λ on Γij ,and
Lufi = f in Ωi,

ufi = g on ∂Ω ∩ ∂Ωi,

ufi = 0 on Γij .De�ne the solution operators by u0i = Hiλ and ufi = Gif . Now the global problem (4.1) is formallyequivalent to (4.4) if and only if Ψ(ui) = Ψ(uj) on Γij for all i, j = 1, . . . ,M . The latter onditionan be reformulated using the splitting ui = u0i + ufi into
M∑

i,j=1

Ψ(u0i ) + Ψ(ufi )−Ψ(u0j)−Ψ(ufj ) = 0.Finally we an state the Steklov-Poinaré interfae equation
Sλ = χ on Γ (4.5)with

χ =

M∑

i,j=1

−Ψ(Gif) + Ψ(Gjf)and the Steklov-Poinaré operator de�ned as
Sλ =

M∑

i,j=1

−Ψ(Hiλ) + Ψ(Hjλ).Hene, the interfae equation (4.5) orrespond to an equation for the unknown values on Γ usingthe seond transmission ondition posed by Ψ as de�ning operator. If equation (4.5) is solved byan iterative sheme one gets the orrespondene to the above shown subdomain iterations, sinean appliation of the Steklov-Poinaré operator is given by a loal solution on eah subdomain.Summing up, we have the results for the non-overlapping domain deomposition based on theontinuous problem (4.1):advantages: easier mesh handling and no omputational overhead due to absene of overlap,disadvantages: transmission onditions and/or interfae operators need to be establishedfor di�erent partial di�erential equations separately.As for the overlapping ase, there is obviously also a non-overlapping deomposition sheme basedon the disrete equations. We will present this approah, the disrete ounterpart to the Steklov-Poinaré interfae equation, namely the Shur omplement equation, in detail in the next setion.



4.2 Parallel Data Strutures and Preonditioners 794.2 Parallel Data Strutures and PreonditionersHaving introdued some domain deomposition approahes in the last setion, we now investigateon two shemes based on non-overlapping deomposition and on �nite element disretisation indetail. In ontrast to the methods based on the ontinuous equations, the deomposition on thedisrete equations (resp. the algebrai system) has the advantage that it an be used for anyproblem without imposing speial transmission/boundary onditions. First we will work out theidea and data strutures of Shur omplement solver/preonditioner whih is more involved thanthe row blok deomposition that is used for omparison. In the next setion the performanegained by these methods will be onsidered.Let the omputational domain Ωh be equipped with a �nite element mesh Th. We have justmentioned that a partition of Th into subdomains an be done vertex-, edge- or element-based andhave not explained whih version should be preferred. In terms of a �nite element disretisationthe resulting linear algebrai strutures - mainly residual vetor and Jaobian matrix - are givenby the weak form of the underlying partial di�erential equation, i.e. will be omputed by means ofnumerial integration (f. �nite element matries (3.21)). For sake of simpliity, in the followingwe assume a general bilinear form
a(u, v) =

∫

Ω

f(u(x), v(x)) dxwithout speifying the funtion f in detail. Standard routines of numerial integration an thenbe deomposed as
[A]ij = a(ϕj

h, ϕ
i
h) =

∫

Ωh

f(ϕj
h, ϕ

i
h) dx =

∑

K∈Th

∫

K

f(ϕj
h, ϕ

i
h) dx, i, j = 1, . . . , Nsuggesting a deomposition of Th elementwise to ompute the ell-integrals in parallel. Sine alsothe support of a trial-/test-funtion ϕh is loally in Ωh the summation over all K ∈ Th an berestrited to those ells that are in the support of ϕi

h.In the sequel we throughout assume a non-overlapping deomposition of Th into as many sub-domains Ωi as proesses are available and let eah subdomain be assigned to a proess Pi. Suha deomposition naturally indues sets of submeshes Th,i for eah subdomain that are ompatibleon Γ, i.e. that they share the same edges/faes on Γ. Using Lagrange �nite elements, the globaldegrees of freedom, whose support is entirely in Ωi are obviously assigned to Pi. Those degreesof freedom whose support is ut by the interfae between two subdomains, say Ωi and Ωj , areassigned either to Pi or Pj . We will omment on this hoie later on when onrete data-struturesare presented.4.2.1 The Shur Complement SystemAs in De�nition 4.1.1 we assume that M non-overlapping subdomains Ωi ⊂ Ωh are given whereeah subdomain is built up by a submesh Th,i. For the global degrees of freedom in the meshtwo groups are distinguished, namely internal and seleton nodes (f. Figure 4.2). The boundarynodes are treated as internal nodes, sine they an learly be assigned to a partiular subdomain
Ωi. Seleton nodes are those nodes belonging to the arti�ial boundaries reated by the domaindeomposition, i.e. those nodes that lie on the interfae Γ. Let furthermore Γi = ∂Ωi\∂Ω denotethe part of the seleton Γ belonging to subdomain Ωi and assume that the global system onsistsof N degrees of freedom. By NΓ we denote the number of degrees of freedom on Γ and by Ni thenumber of internal degrees of freedom in Ωi suh that

N = NΓ +

M∑

i=1

Ni.The following introdued Shur omplement method onsist of eliminating internal degrees of free-dom to de�ne shemes whih fous on solving a redued system assoiated with only the seleton
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Figure 4.2: Di�erentiation between internal (◦ in Ω1, � in Ω2) and seleton (denoted by ×) nodes in�nite element mesh Th.degrees of freedom. Often also the terms stati ondensation method or method of substruturingare used to desribe the Shur omplement method. These denotations ome from the engineeringview of the method (f. [99℄), while the name Shur omplement method bases on the mathematialde�nition (f. [30, 143, 155℄).As mentioned before the elementwise non-overlapping deomposition of Th allows the de�nitionof subdomain sti�ness matries
Ai =

(
Aii AiΓi

AΓii AΓiΓi

) (4.6)with
[Aii]kl = a(ϕl

h, ϕ
k
h), k, l = 1, . . . , Ni

[AiΓi ]lm = a(ϕ̃m
h , ϕ

l
h), l = 1, . . . , Ni, m = 1, . . . , NΓi

[AΓiΓi ]mn = a(ϕ̃n
h , ϕ̃

m
h ), m, n = 1, . . . , NΓi .Here we denote by ϕi

h, i = 1, . . . , Ni the �nite element basis funtions for the internal degreesof freedom on Ωi and by ϕ̃i
h, i = 1, . . . , NΓi those for the seleton degrees of freedom on Γi.The sti�ness matrix (4.6) refers to the �nite element disretisation on Ωi using natural boundaryonditions on Γi and the essential boundary onditions of the global problem on ∂Ωi ∩ ∂Ω. Letnow the global degrees of freedom be numbered aording to:

• �rst number all internal degrees of freedom in subdomain Ω1,
• proeed with all internal degrees of freedom of all other subdomains Ωi, i = 2, . . . ,M,

• number the degrees of freedom on Γ last.We remark, that this numbering is just used for easier notation and an be generalised as shownlater. Using this spei� numbering the linear system arising from �nite element disretisation
Ax = b has the abstrat form










A11 0 . . . 0 A1Γ

0 A22 . . . 0 A2Γ... ... . . . ... ...
0 0 . . . AMM AMΓ

AΓ1 AΓ2 . . . AΓM AΓΓ



















x1
x2...
xM
xΓ










=










b1
b2...
bM
bΓ










. (4.7)As long as the numbering of degrees of freedom is as de�ned above, this struture is also givenfor the spei� linear forms stated in Setion 2.2. Espeially the upper left onsisting of a blokdiagonal matrix is typial for �nite element disretisation sine the ordering of degrees of freedomis hosen suh that there is no diret oupling between internal nodes of di�erent subdomains. Torelate the global system in (4.7) to the loal matries in (4.6), let Ri be the restrition matrix for



4.2 The Shur Complement System 81a vetor x in Ω to a loal vetor xi in Ωi ∪ Γi and RT
i be the prolongation by 0 for the degreesof freedom external to Ωi ∪ Γi. Furthermore let RΓi be the restrition matrix for a vetor xΓ ofthe values on the seleton to only those values on Γi and RT

Γi
be the matrix whih prolongates theloal vetor xΓi by 0 to the global vetor on Γ. Hene the global matrix in (4.7) is given by

A =
M∑

i=1

RT
i AiRiwith bloks aording to seleton degrees of freedom

AΓΓ =
M∑

i=1

RT
Γi
AΓiΓiRΓi , AiΓ = AiΓiRΓi .The struture of (4.7) is suitable for a blok Gaussian elimination ending up with the Shuromplement equation for the unknowns on Γ

SΓxΓ = χΓ. (4.8)Herein the global Shur omplement matrix SΓ is omposed by loal Shur omplement matries
Si of subdomain Ωi

SΓ = AΓΓ −
M∑

i=1

AΓiA
−1
ii AiΓ =

M∑

i=1

RT
Γi

(AΓiΓi −AΓiiA
−1
ii AiΓi )

︸ ︷︷ ︸

Si

RΓi (4.9)and the right hand side is given by
χΓ = bΓ −

M∑

i=1

RT
Γi
AΓiiA

−1
ii bi. (4.10)The Shur omplement equation (4.8) is the algebrai ounterpart of the Steklov-Poinaré interfaeequation (4.5). One xΓ is known, a simple bak substitution in (4.7) yields the internal degreesof freedom xi.The oe�ient matrix (4.9) is obviously smaller than the global matrix in (4.7) but in generaldense and very expensive to form due to the fatorisation of Aii, i = 1, . . . ,M . If neverthelessthe matrix is assembled and fatorised, one ends up with a diret Shur omplement solver alsoalled substruturing method. On the other side the matrix vetor multipliation with the globalShur omplement matrix SΓ an be performed by a few sparse matrix vetor multipliations andsubdomains solves for A−1

ii , whih an be handled in parallel. Hene an iterative method might beapplied to (4.8), forming the idea of iterative Shur omplement solver. To obtain a onvergenerate that is independent of, or only weakly dependent on, the mesh size h and the diameter of thesubdomains H , a good preonditioner will be needed, sine it is shown that at least for elliptipartial di�erential equations (f. [24℄) the ondition number of the Shur omplement matrix SΓsatis�es
κ(SΓ) = O(h−1H−1).Due to the fat that the matrix (4.9) is atually not formed, the standard Jaobi, Gauss-Seidel,SOR and inomplete Cholesky-type preonditioners annot be used. For a disussion of severalinterfae preonditioners in the ase of ellipti problems we refer to [30, 143℄ and referenes therein.These preonditioners are shown to be optimal for ellipti problems but need strong knowledgeabout the wire-basket of the underlying mesh, i.e. the possibility to restrit and extend algebraivetors to only those degrees of freedom lying on the interfae edges and verties (f. [142℄ andreferenes therein).



82 DOMAIN DECOMPOSITION AND PARALLEL SOLVER4.2.2 Shur Complement PreonditionerFor our purpose of a generi parallel preonditioner to �uid �ow problems, we want to adopt theidea of multilevel ILU-based preonditioners for the sequential ase as shown in Setion 3.2. Inontrast to the speial preonditioners for equation (4.8) that are available for ellipti problem, westate an abstrat version just based on the algebrai form of the Shur omplement equation. Tothis reall that the global Shur omplement SΓ is given by
SΓ =

M∑

i=1

RT
Γi
SiRΓi .Furthermore we perform a formal LU fatorisation of the subdomain sti�ness matrix Ai de�ned in(4.6)

Ai =

(
Aii AiΓi

AΓii AΓiΓi

)

=

(
LAii 0

AΓiiU
−1
Aii

LSi

)(
UAii L−1

Aii
AiΓi

0 USi

)yielding the LU fatorisation of the loal Shur omplement Si = LSiUSi . Hene an (approximate)fatorisation of Ai naturally implies an (approximate) fatorisation of Si and so we are able to usethe inomplete fatorisation from Setion 3.2 on eah subdomain to get a parallel preonditionerfor the problem (4.8), namely
S−1
Γ ≈ PΓ :=

M∑

i=1

RT
Γi
ILU(Si)RΓi . (4.11)Up to now we taitly assumed that the loal matries Aii are fatorised for both the diret Shuromplement solver and the iterative one. If this ondition is losen, it an no longer be guaranteedthat a solver for the Shur omplement equation (4.8) also solves the entire problem Ax = b.Nevertheless this ase (Shur omplement equation with inexat loal solver for Aii) is still suitableas preonditioner for the global system Ax = b. To see this, we de�ne AΓΓ as before and

AII = blokdiag(Aii),

AIΓ = blokmat(AiΓ) =






A1Γ...
AMΓ




 ,

AΓI = blokmat(AΓi) =
(
AΓ1 . . . AΓM

)
,allowing to write (4.7) as

(
AII AIΓ

AΓI AΓΓ

)(
xI
xΓ

)

=

(
bI
bΓ

)

. (4.12)A formal fatorisation gives (Id being the identity matrix in appropriate dimension)
A =

(
Id 0

AΓIA
−1
II Id

)(
AII 0
0 SΓ

)(
Id A−1

II AIΓ

0 Id

)and the inverse
A−1 =

(
Id −A−1

II AIΓ

0 Id

)(
A−1

II 0
0 S−1

Γ

)(
Id 0

−AΓIA
−1
II Id

)

. (4.13)Assume that an interfae preonditioner for SΓ, say PΓ, and also for AII (in form ofM independentpreonditioners for Aii) is at hand, say PII ≈ A−1
II . Then replaing the orresponding blokmatries in (4.13) forms a preonditioner (also alled indued preonditioner [136℄) for the globalsystem matrix A, say PA

A−1 ≈ PA =

(
Id −PIIAIΓ

0 Id

)(
PII 0
0 PΓ

)(
Id 0

−AΓIPII Id

)

. (4.14)



4.2 Shur Complement Preonditioner 83This preonditioner needs three appliations of PII - parallel performed on eah subdomain Ωi -and one appliation of PΓ. Suh an approah to use interfae preonditioners inorporated into apreonditioner for the global system has already suessfully been used in the framework of �uid�ow problems, see [29, 70℄.Algorithm 3 Shur omplement preonditioner PSC for global system Ax = b.1. given atual global iterate
xk = [xkI , x

k
Γ]2. assemble right hand side

χΓ = xkΓ −AΓIPIIx
k
I3. iterative solver with mSC steps for x̃kΓ using Shur omplement matrix

SΓ = AΓΓ −AΓIPIIAIΓ4. solve for internal degrees of freedom̃
xkI = PII(x

k
I −AIΓx̃

k
Γ)5. end with preonditioned vetor

x̃k = [x̃kI , x̃
k
Γ] = PSCx

kWe now want to present a slightly di�erent preonditioner for the global system (4.12), namelyan inexat solver for the Shur omplement equation (4.8) itself. As it will turn out this proposalis a generalisation of PA in (4.14). The idea is straightforward: sine a diret Shur omplementsolver ats like A−1, an inexat version obviously inherits this behaviour. With inexat we meantwo points. First equation (4.8) is solved by a Krylov subspae iteration, say GMRES, seond thefatorisation of internal matries Aii is replaed by an inomplete multilevel ILU deompositionas proposed in Setion 3.2. Hene the parallel preonditioner ontains two main parameters
• number of iterations for the Shur omplement solver,
• all options for the loal ILU deomposition of Aii, in prinipal the threshold/�ll-in.In the following we denote by Shur omplement preonditioner the proposed preonditioner for theglobal system Ax = b, whih should not be mixed up with the preonditioner for the Shur om-plement equation (4.8) denoted by PΓ. To highlight the onnetion to (4.14) we sum up the stepsneeded for the Shur omplement preonditioner. Assume that xk = [xkI , x

k
Γ] is the global iteratefor equation (4.12) in the k-th step, then xk is preonditioned by the inexat Shur omplementpreonditioner to x̃k = [x̃kI , x̃

k
Γ] performing Algorithm 3. Main aspets are the replaement of ex-at fatorisation A−1

II by inomplete multilevel ILU deomposition whih we denote by PII ≈ A−1
IIas in (4.14) and the possibility to perform an arbitrary number of iteration steps for the Shuromplement equation within step 3. Additionally one might use the preonditioner (4.11) in step3. Comparing Algorithm 3 to an appliation of preonditioner PA (4.14) on xk, i.e. x̃k = [x̃kI , x̃

k
Γ] =

PAx
k, gives

(
x̃kI
x̃kΓ

)

=

(
Id −PIIAIΓ

0 Id

)(
PII 0
0 PΓ

)(
Id 0

−AΓIPII Id

)(
xkI
xkΓ

)

=

(
Id −PIIAIΓ

0 Id

)(
PIIx

k
I

PΓ(x
k
Γ −AΓIPIIx

k
I )

)

=

(
PIIx

k
I − PIIAIΓPΓ(x

k
Γ −AΓIPIIx

k
I )

PΓ(x
k
Γ −AΓIPIIx

k
I )

)

.Sine PII ≈ A−1
II and PΓ ≈ S−1

Γ we have that the global preonditioner PA equals the proposedinexat Shur omplement preonditioner PSC if in step 3 only one iteration step on the seletonunknowns is used.



84 DOMAIN DECOMPOSITION AND PARALLEL SOLVERSumming up, the proposed preonditioner allows to reover well known global preonditionersbut also o�ers the possibility to enhane them by substitution of PΓ through an iterative solver.Additionally, if there is no speial preonditioner for SΓ at hand, the global preonditioner anstill be used. One might say, that the preonditioner for the Shur omplement equation (4.8) hasbeen replaed by a Shur omplement preonditioner for the global equation (4.12).4.2.3 Data Strutures for Non-overlapping Domain Deomposition
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Figure 4.3: Non-overlapping elementwise mesh deomposition (left) and aording partition of degreesof freedom (middle and left) - denoted by × for Q1 elements.Given a non-overlapping domain deomposition allows to de�ne solvers (both diret and it-erative) for the Shur omplement equation as well as to use the Shur omplement equation aspreonditioner for the global system. We now address the question of underlying data strutureswhih will lead to a seond lass of preonditioners, namely the blok Jaobian preonditioner.Afterwards in the next setion we will show numerial results for the presented preonditionersusing multilevel ILU deomposition and ompare these to other standard implementations.Important omponents for a parallel iterative solver based on domain deomposition methodswithin a �nite element pakage are:
• parallel vetor assemblies and basi algebrai operations on parallel vetor,
• parallel matrix assemblies (also setup of nonzero/sparsity pattern),
• parallel matrix-vetor produt,
• parallel preonditioners for Krylov subspae methods.Assume that we have a non-overlapping elementwise mesh deomposition as shown in the left part ofFigure 4.3. If one uses Lagrange �nite elements (or any other type of �nite elements that possessesdegrees of freedom on the intersetion of subdomains) the de�nition of a parallel data struturebrings up the question, whih proess should own the nodes on the seleton. An elementwisedeomposition only indues the belonging of global degrees of freedom whose support is entirely ina subdomain Ωi. One might disregard the underlying mesh deomposition and distribute matriesand/or vetors by rows among the proesses, resulting in a row blok storage sheme

A =








A11 A12 A13 · · · A1M

A21 A22 A23 · · · A2M... ... ... . . . ...
AM1 AM2 AM3 · · · AMM







, x =








x1
x2...
xM








(4.15)with i = 1, . . . ,M row blok submatries onsisting of
• Aii loal sequential matrix, alled diagonal-blok,
• Ai∗\Aii loal sequential matrix, alled o�diagonal-blok.



4.2 Data Strutures for Non-overlapping Domain Deomposition 85Suh a distribution of parallel data assigns eah degree of freedom uniquely to a proess and there-fore to a subdomain. The underlying domain deomposition is hene no longer elementwise butvertex-oriented, see middle part of Figure 4.3. Sine the matrix A is the �nite element sti�ness ma-trix, the o�diagonal-bloks Aij , i 6= j represent the oupling between subdomains and are usuallysparse or even empty, when two subdomains do not share a ommon interfae. Standard alge-brai operations with this data struture are straightforward. Vetor addition and multipliationwith a salar an be performed in parallel without any ommuniation, only the salar-produtinvolves a global redue ommuniation. For the matrix-vetor produt Ax = b using (4.15) eahproess Pi needs to reeive from Pj the vetor entries xj whenever Aij 6= 0. Hene a sophistiatedmessage-passing between proesses is needed. For the row blok partitioning of parallel matrixand vetor storage, we use the well established PETS library [9℄, whih delivers "a suite of datastrutures and routines for the salable (parallel) solution of sienti� appliations modelled bypartial di�erential equations".In ontrast to the row blok partitioning, we also present parallel data strutures suitable forthe elementwise domain deomposition in ombination with Shur omplement approahes. Reallthat the global sti�ness matrix and global algebrai system an be written as (f. (4.12))
(
AII AIΓ

AΓI AΓΓ

)(
xI
xΓ

)

=

(
bI
bΓ

)

,where the blok matries are omposed by independent loal matries
Ai =

(
Aii AiΓi

AΓii AΓiΓi

)

.Furthermore we de�ne a generi algorithm to assemble vetor and matrix strutures within anelementwise domain deomposition in a �nite element ode. Algorithm 4 shows a basi loop toompute entries of the residual vetor and/or Jaobian matrix, needed in Newton's method asshown in Setion 3.1.3. This algorithm is performed by eah proess on its loal subdomain Ωi inparallel. A loser look on Algorithm 4 shows that step iv/ requires ommuniation only when theAlgorithm 4 Generi assembly loop for residual vetor or Jaobian matrix entries.given a set of ells {Kl} in loal subdomain Ωilear global data struture for residual vetor or Jaobian matrixfor all ells Kl in loal subdomain Ωi doi/ get degrees of freedom of atual ell: dof_indii/get values of solution vetor x aording to dof_ind: loal_soliii/ ompute loal integral orresponding to dof_ind, e.g. for Jaobian matrix using solutionof last Newton step loal_sol
Ai,j =

∫

Kl

f(loal_sol;ϕj
h, ϕ

i
h) dxiv/ add loal integral value to global data strutureend forrow blok matrix/vetor (4.15) is used, namely whenever one degree of freedom in dof_ind is notowned by the alulating proess, this value has to be ommuniated. In ontrast the pure loalrepresentation of global sti�ness matrix A in form (4.6) allows to hold every data omputed in stepiii/ on the spei� proess.Now we are able to de�ne the Shur omplement storage sheme: parallel matrix storage isorganised by loal subdomain blok matries orresponding to internal and seleton dofs as in(4.6). For the parallel vetor storage the internal degrees of freedom are obviously stored by theproess that owns the related subdomain. In addition eah proess stores all seleton degrees offreedom, that lie on ∂Ωi ∩ Γ, whih means that all seleton degrees of freedom are stored at leasttwo times. This vetor storage neessitates a further data struture to manage the storage of



86 DOMAIN DECOMPOSITION AND PARALLEL SOLVERGeometry degrees of freedom2Dbak�ow 20320032Dmeander 9299233Dbak�ow 36817483Dmeander 2732756Table 4.1: Setting of testases for the omparison of parallel data strutures in 2D and 3D.seleton degrees of freedom - e.g. an assignment whih proess stores the original seleton degreeof freedom and whih proesses hold opies. Compare the right with the middle part of Figure 4.3for the di�erene to the row blok storage sheme.Coming bak to Algorithm 4. For Jaobian assembly we saw that the Shur omplement storagesheme does not require any ommuniation ompared to the row blok storage sheme. To om-pute the residual vetor, step ii/ and iv/ involve ommuniation for the row blok storage shemewhenever an entry of dof_ind is not loal. Sine the Shur omplement storage sheme stores allloally needed data (at least as a opy), step ii/ again does not need any ommuniation. Onlystep iv/ is of interest in this ase. After all loal omputations where performed, a single routine toupdate the seleton degrees of freedom is inevitable - we will all this routine seleton_refresh.Remark 4.2.1To use the introdued Shur omplement storage sheme, it is not neessary to number the degreesof freedom as in (4.7), on the ontrary any numbering might be used. One only needs data struturesto identify the seleton degrees of freedom and mappings from global numbering to loal numberingof matries (4.6). These an heaply be organised as loal tables, while the global numbering isdone.Summing up, the row blok storage sheme needs ommuniation whenever a degree of freedomon a ell is used that is not hosted by the proess that holds this ell - this is the ase for assemblingroutines as well as for algebrai routines, suh as matrix-vetor produt. The Shur omplementstorage sheme on the other side only relies on one single synhronisation routine for the seletondegrees of freedom. Espeially the algebrai operations on a vetor are of the same omplexityfor both shemes, i.e. only the salar produt requires ommuniation between proesses. Atlast we mention that also the matrix-vetor produt for Shur omplement storage sheme anbe performed in parallel and no a-priori ommuniation is needed (in ontrast to those for theo�diagonal-bloks in row blok storage sheme). However the ommuniation is postponed to theseleton_refresh routine.Numerial ResultsWe end this subsetion with some numerial results indiating the apabilities of the presentedparallel data strutures. To judge the salability in parallel algorithms one usually de�nes thespeedup of an operation or an entire algorithm by the ratio of running time on one proess (thesequential version) T1 to the running time on n parallel proesses Tn, i.e.
S =

T1
Tn
.Ideally the speedup S should be equal to the number of used proesses n indiating perfet sala-bility. Sine the presented parallel data strutures (at least the Shur omplement struture) arenot meaningful in the sequential ase, we adapt the de�nition of speedup by saling with a fatorof 2. By this we adjust the result to a pure omparison of parallel ase and skip the sequentialase while the usual notation an still be used.In detail we ompared the typial operations needed within Algorithm 4, namely

• parallel Jaobian matrix assemble - divided into InitJa for the initialisation of nonzerostruture and ComputeJa for �lling the matrix by integration of loal parts,
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Figure 4.4: Salability of row blok storage and Shur omplement storage approah in the 2D ase -from top to bottom: InitJa, ComputeRes, ComputeJa and MVmult
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Figure 4.5: Salability of row blok storage and Shur omplement storage approah in the 3D ase -from top to bottom: InitJa, ComputeRes, ComputeJa and MVmult
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• parallel residual vetor assemble ComputeRes - loal integration and ommuniation of non-loal entries resp. seleton_refresh,
• parallel matrix-vetor multipliation MVmult.The row blok storage sheme was implemented by means of the PETS library [7, 8℄, whilethe Shur omplement storage was implemented autonomous within the software HiFlow2. Resultspresented in Figures 4.4 and 4.5 are based on the geometries and aording disretisation as for thesequential solver, exept for the level of re�nement - here we used �ner meshes as depited in Table4.1. Partitioning of data is based on the entire deomposition of the �nite element mesh, whihwas generated by a graph partition of the ell-neighbourhood graph provided by Soth library[122, 123℄. The blok partition of data is realised by �rst-ome-�rst-serve approah (f. Figure 4.3):we assign the degrees of freedom on the seleton to the proess with lowest rank, whih obviouslyprodues a small imbalane of data distribution on the proesses but allows for easier handling ofdegrees of freedom.Remark 4.2.2 (Hardware on�guration for numerial tests)All numerial tests ran on the distributed memory parallel omputer HP XC3000 at SteinbuhCentre for Computing (Karlsruhe Institute of Tehnology) using the GNU g ompiler in version4.4.3. On the HP XC3000 we used a varying number of the 288 ompute nodes to test for salability.Eah node ontains two Quad-ore Intel Xeon X5540 CPU (Nehalem) whih run at a lok speedof 2.53 GHz and has 24 GB of main memory. Setup of salability tests was suh that eah CPUwas equipped with 3 GB of main memory. The interonnet is an In�niband 4X QDR with latenyof about 2 miroseonds and point to point bandwidth between nodes of more than 3100 MB/s.As one an see in Figure 4.4 initialisation and omputation of Jaobian matrix sale perfetlyfor the Shur omplement approah due to the pure sequential setup of this data type. For the rowblok version we lose salability within the initialisation of nonzero struture of Jaobian matrix,sine ommuniation is needed to detet the ouplings for the o�diagonal blok. These e�ets areeven worse in the 3D ase: having the number of global degrees of freedom of the same orderof magnitude as in the 2D ase, the ratio of interior to seleton degrees of freedom is smallerresulting in more ommuniation. An improvement of routines for determining the neighbours ofone subdomain by using ghost layers of the mesh would allow for better salability of the InitJapart, but there will always be ommuniation needed when o�blok entries are assembled.For the assembling of the residual vetor, i.e. ComputeRes, we again have a slight bene�t for theShur omplement struture. All loal integrals an be omputed in parallel and only afterwardsan exhange within the seleton_refresh routine is needed, for whih the ommuniation an betuned using subommuniators of neighbouring subdomains. The row blok struture on the otherside neessitates ommuniation before loal integrals an be omputed (to get all needed degreesof freedom) and afterwards (to sum up the loal parts) - nevertheless the di�erene due to overheadof ommuniation is not that notieable in Figures 4.4 and 4.5. It should be mentioned that the twoommuniation steps for the row blok struture might also be ondensed into one, if additionalghost layers of degrees of freedom are used suh that eah proess knows about all needed loaldegrees of freedom (f. [7℄ for an idea on this). By this approah one would get the analogue tothe fat that in the Shur omplement struture we store the loal seleton for eah subdomain -hene the speedup of ComputeRes should be of the same order for both data strutures.Last point within the omparison of data strutures is given by the matrix-vetor multipliation.Here, the tuned PETS routines are superior to the Shur omplement approah. But, as we willpresent in the next setion, the latter one enables more e�ient preonditioners suh that the totalnumber of needed matrix-vetor multipliations an drastially be redued. In summary it an besaid, therefore, that both data strutures allow for salable results of basi linear algebra routineswithin an �nite element framework - with a slightly advantage in matrix assembling for the Shuromplement approah.Remark 4.2.3From an algebrai point of view the blok partitioning of parallel matrix and vetor is a ommon



90 DOMAIN DECOMPOSITION AND PARALLEL SOLVERhoie. Assuming no geometrial information linked to the sparse global matrix A, the data dis-tribution to proesses is usually done by means of the adjaeny graph. Eah proess will holda set of rows, whih has been determined e.g. by minimising the intersetion of adjaeny edges[57℄ - suh a partition is equivalent to a vertex-based deomposition of the underlying mesh. Itsmain drawbak for �nite element disretisation is obvious: ouplings of degrees of freedom withina ell will be disrupted and the distintion between interior and seleton nodes is no longer given.Nevertheless a preonditioning by inexat Shur omplement solver an still be used at the osts ofadditional data struture management for the o�diagonal bloks in (4.15) - see [136℄.4.3 Performane of Parallel Solvers/PreonditionersIn this setion the performane of row blok and Shur omplement based preonditioners is inves-tigated in onjuntions with the presented sequential Multilevel ILU preonditioner. Furthermore,we ompare the possibility to use the ILU preonditioner within both data strutures to some basipreonditioners provided by the PETS library and also to parallel diret solver. All numerialtest are based on the disretisation of two- and three-dimensional Stokes equations on the bak�owgeometry sine this example turned out to be representative as it was also before. Additionally,we used the hardware on�guration as depited in Remark 4.2.2.4.3.1 Usage of Multilevel ILU Preonditioner in ParallelFor the presented Shur omplement data strutures we already spei�ed how the sequential mul-tilevel ILU deomposition an be used to form a parallel preonditioner (and even a solver). Inaddition also the row blok partition of data allows to use the results of Chapter 3.2, namely bymeans of a parallel blok Jaobian preonditioner. We summarise the three major ases:Global Blok Jaobi PreonditionerThe preonditioner PBJ an be used upon the parallel data struture (4.15) by skipping the ou-plings Aij , i 6= j and using the ILU deomposition of Aii. Doing so the preonditioner operation
y ← PBJx is purely sequential and will therefore sale perfetly, but by skipping the o�diagonaloupling one will loose information the more proesses are used. Threshold and used preproessingfor the loal matries Aii are the parameters to be set like in the sequential ase of Chapter 3.2.Appliation of the blok Jaobian ILU preonditioner PBJ neessitates a modi�ation in standardPETS routines sine the diagonal blok annot be aessed diretly � fortunately these steps turnedout to be not that expensive. Nevertheless, an implementation using own data strutures for theglobal matrix might allow for even better results.Global Shur Complement PreonditionerSolving the Shur omplement equation (4.8) with an inexat loal solver for A−1

ii , namely an ILUdeomposition, gives a preonditioner PSC for the global system Ax = b � see Algorithm 3. Thispreonditioner provides a variety of parameter to tune the performane, i.e.
• threshold and preproessing for the ILU deomposition of Aii,
• onvergene riteria for the iterative solver of Shur omplement equation SΓxΓ = χΓ,
• additional preonditioner for SΓ (this would be a preonditioner for the preonditioner).Compared to the blok Jaobian preonditioner PBJ this preonditioner preserves the ouplingsbetween subdomains by approximatively solving the Shur omplement equation, suh that theappliation y ← PSCx will be ostlier due to needed ommuniation routines. A omparableapproah was already used in [52℄ for the ompressible Euler equations. Therein the loal systemmatries Aii were only approximated by means of ILU(0) deomposition for whih we alreadyshowed the inferior behaviour ompared to Multilevel ILU preonditioner.



4.3 Numerial Results 91Preonditioner for Shur Complement SolverIn (4.11) we de�ned a preonditioner PΓ for the Shur omplement equation
SΓxΓ = χΓ.Again one an use all results on basis of the sequential preonditioner for loal matries Aii. We willombine this preonditioner with an exat solver for A−1

ii to get a preonditioned Shur-omplementsolver.The last preonditioner is, in ontrast to the �rst two preonditioners, not applied to the globalsystem (4.7) resp. (4.15). Sine espeially the global Shur omplement preonditioner mightdi�er in eah utilisation, we annot use standard GMRES(m) implementation any more. Instead wethroughout use the Flexible-GMRES FGMRES(m) with restart in the parallel ase, whih allows tovary the preonditioner � desribed in detail in [56, 132℄.4.3.2 Numerial ResultsResults obtained for the Shur omplement approah and Multilevel ILU preonditioner (in thefollowing denoted by ILU++ due to the used software) were ompared to some established solversand preonditioners. We judge the results in two ways: �rst the absolute time for solving the linearsystem, seond the salability. The results for standard preonditioners were diretly obtained usingthe PETS library [7, 8℄ together with the blok matrix storage sheme presented before. Basedon the literature and extensive numerial tests we ompared against Blok Jaobi and AdditiveShwarz (with overlap of 4) preonditioner � both with loal ILU(0) fatorisation in the 3D aseand loal ILU(1) fatorisation in the 2D ase. These preonditioners were reported to be standardin the PETS library and already showed good performane for hp �nite element disretisation ofinompressible �ows [14℄.Global Blok Jaobi PreonditionerAs one an see in Figure 4.6 for the 2D ase and in upper row of Figure 4.7 for the 3D ase,the results for preonditioner PBJ with loal ILU++ fatorisation are superior to the ones withloal ILU(k) fatorisation � this fat was already observed for the sequential ase in Chapter 3.2.Also the hoie of threshold for best, i.e. fastest, performane is quite similar to the sequentialase (lower row in Figure 4.7) where a threshold of τ ≈ 2.0 gave good overall results. But theoutstanding result is given by the fat that Blok Jaobian preonditioner nearly throughout fails(and therefore we skip the graphial evaluation) for problems of size of order larger than 5 · 105,i.e. needed FGMRES-steps are beyond 105 and overall solution is not worth disussing. Espeiallyomparison to the Distributed Multifrontal Solver MUMPS [4℄ shows the poor performane ofiterative solvers in the 2D ase (Figure 4.6) � only salability of iterative solver is somewhat betterbut still not optimal. In terms of absolute time to solve the linear system, the diret solver, as inthe sequential ase, is superior for two dimensional problems but worse in three dimensions (Figure4.7). Nevertheless, the diret solver su�ers from its large memory requirement (that might not bepresent when the number of proesses is small) and bad salability.In terms of salability the Additive Shwarz preonditioner was hosen to establish some ex-hange of ouplings whih is not present for the Blok Jaobian preonditioners. This advantagean be seen in the left part of Figure 4.6 and 4.7 where the number of FGMRES steps does notinrease that muh when the number of proesses inreases (ompared to Blok Jaobian preon-ditioners). Summing up, we found that for the global Blok Jaobian preonditioner the sameresults regarding loal ILU deomposition are given as for the sequential ase. But the entireapproah by blok preonditioning su�er from the skipping of ouplings in o�diagonal blok whihthen has to be ompensated by additional global FGMRES steps.Preonditioner for Shur Complement SolverMotivated by the absolute solver time of the diret solver MUMPS, we investigated on the per-formane of the iterative Shur omplement solver. Equation (4.8) is solved via a GMRES iteration
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Figure 4.7: Performane of row blok data struture based preonditioner with loal Multilevel ILUfatorisation and omparison to diret solver MUMPS � 3Dbak�ow problem with 472748degrees of freedom.
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Figure 4.9: Contour map of global FGMRES steps for di�erent parameter settings of Shur omplementpreonditioner PSC on 16 proesses. 2Dbak�ow problem with 509123 degrees of freedom(top) and 3Dbak�ow problem with 472748 degrees of freedom (bottom).on the seleton xΓ. To this end, the loal problems (i.e. A−1
ii for the loal Shur omplement Si)within equations (4.9) and (4.10) are treated by the diret solver UMFPACK [38℄. Furthermore,we use the preonditioner PΓ as in (4.11) with PQ-reordering for 2D problems, normalisation for3D problems and di�erent size of threshold for the inomplete multilevel fatorisation ILU(Si).The results for 2D and 3D problems are shown in Figure 4.8: one an see that the more proessesare used, the bigger the threshold should be. Whereas in the 3D ase the in�uene of thresholdfor the preonditioner PΓ is not that notable for di�erent numbers of proesses, we have in the2D ase a lear turning point when one uses more than 16 proesses. All in all the iterative Shuromplement solver with loal exat solver for A−1

ii was not ompetitive to the presented solver sofar, neither in terms of absolute time to solve the system nor in terms of salability (see overallomparison in Figure 4.12). Espeially for the salability the imbalane of seleton degrees offreedom to interior degrees of freedom is important the more proesses are used.Global Shur Complement PreonditionerAt last we study the global Shur omplement preonditioner PSC as given in Algorithm 3 � againwe use a global FGMRES iteration as aelerator. This preonditioner allows to modify a varietyof parameters and we only inspeted the behaviour when the number of iterations mSC withinthe inexat Shur omplement solver and also the threshold for inomplete fatorisation of Aii arehanged. The preonditioner for the Shur omplement operator SΓ was not under investigation(see Figure 4.8 for this). Instead we hose a �xed setting that allows heaply usage, namely athreshold of τ = 1.75 throughout.



96 DOMAIN DECOMPOSITION AND PARALLEL SOLVERTesting the wide range of suitable parameters would go beyond the sope of this thesis and weonly present the possibilities for setting on 4, 16 and 64 proesses both for the 2D and 3D aseas before. To get a feeling for the behaviour of the solver for di�erent parameter we show theresults for global FGMRES steps and needed time to solve the system in ontour plots. Results forglobal FGMRES steps are similar for every number of used proesses (see Figure 4.9 for the ase of 16proesses): the more preise the Shur omplement equation is solved, the less global FGMRES stepsare needed. This an be ahieved either by inreasing the threshold for inomplete fatorisation of
Aii or by inreasing the number of iterations mSC for the iterative Shur omplement solver.For the results in terms of absolute solver time, we did not get suh lear statements. Asdepited in Figures 4.10 and 4.11 the best setting of parameters threshold τ and stepsmSC stronglydepends on the number of used proesses. A rule of thumb might be given by: the more proessesare used, the more threshold τ and the more iterative steps mSC should be used. Nevertheless, theperformane of preonditioner PSC is very sensitive to hoie of parameters � already a modi�ationof e.g. threshold by 0.5 might ause a doubling of solver time. Heuristial observations were givenby the fat that the ratio of iterative stepsmSC to number of seleton degrees of freedomNΓ shouldremain onstant for eah number of proesses. It will be a future work to adjust the parametersof PSC automatially using the information given by partition of �nite element mesh.4.3.3 Comparison of all SolversFinally we gather the results ahieved for the presented parallel solver/preonditioner, i.e. weompare the diret solver MUMPS, Shur Complement solver, global FGMRES solver with AdditiveShwarz preonditioner, with Blok Jaobian preonditioner PBJ and with Shur omplementpreonditioner PSC . The outomes for absolute solver times di�er a lot for the 2D and 3D ase �see Figure 4.12. In the 2D ase the best performane is given by diret solver based methods, i.e.the MUMPS and Shur omplement solver. Results for iterative solvers an be separated into twolasses: whereas the solver with preonditioners PSC and ASM at least solved the problem, theusage of Blok Jaobian preonditioner PBJ took throughout more than 1.e5 iterations and didnot reah the solution in reasonable time. But it has to be mentioned that the PSC preonditionershowed a fatal performane for more than 64 proesses � number of FGMRES steps and solutiontime are worth disussing. A possible explanation is given by the worse ratio of interior to seletondegrees of freedom. The osts for inexat Shur omplement solver are then dominated by therestrition and prolongation operations that need inreasing ommuniation.In the 3D ase it is the other way around. Here the iterative FGMRES solver with blok ILU++preonditioner gave the best results. This disrepany to the two dimensional ase was alreadyobserved in Chapter 3.2 for the sequential solver where the bigger �ll-in in three dimensions wasfound to be ruial for diret solvers. Iterative solvers obtain a slightly better salability and needde�nitely less memory ompared to diret solvers whih �t to atual superomputer arhitetures.It should be mentioned that the Blok Jaobian preonditioner PBJ yields better results than bothpreonditioners PSC and ASM although only the latter ones take the ouplings of subdomainsinto aount. These ouplings also ome into play by global matrix-vetor multipliations as anbe seen in left of Figure 4.12. For the pure sequential preonditioner PBJ one obviously needsa higher number of FGMRES steps, whereas espeially the Shur omplement preonditioner PSCallows for a nearly onstant number of FGMRES steps independent of the number of proesses.Summing up, we onlude that for onsidered three dimensional problems iterative solvers aremore suitable than diret solvers. Both approahes, row blok partition and Shur omplementapproah, yield suitable parallel data strutures and the possibility to use preonditioners based onMultilevel ILU deomposition, whih showed a better performane than standard preonditioners.However, the salability is only weak and the setting of appropriate parameters, espeially for the
PSC preonditioner, is triky. But the presented results ause to onsider in a future work anoptimised implementation of data strutures and related preonditioners to obtain better results.4.3.4 Comparison of Complete Parallel ApproahAs a very last result on parallel data struture and parallel preonditioner we show the apabilitiesof preonditioners PBJ and PSC in ombination with aording data strutures for large sale
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Figure 4.10: Contour map of absolute solver time for di�erent parameter settings of Shur omplementpreonditioner PSC on 2Dbak�ow problem with 509123 degrees of freedom � 4 proesses(top), 16 proesses (middle) and 64 proesses (bottom).
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Figure 4.11: Contour map of absolute solver time for di�erent parameter settings of Shur omplementpreonditioner PSC on 3Dbak�ow problem with 472748 degrees of freedom � 4 proesses(top), 16 proesses (middle) and 64 proesses (bottom).
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number of proesses32 64 128 256 512 1024Blok Jaobian preonditioner PBJ�nal residual norm 8.35e-12 1.66e-11 1.0e-12 9.98e-13 1.0e-12 9.96e-13overall solution time 999 532 306 189 131 211mean Jaobian assemble time 92.9 47.8 24.4 12.5 6.5 4.0mean FGMRES steps 269 332 455 653 822 1649mean linear solver time 68 37 23 17 13 28Shur Complement preonditioner PSC�nal residual norm 8.66e-13 2.35e-12 5.79e-13 6.83e-13 7.41e-13overall solution time 1752 981 776 730 1303 >1800mean Jaobian assemble time 93.4 46.7 23.5 11.8 6.5 3.0mean FGMRES steps 16 13 9 9 15mean linear solver time 194 114 105 109 210Table 4.2: Results of row blok and Shur omplement approah for Navier-Stokes solver within 3Dbak-�ow geometry � obtained on superomputer JUROPA.
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solve using PSCFigure 4.14: Comparison of mean absolute time to assemble and solve Jaobian of Navier-Stokes equa-tions using PSC , PBJ and aording parallel data strutures.
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Chapter 5Optimisation Approah on HPCSystemsAfter detailed derivation of generi sequential and parallel solver for the primal and adjoint/sen-sitivity equation, we now ome bak to the entire optimisation problem. Sine both optimisationapproahes desribed in Chapter 2.3 are based on determining the gradient of the redued ostfuntional, i.e. Dj
Du (u) = ∇j(u), at this stage we an work out a framework on the routines forevaluation of ost funtional j(u) = J(S(u), u) and gradient ∇j(u) = DJ

Du (S(u), u).In the following we emphasise onsequenes for the speial ase of instationary PDE-onstrainedoptimisation implemented on HPC-systems. This work bases on the ontribution [21℄ of the authorfor the PARA2008 workshop. For the adjoint based optimisation approah we are faed with thedisrepany that impliit solvers allow for less timesteps but are ostly (see Chapter 4.3). On theother hand expliit solvers need lots of timesteps that are very heap but require the overall bakupof state solution, whih motivates the usage of hekpointing shemes and parallel I/O. For thesensitivity based optimisation approah there is no need to ompute the adjoint solution bakwardin time. Instead the partial derivative for eah ontrol parameter an be omputed within theforward sweep.5.1 Gradient-based Optimisation AlgorithmWe already showed in Chapter 2.3 that a gradient-based optimisation algorithm for PDE-onstrainedproblems requires the solution of state- and adjoint-/sensitivity-equations to determine the gra-dient (�rst order optimality ondition). This proedure is shown in Figure 5.1 for the ase ofinstationary �ow optimisation by boundary ontrol - the reader might refer to Chapter 2.3.2 for adetailed notation. The main di�erene within the adjoint and sensitivity approah for determina-tion of gradient ∇j is the number of linear/nonlinear systems to be solved as well as the storagerequirements to be ful�led. Before we report on the used optimisation algorithm to determine theupdate for ontrol variables, we ompare the needs to ompute the gradient for stationary andinstationary problems. Let's assume that the sensitivity-based representation of ontrol u is givenby design parameter αk, k = 1, . . . , n.For a stationary problem one iteration step of the shemati proedure 5.1 requires for anadjoint and also for a sensitivity-based method:i/ one nonlinear system of the state equations to be solved,ii/ bakup of state solution,iii/ for adjoint method: one linear system of the adjoint equations to be solved using bakup ofstate solution,iii/ for sensitivity method: n linear systems of sensitivity equations to be solved using bakup ofstate solution,
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5.1 Gradient-based Optimisation Algorithm 105iv/ evaluation of gradient by standard algebrai operations.We see that the adjoint-based method in ase of stationary problems always requires 1 nonlinearsystem and 1 linear system to be solved, while the sensitivity-based method requires the more linearsystem solves the more design parameter αk are used. This fat obviously advoates for the adjoint-based approah, but for instationary problem the position turns over. For an instationary problemusing a temporal disretisation of m timesteps, one iteration step of the shemati proedure 5.1requires for an adjoint-based method:i/ m nonlinear systems of the state equations to be solved forward in time,ii/ bakup of m state solutions at all timesteps,iii/ m linear systems of the adjoint equations to be solved bakward in time using bakup ofstate solutions,iv/ evaluation of gradient by standard algebrai operations.Whereas for the sensitivity-based method we need:i/ one nonlinear system of the state equations to be solved per timestep (totally m for alltimesteps),ii/ bakup of atual state solutions at atual timestep,iii/ n linear systems of sensitivity equations to be solved at atual timestep using bakup ofatual state solutions,iv/ evaluation of gradient by standard algebrai operations.Hene, the sensitivity-based method does not require the separation in forward and bakwardsolver and does not need to bakup all m state solutions - instead only the atual state solutionis needed in every timestep. For the solver we ount for both methods m nonlinear system solvesand for the adjoint based method m linear system solves ompared to m ·n linear system solves forthe sensitivity based method. To overome the problem of full bakup of state solution for adjointbased method, we will introdue hekpointing shemes in the sequel whih lead to additionalnonlinear system solves for the state equations. Sine this problem is not given for the sensitivitybased method, we an treat this approah like a pure simulation task having more than one systemto be solved in eah timestep - so in the sequel we onentrate on tehniques for the adjoint-basedmethod only.Parallelism within the Sheme 5.1 an be implied for all solver steps by means of parallel solversas presented in Chapter 4. Furthermore the optimisation algorithm, whih will be �gured out next,possesses opportunities for parallelism sine mainly basi algebrai operations are to be peformedlike matrix-vetor produt or dot-produt. The optimisation algorithm might use the parallel datastrutures of Chapter 4.2, but for most ases the data distribution of the ontrol variable is alreadygiven by the domain deomposition approah. A reordering of ontrol data is often not gainfuland for the sensitivity-based optimisation the number of ontrol variables is suh small that evena sequential optimisation algorithm an be used.Quasi-Newton MethodsThe rough estimation on storage requirements done before for instationary PDE-onstrained op-timisation problems needs to be extended by an estimation of the size of the entire optimisationproblem. In ase of sensitivity-based optimisation, the size of optimisation problem, i.e. the sizeof disretised ontrol u and also of gradient ∇j(u), equals m · n. When expliit timestepping isused suh that m ≈ 105, these problems are of size 106 and have to be regarded as large saleoptimisation problems. In ase of adjoint-based optimisation, the optimisation problem will alsobe of size m · n, but now n denotes the spatial disretisation of ontrol u. For the �nite elementbased disretisation of boundary ontrol problems under onsideration this equals the number ofdegrees of freedom of ontrol uh on boundary Γc - on 3D meshes one easily ends up with n ≈ 103.



106 OPTIMISATION APPROACH ON HPC SYSTEMSEven when impliit timestepping is used to keep down the number of timesteps, say m ≈ 102, theoptimisation problem is of size 105 and therefore again a large sale optimisation problem.The �rst order optimality ondition for the redued ost funtional was given by (f. (2.31))
〈∇j(u), u− u〉U∗,U ≥ 0 ∀u ∈ Uadand an by rewritten as

∇j(u) = 0 ∀u ∈ Uwhenever Uad = U , i.e. no additional side onstrains are given for the admissible ontrols. How toompute the gradient ∇j(u) was addressed by adjoint and sensitivity equations suh that we nowneed to onentrate on large sale optimisation algorithm. Sine by the redued ost funtionalwe an view the problem as an unonstrained optimisation problem, we use a general approahby means of Newton's method in several variables for unonstrained optimisation. Furthermorethe problem is treated as already disretised, i.e. we identify the ontrol uh by the values ofdegrees of freedom. Find the ontrol uh = [u1, ..., um·n] ∈ Rm·n suh that the ost funtional
j(uh) = J(S(uh), uh) is a minimum. Standard approximation of j(uh) by the �rst three terms ina Taylor series expansion at atual iterate uih yields (see e.g. [96℄):

j(uh) = j(uih) +∇j(uih)(uh − uih) +
1

2
B(uih)[uh − uih, uh − uih]with the symmetri Hessian matrix

B(uih) = ∇2j(uih).De�ne the searh-diretion s = uh − uih and rewrite the expansion as
j(uh) = j(uih) +∇j(uih)s+

1

2
B(uih)[s, s] (5.1)where the term ∇j(uih)s is the diretional derivative along s and the term H(uih)[s, s] is alledurvature or seond diretional derivative in the diretion s. For the minimum u∗h one has thefollowing observations (see [41℄)

j(uh) > j(u∗h) ∀uh ∈ Rm·n,

∇j(u∗h)s = 0 ∀s ∈ Rm·n,

B(u∗h)[s, s] > 0 ∀s ∈ Rm·n.For Newton's method one hoses the searh diretion
si = −B(uih)

−1∇j(uih),whih is the minimiser of the quadrati model (5.1) to get the new approximation
ui+1
h = uih + si.This method is based on �nding a zero of the gradient vetor (�rst order neessary optimalityondition) and there is no guarantee that the step will move towards a loal minimum ratherthan a stationary point or maximum. To prelude this, we must insist that the step be downhill,i.e. ∇j(uih)si < 0, whih is the positive de�niteness of Hessian matrix when the Newton step ishosen.For the onsidered large sale problems the omputation and storage of the Hessian matrix isoften beyond reah. Furthermore the fatorisation of the Hessian matrix, i.e. omputation of

H(uih) = B−1(uih)might be very ostly. The most simple way would be to estimate the inverse Hessian matrix H(uih)by the identity, resulting in searh diretion si = −∇j(uih) and the wellknown steepest desent



5.1 Gradient-based Optimisation Algorithm 107method. A further improvement of inverse Hessian approximation is given by reursive updateformulae like SR1, BFGS or DFP. These Quasi-Newton methods base on the update of the inverseHessian approximation
Hi+1 ≈ H(ui+1

h )in eah iteration step of the optimisation algorithm using the former derived iterates si = ui+1
h −uihand yi = ∇j(ui+1

h )−∇j(uih) - see [41, 119℄ for a omplete disussion. All update formulae avoid thepossibly ostly omputation and fatorisation of the Hessian matrix, but still need lots of storage- to overome this problem limited memory updates are usually used.We will onentrate on the usage of LBFGS method in ombination with a line-searh ap-proah for globalisation of Quasi-Newton method. The main idea of limited memory BFGS is thereplaement of full update formula for the inverse Hessian matrix1
Hi+1 =

(

Id− si ⊗ yi
yi · si

)

Hi

(

Id− yi ⊗ si
yi · si

)

+
si ⊗ si
yi · siby a version that only uses a spei� number of vetors. Using say m vetors to store the historyof si and yi, the fundamental operation

si = −Hi∇j(uih)within a Quasi-Newton optimisation algorithm an be expressed by a two loop reursion 5 - referto Chapter 7 in [119℄. For the entire optimisation Algorithm 6 within the optimisation proedureAlgorithm 5 LBFGS two loop reursion to determine searh diretion si.
q = ∇j(uih)for j = i− 1, . . . , i−m do
aj =

sj ·q
yj ·sj

q = q − ajyjend for
r = H0

i q =
si−1·yi−1

yi−1·yi−1
qfor j = i−m, . . . , i− 1 do

b =
yj ·r
yj ·sj

r = r + sj(aj − b)end for
si = −r = −Hi∇j(uih)depited in Figure 5.1 we have to add some globalisation strategy to the Algorithm 5 - here we usea simple line-searh approah based on the Armijo update rule. It has to be mentioned that the1D line-searh step to determine the step length λi neesitates the evaluation of ost funtional

j(u). This step requires for a nonlinear ost funtional and nonlinear state equations the solutionof the full instationary partial di�erential equations suh that the determination of step lengthmight beome the most ostly part of Algorithm 6. To avoid the step length omputation onemight use trust-region methods instead of line-searh methods - see [119℄ for details.Algorithm 6 Line-searh optimisation step with limited Quasi-Newton update - LBFGS method.given ontrol uih and gradient ∇j(uih)ompute si = −Hi∇j(uih) by Algorithm 5update ontrol ui+1
h = uih + λisi, step length λi ful�lling su�ient derease ondition for ostfuntional j(uh)if i > m thendisard [si−m, yi−m] from storageend ifstore si = ui+1

h − uih and yi = ∇j(ui+1
h )−∇j(uih)1a⊗ b = [aibj ]i,j denotes the outer produt of two vetors a, b ∈ Rn
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Figure 5.2: Typial forward-reverse sheme for optimisation of instationary problems.5.2 Parallel I/O and Chekpointing StrategiesFor the presentation of parallel hardware and software tehniques used for PDE-onstrained opti-misation in ombination with an adjoint based optimisation approah, we onsider an instationaryproblem of the general form (f. Chapter 2.3)

min
(y,u)∈Y×Uad

J(y, u) (5.2)subjet to
〈∂ty +A(y, u), ϕ〉Y ∗,Y = 0 ∀ϕ ∈ Y (5.3)where y (resp. u) desribes the state (resp. ontrol) variable. Further Y (resp. Uad) desribesthe state (resp. ontrol) spae and we assume J : Y × Uad → R for the objetive funtional and

A : Y × Uad → Z = Y ∗ for the state equation to be nonlinear. As model problem the user mightrefer to the setting of �uid �ow optimisation in Chapter 2.3 where the adjoint problem assoiatedto (2.33) was found to be
〈∂J
∂y

(y, u), ϕ〉Y ∗,Y − 〈∂tz +
[
∂A

∂y
(y, u)

]∗

z, ϕ〉Y ∗,Y = 0 ∀ϕ ∈ Y (5.4)and the optimality ondition was given by
〈∂J
∂u

(y, u) +

[
∂A

∂u
(y, u)

]∗

z, ϕ− u〉U∗,U ≥ 0 ∀ u ∈ Uad. (5.5)Considering �nite element disretisation of the ontinuous problems (5.3) and (5.4) as depitedin Chapter 3.1, we derive the short forms
yi+1
h = F (yi+1

h , yih, u
i+1
h ) i = 0, 1, . . . ,m− 1

zih = R(zi+1
h , yih, u

i
h) i = m− 1, . . . , 0

(5.6)where we assume yih and zih to be the disrete solution of the primal resp. adjoint equation attimestep i. The disrete solution operators assoiated to the operators in (5.3) and (5.4) aredenoted by F (·, ·, ·) and R(·, ·, ·) showing the forward and reverse harater in time. Beside theseoperators often a ombined advane and reverse step, alled init-step, an be �gured out that alsoomprises the initialisation of adjoint solution zmh . It is important to note that the adjoint problemis always linear, i.e. zih only depends on zi+1
h , but has to be solved bakward-in-time. Furthermoreassuming a nonlinear primal problem (or a nonlinear ost funtional) eah step of the adjointsolution is diretly oupled to the orresponding step of the primal one (see Figure 5.2).This means that the solution of the adjoint equation relies on the knowledge of the omplete
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Figure 5.3: Benhmarking results of olletive MPI-routines on HP XC3000 (Steinbuh Centre for Com-puting).forward solution yih, i = 0, . . . ,m − 1. In order to redue the needed storage resoures, di�erenthekpointing strategies have been introdued:
• uniform hekpoint distribution (see [31℄ and referenes therein),
• binomial hekpoint distribution (see [160℄ and referenes therein),
• adaptive (online) hekpointing (see [82℄ and referenes therein).Typially for omplex instationary problems a full bakup of states easily grows up to some TByteand annot be stored diretly in memory. Further on many large HPC platforms one has to faethe problem that data I/O is being handled on a unique master node. The needed gather andsatter routines are very expensive on typial lusters due to the fat that performane of thenetwork dereases dramatially the more proesses are used in a olletive operation.Benhmarking for gather and satter routines on the HP XC3000 luster at Steinbuh Centre forComputing (Karlsruhe Institute of Tehnology) with an In�niband 4X QDR interonnet showedthat the related performane of suh olletive operations derease dramatially for inreasing thenumber of proesses. While the standard point-to-point ommuniation shows a performane ofmore than 3100 MB/s the bandwidth redues by more than 90% for olletive ommuniation (seeFigure 5.3).Hene, one has to look for a solution that on the one hand redues the amount of data tobe stored, i.e. does not store omplete bakup, and on the other hand uses sophistiated HPC-tehniques to enable salable data I/O.5.2.1 Solution Proess on HPC-platformFor pratial problems under onsideration we mainly enounter large sale disretisation and itturns out that the time needed to store one forward solution step may exeed the omputationaltime needed to obtain this step. This is espeially the ase when expliit timestepping shemes areused. We will show this e�et by an aademial example of adjoint based optimisation, namely:given an instationary partial di�erential equation for the state-solution y and a stationary/desiredsolution y∗ = y∗(x). Formulate a traking type ost funtional to ontrol the PDE (here by meansof boundary ontrol) suh that the stationary solution is ahieved within a �xed time interval

(0, T ). This priniple an be found in the following paraboli example of boundary ontrol butalso in the examples of Chapter 2.3.



110 OPTIMISATION APPROACH ON HPC SYSTEMSThe entire problem reads
min

(y,u)∈H1(Ω)×L2(Γc)
J(y, u) =

1

2

T∫

0

‖y − y∗‖2L2(Ω) dt+
λ

2

T∫

0

‖u‖2L2(Γc)
dt (5.7)under state equation: y(·, 0) = y0 6= 0 and for t ∈ (0, T ) it holds y(·, t) ∈ {v ∈ H1(Ω) : v = u on Γc}suh that

〈∂ty, ϕ〉+ (∇y,∇ϕ)0 + α(y, ϕ)0 = 0 ∀ϕ ∈ H1
0 (Ω). (5.8)We use the parameter α to modify the behaviour of the system. Choosing α < −µmin, where

µmin is the smallest eigenvalue of the Laplae operator (e.g. µmin = 2π2 in two dimensions), thesystem beomes unstable and the solution blows up, i.e. the norm ‖yh‖ tends to in�nity. Hene,the boundary ontrol u on Γc an be viewed as a stabilisation of the system, see [19℄.The adjoint equation to (5.8) an diretly be stated as: z(·, T ) = 0 and for t ∈ (0, T ) it holds
z(·, t) ∈ H1

0 (Ω) suh that
−〈∂tz, ϕ〉+ (∇z,∇ϕ)0 + α(z, ϕ)0 = (y∗ − y, ϕ)0 ∀ϕ ∈ H1

0 (Ω) (5.9)whereas the optimality ondition (having no additional bounds on ontrol u) is given by: for
t ∈ (0, T ) it holds

(λu+ ∂nz, χ)L2(Γc) = 0 ∀χ ∈ L2(Γc). (5.10)We refer to [157℄ for a derivation and detailed analysis of suh paraboli problems. Next thedisretisation of state and adjoint equation is done by onform spatial �nite element method (using�nite element spae Vh ⊂ H1
0 (Ω)) in ombination with expliit timestepping (f. Chapter 3.1) andone gets the disrete system for (5.8)

(ykh, ϕh)0 +∆t
[
(∇yk−1

h ,∇ϕh)0 + α(yk−1
h , ϕ)0

]
= (yk−1

h , ϕh)0 ∀ϕh ∈ Vh, k = 1, . . . ,mWith standard notation of sti�ness- and mass-matrix
A = [aij ] =∆t [(∇ϕh,j ,∇ϕh,i)0 + α(ϕh,j , ϕh,i)0] i, j = 1, . . . , n

M = [mij ] =(ϕh,j , ϕh,i)0 i, j = 1, . . . , nthis an be written as the algebrai system, where we use ykh =
n∑

i=1

Y k
i ϕh,i and Y k = [Y k

1 , . . . , Y
k
n ]T ,

MY k +AY k−1 =MY k−1 k = 1, . . . ,mor equivalently
Y k = Y k−1 −M−1AY k−1 k = 1, . . . ,m. (5.11)If �nally the mass-matrix M = mij = (ϕh,j , ϕh,i)0 is replaed by the lumped diagonal matrix

M = mii =
n∑

j=1

mij , equation (5.11) an be used as expliit update sheme for the disrete solution
ykh. Sine this sheme mainly uses matrix-vetor multipliation (plus additional omponentwisevetor operations), it is a prominent andidate for parallelisation as we will shown later.With respet to the previously desribed problems of storage spae/time and in order to solvethe general adjoint problem (2.34) resp. the onrete problem (5.9), we onsider an hybrid approahombining two steps:
• hekpointing-strategy: store few dediated timesteps instead of a omplete state variablebakup and reompute missing states for the bakward problem if needed,
• parallel I/O: allows every node in a luster to write/read data simultaneously.These two approahes result in di�erent bene�ts. In our framework hekpointing strategies relyon a redued storage by means of a dediated hoie of the state solution forward-in-time. Eahof the stored timesteps orrespond to a hekpoint. This kind of tehnique aims on the one hand
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Figure 5.4: Binomial hekpoint distribution in ase of 16 timesteps and 3 hekpoints. Ri means readi-th hekpoint, Wi means write i-th hekpoint and D stands for derive adjoint state.at strongly reduing the needed storage resoures. On the other hand the hekpoints are hosensuh that the needed reomputing e�orts for the missing timesteps are kept minimal. A typialsituation is depited in Figure 5.4 assuming binomial hekpoint distribution (f. [69, 160℄).Parallel I/O tehniques lead to additional bene�ts. These tehnologies allow data to be trans-mitted in a fully parallel way between lients, on whih they are produed and used, and entraldediated storage server, on whih they should be stored. In pratie a signi�ant speedup fordata-aess an be gained as ompared to typial luster with serial �le systems.Hardware Con�gurationDevelopment of superomputers nowadaysmore and more tends to systems whih are well-resouredwith proessors but with less main memory per ore. In the November 2009 list of top500 super-omputers no system in top 30 is equipped with less than 10000 ores and the ratio of main memoryto total number of ores shows a lear tendeny, e.g.
• top 1: Jaguar (Cray XT5-HE Opteron Six Core) at Oak Ridge National Laboratory (UnitedStates) with 224162 ores. Eah of ompute node ontains two hex-ore AMD Opteronproessors and 16 GB main memory, resulting in 1.33 GB/ore,
• top 4: JUGENE (Blue Gene/P Solution) at Forshungszentrum Jülih (Germany) with294912 ores. The 72 raks with 1024 ompute nodes host 4-way SMP proessor and 2GB main memory per ompute node, resulting in 0.5 GB/ore,
• top 13: JUROPA (Sun Constellation, NovaSale R422-E2, Intel Xeon X5570) at Forshungszen-trum Jülih (Germany) with 26304 ores. 2208 ompute nodes with 2 Intel Xeon X5570quad-ore proessors and 24 GB main memory, resulting in 3 GB/ore.Furthermore in the last years the memory and interonnet bandwidth did not inrease that muhompared to the omputational power of modern CPUs. These hardware fats underline theneessity to develop solutions that rely on less memory aess but more omputations to be donewith the data. Expliit timestepping shemes might therefore beome more and more popularespeially in ombination with parallel data I/O.For the investigation presented subsequently we have onsidered the HPC platform HP XC3000luster at Steinbuh Centre for Computing (the system layout is similar to the JUROPA, seeRemark 4.2.2) for whih the parallel �le system bases on the Lustre �le system developed by SunMirosystems [150℄. A main onept underlying this system is the separation between metadata(diretories or �le attributes like name and user rights) and real data (the information/ontent ofa �le). Another important point is a sophistiated system for management of loks that preventssimultaneous write from di�erent lients on the same dataset by whih onsistene of the �le systemis guaranteed. Figure 5.5 shows the main omponents and protools in a Lustre system.



112 OPTIMISATION APPROACH ON HPC SYSTEMSLustre ClientDiretory informa-tions, metadata& onurreny File I/O & �le loking
Metadata Server Reovery, �le sta-tus, �le reation Objet Storage ServerFigure 5.5: Components and protools in a Lustre system.

Property $HOME $WORKDisk spae 76 TByte 203 TByteRead perf./node 600 MB/s 1800 MB/sWrite perf./node 700 MB/s 1800 MB/sTotal read perf. 1700 MB/s 4800 MB/sTotal write perf. 1500 MB/s 4800 MB/sFigure 5.6: System arhiteture of parallel �le system Lustre on HP XC3000 (Steinbuh Centre for Com-puting).The overall arhiteture and performane of the Lustre system on the HP XC3000 platformdi�ers for the diretories $HOME and $WORK due to a di�erent number of servers and di�erentinteronnet. All servers are on�gured as failover pairs, i.e. if the metadata server (MDS) fails theadmin server adopts his part, while the objet storage server (OSS) atually hold the data thatare distributed by striping (see Figure 5.6). In order to store a distributed vetor (for example thei-th timestep of forward solution) these parallel I/O tehniques does not rely any more a gatherinstrution on a master-proessor.Usage of Chekpointing ShemesThe topi of hekpointing in the ontext of PDE onstrained optimisation has been the objetof intensive researh e�orts (see e.g. [89℄ and referenes therein). In our ontext we onsider theapproah based on the algorithm REVOLVE desribed in [69℄. This proedure aims at minimisingthe number of needed additional forward-step omputations assuming restrition assoiated to thelimited storage apaity.It is important to note that suh hekpointing strategies assume the number of availablehekpoints to be given and do not presribe this parameter on their own. In order to de�nethe optimal number of hekpoints for a given problem a trade-o� taking into aount the I/O
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Figure 5.7: Lower bound for number of hekpoints by desired osts for optimisation algorithm and loalminimum of number of storage aesses (takeshots) � assuming 106 timesteps to be reversed.bandwidth, lateny as well as the CPU-osts needed for the solution of a forward step has to beonsidered (see e.g. [149℄). A standard approah usually bases on minimising the number of storageaess, while at the same time the additional forward-step omputations should be bounded. Itonsists of three steps:1. Determine the upper bound nch,max: the limited storage apaity leads to a maximalnumber of hekpoints for a given problem size.2. Determine the lower bound nch,min: a lower bound is obtained from the ondition thatthe ratio between the omputational e�ort for the optimisation and the CPU osts assoiatedto the forward simulation should be bounded and independent of the disretisation level ofthe onsidered PDEs.3. Minimise number of storage aess in [nch,min, nch,max]: in the previous determinedinterval one determines the number of hekpoints leading to a minimal number of storageaess (takeshots). This minimum an easily be determined on the basis of the funtiondesribing the dependeny between the number of hekpoints and takeshots whih is knowna priori (see Figure 5.7).This approah bases on the observation that forward-step omputation is faster than storage aess.In the ontext of parallel solvers ombined with parallel data I/O this kind of argumentation may bewrong from the sense that the osts for I/O are not a onstant any more but show similar salabilityproperties as ompared to the osts related to the forward simulation. Our observation on theonsidered HPC platform is that minimising the number of takeshots may be ontraprodutive.In ontrast one should onsider the maximal number of possible hekpoints leading to an optimaloverall omputational time as depited in the following numerial results.For a typial example of instationary problem optimisation (106 timesteps, 106 degrees offreedom (dof) in eah timestep assuming double preision, resulting in ≈ 7.3 TByte for ompletebakup) the proposed standard strategy results in � see Figure 5.7:
• upper bound nch,max = 13744 due to presribed apaity of ∼ 0.1 TByte,
• lower bound nch,min = 180 due to maximal extra osts of fator 3, i.e. maximum 3 · 106forward-steps (advanes),
• optimal nch,opt = 1000 (loal minimum of takeshots) resulting in 500500 takeshots and
2497497 forward-steps (overhead fator of ∼ 2.5).
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Figure 5.8: Absolute times for update sheme (5.11) operation Y k−1 → Y k on di�erent disretisationlevels.Using parallel I/O tehniques enables to push the number of used hekpoints to upper bound
nch,max resulting in 986254 takeshots and 1986253 forward-steps. The overhead fator redues to
∼ 1.98 while the number of takeshots is nearly doubled whih is ompletely bu�ered by the parallelI/O improvement of fator 10 ompared to standard storage approah as shown in the sequel.5.2.2 Numerial ResultsTo show the apabilities of parallel hardware, we again onsider the aademial optimisation exam-ple (5.7) under onstraint (5.8). The expliit update sheme (5.11) is �rst being tested for salabilityproperties, while afterwards the parallel I/O performane is presented. Conlusively the proposedapproah of ombining hekpointing shemes with parallel I/O tehniques is evaluated.Salability of Expliit TimesteppingThe update sheme (5.11) was implemented by means of the parallel row blok data struturethat provided a very good salability of matrix-vetor produt (see Chapter 4.2). We tested thepure forward simulation of state equation (5.8) for di�erent number of degrees of freedom andfor the �xed time interval (0, 1). The number of timesteps m, i.e. the temporal disretisation ∆t,was hosen to a �xed value suh that the solution at t = 1 remains suitable with respet to theCFL-ondition � a omparison to solution gained by impliit timestepping has been passed.Figure 5.8 shows that the update sheme (5.11) possesses a good weak salability, i.e. thebigger the problem is (�ner disretisation) the more proesses an e�iently be used. But inontrast to the optimal salability of pure matrix-vetor multipliation (see Figure 4.4 and 4.5),we enounter for one timestep Y k−1 → Y k additional parallel vetor operation (inluding globalredution operations to ompute norms) suh that the salability is slightly worse.Parallel I/O PerformaneWe now onsider the performane of parallel I/O for the $WORK partition of HP XC3000 lusterassuming the on�guration desribed before. The underlying optimisation problem is at this stageof minor onern, sine the results hold true for general data storage. For the implementation weonsider the following three di�erent setups:1. PETS-binary and -ASCII format using funtions PetsViewerBinaryOpen and VeViewresp. PetsViewerASCIIOpen and VeView (see [7℄),
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parallel I/OFigure 5.11: Time needed for fwd-step and storage operations using 1050625 degrees of freedom dis-tributed over di�erent number of proesses.2. gather parallel row blok vetor into sequential vetor and save in binary resp. ASCII formatusing STL data strutures and olletive MPI-routines,3. parallel I/O saving binary resp. ASCII format using STL data strutures and parallel �lesystem based on Lustre.The �rst two approahes represent the gather/satter approah. Furthermore we used both ASCIIand binary format to get more illustrative results and to be able to hek �les easier � for the atualprodution modus obviously only binary format should be used. Time for saving the vetor growsproportionally to the number of omponents the vetor has using both standard gather/sattertehnique and parallel I/O. Quantitatively however the results obtained by parallel I/O give animprovement by a. 90% (see Figure 5.9 for the ase of 32 proesses).As depited in Figure 5.10 the performane for gather/satter storage operations is almostindependent of the number of proesses. Only if more than 32 proesses are used there is anotieable inrease in storage time � this is due to the fast deaying MPI-performane for olletiveroutines (see Figure 5.3). The gained e�ieny and salability for parallel I/O depend obviouslydiretly on the number of available OSS (see Figure 5.6 and [102℄ for more details). For ASCII�le storage one enounters almost a speedup in storage aess that an be explained by the biggeramount of data to be transmitted at one. For muh smaller binary �les instead the lateny ofnetwork beomes reognisable using more than 16 proesses.Combining Parallel I/O and Chekpointing StrategyThe e�ieny of ombination of parallel I/O and hekpointing shemes as desribed before isevaluated in the sequel using the aademial example above. We onsidered omputation of onegradient (5.10) by means of adjoint approah using Algorithm 6 and the adjoint equation (5.9).That is, we aim at one omplete reversal as shown in Figure 5.2. For the spatial disretisationwith 1.1e6 degrees of freedom and ∆t = 1.0e− 7, T = 0.1, a full bakup of state solution gainedby (5.8) results in 7.64 TByte to be stored, whih is obviously not to be handled.In order to �nd the optimal number of hekpoints nch,opt used for this problem, we omparedthe standard approah by minimising the number of takeshots (as desribed before) to the possiblestorage of nch,opt = nch,max hekpoints. For the reversal sheme 5.2 in ombination with RE-VOLVE algorithm [69℄ one enounters the general observations (see Figure 5.4 for example) whihare independent of the number of hekpoints used:
• number of reverse timesteps (i.e. adjoint solution solver) is m− 1,
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• number of restores of hekpoints is m− 1.Hene, these two steps an be negleted within the omparison. The di�erene in runtime toompute the gradient (5.10) will only be given by number of storage aess (takeshots) and numberof forward-steps (advane). Benhmarking of these basi operations showed the salability offorward-steps and also the lak of salability for storage operations (see Figure 5.11). As alreadymentioned the storage time by parallel I/O would also sale or at least stay onstant if more OSSare used, whereas the gather-operation per se annot sale.The omparison of used storage approah and number of used hekpoints in Figure 5.12 learlyindiates two points. First, the usage of gather/satter operations to store a hekpoint preventsany salability of the entire omputation. Seond, optimal number of hekpoints in the sense ofminimal time to ompute gradient by reversal sheme 5.2 depends on the ratio of time for oneforward-step to one storage operation. If storing of a hekpoint an be performed faster than oneforward-step, one should use maximal number of hekpoints available by memory limitation. If onthe other side a forward-step is omputed faster, hoie of nch,opt hekpoints as desribed beforeresults in optimal time � this turning point an learly be seen in Figure 5.12. One also notiesthat one the storage operation is the to ostly ompared to one forward-step (in this example at128 proesses with a ratio of ∼ 65) no bene�t of additional proesses is given.Conlusively we showed that parallel I/O enables a muh faster gradient omputation as stan-dard gather/satter operations and that the often used hekpointing shemes need to be reonsid-ered. For future work one also have to take into aount a possible distintion of di�erent memorystages, i.e.
• main memory for eah ore,
• loal disk spae on eah node aessible for some ores,
• global disk spae on luster aessible for all ores,to get salability even for storage operation. These stages give additional opportunities for memoryaess and layout of hekpoints � e.g. the most often restored/used hekpoints should be storedwithin the fastest aessible memory. We refer to [149℄ for investigations on this ative �eld ofresearh.
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Chapter 6Numerial ResultsWithin this hapter, we investigate the apabilities of the adjoint- and sensitivity-based ontrolmethods developed in Chapter 2 in ombination with the high performane omputing tehniquesdesribed in Chapter 4 and 5. We apply the proposed methods to the Navier-Stokes equations withontrol of the veloity boundary values as well as to the eletroosmoti miromixer with ontrol ofthe applied potential. In the �rst setion, a omparison of the adjoint- and sensitivity-based ontrolmethod is adapted to the Navier-Stokes equations using the well-known optimisation problem ofvortex redution behind a bakward faing step. This model problem serves as feasibility studyfor the presented tehniques and provides the way to more physial related problems. Setion 6.2ontains an extension to the simulation of the basis eletroosmoti miromixer as presented in[10, 11℄, while at last in Setion 6.3 this setting is additionally aimed to be optimised.
6.1 Vortex Redution Behind a Bakward Faing StepWe onsider the ontrol of a bakward faing step �ow as model problem for the adjoint- andsensitivity-based approah in optimisation � the used omputational domain Ω is presented in theAppendix, for results of the two-dimensional ase see [87℄. The �ow �eld within Ω is desribedby the instationary three-dimensional Navier-Stokes equations with suitable boundary onditions,

Figure 6.1: Startsolution v0 at t = 1 (left) and unontrolled solution at t = 4.5 (right) for optimisation ofbakward faing step example showing the absolute veloity and streamlines within utplane
z = 0.5.
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Γc
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zFigure 6.2: Shemati illustration of boundary ontrol c on upper part of the bak wall � allowed variationof angle θ(t) and amplitude A(t) for paraboli in�ow pro�le are shown.namely

Re [∂tv + (v · ∇)v] −∆v +∇p = 0 in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),

v = 0 on Γ0 × (0, T ),

v = c on Γc × (0, T ),

v = vin on Γin × (0, T ),

∂nv − pn = 0 on Γout × (0, T ),

v(·, 0) = v0 in Ω.The boundary ∂Ω is separated into disjoint parts: the hannel walls Γ0 where a no slip onditionis assumed, the in�ow and out�ow boundary Γin, Γout and the boundary where a ontrol ispossible. In�ow and out�ow boundary onditions are disussed in Setion 2.2.3, here we use asteady paraboli in�ow pro�le vin in ombination with the do-nothing out�ow ondition. Asontrol boundary, the upper part of the bak wall Γc = [2, 2]× [ 23 , 1]× [0, 1] is hosen. Furthermore,the startsolution v0 of the veloity �eld is determined by simulation of the system without ontrolfor t ∈ [0, 1] � see left plot in Figure 6.1. Hene, the ontrol appears delayed but a�ets the �ow�eld right before the vortex behind the step develops, i.e. we investigate the optimisation withinthe time interval t ∈ [1, 5] whih, for the sake of simpliity, is shifted and denoted by [0, T ].Spei� kind of ontrol depends on the optimisation approah. For the adjoint-based optimi-sation we assume that c ∈ L2(0, T ;L2(Γc)) and the �rst-order optimality onditions based on theadjoint equations are already stated in Chapter 2.3.2. We only reall the ost funtional used inthe sequel as
min
v,c

Ja(v, c) =
1

2

T∫

0





∫

Ωs

|v − vd|2 dx+ λ

∫

Γc

c2 ds



 dt, (6.1)i.e. we aim at a redution of the reirulation behind the step by minimising the L2-di�erene ofveloity �eld to a given vd ∈ L2(Ω). Here Ωs ⊂ Ω denotes the observation area whih is loated tomeasure the reirulation behind step, in partiular Ωs = [2, 5]× [0, 1]× [0, 1]. The desired �ow �eld
vd is hosen to be the solution of the stationary Stokes equations at Reynolds number Re = 200.We ompare the adjoint-based approah as given by the system (2.40), (2.41) and (2.42) to thesensitivity-based optimisation. To this, we de�ne the ontrol ating on Γc by an in�ow streammodelled via a paraboli pro�le to imitate a �ow similar to the Poiseuille �ow. Using the spatialonstant funtion (y1 = 2

3 , y2 = 1, z1 = 0, z2 = 1) de�ned on Γc

f(y, z) = (y2 − y)(y − y1)(
y2 − y1

2
)−2(z2 − z)(z − z1)(

z2 − z1
2

)−2,we set the orientation θ(t) and amplitude A(t) of the stream by (see Figure 6.2 for a shemati
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v0|Γc = A(t) cos(θ(t))f(y, z),

v1|Γc = −A(t) sin(θ(t))f(y, z),
v2|Γc = 0.

(6.2)The time dependent angle θ(t) and amplitude A(t) are desribed by a polynomial ansatz
A(t) =

n∑

k=0

αkt
k, θ(t) =

n∑

k=0

βkt
k,with design parameters αk and βk suh that the sensitivity-based optimisation relies on 2(n + 1)variables. This hoie is motivated by the results of the two-dimensional problem presented in[87℄ and the fat that at least a onstant o-in�ow should redue the reirulation area. The ostfuntional in this ase is given as before but with a modi�ed part for the ontrol

min
v,αk,βk

Js(v, αk, βk) =
1

2

T∫

0

∫

Ωs

|v − vd|2 dx dt+
λ

2

n∑

k=0

(
|αk|2 + |βk|2

)
. (6.3)Computation of the gradient and sensitivity equations are in general presented in (2.47), (2.48)and read in the onrete ase for αk, βk, k = 0, . . . , n

DJs
Dαk

= λαk +

T∫

0

∫

Ωs

(v − vd)vαk
dx dt,

DJs
Dβk

= λβk +

T∫

0

∫

Ωs

(v − vd)vβk
dx dt,with the sensitivities vαk

= Dv

Dαk
and vβk

= Dv

Dβk
given by (2.48). Only the boundary onditionsfor vαk

and vβk
on Γc need to be adapted to the partial derivatives of (6.2), i.e.

vαk,0|Γc = tk cos(θ(t))f(y, z)

vαk,1|Γc = −tk sin(θ(t))f(y, z)
vαk,2|Γc = 0

vβk,0|Γc = −tkA(t) sin(θ(t))f(y, z)
vβk,1|Γc = −tkA(t) cos(θ(t))f(y, z)
vβk,2|Γc = 0.Figure 6.3 shows the results of optimisation where we denote by osts the evolution of ostfuntional Ja(v, c) resp. Js(v, αk, βk). Sine the ost funtional (6.3) does not ontain an expliittime dependent part for the ontrol, we uniformly distribute the osts related to the ontrol by

Js(v, αk, βk) =
1

2

T∫

0





∫

Ωs

|v − vd|2 dx+
λ

T

n∑

k=0

(
|αk|2 + |βk|2

)



 dt (6.4)to get an evolution of the ostfuntional that an diretly be ompared to (6.1). For the adjoint-based approah we use the regularisation λ = 10−1 while for the sensitivity-based approah λ =
10−2 is su�ient. The Reynolds number is in all ases Re = 200. The iteration of optimisationAlgorithm 6 in ombination with the Sheme 5.1 is stopped if the ℓ2 di�erene of two suessiveiterates is less than 10−3 or if the step length within line-searh step is less than 10−6. In omparisonto the unontrolled ase, we see that both optimisation approahes result in nearly onstant valuesfor the ost funtional indiating that the development of the vortex behind the step is redued.
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Figure 6.3: Evolution of ost funtional Ja(v, c) resp. Js(v, αk, βk) for the three-dimensional bakwardfaing step problem ompared to unontrolled ase.Only for t > 4.0 we have an inreasing ost funtional, whih espeially for the sensitivity-basedapproah an be explained by the fat that no speial term at t = T has been used within the ostfuntionals (6.1) and (6.4). For both ontrolled solutions, one furthermore observes a straight jumpof osts in the beginning whih is not present for the unontrolled solution. This jump is relatedto the fat that the initial �ow �eld v0 is not ontrolled and therefore a disontinuous boundaryontrol appears within the �rst timestep yielding a notieable hange of the �ow �eld. At a �rstglane, Figure 6.3 suggests that the gain whih an be ahieved by the adjoint-based approahompared to the sensitivity-based approah seems to be of minor importane sine both result ina omparable evolution of the ost funtional. Additionally, it remains to interpret the resultingboundary ontrol by the adjoint-based method in terms of a physial feasibility.To obtain an insight in the physial relevane of the adjoint-based solution, we plot in Figure6.4 the �ow �eld of the ontrolled, the unontrolled and the desired ase within the hannel mid-height z = 0.5 at t = 4.5. For the unontrolled Navier-Stokes �ow, a re-attahment point of x ≈ 5an be found while this point is shifted to x ≈ 2.8 for the adjoint-based optimisation. Also, thesensitivity-based solution shows a smaller reirulation area behind the step and the desired even�ow �eld appears from x ≈ 3.5 on. Although the adjoint-based optimisation approah allowsmuh more degrees of freedom to ontrol the �ow �eld, the resulting solution is not signi�antlyimproved ompared to the more physially motivated sensitivity-based approah. The vortexbehind the step indued by the main �ow stream is in both ases minimised by an additionalin�ow that is direted in negative y-diretion. Figure 6.5 shows the boundary ontrol at t = 4.5for both optimisation approahes. On the one hand, one an learly see the paraboli pro�le ofx- and y-veloity omponents in the sensitivity-based ase. The optimal design parameter αk, βkare given as α0 = 1.58, α1 = −0.16, β0 = 0.29, β1 = 0.13, i.e. the amplitude A(t) slightlydereases from 1.58 in the beginning to 0.94 at t = 5 while the angle θ(t) inreases from 17◦ to 47◦.On the other hand, the boundary ontrol given by the adjoint-based optimisation shows a muhmore omplex appearane. First the ontrol of z-veloity omponent v2 on Γc turns out to be ofminor importane. The main harateristis of optimal ontrol are given by a sharp in�ow rightbelow the step that redues with dereasing y-diretion � a pro�le that seems questionable to berealised within a onrete physial setting. At least the tendeny of positive x-veloity indiatingan injetion and negative y-veloity to suppress the development of the reirulation area an befound in aordane to the sensitivity-based solution.To summarise, it appears that both optimisation approahes result in a redution of reirula-tion area behind the step. Although the adjoint-based solution performs slightly better in terms
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Figure 6.4: Desired �ow �eld (top), unontrolled Navier-Stokes �ow (seond), �ow ontrolled by adjointapproah (third) and �ow ontrolled by sensitivity approah (bottom) showing the absoluteveloity and streamlines within utplane z = 0.5 at time t = 4.5.
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Figure 6.5: Control boundary values on Γc at time t = 4.5 given by adjoint-based optimisation (top)and sensitivity-based optimisation (bottom) � x-, y- and z-veloity omponents and resultingvetor �eld are plotted.
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Figure 6.6: Simulation of onentration distribution within the hannel during the in�ow phase with apure pressure-driven �ow � top at t = 10 and t = 20, bottom at t = 30 and t = 37.of ost funtional evolution, the sensitivity-based solution seems physially more relevant. Fromthe omputational point of view both approahes have quite di�erent requirements. While forthe adjoint-based approah, we only need to solve one linear equation to get the gradient of theost funtional (see Chapter 5.1), the sensitivity-based approah in this example requires to solve4 linear equations for the design parameters αk, βk. Sine the optimisation algorithm in bothases nearly uses the same number of iterations (step-length searhes and LBFGS updates), oneroughly gets on the one hand a slowdown fator of four when the sensitivity-based optimisationis used. On the other hand, the requirements of ode restruturing is muh more involved forthe adjoint-based approah than for the sensitivity-based approah. The very tight oupling ofprimal and adjoint equations, espeially in the ase of instationary problems, is already addressedin Chapter 5.2 where a solution for the bakup of the primal equation is presented. In the aseof sensitivity-based optimisation, this di�ulty ompletely vanishes sine the omputation of allsensitivities an be done while the primal solver proeeds forward in time. Finally, the hoie ofsuitable optimisation approah should rely on the available omputational resoures (both softwareand hardware) but even more on a physially meaningful formulation of the optimisation problem.The adjoint-based optimisation obviously results in a boundary ontrol that is di�ult to realise ina physial setting but illustrates the main idea how the ontrol should be applied. Afterwards thisinformation an be used to formulate the more physially motivated sensitivity-based optimisationhaving a good guess for the design parameter at hand.6.2 Simulation of Fluid Flow in a Twie-Folded MirohannelBefore we address the optimisation of the eletrokineti miromixer that was introdued in Chapter1, we �rst ompare our simulation results to the ones of Barz et al. in [10, 11℄. We extend thepressure-driven laminar �ow with mass transport as reported in [10℄ and with the eletrially
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Figure 6.7: Idealised initial ondition for the onentration distribution within the hannel.exited �ow as in [11℄. Furthermore, the geometry is slightly di�erent. Barz et al. used sharporners, simplifying the generation of the numerial mesh onsiderably, instead of the roundedorners resulting from the manufaturing proess, as used here (see Appendix). Also a remark onthe initial ondition for the onentration has to be made beforehand. In a strit physial settingone should assume the hannel to be �lled in the beginning, i.e. at t = 0, with only one of thetwo liquids. A simulation of the in�ow phase within the interval t ∈ [0, 37] is shown in Figure6.6 by some snapshots indiating the onentration front that propagates through the hannel.While the pressure-driven �ow �eld is fully developed within only a few timesteps, the propagationof the onentration of the speies/dye takes longer. Using the superomputer JUROPA hostedat the Forshungszentrum Jülih (f. Chapter 4.3.4) with 512 proesses, the simulation of thisin�ow phase takes about 12 hours (at a spatial disretisation of 2.8 · 106 degrees of freedom) andtherewith reahes the bath job limit of maximal wallloktime. As one an see in Figure 6.6 evenat t = 37 the onentration is not fully developed within the hannel. To overome this physiallyorret but time onsuming simulation, we use an idealised initial ondition for the onentrationas shown in Figure 6.7, namely an idealised distribution of both liquids without any mixture alongthe hannel. This simpli�ation allows a faster omputation and is at least for the steady statesolution (t→∞) of minor onern. But for the results in a ertain window t ∈ [0, tcrit] one has tobe aware of the in�uene of the physially idealised initial ondition.The setting remains as introdued in Chapter 2, i.e. we solve the Navier-Stokes equationsombined with the onvetion-di�usion equation (2.15) and an applied onstant potential di�erene
∆φ 6= 0 if an eletrial exitation is under investigation. The boundary onditions for the Navier-Stokes equations are given by a no slip ondition v = 0 on the hannel walls Γ0 whenever thepotential di�erene vanishes � this orresponds to the setting in [10℄. For a non-vanishing potentialdi�erene, i.e. if an eletrial �eld is applied, the transition ondition of veloity �eld between bulksolution and EDL on Γ0 is implemented by the slip ondition as presented in Chapter 2.2.3. In�owand out�ow onditions are implemented by the pressure drop formulation (see Chapter 2.2.3) suhthat the mean in�ow veloity is v0 = 9.1 · 10−4m

s orresponding to a Reynolds number Re = 0.1 �this orrelates to the setting in [11℄.At the in�ow setion of the boundary, the onentration has given Dirihlet values c = 1 for
y < 0 and c = 0 for y ≥ 0 to mimi the upstream Y-juntion of the miro�uidi hip (see Figure1.1). At the out�ow setion and at the hannel walls resp. at the interfae to EDL Γ0 a vanishing�ux is used, i.e. ∂nc = 0. The di�usion oe�ient of the onentration �eld is reported in [10℄ tobe D = 4.27 · 10−10m2

s resulting in a Shmidt number of Sc = 2340. Furthermore, the potentialdi�erene aross the omputational domain is estimated in [11℄ to be ∆ϕ = 47V whih orrelates toan approximate eletrial �eld of Ex ≈ ±14.68 V
mm . Here, we only use the situation of a negativelydireted eletrial �eld resulting in an eletroosmoti �ow direted against the pressure-driven �ow.In a �rst simulation, we use the stationary Navier-Stokes equations in ombination with theonvetion-di�usion equation to evaluate the steady state of possible mixing. Figure 6.8 shows theonentration �eld at di�erent height levels of the hannel when no potential di�erene is applied.
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Figure 6.8: Conentration �eld at di�erent height levels (top z = −0.43, middle z = −0.32, bottom
z = 0.00) showing steady state solution of mixing for a three-dimensional Navier-Stokes �owat Re = 0.1 and Sc = 2340 without eletrial �eld. Isolines indiate a onentration of 0.4and 0.6.
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Figure 6.9: Streamlines of the eletrially exited �uid �ow at the height level z = −0.43, top: leftmeasured and right simulated by Barz et al. [11℄, bottom: results by HiFlow2 using theparallel solver as presented in Chapter 4.One an see that even for very low �ow rates at Re = 0.1, i.e. a relative large residene time ofthe speies enhaning mixing by di�usion, the outome is not optimal. A slightly better mixing isgiven near the hannel walls (upper two plots in Figure 6.8) ompared to mid-height of the hannelat z = 0.0 due to the muh slower �ow �eld within this region yielding a higher residene time.Typial Reynolds numbers in miro�uidi appliations are rather of the order of 1, though. Hene,the residene time is even shorter underlining the need to improve mixing by other means, e.g. dueto the superimposition of an eletroosmoti �ow.As a seond step, we ompare the resulting steady state �ow �elds (with non-vanishing onstantpotential di�erene ∆φ) within the lower U-bend of the mirohannel, i.e. x ≥ 8 in Figure 1 of theAppendix, to the measured and simulated results from Barz et al. [11℄. Figures 6.9, 6.10 and 6.11show the �ow �eld at spei� onstant height levels z by means of streamlines. In eah Figure thetwo top plots are kindly provided by Dominik P. J. Barz showing the a) measured and b) simulatedresults as they are given in [11℄. The lower pitures are omputed by HiFlow2 using the presentedparallel solver of this thesis.The �ow �elds in Figure 6.9 at a height level of z = −0.43 show a more or less even streamlineon�guration indiating a quasi steady �ow. Due to the loseness to the bottom of the hannelat z = −0.5 the �ow within this region is dominated by the eletroosmoti �ow direted from theright to the left and there is no notieable in�uene of the pressure-driven �ow. Both simulatedsolutions are in very good agreement to the experimental results. At a slightly higher level of
z = −0.32, as shown in Figure 6.10, the mutual in�uene of pressure-driven �ow and oppositedireted eletroosmoti �ow is onsiderably present. The �ow topology appears to be very omplexontaining several saddle points (S) and vorties (V). While the simulation using sharp orners(top right in Figure 6.10) shows two vorties separated by a saddle point loated at eah innerbend, the modi�ed geometry with rounded orners shows only one vortex point as it is also presentin the experimental results. All other harateristis of the streamlines appear similar for the threeillustrations. In the mid-height of the hannel at z = 0.0, the pressure-driven �ow appears as themain �ow from the left to the right (Figure 6.11). Again a notieable di�erene in the simulatedresults is given at the inner bends � usage of rounded orners learly improves the agreementto the measured �ow �eld. To summarise, the simulation of eletroosmoti �ow provides a very
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Figure 6.10: Streamlines of the eletrially exited �uid �ow at the height level z = −0.32, top: leftmeasured and right simulated by Barz et al. [11℄, bottom: results by HiFlow2 using theparallel solver as presented in Chapter 4.

Figure 6.11: Streamlines of the eletrially exited �uid �ow at the height level z = 0.00, top: leftmeasured and right simulated by Barz et al. [11℄, bottom: results by HiFlow2 using theparallel solver as presented in Chapter 4.



130 NUMERICAL RESULTSgood agreement to the results presented in [11℄ and is even better due to the modi�ation of thegeometry. The presene of both, pressure-driven �ow and eletroosmoti �ow, features a veryomplex �ow topology that should be appropriate for the task of mixing by inreasing the ontatarea of the two liquids. It remains to judge the quality of mixing and if neessary to improve themixing by temporal alteration of the potential di�erene ∆φ.We �nally aim at solving the full three-dimensional system with a pressure-driven base �owand an additional eletroosmoti �ow in ombination with the onvetion-di�usion equation forthe speies onentration to evaluate the in�uene on mixing quality aording to Figure 6.8. Itturns out that the simulation of the steady state, i.e. using a stationary solver, at Shmidt number
Sc = 2340 leads to numerial instabilities due to the ompliated �ow �eld and limited meshre�nement apabilities. Even the attempt to solve the instationary system was not suessful �espeially within the top and bottom region of the hannel, we enounter numerial instabilitiesdue to the interferene of pressure-driven and eletroosmoti �ow (see in�ow area of the hannelin Figure 6.12). A limitation to Shmidt number Sc = 450 and orresponding di�usion oe�ient
D = 2 · 10−9m2/s gives more stable results but the onentration also obviously shows a bettermixing suh that any optimisation is not worth disussing.Based on the dimensionless parameter Re = 0.1 and Sc = 2340, we get the dimensionlessdi�usion oe�ient D = 1/(Re · Sc) = 1/234 suh that a suitable mesh size an roughly beestimated by the (mesh) Pelet number. Requiring that Pe = v0h/D < 1 and assuming at leasta mean veloity of 1, we have that h < 1/234 ≈ 0.004 for the maximal size of a ell in the mesh.Realisation of suh a �ne mesh in 3D is beyond the atual omputational apabilities aessiblefor this work. Hene, we onentrate in a �rst step on the 2D implementation of the optimisationfor eletrokineti miromixer and have to fae the very hallenging problem in three dimensionsin a future work. This work will be ontinued using modi�ed algebrai solvers for very large HPCplatforms (see also onlusion of Chapter 4) as well as disretisation shemes using stabilisationmethods for the onvetion dominated �ow and possibly adaptive re�ned �nite element meshes.6.3 Optimisation of an Eletrokineti MiromixerAs mentioned in the last setion, the optimisation of a full three-dimensional eletrokineti mi-romixer is beyond the omputational apabilities of available hardware. Therefore, we investigatethe fundamental proedure for the two-dimensional ase and address the question whether theresults an be transfered to the three-dimensional ase. Figure 6.13 shows the streamlines of theeletrially exited �ow �elds in both two- and three-dimensional ase as presented in the previ-ous setion for di�erent Reynolds numbers. It is obvious that the two-dimensional approximationreveals a qualitatively good approximation for the hannel mid-height. Hene, at least for the mid-height of the hannel at z = 0.0, where the in�uene of the eletrial double layer loated at thetop and bottom of the hannel is not dominating, we an interpret the results of two-dimensionalsimulation/optimisation also for the three-dimensional ase.In addition to the previous setion, we also use a Reynolds number of Re = 1.0 for the opti-misation sine suh a �ow regime is more realisti in terms of miro�uidi appliations. Whereasthe �ow �eld situation for Re = 0.1 and Re = 1.0 shows no signi�ant di�erene (f. Figure 6.13),the latter setting results in a lower residene time of a speies within the hannel suh that a purepressure-driven �ow will not result in su�ient mixing (f. Figure 6.14). Like in the omparisonof the streamlines, we see that the resulting onentration at Re = 0.1 for the two-dimensionalase (upper plot in Figure 6.14) is in a good agreement to the mid-height utplane of the three-dimensional ase (lower plot in Figure 6.8). An additional bene�t of higher Reynolds numbers andshorter residene times is the better justi�ation of the idealised initial ondition of onentrationgiven in Figure 6.7 whih is similar to the steady state solution of pressure-driven �ow in lowerplot of Figure 6.14.To judge the mixing of onentration, we need to de�ne a measure that also will be used as ostfuntional for optimisation. Sine a satisfying mixing is obviously obtained when the onentration
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Figure 6.12: Conentration �eld at di�erent height levels (top z = −0.43, middle z = −0.32, bottom
z = 0.00) and at t = 10.6 for a three-dimensional Navier-Stokes �ow at Re = 0.1 and
Sc = 2340 within an eletrially exited �uid �ow. Isolines indiate a onentration of 0.4and 0.6.
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Figure 6.13: Left olumn: streamlines of the eletrially exited �uid �ow at the height level z = 0.00using 3D simulation at Reynolds number Re = 0.1 (top) and Re = 1.0 (bottom). Rightolumn: streamlines of the eletrially exited �uid �ow using 2D simulation at Reynoldsnumber Re = 0.1 (top) and Re = 1.0 (bottom).
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Figure 6.14: Steady state solution of the onentration �eld for a two-dimensional Navier-Stokes �ow at
Re = 0.1 (top), Re = 1.0 (bottom) and Sc = 2340 without eletrial �eld. Isolines indiatea onentration of 0.4 and 0.6.

is ∼ 0.5, a possible measures is given by the L2 di�erene in Ωs, i.e.
J1(c) =

∫

Ωs

|c− 0.5|2 dx (6.5)or by the fration of unaeptable onentration
J2(c) =

1

|Ωs|

∫

Ωs

χ(c) dx, χ(c) =

{

0 if c(x) ∈ [0.5− ǫ, 0.5 + ǫ]

1 else (6.6)where Ωs ⊂ Ω denotes the observation area of interest and ǫ determines an aeptable variane forwhih 0.1 is used in the following. Ωs is hosen to be the out�ow setion of the hannel, namelythe straight part at x ≥ 11.65 (f. Appendix). For an ideal mixing both J1(c) and J2(c) should bezero.The dimensionless system of partial di�erential equations desribing the bulk �ow within theeletrokineti miromixer is given by (2.49). Boundary onditions are already disussed in detailin Chapter 2.2. As in the simulation before, we use the pressure drop formulation for the veloity�eld, where the pressure di�erene between in�ow and out�ow boundary is adjusted suh that thedimensionless mean veloity v0 equals 1 to ensure the orret Reynolds number. In partiular weuse the following set of boundary onditions for the optimisation of the eletrokineti miromixer



134 NUMERICAL RESULTSat Re = 1.0:
v|Γ0

= −Π2∇φ, ∂nv|Γin∪Γout = 0, p|Γin = 304.2,

p|Γout = Pout = 0, φ|Γin = 0, φ|Γout = φc(t, αk),

∂nφΓ0
= 0, c|Γin =

{

0 if y ≥ 0

1 if y < 0
, ∂nc|Γ0∪Γout = 0.

(6.7)The ontrol of applied potential at Γout is given by an analytial funtion involving the de-sign/optimisation parameter αk to desribe the temporal modi�ations.Before any de�nite funtion for the applied potential φc(t, αk) is set, one should observe themixing for the pure pressure-driven �ow as well as for the ase of a onstant and an alternating po-tential as reported in [11℄. Hene, we �rst evaluate the evolution of the ost funtionals (6.5), (6.6)using four �xed ases:1. only pressure-driven �ow, i.e. φ(t)|Γout = 0,2. onstant applied potential, i.e. φ(t)|Γout = 1,3. retangular alternating potential with period t = 10 and φ(t)|Γout = −1 ∨ 1,4. retangular alternating potential with period t = 10 and φ(t)|Γout = 0 ∨ 1.The results are shown in Figures 6.15 and 6.16 for Re = 0.1 and Re = 1.0. A �rst observationan be made for the pure pressure-driven �ow: after a ertain time tdiff a steady state for theonentration �eld is given (f. also Figure 6.14). The time tdiff an be interpreted as di�usiontime of the underlying system. Depending on the Reynolds number and therefore on the residenetime of a speies within the mirohannel, we have tdiff ∼ 40 for Re = 0.1 and tdiff ∼ 25 for
Re = 1.0 whih obviously results in an inreasing value for the ostfuntionals as the Reynoldsnumber inreases. For the ases of a non-vanishing applied potential one has to distinguish theonstant potential and the alternating potential. The �rst one indues a steady �ow �eld (f. Figure6.13) whih for t → ∞ gives a steady state of onentration �eld. Using a stationary solver, wedetermine the limits of ost funtionals to be J1(c) = 1.3 · 10−4, J2(c) = 0.0 for Re = 0.1 and
J1(c) = 0.11, J2(c) = 0.82 for Re = 1.0. Thus, for low Reynolds number a omplete mixing anbe ahieved at least for t→∞ while for inreasing Reynolds number the mixing gets worse due toa lower residene time of the speies within the mirohannel.Both ases of an alternating applied potential result in a periodi solution. The limit of theostfuntionals an only be given by a mean value for the ase of applied potential φ(t)|Γout = −1∨1while for the fourth ase, i.e. φ(t)|Γout = 0 ∨ 1, the ostfuntional seems to tend to the same limitas for the onstant applied potential. This behaviour an be explained by the fat that whenever
φ(t)|Γout < 0 the eletroosmoti �ow is direted aligned to the pressure-driven �ow. Therefore, theresidene time of a speies is even smaller than for the pure pressure-driven �ow whih degradesthe mixing indued by the previously opposite direted eletroosmoti �ow. For the alternatingpotential that is non-negative one does not obtain this e�et. Here, the phase of φ(t)|Γout = 0 onlydelays the mixing sine within this phase the atual distribution of onentration �eld is transportedlike for the pure pressure-driven �ow. Figure 6.17 shows a snapshot of the onentration �eld at
t = 96 and at Re = 1.0 using a onstant and an alternating applied potential. One an see thehomogenous mixing in the onstant ase due to the steady �ow �eld. The alternating potentialsindue a muh more omplex �ow �eld that is not neessarily well suited for a better mixing � atleast within a long term observation.Finally, a omparison of the two used ost funtionals in Figures 6.15 and 6.16 indiates thatboth are equally suitable to evaluate the mixing of speies onentration. While the L2 di�ereneused for J1(c) weights the variane of onentration �eld to desired value of 0.5 in a smoothmanner, the ost funtional J2(c) is more restritive in this sense. Hene, if for any reason amixing of speies within the interval c ∈ [0.4, 0.6] is ruial for the entire miro�uidi setting onthe hip (e.g. to start a hemial reation), one should better use the ost funtional J2(c). Ifthe general possibility of mixing should be observed it is however also warrantable to use the ostfuntional J1(c). To summarise, three major results are given by the simulations: for t → ∞
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Figure 6.17: Conentration distribution for a two-dimensional eletrially exited �ow at Re = 1.0 and
Sc = 2340. Solution at t = 96 for onstant applied potential (top), alternating appliedpotential φ(t)|Γout = −1 ∨ 1 (middle) and φ(t)|Γout = 0 ∨ 1 (bottom).
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Figure 6.18: Conentration distribution for a two-dimensional �ow at Re = 1.0 and Sc = 2340. Solutionat t = 30 for the pure pressure-driven �ow (top) and for the optimal eletrially exited�ow using φ2(t, ω, h) (bottom).a onstant applied potential gives the best mixing, for short time observations the alternatingpotential attains a more favourable mixing and �nally the mixing at small temporal horizon ismuh more involved the bigger the Reynolds number is.We onlusively aim at optimisation of the eletroosmoti miromixer by means of minimisingthe ost funtional J1(c, αk). Sine a fast and homogeneous mixing of speies is aimed for, wefurthermore restrit the observed time interval to t ∈ [0, 30]. Within this interval, the overallderease of the ost funtional for all four simulated ases is omparable (see Figures 6.15 and 6.16)suh that a demand for an optimisation is given. The optimisation problem of the eletrokinetimiromixer involving the design parameters αk is stated as
min
c,αk

J(c, αk) =
1

2

T∫

0

∫

Ωs

|c− 0.5|2 dx dt+
λ

2

n∑

k=0

|αk|2 (6.8)suh that the system (2.49) with boundary onditions (6.7) is ful�lled. We ompare the optimalparameter settings to the results obtained by the alternating applied potential φ(t)|Γout = 0∨1 witha period of t = 10 � see Figure 6.19. Motivated by the simulation results, we hose two di�erentpossibilities for the applied potential φc(t, αk) to hek the in�uene of time dependent alteration.First a smooth applied potential desribed by the sinus funtion is used that also inorporates aonstant term, namely
φ1(t, αk)|Γout = α0 + α1 sin(α2t).The optimal design parameter for Re = 0.1 are given by α0 = 0.0366, α1 = 1.4518, α2 = 1.3256showing an alternating potential with a period of t = 4.74 and a nearly negligible onstant o�set.For the optimisation at Re = 1.0 the optimal parameter are omparable: the onstant o�set iseven less (α0 = 0.0184) while the amplitude is slightly higher (α1 = 1.4761) at a similar frequenyof α2 = 1.3183 respetively a period of t = 4.76. Compared to the simulation results (see Figure
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Figure 6.19: Evolution of the ost funtional J1(c) for the alternating applied potential φ(t)|Γout = 0∨ 1and for the optimal ontrolled ases at Re = 0.1 (top) and Re = 1.0 (bottom).



140 NUMERICAL RESULTS6.19), the halved period results espeially for Re = 1.0 in a visible bene�t. With the frequeny ofthe alternating potential that optimises the mixing (ω = 1.33), we seondly hose a Fourier series
φ(t, αk)|Γout =

α0

2
+

n∑

k=1

αk cos(kωt) +

2n∑

k=n+1

αk sin((k − n)ωt)with n = 2 as ontrol funtion to get a deeper insight on the weights of alternating and onstantterms. However, this does not give any additional bene�t, i.e. the optimisation algorithm doesnot result in a remarkable update due to very short step-length and small gradients showing thatthe frequeny is optimal. Finally, the retangular applied potential is optimised for the frequeny
α0 := ω and amplitude α1 := h whih an formally be written as

φ2(t, ω, h)|Γout =
4h

π

∞∑

k=1

sin((2k − 1)ωt)

2k − 1The partial derivatives with respet to ω and h have to be evaluated for the sensitivity-basedoptimisation. For the frequeny ω this gives a possibly non-onvergent series
∂φ2(t, ω, h)

∂ω
=

4ht

π

∞∑

k=1

cos((2k − 1)ωt).In order to still treat this ansatz, we restrit to the �rst ten terms of the series approximating theretangular shape by a smooth funtion. Again for both Reynolds numbers we �nd very similarresults. An optimal amplitude of h ∼ 1.49 and a frequeny of ω ∼ 1.309 are in nearly perfetaordane to the previous results of φ1(t, αk). Nevertheless, the hange from smooth funtion tolear swithing of the applied potential results in a distint gain in the evolution of ost funtional(f. Figure 6.19) and a notieable better mixing ompared to the pure pressure-driven �ow withinthe mirohannel (f. Figure 6.19).A last remark has to be made on the onvergene of the optimisation algorithm. For one thing,smooth funtions (as φ1(t, αk) and also tested polynomial ansatz) give a steady redution for theost funtional within 4 − 6 LBFGS iterations while for the ase φ2(t, αk) only 1 or 2 iterationswere suessful. For another thing, optimisation at Reynolds number Re = 0.1 turns out to besomewhat more sensitive than at Re = 1.0, i.e. the line-searh within the optimisation algorithmmore often gets suitable step-lengths. Espeially the optimisation of the frequeny ω in this aseis very di�ult and a good initial guess is ruial. Suh a behaviour illustrates the di�ulty inhoosing suitable design parameters ombined with an analytial funtion to desribe the ontrolwhenever the sensitivity-based optimisation is used. Therefore, an optimisation based on theadjoint equations will be an obvious future work, being aware of the fat that the results mightnot diretly be physially meaningful as for the previous optimisation of vortex redution behinda bakward faing step, but should give a more preisely knowledge of the ontrol apabilities forthe eletroosmoti miromixer.



Chapter 7Summary and OutlookIn this thesis, we investigate the simulation and optimisation of several �uid �ow problems withinmirohannels with fous on the homogeneous and fast mixing of two liquids. This proess is ruialto ful�ll the lab-on-a-hip onept and serves as a prototype for several (bio)hemial mehanismsinvolving di�erent speies. For pure pressure-driven �ows of an inompressible Newtonian �uid,we derive the Navier-Stokes equations desribing the veloity and pressure �eld in the hannel. Aonvetion-di�usion equation is used to determine the distribution of speies onentration. Sinethe optimisation of mixing is addressed by an indued seondary �ow using the eletrokinetiproperties of a �uid in ontat with an eletrially harged surfae, we need to further extend thegoverning equations by a model for the eletrial double layer (EDL) near the hannel walls. Theoutome of the method of mathed asymptoti expansions by Barz et al. [11℄ reveals a separationof the bulk �ow from that within the EDL and enables to apture the in�uene of the EDL bysuitable slip boundary onditions. Otherwise one would have to resolve the very thin boundarylayer leading to impratiable �ne meshes and very large disrete systems. This approah wasalready used within several works that do not resolve the EDL. Nevertheless, for a future work adiret omparison of the simulated �ow �eld with the resolved EDL to experimental data shouldbe onduted in order to validate the asymptoti approah.Sine the Laplae equation desribing the potential within the �uid only ouples to the Navier-Stokes equations by the slip boundary ondition of veloity �eld and sine the onvetion-di�usionequation an be treated totally self-ontained one the veloity �eld is omputed, we redue theinvestigation on numerial solver and preonditioner to the disretised Navier-Stokes equationsonly. The presented �nite element framework and the algebrai preonditioners however also overthe remaining partial di�erential equations (PDE) and the omplete system. To obtain suitablepreonditioners that mind the saddle-point struture of the Navier-Stokes equations, we inorporatethe Multilevel ILU preonditioner provided by ILU++ [112℄ to the �nite element solver pakageHiFlow2 [20℄ and hek its apabilities for the onsidered miro�ow problems. By appropriatepreproessing of the system matrix and espeially by adjustment of the threshold used within thedropping rule of inomplete LU-deomposition, the ILU++ preonditioner appears to be by farsuperior to any ILU(p) version. These onvining results for the sequential preonditioner needthen to be transfered to a parallel framework to be able to solve three-dimensional problems inreasonable time. To this, we use a domain deomposition method based on a non-overlappingpartition of the �nite element mesh. The question arises whih parallel data struture is well-suited to form a salable extension to the sequential Multilevel ILU preonditioner. We implementand ompare two possible parallel data strutures, namely a row blok distribution of data alongthe proesses and a distribution motivated by the Shur omplement formulation. Both datastrutures allow the usage of the sequential Multilevel ILU preonditioner loally on eah proessto get a parallel preonditioner for iterative Krylov subspae methods. While for the row blokdistribution a Blok Jaobian approah simply skips all entries in the system matrix that oupleseveral subdomains/proesses, the Shur omplement approah redues the entire problem to asmaller one that is stated on the seleton degrees of freedom between the subdomains. For thestandard linear algebrai operations we �nd a similar salability for both versions with a slightadvantage for the purely loal de�ned Shur omplement data struture. The resulting parallel



142 SUMMARY AND OUTLOOKpreonditioners allow for a variety of parameter to be set and show, on the one hand, that the Shuromplement approah possesses some gainful properties to signi�antly redue the number of globalKrylov subspae iterations. On the other hand, we also see that there is a high sensitivity on hosenparameters and that the preonditioner is not unonditionally robust to arithmeti over- and/orunder�ows. In ontrast to the linear algebrai operations, the absolute time to solve a linear systemdoes not show a very good salability. The essential drawbaks of both parallel preonditionersare obvious. For the Blok Jaobian approah, too many ouplings within the system matrix areskipped when the number of proesses inreases and therefore the preonditioner omes loser tothe identity. For the Shur omplement approah, an inreasing number of proesses leads to abad ratio of interior to seleton degrees of freedom suh that the bene�t of muh smaller reduedproblem vanishes. A future work within this diretion should investigate the prinipal limits ofsalability whih are given by the fat that the system matrix is strongly oupled and annot beredued.One the parallel solver and preonditioner is established, the simulation of �uid �ow withinmirohannels an be handled but the optimisation task still remains. The adjoint based optimi-sation of instationary problems owns some speial features that have to be regarded within thesoftware design. It is important to note that the adjoint problem is indeed always linear but hasto be solved bakward-in-time. Furthermore, if the primal problem or the ost funtional is non-linear eah step of the adjoint solution is diretly oupled to the orresponding step of the primalone. This requires speial bakup tehniques of the primal solution whih might be very ostlyon high-performane omputing (HPC) systems due to inreasing importane of data I/O. Theproposed new approah whih ombines parallel I/O tehniques with hekpointing shemes allowsa onsiderable redution of storage amount and the related time for storage aess assuming anadequate trade o� in the ombination of both omponents. One should note that this approahdoes not take into aount the ase of an HPC platform with loal storage resoures. An exten-sion of the derived sheme towards an hybrid method is an obvious next step and should allow tosimultaneously takle the issue of loal and global parallel I/O in the ontext of PDE-onstrainedoptimisation.All parallel tools developed in this work are �nally suessfully tested for the example of abakward faing step �ow using a more aademi setting of traking type optimisation governedby the instationary three-dimensional Navier-Stokes equations. We �nd that the sensitivity-basedoptimisation approah yields slightly worse results than the adjoint-based approah that has muhmore degrees of freedom to be ontrolled. Espeially the physially more reasonable harater ofthe sensitivity-based approah motivates of using this one for the optimisation of eletrially ex-ited miromixer as well. For the simulation of eletrially exited �uid �ow, we are able to expandformer simulation results by Barz et al. [11℄. Meshes loser to the real geometry whih lead todisrete systems of nearly three million degrees of freedom per timestep requiring the usage of de-veloped parallel solver/preonditioner with at least 512 proesses on the superomputer JUROPA.Nevertheless, an extension of the eletrially exited �uid �ow by a onvetion-di�usion equationto desribe the mixing of speies fails for the three-dimensional ase due to numerial instabilitiesaused by a mesh that is still not �ne enough. A possible redution of the Shmidt number andtherefore higher di�usion avoids this problem but also hanges the physial situation. Alterna-tively, a further researh might address adaptively re�ned meshes and stabilisation tehniques forthe onvetion dominated transport proess. Also, the replaement of the onvetion-di�usionequation for the simulation of onentration �eld of the speies might be a solution. If a numerialsimulation of di�usion-free mass transport by means of partile traking is in aordane with thephysial problem, i.e. no di�usion of speies an take plae, the distribution of speies an alsosimply be obtained by integration of the partile trajetory.However, two-dimensional simulations an be done on the atual omputational apabilitiesof available hardware showing that the veloity �eld of pure pressure-driven �ow and eletriallyexited �ow is in good agreement to the mid-height level of a three-dimensional simulation. Hene,the optimisation of the eletrokineti miromixer is arried out for the two-dimensional problem toget a �rst hint of the in�uene of the time-dependent applied potential on the quality of mixing.It turns out that the interpretation of mixing in terms of ost funtionals is di�ult and thatthe results di�er signi�antly for long term simulations. Additionally, a areful hoie of designparameters in ombination with an analytial funtion for the applied potential is not straight



143forward and needs already some experiene e.g. by previous simulations. For the ase of �xedtime interval in whih an optimal mixing is aimed for, the best results are given by an alternatingapplied potential. In ontrast to a onstant applied potential induing a steady eletroosmoti �owthat is direted oppositely to the pressure-driven �ow, this approah indues a muh more omplex�ow �eld resulting in a larger ontat area of the speies and a bigger residene time to inreasethe mixing. With respet to a future researh, the extension to a fully three-dimensional settingused for the eletrially exited miromixer would be desireful. The presented approahes showthe fundamental apability for both simulation and optimisation of three-dimensional instationaryproblems. Nevertheless, a further improvement of the overall solution proess with respet to thevery high omputational requirements is essential. This enompasses, on the one hand, a moreelaborate disretisation by an adaptive mesh re�nement and the stabilisation of the onvetion-di�usion equation and, on the other hand, a further revision of parallel solver and preonditioner interms of salability. Finally, it remains interesting to study whether an adjoint-based optimisationapproah for the eletrially exited miromixer is physially meaningful and yields new attrativeresults.



144 SUMMARY AND OUTLOOK



AppendixHere, we show the parameter settings for both examples of this thesis as they are used in thenumerial simulation and optimisation.Eletrokineti MiromixerThe disretised geometry of the meander part of the miro�uidi hip is given in Figure 1 showinga oarse mesh to indiate the used hexahedral ell type. Missings parts of the miro�uidi hipare modelled by suitable in�ow and out�ow boundary onditions as presented in Chapter 2. Thewidth of the square hannel is d0 = 1.1 · 10−4 m whih is also used for saling of the geometry.For the orners, we have to distinguish two types � in the diretion of the �uid �ow, we haveonave orners possessing a radius of r0 = 4.5 · 10−5 m while for the onvex orners we have
r1 = 3.2 · 10−5 m. Sine the entire mirohannel is made up of three glass layers (see Figure 1.1),the juntion of top and bottom walls to side walls an ertainly be modelled by idealised rightangles. Any further parameters are taken from the experimental setting presented in [10, 11℄:
• mean axial in�ow veloity: v0 = 9.1 · 10−4 m

s

• �uid density: ρ = 1000 kg
m3

• dynami visosity: µ = 1 · 10−3 kg
ms

• di�usion oe�ient of the speies onentration: D = 4.27 · 10−10 m2

s

• Debye-length (approximate width of eletrial double layer): ℓD = 9.7 · 10−7 m

• potential di�erene aross simulated hannel-segment: ϕ0 = 47 V

• harge density at mirohannel wall: qζ = 5 · 10−5 C
m2Hene, we have for the dimensionless omputations the harateristial quantities

Re =
ρv0d0
µ
≈ 0.1, Sc =

µ

ρD
≈ 2340.Furthermore, the eletroosmoti e�ets within the mirohannel are simulated by a slip onditionfrom bulk �ow to EDL involving the dimensionless parameter

Π2 =
ℓDϕ0qζ
v0d0µ

≈ 22as derived in [11℄.Bakward Faing Step FlowIn addition to the simulation and optimisation of an eletially exited �uid �ow, we also deal withthe optimisation of a �uid �ow desribed solely by the Navier-Stokes equations. The used bakwardfaing step example is shown in Figure 2. For the sake of these aademi tests, the realisti widthof the hannel d0 is of minor interest. Assume the �uid is water at ∼ 20◦ C, i.e. ρ and µ as above,and think of the Reynolds number of values greater than 100 by higher mean in�ow veloity v0 orlarger diameter of the hannel d0.



Figure 1: Saled geometry of the meander part within the miro�uidi hip with in�ow boundary Γin,out�ow boundary Γout and hannel walls resp. transition layer to EDL Γ0.

Figure 2: Saled geometry of the bakward faing step. In�ow and out�ow boundary are given by Γinresp. Γout. The hannel walls are Γ0 exept the ontrol part Γc whih is indiated by redolour.
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