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SUMMARY 
 

Today, computational fluid dynamics (CFD) plays an indispensable role in fluid and 

aerodynamic design.  Accuracy and efficiency are two important factors in the success 

of a numerical method.  The monotonic residual error reduction procedure proposed by 

Liu (2002) is further developed in this study with the incorporation of a multi-grid 

scheme to accelerate convergence and improve overall computational efficiency. The 

various components of the multigrid procedure including the smoothing method, 

coarsening method, restriction operator, the prolongation operator, and the effects of 

the various multi-grid parameters have been studied to optimize computational 

performance.  A fourth-order refinement scheme has also been developed which 

allows highly accurate solutions to be derived with only relatively minimal increase in 

computational effort compared to the basic second-order scheme.  Consistent with the 

fourth-order discretization of the operator, the fourth-order accurate pressure boundary 

conditions are used.  Comparisons are made between the present method and the 

conventional Newton’s method in both single-grid and multi-grid implementations. 

 

The prototypical two-dimensional driven cavity flow problem is set as the basic test 

problem.  Two kinds of correction functions (CF) have been designed to compare with 

the performance of Newton’s method.  It is demonstrated that correction function 3 

shows slightly better performance than correction function 2.  The conventional 

Newton’s method is very sensitive to the initial guessed solution and the rate of 

successful convergence is fairly poor in many applications. The present scheme has a 

much higher rate of successful convergence.  This is especially so for multi-grid 

implementation.  The proposed method can lead to nearly monotonic decrease in the 

residual errors no matter whether single-grid or multi-grid method has been used in 
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small Reynolds number problems.  The multi-grid method is able to maintain a rapid 

rate of the residual error decay throughout the computation, leading to large savings in 

computational effort especially for high Reynolds number flows. The use of full 

weighting is found to be slightly superior to optimal weighting.  The fourth-order 

refinement scheme offers important gains over the standard second-order scheme. The 

fourth-order refinement scheme typically shows a higher computational efficiency for 

a given mesh than the second-order scheme because its application seems to promote a 

more rapid rate of convergence.  Furthermore, it preserves or even enhances the 

accuracy of the solutions using far fewer mesh points than that of corresponding 

second-order scheme. The employment of fourth-order refinement does not incur a 

large CPU-time penalty for the accuracy gain even though it requires the mesh to be 

sufficiently fine to achieve convergence for high Reynolds number flows.  Hence, it is 

a useful variation of the present method for problems that require high accuracy 

solutions. 
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Chapter 1:  Introduction 

 

1.1  Background 

 

Since the emergence of computational fluid dynamics (CFD) in the 1950s, it has 

revolutionized the world of aerodynamics (Anderson et al. 1996).  Today, CFD has 

become an indispensable tool of aerodynamic design.  Increasingly, experimental tests 

are reserved for confirmation of predicted performance.  The steady increase in the 

speed of computers and the concomitant developments in numerical algorithms have 

made it possible now to simulate complex flow problems to a high level of accuracy.  

Incompressible fluid flows are commonly found in a wide range of industrial 

applications.  The incompressible Navier-Stokes equations (INSE), which govern the 

behaviour of many industrial flows, are very difficult to be solved analytically on the 

basis of known principles.  The effort to simulate these flows has been under way since 

the beginning of CFD.  Computational Fluid Dynamics offers the only realistic hope 

for solving practical problems encountered in industry. 

 

In the realm of computation, accuracy and efficiency are the two most important 

factors in the success of a numerical method.  As a result, it has been the goals of 

researchers to devise schemes that solve the INSE efficiently and with accuracy.  In 

our research group, a new monotonic approximation numerical method for steady 

incompressible Navier-Strokes equations (SINSE) was recently proposed by Liu 

(2002).  The method devised by Liu analyses the effect of the nonlinear terms of the 

SINSE on the residual error, and suggests a correction that enables the residual error to 

be reduce monotonically.  However, the use of simple iterative techniques by Liu 
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resulted in a slow rate of convergence to the solution.  In addition, using only a first-

order pressure boundary condition, the accuracy of his solutions is another important 

aspect that could be improved.  Thus, the present thesis seeks to overcome some of the 

original inadequacies of Liu (2002), and to further develop the proposed scheme in 

terms of improved convergence, accuracy and efficiency.  

 

1.2 Literature review 

 

1.2.1 Approaches to the Incompressible Navier-Stokes Equations (INSE) 

 

Efficient solution of the two dimensional INSE has been an important problem in 

computational science since its inception: 

32

2 3
0,uu

x x
∂∂

+ =
∂ ∂

        (1.1) 

2 2 2
2 31 2 2 2

2 2
2 3 2 32

( ) ( ) 1 [ ] 0,
Re ( ) ( )

u u u u u u
x x x x x

∂ ∂ ∂ ∂ ∂
+ + − + =

∂ ∂ ∂ ∂ ∂
    (1.2) 

2 2 2
3 2 3 3 31

2 2
3 3 2 2 3

( ) ( ) 1 [ ] 0.
Re ( ) ( )

u u u u uu
x x x x x

∂ ∂ ∂ ∂∂
+ + − + =

∂ ∂ ∂ ∂ ∂
    (1.3) 

Here, (u1, u2, u3) corresponds to (p, u, v) where p is the pressure, and u and v are the 

components of the velocity field in the x- and y- coordinate directions.  The x2 and x3 in 

(1.1-1.3) correspond to the x- and y- spatial coordinates respectively.  The quantities of 

equations (1.1-1.3) are assumed to have been non-dimensionalized by a characteristic 

velocity and length scales.  Re denotes the Reynolds number.  The restriction to 

incompressible flow introduces the computational difficulty that there is no obvious 

link between the velocity components and the pressure in the continuity equation (1.1).  

Over the last three decades, various methods have been developed to solve these 
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equations.  The methods may be broadly classified under two categories: the primitive 

variable formulations and formulations based on derived variables.  

 

A popular derived variables approach is the Vorticity-Stream-function method, in 

which the explicit treatment of the continuity equation is avoided by replacing the 

velocity components with the vorticity and stream-function.  The pressure does not 

appear in the resultant equations.  There are only two partial differential equations are 

solved instead of three for the Navier-Stokes equations.  The reduction in the number 

of dependent variables and equations makes this approach attractive.  However, a 

problem with this approach lies in the boundary conditions, especially in complex 

geometries.  The values at the boundaries of the dependent variables are not so 

straightforward to specify, and some special treatments are needed.  Another important 

drawback of this approach is the difficulty of extending this formulation to three space 

dimensions since a three-dimensional stream function cannot be defined.  In three 

dimension, vorticity-related formulations lead to more dependent variables, typically 

six, which can be seen in the vorticity-vector potential formulation used by Mallinson 

and Davis (1977).  As a result, three-dimensional vorticity-related formulations have 

not been used very often. 

 

Another popular approach is the primitive variables formulation.  The primitive 

variables, namely the pressure and the velocities, can easily be defined in real 

geometry compared to the derived quantities such as the stream-function and vorticity.  

Consequently, the extension to three spatial dimensions creates no additional difficulty.  

Primitive variables approach can be further grouped into two main categories. 
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The first category is the method based on compressible flow algorithm, namely the 

artificial compressibility method, which was first proposed by Chorin (1967) almost 

four decades ago.  In this method the solutions to the steady INSE are sought by 

applying a pseudo-transient formulation to the unsteady momentum equations with an 

artificial time derivative of pressure in the continuity equation.  At the same time, an 

artificial compressibility parameter is applied.  With this artificial term, the time-

dependent equation system is symmetric hyperbolic-parabolic type and the strict 

requirement of satisfying mass conservation in each step is relaxed.  This allows 

efficient numerical schemes developed for compressible flows to be used for 

incompressible flows.  Chang and Kwak (1984) suggested some guidelines for 

choosing the artificial compressibility parameters.  Various applications have been 

reported for obtaining steady-state solutions (Kwak et al. 1986; Chang et al. 1988).  

Turkel (1987) extended this concept with more sophisticated preconditioners than 

those originally proposed by Chorin (1967) to allow for faster convergence.  To obtain 

time-dependent solutions using this method, a dual-time stepping technique is used.  

The physical time derivative terms are treated implicitly as source terms.  An iterative 

procedure can then be applied in each physical time step such that the continuity 

equation is satisfied (Rogers et al. 1991).  Several variations of the artificial 

compressibility approach can be found in the literature (Rizzi and Eriksson, 1985).   

 

The other category is the method based on projection or pressure correction.  In 1965, 

Harlow and Welch (1965) published one of the earliest, and most widely used 

pressure-based primitive variables method called the Marker-and-Cell (MAC) method. 

The method is characterized by the use of staggered grid and a Poisson equation for 

pressure.  However, the strict requirement of obtaining the correct pressure for a 
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divergence free velocity field in each step may significantly slow down the overall 

computation.  Ever since its introduction, numerous variations of the MAC method 

have been devised.  And the best known method to solve the steady INSE is the 

SIMPLE-family developed by Patankar and Spalding (1972), in which the correct 

pressure field is desired only when the solution is converged.  The acronym, SIMPLE, 

stands for the Semi-Implicit Method for Pressure-Linked Equations and describes the 

iterative procedure by which the solution to the discretised equation is obtained.  The 

unique feature of this method is the simple way of estimating the velocity and the 

pressure correction.  Patankar (1980) introduced a revised algorithm SIMPLER which 

converges faster than SIMPLE.  Doormaal and Raithby (1984) developed a more 

efficient algorithm as a consistent SIMPLE algorithm called SIMPLEC.  And they 

have made a systematic comparison of these three SIMPLE-type algorithms and 

concluded that SIMPLEC and SIMPLER are more efficient than SIMPLE, with 

SIMPLEC to be preferred.  Also the SIMPLE-type algorithms on staggered grids have 

been generalised to collocated grid, which are being increasing applied in recent 

studies (Melaaen, 1991; Coelho and Pereira, 1992). Nevertheless, there are certainly 

some critical issues such as checkerboard problem that requires attention when 

collocated grid is used.  Since the inception of SIMPLE-type algorithms, methods that 

incorporate acceleration technique have been a favourable choice for INSE 

computation. 

 

Tamamids et al. (1996) carried out a comparison of accuracy, grid independence, 

convergence behaviour, and computational efficiency of the two representative 

methods, pressure-based and artificial compressibility, for calculating three-

dimensional steady incompressibility laminar flows.  They concluded that both 
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methods have merits and demerits.  For accuracy, the results from pressure-based 

method are slightly favourable even though both methods produce reasonable results 

compared with experimental data and are grid independent.  Artificial compressibility 

method converges faster with suitable parameter selection; however, it requires much 

more memory in the computation.  

 

1.2.2 The techniques of Newton-like method 

 

Newton’s method is the master method for solving non-linear equations 0)( =xF .  It 

linearizes the function about an estimated value of x  using the first two terms of the 

Taylor series:  

0 0 0( ) ( ) ( )( ).F x F x F x x x′≈ + −       (1.3) 

We assume throughout that F is continuously differentiable.  At the k th step, the 

Newton step ks can be determined by solving the linear Newton equation: 

( ) ( ),k k kF x s F x′ = −         (1.4) 

where kx  is the current approximate solution and F ′ is the Jacobian matrix of the 

system.  Then the current approximation is updated via: 

1 .k k kx x s+ = +         (1.5) 

A satisfactory solution is found by iterating this process until )( kxF  or ks  (or both) 

is sufficiently small.  This method is attractive because it converges quadratically 

when the estimate is close enough to the root (Ortega and Rheinboldt, 1970).  That 

means the error at iteration 1+k  is proportional to the square of the error at step k .  

As a result, only a few iterations are needed with sufficiently good initial guess. 
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However, for large systems, the rapid convergence is more than offset by its principal 

disadvantage.  Because the Jacobian has to be evaluated at each iteration in this 

method, it induces high computational and storage cost.  Nevertheless, Newton’s 

method will still converge even if equation (1.3) is not solved exactly.  And under 

some circumstances computing the exact solution may not be justified, because the 

linearization of 0)( =xF  around kx  is valid only in a neighbourhood of kx .  Then, if 

the solution of (1.3) produces a ks  that is too large, there may be poor agreement 

between F  and its local linear model.  Therefore, it seems reasonable to use an 

iterative method and compute some approximate solution.  The Newton-iterative 

methods (Ortega and Rheinboldt, 1970) provide a trade-off between the accuracy with 

which the Newton equations are solved and the amount of work per iteration. 

 

Dembo et al. (1982) proposed a class of inexact Newton methods which compute an 

approximate solution to the Newton equations in some unspecified manner such that 

( ) ( ) ( ) .k k k k kF x s F x F xη′ + ≤       (1.6) 

A forcing term kη  was introduced to control the level of accuracy.  The optimal choice 

of kη  is critical to the efficiency of the method and is problem-specific (Shadid et al., 

1997).  Eisenstat and walker (1996) outlined the forcing term choices that result in 

desirably fast local convergence and also tend to avoid over-solving the Newton 

equations.  In addition, they concluded that very small forcing terms might converge 

more rapidly but with less accuracy in the iterative linear solver compared with the 

larger forcing terms chosen. 

 

In computing equations (1.3) and (1.6), the convergence is only local.  That means the 

iterations may not converge if the initial estimate is far from the solution.  Eisenstat 
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and walker (1994) established and analysed globally convergent inexact Newton 

methods, incorporating features designed to improve convergence from arbitrary 

starting points.  They proposed that if ks  satisfies not only the equation (1.6), but also 

the following conditions, where (0, 1)t ∈ , 

( ) [1 (1 )] ( ) ,F x s t F xk k k kη+ ≤ − −      (1.7) 

then, a decrease in F  at each iteration could make convergence to a solution from a 

poor initial approximation.  Some other globalized Newton-like algorithms were 

established based on this algorithm, such as backtracking methods and equality curve 

methods.   

 

Newton-Krylov methods 

 

There are many ways to compute an inexact Newton step sk  that satisfies equation 

(1.6) and the efficiency of the inexact Newton method is strongly affected by this 

choice.  The Krylov subspace method (Freund et al., 1992) is well suited for this 

purpose because it only requires the matrix-vector product ( )F xk υ′  with 

( ) ( )
( ) .

F x F xk kF xk
ευ

υ
ε

+ −
′ ≈       (1.8) 

So the Jacobian F ′  never needs to be explicitly formed.  This further specialization of 

inexact Newton methods leads to the class of methods referred to as Newton-Krylov 

methods, which are actively applied in a large variety of problems recently such as 

radiation-diffusion problems (Mousseau et al., 2000) and incompressible flow 

problems (Knoll and Mousseau, 2000; Mchugh and Knoll 1994).  Among Krylov 

subspace methods, GMRES (Saad and Schultz, 1986) is generally preferred, since it 
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minimizes the residual at every iteration.  However, the work and storage requirements 

per iteration grow linearly with the number of iterations so that it is expensive to use. 

Alternatives such as Bi-Conjugate gradient stabilized method (Vorst, 1990) and 

Orthogonal Residuals method (Edwards et al., 1994) can be considered.  

 

1.2.3 Finite difference and artificial viscosity discretization schemes 

 

When standard central differences are used to discretize the steady incompressible 

Navier-Stokes equations (SINSE), an instability problem arises because of the singular 

perturbation character of the momentum equations at high Reynolds numbers.  The 

two dimensional linearized model of the momentum equations, which are the key 

problem of this thesis, is described as an example:  

2 2 2( , ) ( (0,1) ).2 2
u u u uLu a b f x y

x yx y
ε
⎛ ⎞∂ ∂ ∂ ∂ Ω⎜ ⎟= − + + + = Ω =
⎜ ⎟ ∂ ∂∂ ∂⎝ ⎠

  (1.9) 

Here, a  and b  are constants and the parameter ε  represents inverse of Reynolds 

number.  In the unit square Ω=(0, 1)2, it is singular perturbation problem because in the 

limiting case as 0→ε , equation (1.9) is no longer elliptic but hyperbolic.  The 

standard central five-point finite differences discretization for equation (1.9) reads 

[4 ( , ) ( , 1) ( , 1) ( 1, ) ( 1, )]2

( 1, ) ( 1, ) ( , 1) ( , 1)
2 2
4 2 2( , ) ( , 1) ( , 1)2 2 22 2

2 2( 1, ) ( 1, ).2 22 2

L u i j u i j u i j u i j u i j
h h

a bu i j u i j i j u i j
h h

bh bhu i j u i j u i j
h h h
ah ahu i j u i j

h h

ε

ε ε ε

ε ε

= − + − − − + − −

+ + − − + + − −

− +
= + + − −

− +
+ + − −

  (1.10) 

where h  is the mesh size for both the x direction and the y direction on the Cartesian 

grid.  In this discretization scheme, non-physical oscillations develop in the solution if 
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the viscous term is small enough compared with the convective term because of the 

symmetric three points differencing of the convective term.  For function (1.10), the 

stability condition is: 

max( , ) 2h a b
ε

≤         (1.11) 

The left-hand side of equation (1.11) is called the mesh-Péclet number Pe (Trottenberg 

et al., 2001).  If the Péclet condition (1.1) is fulfilled, Lh from equation (1.10) gives a 

reasonable and stable 2( )hΟ  approximation for L.  If the Péclet condition is not 

fulfilled, some off-diagonal elements of the matrix become positive.  As a consequence, 

the matrix is no longer an M-matrix (A matrix A is said to be an M-matrix if and only 

if ( ), 0, 1 1 ,i ja i j n≤ ≠ =  A is non-singular and 1 0A− ≥ .).  Thus, the Lh obtained from 

central differencing becomes unstable. 

 

When ε  is very small, an extremely fine grid must be used to ensure the numerical 

stability of central difference schemes.  This will result in large memory and CPU time 

requirements that are clearly undesirable.  However, the numerical instability at small 

ε  can be alleviated by the use of upwind discretizations.  With regard to equation 

(1.10), the first-order upwind can be described as: 

 

[4 ( , ) ( , 1) ( , 1) ( 1, ) ( 1, )]

[ ( 1, ) ( 1, )] [( , 1) ( , 1)] ( , )
2 2

4 ( ) ( ) 2 ( ) 2
( , ) ( , 1) ( , 1)

2 2
( ) 2 ( ) 2

( 1, ) (
2 2

L u i j u i j u i j u i j u i j
h
a a b b a b

u i j u i j i j u i j u i j
h h h

h a b h b b h b b
u i j u i j u i j

h h h
a a h a a h

u i j u
h h

ε

ε ε ε

ε ε

= − + − − − + − −

− − +
+ + − − + + − − +

+ + − − + +
= + + − −

− − + +
+ + − 1, )i j−

   (1.12) 
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Equation (1.12) leads to a stable problem and the corresponding matrix is an M-matrix.  

However, the first-order upwind scheme is only ( )hΟ  in accuracy, which is not 

satisfactory for more critical applications.  This leads to the development of higher-

order upwind schemes.  Upwind schemes have been used extensively to control 

numerical instability.  Recent examples include Kopteva (2003); Li (2000); 

Kupferman and Tadmor (1997). 

 

An alternative way to control numerical instability is the use of artificial diffusion.  

The artificial diffusion terms can smooth out non-physical discontinuities in the flow.  

And, sometimes these terms can also counteract the dispersion error in the numerical 

scheme.  In fact, the first-order upwind discretization can be regarded as a special case 

of the artificial diffusion approach in the central difference discretizations since, e.g. 

for 0>a , 

( ) ( )
2

1111
1

,

2
22 h

uuuah
h
uu

auu
h
a

x
ua iiiii

ii
upwindh

−+−+
−

+−
−

−
=−=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂   (1.13) 

Equation (1.13) shows that the first-order upwind scheme is a combination of a central 

difference term and an extra dissipative term, and it can lead to a stable discretization 

scheme.  Similarly with the upwind schemes, first-order and higher-order artificial 

dissipation terms are preferred in different cases.  In Liu et al. (1998), fourth-order 

artificial dissipation terms were added to their systems to suppress spurious numerical 

oscillations when the grid size was not small enough to render the physical viscosity 

effective.  In this thesis, a generalized artificial diffusion scheme is applied in 

computing the linear operator.  And, when the residual error converges to a very small 

value tending to zero, a highly accurate solution can be obtained. 

 



Chapter 1  Introduction 

12 

The customary central difference schemes are second-order in accuracy.  If high 

accuracy is required, then the higher-order difference schemes are preferred.  In this 

thesis, besides the second order schemes, the fourth-order difference scheme will also 

be considered.  If fourth-order central finite difference expressions are substituted for 

the derivatives in equation (1.9), then the following algorithm is obtained: 

1, , 1, 2, 2,
2

, 1 , , 1 , 2 , 2
2

2, 1, 1, 2, , 2 , 1 , 1 , 2

16 30 16
12

16 30 16
12

8 8 8 8
.

12 12

i j i j i j i j i j

h
i j i j i j i j i j

i j i j i j i j i j i j i j i j

u u u u u
hL u

u u u u u
h

u u u u u u u u
a b

h h

ε

+ − − +

+ − − +

+ + − − + + − −

⎛ ⎞− + − −
⎜ ⎟
⎜ ⎟=− ⎜ ⎟− + − −⎜ ⎟+⎜ ⎟
⎝ ⎠
− + − + − + − +

+ +

   (1.20) 

 

1.2.4 Iterative methods 

 

After suitable discretization, most partial differential equations are eventually 

transformed into linear algebraic equations that can be represented symbolically as: 

( ) ( ) ( )LU X f X X= ∈Ω        (1.14) 

where the size of the matrix L is equal to the number of unknowns representing the 

discretized solution of the original equations.  U is the vector of dependent variables 

and ),...,( 21 dxxxX =  are the d  independent variables of the d -dimensional problem.  

f  is a known function on domain Ω .  Any system of discretized algebraic equations 

can be solved by direct methods such as the Gauss elimination or LU decomposition.  

However, considering the numerical error and the expensive computational cost, it is 

often undesirable to solve large equation systems exactly using direct methods.  On the 

other hand, the iterative methods are often effective in solving large linear systems as 

long as the convergence is guaranteed. 
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Classic iterative method 

 

To derive the classical iterative method, matrix L  can be written as +− −−= LLDL , 

where )(LdiagD = , assuming 0)det( ≠D , and −L  is the strictly lower and +L  the 

strictly upper triangular matrices, respectively.  Thus, the Jacobi method is defined as: 

( 1) 1 ( ) 1( )n nU D L L U D f+ − − + −= + + ,      (1.15) 

where )(nU  is the approximate solution after n  iterations.  The Gauss-Seidel iterative 

method is defined as: 

( 1) 1 ( ) 1( ) ( ) .n nU D L L U D L f+ − − + − −= − + −      (1.16) 

and the Successive Over-Relaxation (SOR) iterative method is represented by: 

( 1) ( ) 1

1

, : ( ) [(1 ) ].

: ( )

n nU U c D L D L

c D L f
ω ω ω

ω

χ χ ω ω ω

ω ω

+ − − +

− −

= + = − − +

= −
  (1.17) 

where ω  is the over-relaxation factor.  

 

Rapid convergence of an iterative method is the key for its success.  It turns out that 

the properties of the matrix L  have important impact on the convergence of the linear 

systems. In the simplest method, the Jacobi method, it converges when matrix L  is 

irreducible and weakly diagonally dominant. However, the Jacobi method is expensive 

because it requires a number of iterations proportional to the square of the number of 

grid points in one direction.  The Gauss-Seidel method converges twice as fast as the 

Jacobi method.  However, the rate of convergence is still very slow for large problems. 

 

The SOR method provides a significant improvement over the Gauss-Seidel by 

evaluating )1( +nU  from the values of )(nU  and GS
nU )( )1( + , which can be seen in 
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equation (1.13).  A necessary condition for the SOR method to converge is the 

restriction on ( )2,0∈ω .  And the number of iterations for convergence is sensitive to 

the choice of ω .  Generally, the finer the grid, the larger the optimum ω  will be.  For 

values of ω  less than the optimum, the convergence is monotonic and the rate of 

convergence increases as ω  increases.  Otherwise, the convergence rate deteriorates 

and the convergence is oscillatory when ω  exceeds the optimum.  An optimum choice 

is given by Hageman and Young (1981). 

2 1/ 2

2 .
1 (1 )

ω
µ

=
+ −         (1.18) 

where µ  is the largest eigenvalue of LDI 1−− .  However, finding µ  explicitly can be 

as expensive as the original problem.  Hence, a preferred practice is to estimate a µ  

value as the iteration proceeds.  Equation (1.18) then provides an improved value for 

µ .  Hadjidimos (2000) summarized some different choices of ω  in cases where the 

matrix L  possesses additional properties, such as positive definiteness, L-, M-, H-

matrix property and p-cyclic consistently ordered property etc.  When the optimum 

over-relaxation factor is used, the number of iterations for a certain amount of error 

reduction is proportional to the number of grid points in one direction.  Therefore, it is 

adopted in the present work. 

 

The SOR method can be changed to the symmetric successive over-relaxation method 

(SSOR) through making a small modification.  First, the SOR scheme is applied to the 

unknowns in a certain order.  This is followed by applying the same scheme to the 

unknowns in the reverse order, using the same ω .  Usually, the SSOR method is less 

efficient than the SOR method, unless acceleration techniques such as Chebyshev and 
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conjugate gradient are also included.  For comparison, the SSOR method is also 

applied in this project. 

 

Multigrid method 

 

Multigrid methods are one of the fastest numerical methods for many types of partial 

differential equations (Trottenberg et al., 2001).  It has been used widely since it was 

introduced in the 1970s by Brandt.  With grid spacing h  as a subscript, the linear 

algebraic equation (1.14) can be represented as:  

.h h hL U f=            (1.19) 

Here, hL  is discrete operator and 1−
hL  is assumed to exist.  A conventional iterative 

technique for solving Eq. (1.19) consists of repeated sweeps of some relaxation 

scheme until convergence is achieved.  However, it is often experienced that the 

convergence slows down after few iterations.  This phenomenon can be explained by a 

local Fourier analysis of the error, which is probably the most powerful tool for the 

quantitative analysis and the design of efficient multigrid methods (Trottenberg et al., 

2001).  Using local Fourier analysis, the smoothing factor that refers to the error 

reduction in one iteration step measured in an appropriate norm can easily be 

calculated for many smoothers.  It is observed that SOR produces a good smoothing 

rate for those error components whose wavelength is comparable to the size of the 

mesh.  For those error components with longer wavelength, the smoothing rate is 

poorer.   

 

A wavelength, which is long relative to a fine mesh, is shorter relative to a coarser 

mesh.  The multigrid is created on a basis of this feature.  It consists of two basic 
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ingredients: smoothing and coarsening grid correction.  Firstly, the classic iterative 

method is used as smoother with appropriate iterations on a given fine mesh to 

eliminate the high frequency error components. Then the multigrid switches to a 

coarser mesh with double or more step size H , where the error components with 

wavelength comparable to H  are rapidly annihilated.  Then the fine-grid solution 

determined in first step need to be corrected to reflect appropriately the removal of the 

H -wavelength error components.  One step of such an iterative two-grid cycle 

proceeds as following: 

 

Fig 1.1 Structure of two grid cycle for linear equations 

Here, a pre-smoothing symbol SMOOTHv1 means computing n
hU  by applying v1 steps 

of a given smoothing procedure to n
hU  and the post-smoothing symbol SMOOTHv2 

means applying v2 steps of the given smoothing procedure to obtain 1+n
hU .  The 

superscript n means the number of multigrid cycles and the subscript is representative 

of the grid size.  Since the median value n
hU  is calculated, it is easy to calculate the 

residual n n
h h h hd f L U= − .  Because all the values are firstly calculated in the fine mesh, 

the values obtained must be transferred to the coarser grids.  This operation of transfer 

of grid values from fine to coarse grids is termed restriction.  In the figure above, H
hI  

is the restriction operator.  Consequently, the correction ˆn
Hv  obtained in the coarse 

n
hU n

hU n
hhh

n
h ULfd −=   n

hv̂ n
h

n
h vU ˆ+ 1+n

hU  
  1νSMOOTH           

2νSMOOTH  
         

(Restriction)   
H
hI       

h
HI   (Prolongation) 

     
 

   
n
Hd            n

H
n
HH dvL =ˆ  



Chapter 1  Introduction 

17 

mesh must be transferred back to the fine mesh.  This procedure is named prolongation 

with operator symbol h
HI .  When the corrected approximation , ˆn afterCGC n n

h hhU U v= +  is 

computed, the second basic process of multigrid, coarse grid correction (CGC), is 

completed.   

 

Multigrid methods are obtained when this process is repeated over a sequence of fine 

to coarse grids.  Multigrid methods have been created that have different grid cycling 

patterns: V-cycle, W-cycle and F-cycle and so on.  The V-cycle and W-cycle are 

particularly popular.  In this project, only V-cycle is considered. 

 

In the two-grid cycle process, the choice of the six individual components, the 

smoothing procedure, the numbers v1 and v2 of smoothing steps, the coarse grid HΩ , 

the fine-to-coarse restriction operator H
hI , the coarse grid operator and the coarse-to-

fine prolongation operator H
hI , may have a strong influence on the efficiency of the 

resulting algorithm.  To construct the optimal algorithms for a practical problem, it is 

important to select the proper components.   

 

The simplest form of restriction operator is injection, which identifies grid functions at 

coarse grid points with the corresponding grid functions at fine grid points.  In general, 

the restriction operator may be formulated in terms of the weighted averages of 

neighbouring fine-grid values.  Full weighting and half weighting are two choices that 

have different features.  The full weighting provides better stability and convergence 

properties while the half weighting is computationally more efficient.  Obviously, the 

full weighting involves all eight points adjacent to a given point (i, j).  When the 

standard coarsening is employed, the full weighting scheme reads, 
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2
2 ( 1, 1) 1, 1 ( 2 1,2 1)

( 2 2 ,2 1) ( 2 1,2 2 ) ( 2 ,2 1) ( 2 1,2 )

( 2 2 ,2 2 ) ( 2 ,2 2 ) ( 2 2 ,2 ) ( 2 ,2 )

1( )
4

1 [ ]
8
1 [ ].

16

h
h i j h h i j h i j

h i j h i j h i j h i j

h i j h i j h i j h i j

u I u u

u u u u

u u u u

+ + + + + +

+ + + + + +

+ + + +

= =

+ + + +

+ + + +

   (1.20) 

The half weighting is five points restriction operator derived from Eq. (1.20) by 

eliminating the influence of the four corner points and doubling the centre point 

influence.  

 

For the prolongation operator, the simplest form is derived using linear interpolation.  

A very frequently used interpolation method is bilinear interpolation which is 

correspondent with Eq. (1.20).  Nine points are involved so that the value at the cell 

centre can be obtained as the arithmetic mean of the four corner points as following: 

(2 1,2 1) 2 2 (2 1,2 1) 2 ( 1, 1)

(2 2,2 1) 2 2 (2 2,2 1) 2 ( 1, 1) 2 ( 2, 1)

(2 1,2 2) 2 2 (2 1,2 2) 2 ( 1, 1) 2 ( 1, 2)

(2 2,2 2) 2 2 (2

( )

1( ) [ ]
2
1( ) [ ]
2

( )

h
h i j h h i j h i j

h
h i j h h i j h i j h i j

h
h i j h h i j h i j h i j

h
h i j h h

u I u u

u I u u u

u I u u u

u I u

+ + + + + +

+ + + + + + + +

+ + + + + + + +

+ +

= =

= = +

= = +

= 2,2 2) 2 ( 1, 1) 2 ( 2, 1)

2 ( 1, 2) 2 ( 2, 2)

1 [
4

]

i j h i j h i j

h i j h i j

u u

u u

+ + + + + +

+ + + +

= +

+ +

  (1.21) 

 

Prolongation by this form introduces no ambiguity near boundaries even if the 

boundary conditions have been eliminated.  

 

While multigrid methods are highly efficient solvers in their own right, they also serve 

as excellent preconditioners, and their use in this context makes the performance and 

robustness of the multigrid method less sensitive to the selection of components such 

at inter-grid transfers and coarse grid solvers.  It is useful especially to combine 
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multigrid with acceleration technique for a large class of complicated real-life 

applications.  Recently, multigrid procedures have been applied as preconditioners in 

Newton-Krylov methods; see Liu et al. (1998), Knoll and Mousseau (2000) and 

Pernice and Tocci (2000) for incompressible flows, Rider et al. (1999) for equilibrium 

radiation diffusion, Mousseau et al. (2000) for non-equilibrium radiation diffusion, 

Tidriri (1997) for compressible flows, and Chacón et al. (2000) for 2D Fokker-Planck 

algorithm.  Oosterlee and Washio (1998) reported a comparison of multigrid as a 

solver and a preconditioner for singularly perturbed problems. 

 

1.3 Objectives and Scope 

 

A new approximate numerical method is designed based on the analysis of the effect 

of nonlinear terms in SINSE so that the residual error is reduced monotonically.  

Consequently, the first objective of this project is to investigate the monotonic 

convergent property.  In this method SINSE are decomposed into two parts: linear part 

and nonlinear part. And the effort mainly focuses on the linear part.  Even though the 

solution convergence rate can be affected by the problem parameters such as the 

Reynolds number, the mesh size, the numerical process also plays an important role to 

decide the efficiency of the computation.  The use of simple iterative techniques of the 

linear part leads to a rather slow convergence rate for the solutions.  Then one of the 

purposes of this thesis is to find an efficient linear solver to improve the overall 

computational efficiency of this method.  Other than the efficiency, the accuracy is 

another essential aspect that must be concerned.  Hence, the third target of this project 

is to improve the accuracy to higher-order. 
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Multigrid method is implemented in the current computational method.  The various 

components of the multigrid procedure including the smoothing method, coarsening 

method, restriction operator and the prolongation operator, and the effect of the 

parameters will be investigated to optimize the combination. 

 

In order to describe the convergent performance, this method will be compared with 

Newton’s method with both the single grid and multigrid implementation. 

 

A fourth-order difference scheme will be developed to compare with the basic second-

order scheme.  Consistent with the fourth-order discretization of the operator, the 

fourth-order accurate pressure boundary conditions are used. 
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Chapter 2 Algorithms and principles 

 

This chapter describes the basic algorithms of the monotonic approximation method 

and provides some mathematical principles for solving the conservative 

incompressible Navier-Stokes equations.  Both the second-order and fourth-order 

accurate discretization schemes are discussed.  The generalized artificial dissipation is 

introduced to overcome the instability of the system.  And some parameters that play 

important roles in the numerical procedure, such as diffusion coefficient, are presented 

here.  The application of a multigrid procedure is also explained in some details here. 

 

2.1 Algorithms of the monotonic approximate method 

 

In solving the conservative INSE (1.1-1.3) on domainΩ , the nonlinear terms of the 

momentum equation introduce another challenge other than the difficulty of coping 

with the velocity-pressure coupling.  Generally, Newton’s method can be used to 

reduce the nonlinear equation to its local linear form (1.4).  However, computing the 

Jacobian matrix F ′  is expensive most of the time.  This monotonic approximation 

method was proposed by Liu (2002) based on an analysis of the nonlinear terms. 

 

First, the INSE (1.1, 1.2) are discretized by using the second-order central difference 

scheme on a uniform mesh.  In fact, with a multigrid solution technique, non-uniform 

mesh or grid-clustering coordinate transformations are not essential since local mesh 

refinement may be achieved by simply defining progressively finer grids in designated 

subdomains of the computation region if it is deemed necessary.  The discretization of 

(1.1-1.3) leads to: 
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                  (2.3) 

where the superscript n represents the cycle step and nnn hhh 321 ,,  are the residual errors 

of the three equations in the nth numerical cycle.  When the residual errors between 

consecutive iterations obey: 

1n n
i ih h+

Ω Ω
<   (for all n)     (2.4) 

where max{ } ( 1, 2, 3)n n
m mh h m

Ω Ω
= =  denotes the maximum norm of the residual 

errors n
mh  over the computational domain Ω, the numerical scheme is said to be 

monotonically decaying.  Convergence is defined to occur when the norm of the 

residual error, h Ω , { },
max ( 1, 2, 3)n

mm
h h m

Ω ΩΩ
= = , which is the maximum error 

over the whole domain and equation,  is less than the specified tolerance TOL.  

h
Ω

< TOL                   (2.5a) 

And a relative convergent criterion based on  

1 .mh TOL h
Ω
<         (2.5b) 
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where 1
mh  is the maximum residual error in the first iteration and a TOL=10-8 is 

frequently implemented. 

To rewrite the Eqs. (2.1-2.3) in incremental form, the sequences of pressure and 

velocities n
me  are defined as 

1n n
m m

n
me u u+= −  (m=1, 2,3)            (2.6) 

Then, subtracting the equations (2.1-2.3) of the nth step from those of the n+1th step, 

the perturbation SINSE is obtained. 
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In Eqs. (2.8) and (2.9), it is obvious that the nonlinear convection terms on the right-

hand side are homogeneous of order 2.  As a result, when the residual errors n
mh  

approach zero and the sequences n
me  decrease correspondingly, the nonlinear terms will 

decay faster than the linear terms.  This means the effect of these nonlinear terms will 
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become unimportant as the solution approaches convergence.  However, the effects of 

the nonlinear terms could be very large when the approximation is far from the 

solution.  Consequently, to find the solution n
mu , the discretized Eqs. (2.8-2.9) are 

decomposed into two parts: linear and nonlinear part.  The first or linear part is used to 

generate a correction n
me  for n

mu .  The second part or nonlinear part is then used to 

determine a scaling constant s, such that the 

1n n n
m m mu u se+ = +         (2.10) 

possesses a smaller overall residual error.  In developing the method, we define the 

following linear and nonlinear components of equations (2.7-2.9) as well as the 

additional function n
mf , which are termed correction functions: 
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Consequently, the incremental discretized Eqs. (2.8 and 2.9) can be rewritten as: 

1,n n n n n
k m k k kL e g h h ++ + =  (k=2, 3)      (2.16) 

while, Eq. (2.7) can be written as: 

1
1 1 1
n n n n

mL e h h ++ =         (2.17) 

In order to keep the scheme converging monotonically, the correction functions must 

be correctly posed.  According to Liu (2002), the correction functions have to meet the 

following criteria. 

 

For 1kx ∈Ω  where (0 1),n n n
m m mh h hε ε

Ω Ω
≥ > < <  n

mf  satisfies: 

1 2 2 1

( ) ( )

(0 1)

n n
m m

n n n
m m m

sign f sign h

h f hε ε ε ε
Ω Ω

= −

≥ > < < <

     (2.18) 

And for 2kx ∈Ω  where n n
m mh hε

Ω
≤ , n

mf  satisfies: 

3 3(0 1)n n n
m m mh h fε ε

Ω Ω
> ≥ < <       (2.19) 

Here, the domain decomposition is convenient for mathematical verification and 

provides more scope to handle the convergent problem.  But in practice, the only key 

requirement for the correction function is that the signs of n
mf  are different from those 

of residual errors n
mh , i.e. ( ) ( )n n

m msign f sign h= − .  Three kinds of correction functions, 

numbered 1 to 3, satisfying the requirements are used in this study. 

CF 1: n n
m mf h= −         (2.20) 

CF 2: 0 1n n
m mf bh b= − < <       (2.21) 

CF 3: 
( )

( )
* ( )*n n n n n

m m m m m

n n n n
m m m m

f h sign h h h

f h h h

α β

β
Ω

⎧ = − <⎪
⎨

= − >⎪⎩

   (2.22) 
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CF is the abbreviation for correction function.  The parameters, b, 0.5 1α< < and 

0 1β< < , may be turned to find the optimal/good convergence behaviour. 

 

Besides the correction function, another important parameter to control the 

monotonical property is the scale factor s, which was introduced earlier to modify the 

increment n
me .  The scale factor s is not a constant.  It changes with n as computation 

proceeds.  In the first case (2.20), the value of s is always equal to one, which results in 

the Eqs. (2.11-2.13) being just the Newton equations.  For CFs 2 and 3, the choice of s 

is governed by the nonlinear terms.  Then, with a suitable value of s ( 0 1s< ≤ ) to 

correct the increment n
me , the function (2.16) can be written as: 

2 1n n n n n
k m k k kL se g s h h ++ + =        (2.23) 

From Eq. (2.18), as long as the nonlinear terms n
kg  are bounded, there exists a 

constant C such that 2n n n
k m kL se g s+  has the same sign as n n

k mL se  when 0 s C< < .  And 

considering that the signs of n
mf  are different from that of the residual errors n

mh , it is 

obvious that the absolute value of 1n
mh +  will be smaller than that of n

mh .  If the second 

case, , 0 1n n
m mf bh b= − < < , is taken as an example, the Eq. (2.23) is turned into: 

1 2

2

2 .

n n n n n
k k m k k

n n n
k k k

n n n
k k k

h L se g s h

s f s g h

bsh s g h

+ = + +

= ⋅ + ⋅ +

= − + ⋅ +

 

By the Cauchy-Schwarz inequality, 
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1 2
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s f h s g
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g
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+

Ω Ω

Ω Ω

Ω Ω

Ω

Ω
Ω
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≤ ⋅ + + ⋅
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For all n, to get 1n n
i ih h+

Ω Ω
< , it requires that 

21 1.
n
k

n
k

g
bs s

h
Ω

Ω

− + ⋅ <  

 

This implies that for 0 1s< ≤ , 

.
n
k

n
k

h
s b

g
Ω

Ω

<  

 

Hence, the constant s can be set to  

2 min(1.0, )
n
k

n
k

b h
s

g
ε Ω

Ω

=      (2.24) 

where n
kg

Ω
 is the maximum norm of the values n

kg  and 20 1ε< <  is an additional 

parameter that may be involved to control the value of s.  It is obvious that the constant 

s is a critical parameter to keep the residual error converging monotonically. 

 

2.2 Generalized dissipation scheme 

 

The flow equations are discretized by using central difference scheme and the 

algorithm introduced in last paragraph offers a novel way to deal with the nonlinear 

terms in the momentum equations.  However, it is still a big challenge to solve the 
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linear perturbation Eqs. (2.11-2.13) because the correction of pressure ne1  is uncoupled 

between the continuity perturbation Eq. (2.11) and the linear momentum operator Eqs. 

(2.12 and 2.13).  A generalized dissipation scheme is applied here, which serves both 

to connect the correction pressure 1
ne  to the perturbation velocities ( 2

ne , 3
ne ) as well as 

to produce artificial dissipation to control stability of numerical procedure.  

2
1 1 1
n n n n

mL e CUI e f+ ∇ =         (2.25) 

n
k

n
k

n
m

n
k feMCUIeL =∇+ 2        (2.26) 

Here, CUI and MCUI are the damping factors to control the artificial dissipation terms.  

For momentum Eq. (2.26), those artificial diffusion terms can provide additional 

dissipation to suppress numerical spurious oscillation.  Meanwhile, this ensures 

diagonal dominance for the resulting algebraic equations, thus lending the necessary 

stability property to the evolving solutions.  And for the discretized continuity Eq. 

(2.1), the artificial pressure diffusion term 2
1
ne∇  provides the needed coupling of the 

pressure correction field ),( 321 xxen  to the velocity correction field 2 3( , )n ne e .  Hence, the 

pressure correction ne1  can be obtained by solving the resultant Poisson equation if the 

velocity is treated explicitly.  Besides, the artificial diffusion scheme will not 

contaminate the final physical solutions because the artificial diffusion terms are added 

in incremental forms, which means they are going to approach zero when the residual 

errors n
mh and the increments n

me  decrease to less than the accepted tolerance of 

convergence. 

 

In the present algorithm, the artificial dissipation terms play an important role in the 

stabilization of discretization and they do not affect the accuracy which is determined 

here by satisfaction of residual condition to required tolerance.  However, they may 
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affect the operation of the original correction function n
kf , resulting in potential loss of 

monotonic convergence property. 

nnn eCUIff 1
2

11 ∇−=         (2.27) 

n
k

n
k

n
k eMCUIff 2∇−=             (2.28) 

  Hence the selection of the damping parameters MCUI and CUI must be carefully 

done.  They have to be chosen small enough to maintain a good convergent behaviour 

but large enough so that the discrete system becomes sufficiently stable.  For high 

Reynolds numbers, the unstable influence of the dominating advection terms have to 

be suppressed by increasing MCUI and CUI. 

 

2.3 Fourth-order refinement 

 

The algorithms introduced above are all based on second-order accurate central 

difference.  It is well known that the performance of iterative methods is sensitive to 

the number of equations to be solved, the type of boundary conditions applied and 

other factors.  In particular, if the number of equations or the Reynolds number 

increases, the rate of convergence of an iterative procedure often deteriorates.  Hence, 

an increase in the number of equations to be solved is associated with a higher cost per 

iteration, thereby limiting the practical size of the problem that can be solved.  

Applying a higher-order method which decreases the number of equations while 

preserving high accuracy can partially alleviate this problem.  Hence, a fourth-order 

discretized difference scheme rather than a second-order scheme can be used to reduce 

the number of equations significantly.  A unique feature of the present fourth-order 

scheme is that only the residual errors n
mh  as given by (2.1-2.3) are computed to 



Chapter 2  Algorithms and principles 

30 

fourth-order while the rest of the operators are maintained at second-order.  It does not 

matter that the other parts of the scheme are retained at second-order, since the final 

solution will be fourth-order if convergence is governed by the fourth-order residual 

errors meeting the set tolerance.  The key is that the convergence is actually attained.  

Consequently, we have also termed the present higher-order procedure a fourth-order 

refinement.  The refinement scheme helps to reduce the computational work to obtain 

high accuracy solutions since much of the work is done via lower-order operators.  The 

fourth-order refinement incorporates full fourth-order boundary conditions. 

 

It is straightforward to refine the second to fourth order accuracy without major 

changes to the second-order scheme.  The fourth-order central difference for all the 

derivatives may be written as: 

2
2 1 1 2

2 2

2 1 1 2

16 30 16
12

8 8
12

i i i i i

i i i i

u u u u uu
x x

u u u uu
x x

+ + − −

+ + − −

− + − + −∂
=

∂ ∆
− + − +∂

=
∂ ∆

     (2.29) 

The fourth-order residual errors n
mh  will be obtained if all the derivatives in three 

governing equations and the boundary conditions are replaced by the appropriate 

fourth-order approximations.  During the procedure of computation, accuracy and 

efficiency are the two most important issues.  Truncation error, as well as the round-off 

errors, combines to compromise the accuracy of the results.  And the truncation error is 

the main consideration for accuracy when the tolerance for convergence is set to be 

very low.  Compared with second-order discretization, fourth-order accurate 

discretization requires slightly more work in one iterative cycle; however, it keeps a 

high accuracy with less number of equations.  The comparison between second-order 
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and fourth-order finite difference is made in subsequent numerical studies.  The fourth-

order refinement is particularly useful if we are seeking for highly accurate solutions. 

 

2.4 Boundary condition 

 

The INSE requires no a pri-boundary conditions on the pressure.  Only the velocity 

boundary conditions are sufficient for the determination of both velocity and pressure 

(Gresho and Sani, 1987; Koh, 2000).  The algorithm presented in this thesis, the 

Poisson equation for the pressure correction in Eq. (2.25), splits the computation of the 

pressure from the computation of velocity.  Then, a boundary condition for the 

pressure must be specified.  And the numerical computations indicate that the accuracy 

and stability are also affected by the specific choice of pressure boundary condition. 

 

The simplest boundary condition for the pressure field p is:  

1 0.u
x

∂
=

∂
         (2.30) 

which was used by Liu (2002).  Condition (2.30) provides a low-order approximation 

of the pressure boundary condition, which is not satisfactory in many applications. 

 

According to Gresho and Sani (1987), the alternative choice is the Neumann boundary 

condition obtained by applying the normal component of the momentum equations on 

the boundary.  Thus, the necessary pressure boundary condition can be derived from 

the normal and tangential components of velocities. 

 

If the x-momentum equation (1.2) is applied on the y-boundary, the conditions on the 

left and right boundary walls are obtained as, 
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2 2
1 2 2

2
2 2 2

( ) 1 ,
Re ( )wall

u u u
x x x
∂ ∂ ∂

= − +
∂ ∂ ∂

      (2.31) 

Similarly, the Neumann boundary conditions on the top and bottom boundary walls 

may be derived from the y-momentum equation (1.3) as, 

2 2
3 31

2
3 3 3

( ) 1 .
Re ( )

wall

u uu
x x x

∂ ∂∂
= − +

∂ ∂ ∂
      (2.32) 

where we note that u2=u3=0 at a stationary wall, but ( )2
2 2/u x∂ ∂  and ( )2

3 3/u x∂ ∂  

could not be zero.  To discretize those Eqs. (2.31 and 2.32), second-order and fourth-

order finite difference schemes corresponding to the required accuracy of the residual 

errors are employed.  The second-order discretization of the pressure boundary 

condition at the left wall is obtained as follows.  The pressure on the left wall is given 

by Taylor expansion as:  

jx
uhjuju

ju
,12

111
1 3

2
3

),3(),2(4
),1(

∂
∂

−
−

=      (2.33) 

The terms of 1

2 (1, )j

u
x
∂
∂  given by (2.31) are then evaluated by second-order differences as: 

2 2 2 2
2 2 2 2

2 1,

( ) 2[ (3, )] 4[ (2, )] 3[ (1, )] ,
2j

u u j u j u j
x h

∂ − + −
=

∂
    (2.34) 

2
2 2 2 2 2

2 2
2 1,

2 (1, ) 5 (2, ) 4 (3, ) (4, ) .
( )

j

u u j u j u j u j
x h

∂ − + −
=

∂
   (2.35) 

Then, the second-order pressure boundary on the left wall is obtained through 

reorganizing the Eqs. (2.31, 2.33-2.35). 

 

The fourth-order pressure boundary on the left wall can be similarly obtained.  The 

pressure on the left wall is obtained if Eq. (2.31) is given by: 
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jx
u

h
jujujuju

ju
,12

11111
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25
),5(3),4(16),3(36),2(48

),1(
∂
∂

−
−+−

=  (2.36) 

where, the terms of 1

2 (1, )j

u
x
∂
∂

given by (2.31) are evaluated based on fourth-order 

differences as: 

2 2 2 2 2 2
2 2 2 2 2 2

2 1,

( ) 25[ (1, )] 48[ (2, )] 36[ (3, )] 16[ (4, )] 3[ (5, )] ,
12

j

u u j u j u j u j u j
x h

∂ − + − + −
=

∂
(2.37) 

2
2 2 2 2 2 2 2

2 2
2 1,

45 (1, ) 154 (2, ) 214 (3, ) 156 (4, ) 61 (5, ) 10 (5, ) .
( ) 12

j

u u j u j u j u j u j u j
x h
∂ − + − + −

=
∂

(2.38) 

For fourth-order scheme, a separate set of equation is also needed for the first interior 

node next to a wall. 

 

2.5 Relaxation scheme and multigrid procedure 

 

In the current application, the operator algorithm produces a set of linear, elliptic, 

scalar equations (see Eqs. 2.25 and 2.26) that need to be solved.  Because the multigrid 

technique is the fastest numerical method to solve elliptic equations, it is adopted as 

the first choice in this project to improve the convergence rate.   

 

In the multigrid method, the role of the iterative method is not so much to reduce the 

error as to smooth it.  Hence, the most important criterion to choose the iterative 

relaxation scheme is its ability to eliminate the high-frequency error components.  The 

SOR method gives rapid reduction of the corresponding high frequency components so 

that it is suitable for error smoothing.  And the smoothing properties will turn out to be 

dependent on the right choice of relaxation parameters.  The solution on the each grid 

is obtained with a fixed number of sweeps of the smoother except possibly for the 
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coarsest grid.  On the coarsest grid any method, including direct solution, may be used 

if only this method has sufficiently good convergence properties. 

 

In this project, the multigrid uses a simple “V” cycle (see Figure 2.1) and incorporates 

SOR as a smoother. 

 

 

Fig 2.1 Structure of a six level multigrid V cycle 

 

In Fig. 2.1, every black point represents one grid where the solutions are obtained after 

some suitable numbers of SOR iteration.  The circle means some other smoothing 

procedure may be used on the coarsest grid.  SSOR and direct methods are 

investigated here.  However, there are no significant improvement in the 

computational cost using these two methods at the coarsest grid in this study.  In a 

multigrid process, local mesh refinement may be achieved by defining progressively 

finer grids in designated subdomains of the computation region.   Then uniform mesh 

with standard 2h coarsening is applied in the main bulk of our study, 4h coarsening is 

applied in selected case studies (see Fig. 2.2): 
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          (a)             (b) 

 

Fig 2.2 (a) Standard 2h and (b) 4h-coarsening of a uniform mesh 

 

Although these choices may not be optimal for the multigrid as a solver, they turn out 

to be acceptable approaches.  For the restriction operator, the variables are always 

restricted using the optimal weighting method.  But for the residual errors, both 

optimal and full weighting are applied to compare their effects on the convergence 

performance.  For the prolongation operator, bilinear operator given in the Eq. (1.22) is 

employed throughout the multigrid procedure. 

 

In this solution technique, a kind of inexact Newton method handles the nonlinear 

terms.  The artificial pressure diffusion is added to couple the system and make the 

numerical procedure stable.  The multigrid algorithm solves the linear elliptic 

incremental equations.  Implementing more sophisticated multigrid strategies and 

measuring their effects on CPU time and convergence are areas for future research. 

 

2.6 Numerical procedure 

 

Based on the aforementioned description of the principle, the computational sequence 

of each iteration cycle is listed below: 

1. Input initial data and set up initial flow field; 
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2. Compute the residual errors n
mh  from the Eqs. (2.1 and 2.3) ( n

mh  is computed to 

fourth-order for the fourth-order requirement scheme.); 

3. Construct the correction function n
mf  subject to the specifications (2.18) and 

(2.19); 

4. Solve the Eq. (2.25) to obtain ne1  using multigrid method; 

5. Solve the Eq. (2.26) to obtain ne2  and 3
ne  using multigrid method; 

6. Compute n
kg  from Eqs. (2.14 and 2.15); 

7. Compute the value of 
Ω

n
mh  and

Ω

n
kg , according the Eq. (2.24) to choose a 

proper constant s; 

8. Compute n
m

n
m

n
m seuu +=+1  to obtain the n+1th step variables; 

9. Check for convergence and return to step 2 if necessary until the convergent 

criteria are satisfied.
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The following flow chart summarizes the above computational steps as one 

outer-loop iteration: 

 

Initial parameter 

Begin program  

K<30000
NO 

YES

Compute n
mh   

Construct n
mf  

Solve Eqs. (2.25, 2.26) with multigrid method to obtain n
me  

Compute n
kg  

Choose suitable s 

K=K+1 

Judge convergence 
TOLh n

m <
Ω

 

End program main

Output data

NO 

YES

Update n
m

n
m

n
m seuu +=+1  
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The computational flowchart of one multigrid cycle to solve hh
h feL =  is shown as: 

Program begin 

hh
h feL =  presmoothing on Finest gridNI1 times to obtain the he  

Repeat the steps A-D until the coarsest sixth level solution he6  obtained 

Step A: Restrict the variables to the coarser gird hh
h eI 2  

Step B: Restrict the error to the coarser gird )(22 h
h

hh
h

h eLfId −=  

Step D: hh
h feL 22

2 =  presmoothing on second grid level NI2 times to obtain the he2  

Step C: Calculate the second level source term hh
hh

hh eILdf 2
2

22 +=  

Step F: Make the coarse grid correction to level 5 hh
h

hh Iee 65
6

55 ν+=  

Step G: 5 5
2

h h
hL e f=  postsmoothing on grid level 5 NP5 times to obtain the he5  

Repeat the steps E-G until the finest level 1 solution he  obtained 

Step E: calculate the coarse grid correction of level 6 hh
h

hh eIe 56
5

66 −=ν  

Program end 
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Chapter 3:  Numerical evaluations 

 

In this chapter, we will carry out a systematic numerical evaluation of the monotonic 

approximation scheme and the various extensions that we have described in Chapter 2.  

These will be done in the context of the standard test problem of two-dimensional 

incompressible fluid flows in a driven square cavity, whose geometry is depicted 

schematically in Figure 3.1. 

 

Numerical issues and performance of the method and its extensions in terms of the 

following are presented and discussed: 

� Monotonicity 

� Stability and convergence 

� Rate of convergence and convergence history 

� Accuracy 

� Multigrid acceleration 

� Parameter optimization 

� Fourth-order refinement 

Comparisons are made with other published results where possible. 

 

3.1 Physical and numerical parameters of the test problems 

 

The monotonic approximation numerical method is applied to the two-dimensional 

driven cavity flow.  The driven cavity is a classic fluid dynamics benchmark that is 

widely used as standard test cases for evaluating the stability and accuracy of 

numerical methods for incompressible flow problems.  Figure 3.1 shows the geometry 
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and the boundary conditions for the flow in a driven cavity together with the 

appropriate nomenclature.  The programs are implemented on 3.06 GHz Pentium IV 

Xeon CPUs of NUS computer centre.  As the machines are running under shared 

environment, the CPU time that we presented later should be taken as indicative value 

than absolute. 

 

 

Fig. 3.1 Geometry of the driven cavity flow 

 

The parameters appearing in this program are defined as follows. 

CUI=Diffusion coefficient for the continuity equation, 

MCUI= Diffusion coefficient for the momentum equations, 

W= overrelaxation parameter in the SOR method, 

Re=Reynolds number, 

NI1, NI2, NI3, NI4, NI5, NI6 are the numbers of sweeps of the smoother at the 1st, 

2nd,…, 6th multigrid level respectively, with 1st representing the finest grid level, 

N=mesh size, 
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3.2 Monotonic scheme on a single grid 
 

From the design of algorithm described in Chapter 2, it is clear that this approximation 

method may produce residual error h Ω that converges monotonically if suitable 

parameters are selected.  This property is approximately demonstrated in Figure 3.2.  

As can be seen, the convergence behaviour is monotonic except for slight oscillations 

at the beginning.  There are two causes for the slight oscillations. One is the 

incomplete convergence of the linear part.  In order to save the computational cost, the 

linear part iteration employs only 100 SOR sweeps for the single-grid cases and one 6 

level V-cycle for multigrid cases.  The other reason is the addition of the generalized 

artificial dissipation terms in equations (2.27) and (2.28), which are not part of the 

original monotonic theory.  In these figures, the CFs 1 to 3 refer to the three correction 

functions. 

 

When the CF 1 is used, s is set to be one throughout the computation.  Then the 

equations (2.12) and (2.13) are reduced to the Newton equations.  Correspondingly, the 

other two correction functions (2 and 3) can be thought as inexact or modified Newton 

methods.  The history of scale factor s is included in Fig 3.3.  It can be seen that s 

tends to 1.0 fairly quickly, typically in less than 30 steps.  In order to save the 

computation cost, s is set to be 1.0 after a set number of outer iterations instead of 

being obtained through equation (2.24).  As reviewed in Chapter 1, Newton’s method 

has very good convergence property when the initial guess is sufficiently close to the 

solution.  Otherwise, the computation may fail.  Fortunately, this restriction can be 

improved by using the present error reduction scheme with the correction functions 2 

and 3.  As shown in Figure 3.4, the flow at Re =1000 is calculated using a uniform 

mesh with 129×129 grid points and standard initial condition, which is 
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1 2 3(u , , ) (0,0,0)u u ≡ for all 2 3x=(x ,x )∈Ω  at the beginning.  It is evident that the 

convergent behaviours for correction functions 2 and 3 are much less oscillatory than 

that of for correction function 1 (with constant s=1) which corresponds to Newton’s 

method.  At Re=5000 with standard initialization and grid size of 129×129, Newton’s 

method (correction function 1 and s=1) can not converge, but the present error 

reduction scheme converges with correction function 2 and 3.  The term CF 1 will be 

used synonymously with Newton’s method. 

 

In order to further compare the convergence property of the proposed scheme with 

Newton’s method, flow at Re=5000 is simulated in the uniform mesh 129×129 with 

initial condition 1 2 3( , , )u u u randomly generated between (-0.1, 0.1).  The convergence 

history is shown in Figure 3.4.  Only two lines are shown here because Newton’s 

method also fails to converge.  The random initial condition makes the convergence 

history line slightly more oscillatory than those initialized with 0.  However, the total 

iteration to convergence is almost the same.  The higher stability of the present method 

than the Newton’s method can be verified from the Tables 3.1-3.2.  It can also be seen 

in Figures 3.2-3.4 that correction function 3 exhibits better performance than 

correction function 2 in single grid computation.  As shown in Tables 3.1 and 3.2, at 

Re=1000 with mesh size 65×65, the total outer loop iteration number is 246 for CF 2 

while for CF 3 the outer loop iteration number is 221, about 10% better. 

 

It is obvious from Figure 3.5 that the larger the value of b in the correction function 2, 

the better the convergence behaviour will be.  This property can also be found in the 

Table 3.3.  The Newton’s method converges fastest with iterative number of 899 and 

CPU time of 156.7 s followed by the CF 2 with b value equal to 0.9.  When b is equal 
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to 0.7, the iterative number is almost one and half times more than that of the 

Newton’s method.  However, Newton’s method is most seriously oscillatory in these 4 

CFs as can be seen in Figure 3.5. Indeed for relative convergence tolerance of 10-6, 

Newton’s method is slower in convergence than CF with b=0.7, 0.8 and 0.9.  With the 

value b becoming larger, it is more like the Newton’s method, which means the 

convergence performance is more sensitive to the parameters and fails easily when 

multigrid is applied in solving the linear equations.  Thus, it is important to select a 

suitable value of b to guarantee the convergence and good performance.  In this project, 

the value of b is set at 0.7 unless otherwise indication. 
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Fig. 3.2 Comparison of convergence history for the three correction functions 

using single grid. (mesh size of 129×129, W=0.23, α=0.5, β=0.9, CUI=MCUI=0.12, 
Re=5000) 

At Re=1000, the results for the grid of 129×129 and 531×531 are presented in Figures 

3.6 and 3.7, respectively.  It can be observed that they are almost identical and also 

indistinguishable with the results of Schreiber and Keller (1983), meaning that the 

finest grid of 129×129 is adequate for Re=1000.  And among all the parameters, the 
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finest mesh size is the most important parameter.  With CUI=0.08, if the mesh size is 

larger than 45×45 at Re=1000, the results remain satisfactory. 
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Fig. 3.3 Comparison of convergence history and the history of scale factor for the 

three correction functions using single grid. (mesh size of 129×129, W=0.23, 
CUI=MCUI=0.10, Re=1000) 
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Fig. 3.4 Comparison of convergence history for the three correction functions 

with random initial values using single grid. (mesh size of 129×129, W=0.23, α=0.5, 
β=0.9, CUI=MCUI=0.12, Re=5000) 

 
 

 

Table 3.1 Comparison of three correction functions for single grid at Re=1000, 
mesh size of 65×65, CUI=MCUI=0.07 

 
CF 2 CF 3 Re=1000 

Mesh size: 65×65 
CUI=MCUI=0.07 

CF 1 No. of 
Iteration

CPU 
time (s)

No. of 
Iteration 

CPU 
time (s)

Single grid  F 246 13.4 221 13.1 

 

Table 3.2 Comparison of CPU time for the three correction functions of multigrid 
(2D finest mesh size of 129×129, W=0.23, CUI=MCUI=0.12, Re=5000) 

 

 

 

 CF 1 CF 2 CF 3 

Multigrid 6L F 43 (s) 39.5 (s) 

Single grid F 391 (s) 314 (s) 
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Table 3.3 Comparison with different values of b and Newton’s method (mesh size 
of 129×129, W=0.23, CUI=MCUI=0.10, Re=1000) 

 

b=0.7 b=0.8 b=0.9 Newton’s 
method 

 
Iterative 
number 

CPU 
time 
(s) 

Iterative 
number

CPU 
time 
(s) 

Iterative 
number

CPU 
time 
(s) 

Iterative 
number 

CPU 
time 
(s) 

Single gird 1295 225.8 1137 193.9 1014 174.0 899 156.7

1 1293 84.1 

Multigrid 
2 1368 66.4 

F F F 
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Fig 3.5 Comparison of convergence behaviour with different values of b and 

Newton’s method (mesh size of 129×129, W=0.23, CUI=MCUI=0.10, Re=1000) 
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Fig. 3.6 Streamline pattern (Re=1000, Finest grid 129×129, W=0.23, CF 2, 

CUI=MCUI=0.10) 
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Fig. 3.7 Streamline pattern (Re=1000, Finest grid 531×531, W=0.23, CF 2, 

CUI=MCUI=0.10) 
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3.3 Multigrid acceleration of the monotonic scheme  

 

In this section, we will investigate the improvements that multigrid has over the single 

grid with second-order accuracy.  To determine the overall accuracy of the scheme, 

Re=1000 is taken as an example.  Five calculations are performed in a series of mesh 

sizes with identical parameters.  Because it is impossible to find the exact solution of U 

in the domain, the solution at a relatively much large mesh size, e.g. 481×481, is used 

as a reference.  The variation of the maximum error in U with mesh refinement is 

plotted in Figure 3.8.  Here, NEU = m ax { }U U
Ω

−  and N is the mesh sizes.  From 

this figure, we can see that the scheme is indeed of second-order accuracy with a very 

light correlation coefficient of nearly 1.0.  The small deviation from the 2.0 slope may 

be due to the fact that the reference solution is not the exact analytical solution but a 

numerical solution obtained from the much finer mesh.   

 

Figure 3.9 shows the distribution of vertical flow velocity v along the horizontal line 

passing through the centre of the cavity at (0.5, 0.5) for Re=5000.  A magnified view 

of right minima is also given.  The distribution of horizontal flow velocity u along a 

vertical line passing through the geometric centre of the box and a magnified view of 

left minima corner are shown in Fig. 3.10.  In both figures, the results from Ghia et al. 

(1982) are taken as the reference, in which the local maxima and minima of v-velocity 

along the horizontal line passing through the geometric centre of cavity are 0.43648 

and -0.55408 for Re=5000 respectively.  It is evident that the present results are very 

close to theirs.  In our case with 129×129, the local maxima and minima of v-velocity 

along the horizontal line passing through the geometric centre of cavity are 0.41833 

and -0.51901 respectively.  Furthermore, the present maxima and minima values also 
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occur at the same spatial points as in Ghia et al.  Especially, for the mesh size of 

257×257, the results are in excellent agreement with theirs.   

 

 

Table 3.4 Maximum error for various mesh sizes (Re=1000, CUI=MCUI=0.10, 
W=0.23, CF 2) 

 

 Mesh sizes refU -U
Ω

 

Reference 418 － 

1 161 0.00663 

2 121 0.01205 

3 97 0.01865 

4 81 0.02629 

5 61 0.04449 
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Fig 3.8 Maximum error as a function of mesh size 
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Fig. 3.9 (a) the comparison of V velocity profiles along the horizontal line through 
geometric center of the box for different mesh sizes with results from Ghia et al.’s 
(1982) (Re=5000, CF 2) and (b) the magnified view of right-hand minimum point. 
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Fig. 3.10 (a) the comparison of U velocity profiles along the vertical line through 

geometric centre of the box for different mesh sizes with results from Ghia et al.’s 
(1982) (Re=5000, CF 2) and (b) the magnified view of left-hand minimum point. 
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In order to appreciate what multigrid could achieve in terms of more rapid 

convergence to solutions and improvements in computation times, a limited parametric 

study of the multigrid cycle parameters and components was carried out in this study.  

It is found that the finest mesh width is the most important parameter, especially for 

high Re.  As Re increases, very coarse grids could not be included in the procedure to 

avoid divergence.  Hence, the choice of the finest mesh size will determine whether the 

multigrid program will be convergent or not.  However, the other parameters also have 

great effects on the convergence performance. 

 

Table 3.5 lists the effects of different numbers of sweep of the smoother in each grid 

on the convergence performance for a case with Re=5000 and a finest level grid of 

129×129.  This table shows that the Newton’s method fails in all the 20 cases 

considered in which a 6 level multigrid was used.  The present error reduction 

procedure with correction function 2 succeeds in all but 2 cases.  Efforts have been 

taken to minimize the outer-loop iterative number and the CPU running time.  Cases 

No. 4 and No. 18 give the two best outer-loop iterative number and CPU running time 

among the studied cases.  Usually, the more sweeps are applied to the finest grid, the 

lesser the number of outer-loop needed.  However, higher sweep number at the finest 

grid will result in increased CPU running time in one outer loop, leading to higher total 

computational cost.  Conclusively, the sweeps in the finest grid should be minimized 

whenever possible to save the computational cost while the sweeps in the coarser grids 

should be relatively increased to maximize error reduction in each outer loop.  But, 

sometimes, too many smoothing sweeps in the coarse grids could make the 

convergence behavior oscillatory and lead to higher outer-loop iterative number and 

CPU running time.  This phenomenon can be seen in cases No. 17 and No. 18, in 
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which the No. 18 sweep sequence of (10, 5, 5, 4, 4, and 2) converges faster than case 

No. 17 which has (10, 5, 5, 6, 5, and 2).  For this case with Re=5000 and a finest mesh 

of 129×129 (MCUI=CUI=0.12), the No. 18 sweep combination appears to have the 

shortest CPU running time of 42.5 s with 874 outer iterations. 

 

The minimum iterative number occurs for case No. 4 in which 4h coarsening was 

applied, but it has a significantly higher CPU time of 87.9 s.  It is interesting that 

sometimes the 4h coarsening has better convergence performance than the standard 

coarsening.  Figure 3.11 shows a comparison of convergence histories of cases No. 4 

and No. 18. 

 

With regard to the residual error restriction operators, the use of 9-point restriction, or 

full-weighting, is found to be superior to 5-point restriction, or optimal-weighting as 

shown in Table 3.6.  Both full-weighting and optimal-weighting are examined for the 

flow with Re=10000.  It is found that the full-weighting operator results in a much 

more stable multigrid scheme.  However, as shown in Figure 3.12, once both operators 

are convergent, there is little difference in their convergence histories. 

 

The computational advantage gained by use of the multigrid procedure is best 

illustrated in terms of the behaviour of the maximum value of the residual error in the 

finest grid.  Figures 3.13-3.17 show the maximum residual errors obtained during a 

single grid computation as well as a 6 level multigrid calculation with the other 

parameters remaining the same.  In these figures, the solid lines denote the behaviour 

of the single grid calculations with 100 SOR iterations and the dash lines are for the 

multigrid computations with multigrid sweeping sequence shown in the legend.  Flow 
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configurations with Re=5000 and Re=10000 have been examined for different finest 

mesh sizes and different correction functions.  In all cases, the single-grid calculations 

exhibit a rapid initial decay of the residuals during first 200 iterations.  Thereafter, the 

solid curves show a marked decrease in their slope.  The multigrid process seems to 

retain the high initial decay rate almost during the overall computation.  Furthermore, 

compared with multigrid method, the residual decay histories for the single-grid 

computations show a lot more oscillations; especially for Re=10000.  That may be 

because 100 SOR iterations are not enough to obtain a good approximate solutions of 

the intermediate linear systems for the finer mesh of 257×257. 

 

Other than the convergence rate, the efficiency of the computation is also significantly 

improved by employing the multigrid method in solving the linear equations.  Tables 

3.7-3.8 summarize the convergence performance of three flow configurations with 

three correction functions 2 and 3; the Newton’s method using CF 1 fails in all cases.  

It is evident that multigrid procedure becomes more efficient at higher mesh sizes.  As 

shown in Table 3.7, for Re=10000 (257×257 mesh), the single-grid method needs 

10533 outer-loop iterations while 3628 is enough for the multigrid method.  In terms 

of the elapsed CPU time, there is also a substantial improvement from 15607s for 

single grid method to 920s for multigrid method.  It is about 2.9 times lesser in 

iterative numbers and 16.9 times lesser in the running time.  However, for Re=1000 

with mesh size of 65×65, even though the CPU running time in multigrid process is 2 

times faster than the single grid method, the total iterative numbers of the single grid 

method is almost 200 less than that of 6-level multigrid computation.  This is because 

the running time for one outer loop iteration is greatly decreased by applying the 



Chapter 3  Numerical Evaluations 

55 

multigrid procedure, even though the residual error reduction of one outer iteration in 

the single-grid scheme is larger than for the multigrid scheme. 

 

Table 3.5 Different results with different parameter using multigrid for CF 2 
(Finest Mesh size of 129×129, Re=5000, MCUI=CUI=0.12) 

 

For CF 2 For CF 1 

W No. NI1 NI2 NI3 NI4 NI5 NI6 Outer-
loop 

iterative 
number

CPU 
time(s) 

Convergence 
behavior 

1.  30 10 8 4 4 2 904 106.8 F 
2.  30 10 8 8 8 2 F — F 
3.  30 0 15 0 9 2 849 96.1 F 

4.  30 0 10 0 8 2 782  87.9 F 

5.  20 0 10 0 8 2 887 69.9 F 
6.  20 10 8 5 4 2 835 71.4 F 
7.  15 4 3 2 2 2 1033 88.8 F 
8.  15 10 10 6 5 2 809 56.3 F 
9.  10 5 4 2 2 2 1081 84.7 F 
10.  10 10 10 6 5 2 872 46.9 F 
11.  10 8 4 2 2 2 1081 84.7 F 
12.  10 5 4 2 2 2 1081 84.7 F 
13.  10 5 5 2 2 2 1067 78.4 F 
14.  8 5 4 2 2 2 F — F 
15.  10 5 4 4 3 2 897 69.8 F 
16.  10 5 4 4 4 2 875 43.6 F 
17.  10 5 5 6 5 2 888 43.5 F 

18.  10 5 5 4 4 2 874 42.5  F 

19.  10 5 4 5 4 2 887 76.8 F 

0.23 

20.  10 5 4 4 4 4 894 75.9 F 
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Fig. 3.11 Comparison of convergence histories between standard and 4h 

coarsening (finest mesh size of 129×129, W=0.23, CUI=MCUI=0.12, Re=5000, CF 
2) 
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Fig. 3.12 Comparison of convergence histories between full and optimal weighting 

in residual restriction (finest mesh size of 129×129, W=0.23, CUI=MCUI=0.12, 
Re=5000, CF 2) 

 



Chapter 3  Numerical Evaluations 

57 

 
 

Table 3.6 Second-order Comparison for different residual error restriction 
operator (CF 2, finest mesh size of 257×257, Re=10000, MCUI=CUI=0.18) 

 

Different 
smoothing times in 

each level 

 
10,10,8,5,4,3 

 
10,10,5,5,4,2 

 
15,10,8,5,4,3 

Full weighting  3628 3791 3576 

Optimal weighting F F 3578 
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Fig. 3.13 Comparison of convergence histories between multigrid and single-grid 
computations. (CF 2, W=0.23, CUI=MCUI=0.12, Re=5000, multigrid: finest mesh 

point of 129×129; single-grid: mesh size of 129×129) 
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Fig. 3.14 Comparison of convergence histories between multigrid and single-grid 

computations. (CF 3, α=0.5, β=0.9, W=0.23, CUI=MCUI=0.12, Re=5000, 
multigrid: finest mesh point of 129×129; single grid: mesh size of 129×129) 
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Fig. 3.15 Comparison of convergence histories between multigrid and single-grid 

computations. (CF 3, α=0.8, β=0.6, W=0.23, CUI=MCUI=0.12, Re=5000, 
multigrid: finest mesh point of 161×161; single grid: mesh size of 161×16) 
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Fig. 3.16 Comparison of convergence histories between multigrid and single-grid 

computations. (CF 2, W=0.23, CUI=MCUI=0.18, Re=10000, multigrid: finest 
mesh point of 257×257; single-grid: mesh size of 257×257) 
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Fig. 3.17 Comparison of convergence histories between multigrid and single-grid 

computations. (CF 3, α=0.8, β=0.6, W=0.23, CUI=MCUI=0.18, Re=10000, 
multigrid: finest mesh point of 257×257; single grid: mesh size of 257×257) 
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Table 3.7 Comparison of iteration number and CPU running time for single and 

multigrid computations with CF 2 and same parameters.  
 

Single-grid method 6 level Multigrid method

Mesh size Reynolds 
number Outer-loop 

iterative 
numbers 

CPU time 

(s) 

Outer-loop 
iterative 
numbers 

CPU time 

(s) 

65×65 1000 331 11.9 515 5.25 

129×129 1000 1295 225.8 1268 77.6 

129×129 5000 2044 391.8 874 42.5 

161×161 5000 2696 1090.0 1502 136.5 

257×257 10000 10533 15607 3628 920 

 

 

 

Table 3.8 Comparison of iteration number and CPU running time for single and 
multigrid computations with CF 3 and same parameters. 

 

 

 

 

Single-grid method  6 level Multigrid method

Mesh size Reynolds 
number Outer-loop 

iterative 
numbers 

CPU time 

(s) 

Outer-loop 
iterative 
numbers 

CPU time 

(s) 

65×65 1000 284 10 338 5.6 

129×129 1000 1114 192 1140 59 

129×129 5000 1844 314.4 795 39.5 

161×161 5000 2458 657 1372 119 

257×257 10000 8868 12055 3198 710 
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3.4 Fourth-order refinement 
 

Up to now, all the results are obtained by the second-order algorithms and second-

order boundary conditions.  In this section, the fourth-order algorithms with fourth-

order boundary conditions are examined to understand the advantages of the fourth-

order scheme.  Firstly, the accuracy of fourth-order scheme must be confirmed.  Table 

3.9 lists the maximum errors for five different meshes ranging from 61×61 to 161×161.  

The maximum error is defined with reference to the solution obtained with a grid of 

481×481.  Fig. 3.18 shows the relationship between the maximum errors and the mesh 

number.  The least square fitted line has a slope of -3.41, somewhat less than the -4.00 

that we had expected.  We believe this is caused by the fact that the reference solution 

is itself an approximate solution.  Secondly, the numerical convergence may not be 

rigorous enough given that we are now dealing with fourth-order scheme. 

 

Fig. 3.19 compares the V-velocity profile of the solution obtained on a mesh of 61×61 

with the fourth-order scheme with corresponding profile of the solution obtained on a 

finer mesh of 129×129 using the original second-order scheme.  The Reynolds number 

is at 1000.  Similarly, the U velocity profiles along the vertical centre line through the 

cavity are illustrated in Figure 3.20.  It can be seen that the U and V profiles obtained 

from fourth-order accuracy computation with mesh size of 65×65 almost overlaps with 

that obtained from second-order accuracy with mesh size of 129×129.  It means that 

with the same tolerance value the fourth-order algorithms can achieve the same or 

more accurate solution with half of the mesh size of the second-order algorithm.  

Comparing the error for fourth-order scheme with mesh 81×81 (Table 3.9) with the 

corresponding error for the second-order scheme with mesh 161×161 (Table 3.4), it 



Chapter 3  Numerical Evaluations 

62 

would appear that the  fourth-order scheme is more accurate with only half the mesh 

resolution.  Consequently, the fourth-order difference scheme can reduce the size of 

equation systems by possibly more than three quarters whilst preserving or even 

enhancing the accuracy of the solutions. 

 

 

Table 3.9 Maximum U velocities differences for various mesh sizes with fourth-
order scheme. (Re=1000, CUI=MCUI=0.10, W=0.23, CF 2) 

 

 Mesh sizes 
refU -U

Ω
 

Reference 418 － 

1 161 4.59E-04 

2 121 8.46E-04 

3 97 0.00168 

4 81 0.00372 

5 61 0.01216 
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Fig. 3.18 Maximum error as a function of mesh sizes 
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Fig. 3.19 The comparison of V velocity profiles along the horizontal line passing 

through the geometric centre of the cavity for different meshes and schemes. 
(Re=1000) 
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Fig. 3.20 The comparison of U velocity profiles along the horizontal line passing 

through the geometric centre of the cavity for different meshes and schemes. 
(Re=1000) 
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Besides gain in accuracy, the fourth-order scheme also appears to have better 

convergence performance if the mesh is fine enough.  As shown in Table 3.10, where 

Re=1000 and correction function 2 are employed, the fourth-order scheme converges 

faster than the second-order scheme at both mesh sizes of 65×65 and 129×129.  The 

convergence histories for the latter cases are illustrated in Figure 3.21.  It is interesting 

that for the first 300 iterations, there almost is no difference in the convergence 

histories of the two schemes.  However, the fourth-order scheme shows the advantage 

over the second-order scheme after 300 iterations, requiring only 933 iterations instead 

of 1295 iterations to reach the residual error below 10-7.  According to the 

computational time, Table 3.10 also contains the information that the fourth-order 

scheme has the desirable performance at both mesh sizes. 
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Fig. 3.21 Comparison of convergence histories between second- and fourth- order 
schemes. (finest mesh size of 129×129, W=0.23, CUI=MCUI=0.1, Re=1000, CF 2) 
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Table 3.10 The convergence comparison for second- and fourth-order schemes. 
(Re=1000)  

 
 

There is seemingly one important limitation to the free application of the fourth-order 

scheme.  The mesh must be adequately fine for the fourth-order scheme to converge.  

This is especially so as one goes to higher Reynolds number.  For instance, with 

Re=5000, the grid size of 129×129 is large enough for second-order scheme to solve 

the equations.  However, for the fourth-order scheme, a mesh finer than 181×181 is 

needed.  For convenience, in the following multigrid computations, the mesh 193×193 

is applied to compute the flow with Re=5000. 

 

The multigrid method is quite efficient for the second-order difference scheme.  It also 

works well with the fourth-order scheme if suitable parameters are used.  As shown in 

Figure 3.22, for Re=5000 with 4h coarsening, not only is the convergence behaviour 

for multigrid scheme monotonic but it is also desirably much faster than that of the 

single-grid scheme.  As a result, the CPU running time needed for multigrid scheme is 

less than one third that of the single-grid scheme, 497 seconds versus 1553.6 seconds.  

The comparison of the convergence histories for three correction functions is given in 

figure 3.23.  The correction function 3 again shows slightly better performance than 

the correction function 2.  Due to the convergence failure of the Newton’s method 

(correction function 1 and 1s ≡ ), only two history curves are given in the figure.  

 

Second-order Fourth-order Mesh 
size Outer-loop iteration 

numbers 
CPU time 

(s) 
Outer-loop 

iteration numbers 
CPU time 

(s) 
65×65 331 12 285 11 

129×129 1295 348 933 229 
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Figures 3.24 and 3.25 show the pressure contours for the second-order and fourth-

order discretization schemes at Re=1000 respectively.  A magnified view of the 

geometric center in the dashed square is also included.  The fourth-order scheme has 

smooth pressure contours whereas the second-order scheme shows some checkerboard 

pressure oscillation that is not uncommon with second-order scheme on collocated 

primitive-variables grid.  This is because the fourth-order discretization scheme 

employs a 9-point template. 

The Figure 3.26 shows the streamline for the cavity flow at the Re=10000 obtained on 

a uniform grid 385×385.  The relative convergent criterion is set to be 1 12/ 10h h −<  

combined with fourth-order discretization.  A magnified view of the various secondary 

vortices is also included.  In terms of the notation shown in this figure, the letters T, B, 

L, and R denote top, bottom, left, and right, respectively.  The subscript numeral 

denotes the hierarchy of these secondary vortices.  For example, BR2 refers to the 

second vortex in the sequence of secondary vortices that occur in the bottom right 

corner of the cavity.  Five vortices are shown clearly in the streamline plot.  In the 

magnified left bottom corner view, the second vortex just begins to appear.  The 

location of the primary vortices, TL, BL1, BL2 BR1, and BR2 BR3 are listed in table 

3.11.  The physical extensions of the various secondary vortices and the inception of 

the third vortices at the right bottom are in excellent agreement with that reported by 

Ghia et al. (1982); Schreiber and Keller (1983) and Hwang and Cai (2003).  Table 3.12 

and table 3.13 tabulate the numerical values corresponding to the velocity profiles 

shown in figures 3.27 and 3.28 for lines passing through the geometric centre of the 

cavity.  Only typical points including the maxima and minima, rather than the entire 

set of computational points, along these profiles are listed. 
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Fig. 3.22 Comparison of fourth order convergence histories between multigrid 
and single-grid methods. (multigrid: finest mesh point of 193×193; single grid: 

mesh size of 193×193, CF 2, W=0.23, CUI=MCUI=0.12, Re=5000) 
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Fig. 3.23 Comparison of fourth-order convergence histories between CF 2 and CF 

3 using single-grid methods. (mesh size of 129×129, α=0.9, β=0.6, W=0.23 
CUI=MCUI=0.10, Re=1000) 
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Fig. 3.24 (a) Pressure contour using second-order scheme, (b) magnified view of 
the center (Re=1000, mesh size of 129×129) 
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Fig. 3.25 (a) Pressure contour using fourth-order scheme, (b) magnified view of 
the center (Re=1000, mesh size of 129×129) 
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Fig. 3.26 Streamline pattern for primary, secondary, and additional corner 
vortices (Re=10000, Finest grid 385×385, correction function, CF 2, 

CUI=MCUI=0.18) 
 
 

Table 3.11 Position of the vortex centres 
 
Number Primary TL BL1 BL2 BR1 BR2 BR3 

Location 

x, y 

0.51194, 

0.53001 

0.0707, 

0.9108 

0.0589, 

0.1621 

0.0171, 

0.0200 

0.7750, 

0.0593 

0.9351, 

0.0677 

0.9951, 

0.0031 

 

9 1
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Y
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Fig 3.27 V velocity profile along the horizontal line passing through the geometric 
centre of the cavity for Re=10000, correction function CF 2.  
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Fig 3.28 U velocity profile along the vertical line passing through the geometric 
centre of the cavity for Re=10000, correction function CF 2.  
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Table 3.12 Results for U velocity along the vertical line through geometric centre 
of the cavity for Re=10000, finest mesh size 385×385. 

 
385-grid pt. No. y U 

385 1.000000 1.000000 

377 0.979167 0.490892 

376 0.9765625 0.491147 

375 0.973958 0.493350 

370 0.960938 0.499678 

369 0.958333 0.498693 

368 0.955729 0.497063 

338 0.877604 0.383288 

308 0.783854 0.263313 

278 0.705729 0.175934 

248 0.643229 0.111262 

218 0.549479 0.019638 

193 0.500000 -0.027131 

166 0.429688 -0.092599 

139 0.361979 -0.155090 

112 0.289062 -0.222167 

86 0.213542 -0.291523 

70 0.179688 -0.322617 

54 0.138021 -0.361060 

34 0.085938 -0.410948 

23 0.057291 -0.456007 

22 0.054688 -0.457699 

21 0.052083 -0.457993 

20 0.049479 -0.456616 

1 0.000000 0.000000 
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Table 3.13 Results for V velocity along the horizontal line through geometric 
centre of the cavity for Re=10000, finest mesh size 385×385. 

 
385-grid pt. No. x V 

385 1.000000 0.000000 

373 0.968750 -0.580678 

372 0.966146 -0.576393 

371 0.963542 -0.566011 

370 0.960938 -0.552066 

365 0.947917 -0.485293 

340 0.882812 -0.398381 

320 0.830729 -0.336054 

295 0.765625 -0.262326 

255 0.661458 -0.151877 

225 0.583333 -0.073174 

205 0.531250 -0.021824 

193 0.500000 0.008768 

175 0.453125 0.054556 

155 0.401042 0.105544 

130 0.335938 0.169828 

105 0.270833 0.235125 

80 0.205729 0.301949 

60 0.153646 0.357171 

40 0.101562 0.415398 

28 0.070313 0.456680 

26 0.065104 0.461417 

25 0.062500 0.462945 

24 0.059896 0.463754 

1 0.000000 0.000000 
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3.5 Application to other problems 

 

The error reduction methodology is also applied to flows in two rectangular driven 

cavities. The driving surface remains the top boundary, moving from left to right.  The 

shorter walls in those two cases are used as the reference length to define the Reynolds 

number. The flows at Re=5000 are solved in a uniform single grid.  Figure 3.29 and 

figure 3.31 show the streamline plot for these two cases.  The convergence histories 

are given in figure 3.30 and figure 3.32, respectively.  Correction functions 2 and 3 are 

tested on these two types of flow.  It is obviously in figure 3.30 that correction function 

3 is slightly fewer in term of the total of iteration number.  Correction function 3 also 

displays higher rate of convergence, which is critically important if one is interested in 

a highly converged solution.  However, correction function 2 has less oscillation at the 

beginning of the convergence history.  Nevertheless, correction function 3 remains 

highly stable (robust) in terms of success in achieving convergence.  It would appear 

that the correction function 3 is able to achieve successful convergence even in the 

presence of more oscillations. 
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Fig. 3.29 The streamline pattern of flows in a rectangular driven cavity at 
Re=5000 with uniform grid 129×257. 
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Fig. 3.30 The convergence histories for flow in a rectangular driven cavity at 
Re=5000, uniform grid 129×257, using two different correction functions. 
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Fig. 3.31 The streamline pattern of flow on a rectangular driven cavity at 
Re=5000 with uniform grid 257×129. 
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Fig. 3.32 The convergence histories for flow in a rectangular driven cavity at 
Re=5000, uniform grid 129×257, using two different correction functions. 
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Chapter 4 Conclusions and recommendations  

 

4.1 Conclusion  

 

Today, numerical simulation is an essential and indispensable tool for fluid dynamics 

research.  The effort to improve the efficiency and accuracy of numerical computation 

has been under way since the beginning of CFD.  In the present project, a numerical 

method based on the principle of monotonic residual error reduction developed by Liu 

(2002) has been improved incorporate to multigrid iteration.  The second-order 

difference scheme has also been refined to fourth-order scheme.  Comparisons have 

been made between this new method and the customary Newton’s method.  

 

The prototypical two-dimensional driven cavity flow problem is set as the basic test 

problem.  Two kinds of correction functions have been designed to compare with the 

performance of the Newton’s method.  To analyze the convergent performance and the 

monotonic property of the numerical method, the residual errors are plotted against the 

number of outer-loop step iterations.  It is concluded that if Newton’s method 

converges, it is slightly better in terms of numerical efficiency.  However, Newton’s 

method has been known and has also been proved here to be more sensitive to the 

parameters and the initial conditions than current residual reduction scheme and 

correction functions.  The rate of successful convergence of the Newton’s method is 

much lower compared to the present scheme.  This is especially for multigrid 

implementation.  We also can conclude that the correction function 3 shows slightly 

better performance than correction function 2.   
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This work shows that the proposed method can lead to nearly monotonic decrease in 

the residual errors no matter whether single-grid or multigrid method has been used in 

small Reynolds number problems.  As Re No. increases, the residual behaviour for 

single grids becomes more and more oscillatory.  However, for the multigrid case, this 

residual reduction quality is kept to a larger extent with increase in Re.  In respect of 

the efficiency, employing the multigrid process tends to retain the initial decay rate 

almost during the whole computation,  while the single-grid calculations exhibit rapid 

decay of the residuals only during the first few tens of iterations.  As a result, the 

multigrid method can save a lot of computing cost compared with single-grid scheme.  

The various components and parameters in the multigrid procedure are examined.  The 

use of full weighting is found to be slight superior to optimal weighting.  The finest 

mesh size employed in the grid sequence continues to be a very significant parameter.  

The smoothing factor of the iteration scheme is seen to be influenced by the physical 

problem parameters, namely, Re. 

 

The fourth-order refinement scheme offers important gains over the standard second-

order scheme. Examples show that the fourth-order scheme preserves or even enhances 

the accuracy of the solutions computed using far fewer mesh points – typically one 

quarter or lesser of the number required of corresponding second-order scheme. For a 

given mesh, the fourth-order scheme also appears to have better convergence 

performance and to require less total CPU running time to achieve the same level of 

residual error reduction. The pressure solution is also free of checkerboard fluctuations 

that may degrade the accuracy of the second-order primitive-variables schemes on 

collocated grid. However, for high Reynolds number flows, the fourth-order scheme 

has a limitation to its free application in that it may require the mesh size to be 
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sufficiently fine to achieve convergence. Since the fourth-order refinement scheme 

does not incur a large CPU-time penalty for the accuracy gain, it is a useful variation 

of the present method for problems that require high accuracy solutions. 

 

4.2 Recommendations 

 

Owing to time limitation, the smoother used in the multigrid procedure is the SOR 

method.  A more efficient smoothing method such as incomplete LU matrix 

decomposition is worth trying.  Meanwhile, more sophisticated multigrid strategies 

also can be areas for future research.  

 

Up to now, this proposed method has been applied to two-dimensional incompressible 

steady flow.  The extension to three-dimensional incompressible steady flow could be 

further investigated.  And this method could also be modified to solve the unsteady 

flow problems. 

 

Other forms of correction functions could also be designed to further improve rate of 

convergence to solution as well as its success rate in acquiring solution, which is 

already much higher than the traditional Newton’s method. 
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