4,016 research outputs found

    Shadow Price Guided Genetic Algorithms

    Get PDF
    The Genetic Algorithm (GA) is a popular global search algorithm. Although it has been used successfully in many fields, there are still performance challenges that prevent GA’s further success. The performance challenges include: difficult to reach optimal solutions for complex problems and take a very long time to solve difficult problems. This dissertation is to research new ways to improve GA’s performance on solution quality and convergence speed. The main focus is to present the concept of shadow price and propose a two-measurement GA. The new algorithm uses the fitness value to measure solutions and shadow price to evaluate components. New shadow price Guided operators are used to achieve good measurable evolutions. Simulation results have shown that the new shadow price Guided genetic algorithm (SGA) is effective in terms of performance and efficient in terms of speed

    Using spatial optimization to create dynamic harvest blocks from LiDAR-based small interpretation units

    Get PDF
    Spatial and temporal differences in forest features occur on different scales as forest ecosystems evolve. Due to the increased capacity of remote sensing methods to detect these differences, forest planning may now consider forest compartments as transient units which may change in time and depend on the management objectives. This study presents a methodology for implementing these transient units, referred to as dynamic treatment units (DTU). LiDAR (Light Detecting and Ranging) data and field sample plots were used to estimate forest stand characteristics for 500-m2 pixels and compartments, and a set of models was developed to enable growth simulations. The DTUs were obtained by maximizing a utility function which aimed at maximizing the aggregation of harvest areas and the ending growing stock volume with even-flow cutting targets for three 10-year periods. Remote sensing techniques, modeling, simulation, and spatial optimization were combined with the aim of having an efficient methodology for assigning cutting treatments to forest stands and delineating compact harvest blocks. Pixel-based planning led to more accurate estimation of stand characteristics and more homogeneity inside the delineated harvest blocks while the compartment-based planning resulted in larger and higher area/perimeter ratio.Financial support to conduct this study was obtained from Cost Action FP1206 “EuMixFor” (through a Short Term Scientific Mission titled “Optimization applied to forest management in mixed European forests”) as well as from the 2014 Mediterranean Model Forests grant awarded by EFIMED (Mediterranean Regional Office of the European Forest Institute) and MMFN (Mediterranean Model Forest Network)

    A memory-integrated artificial bee algorithm for heuristic optimisation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Master of Science by ResearchAccording to studies about bee swarms, they use special techniques for foraging and they are always able to find notified food sources with exact coordinates. In order to succeed in food source exploration, the information about food sources is transferred between employed bees and onlooker bees via waggle dance. In this study, bee colony behaviours are imitated for further search in one of the common real world problems. Traditional solution techniques from literature may not obtain sufficient results; therefore other techniques have become essential for food source exploration. In this study, artificial bee colony (ABC) algorithm is used as a base to fulfil this purpose. When employed and onlooker bees are searching for better food sources, they just memorize the current sources and if they find better one, they erase the all information about the previous best food source. In this case, worker bees may visit same food source repeatedly and this circumstance causes a hill climbing in search. The purpose of this study is exploring how to embed a memory system in ABC algorithm to avoid mentioned repetition. In order to fulfil this intention, a structure of Tabu Search method -Tabu List- is applied to develop a memory system. In this study, we expect that a memory system embedded ABC algorithm provides a further search in feasible area to obtain global optimum or obtain better results in comparison with classic ABC algorithm. Results show that, memory idea needs to be improved to fulfil the purpose of this study. On the other hand, proposed memory idea can be integrated other algorithms or problem types to observe difference

    A simulation-based algorithm for solving the resource-assignment problem in satellite telecommunication networks

    Get PDF
    This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.En este trabajo se propone una heurística para la programación de las solicitudes de capacidad y la asignación periódica de los recursos de radio en las redes de satélites geoestacionarios (GEO) con topología en estrella, con la demanda de acceso múltiple de asignación (DAMA) de protocolo en la capa de enlace, y el Multi-Frequency Time Division (Acceso múltiple por MF-TDMA) y codificación y modulación Adaptable (ACM) en la capa física.En aquest treball es proposa una heurística per a la programació de les sol·licituds de capacitat i l'assignació periòdica dels recursos de ràdio en les xarxes de satèl·lits geoestacionaris (GEO) amb topologia en estrella, amb la demanda d'accés múltiple d'assignació (DAMA) de protocol en la capa d'enllaç, i el Multi-Frequency Time Division (Accés múltiple per MF-TDMA) i codificació i modulació Adaptable (ACM) a la capa física

    Evolutionary approaches to optimisation in rough machining

    Get PDF
    This thesis concerns the use of Evolutionary Computation to optimise the sequence and selection of tools and machining parameters in rough milling applications. These processes are not automated in current Computer-Aided Manufacturing (CAM) software and this work, undertaken in collaboration with an industrial partner, aims to address this. Related research has mainly approached tool sequence optimisation using only a single tool type, and machining parameter optimisation of a single-tool sequence. In a real world industrial setting, tools with different geometrical profiles are commonly used in combination on rough machining tasks in order to produce components with complex sculptured surfaces. This work introduces a new representation scheme and search operators to support the use of the three most commonly used tool types: end mill, ball nose and toroidal. Using these operators, single-objective metaheuristic algorithms are shown to find near-optimal solutions, while surveying only a small number of tool sequences. For the first time, a multi-objective approach is taken to tool sequence optimisation. The process of ‘multi objectivisation’ is shown to offer two benefits: escaping local optima on deceptive multimodal search spaces and providing a selection of tool sequence alternatives to a machinist. The multi-objective approach is also used to produce a varied set of near-Pareto optimal solutions, offering different trade-offs between total machining time and total tooling costs, simultaneously optimising tool sequences and the cutting speeds of individual tools. A challenge for using computationally expensive CAM software, important for real world machining, is the time cost of evaluations. An asynchronous parallel evolutionary optimisation system is presented that can provide a significant speed up, even in the presence of heterogeneous evaluation times produced by variable length tool sequences. This system uses a distributed network of processors that could be easily and inexpensively implemented on existing commercial hardware, and accessible to even small workshops

    Aggregate assembly process planning for concurrent engineering

    Get PDF
    In today's consumer and economic climate, manufacturers are finding it increasingly difficult to produce finished products with increased functionality whilst fulfilling the aesthetic requirements of the consumer. To remain competitive, manufacturers must always look for ways to meet the faster, better, and cheaper mantra of today's economy. The ability for any industry to mirror the ideal world, where the design, manufacturing, and assembly process of a product would be perfected before it is put mto production, will undoubtedly save a great deal of time and money. This thesis introduces the concept of aggregate assembly process planning for the conceptual stages of design, with the aim of providing the methodology behind such an environment. The methodology is based on an aggregate product model and a connectivity model. Together, they encompass all the requirements needed to fully describe a product in terms of its assembly processes, providing a suitable means for generating assembly sequences. Two general-purpose heuristics methods namely, simulated annealing and genetic algorithms are used for the optimisation of assembly sequences generated, and the loading of the optimal assembly sequences on to workstations, generating an optimal assembly process plan for any given product. The main novelty of this work is in the mapping of the optimisation methods to the issue of assembly sequence generation and line balancing. This includes the formulation of the objective functions for optimismg assembly sequences and resource loading. Also novel to this work is the derivation of standard part assembly methodologies, used to establish and estimate functional tunes for standard assembly operations. The method is demonstrated using CAPABLEAssembly; a suite of interlinked modules that generates a pool of optimised assembly process plans using the concepts above. A total of nine industrial products have been modelled, four of which are the conceptual product models. The process plans generated to date have been tested on industrial assembly lines and in some cases yield an increase in the production rate

    Structural optimization in steel structures, algorithms and applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Hybrid Genetic-Simulated Annealing Algorithm for the Location-Inventory-Routing Problem Considering Returns under E-Supply Chain Environment

    Get PDF
    Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment
    corecore