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SHADOW PRICE GUIDED GENETIC ALGORITHMS 

 

by 

 

GANG SHEN 

 

Under the Direction of Yan-Qing Zhang  

 

ABSTRACT 

The Genetic Algorithm (GA) is a popular global search algorithm. Although it has been used 

successfully in many fields, there are still performance challenges that prevent GA’s further 

success. The performance challenges include: difficult to reach optimal solutions for complex 

problems and take a very long time to solve difficult problems. This dissertation is to research 

new ways to improve GA’s performance on solution quality and convergence speed. The main 

focus is to present the concept of shadow price and propose a two-measurement GA. The new 

algorithm uses the fitness value to measure solutions and shadow price to evaluate components. 

New shadow price Guided operators are used to achieve good measurable evolutions. Simulation 

results have shown that the new shadow price Guided genetic algorithm (SGA) is effective in 

terms of performance and efficient in terms of speed. 

 

INDEX WORDS: Genetic algorithm, Shadow price, Optimization, Performance, Hybrid  

Algorithm, Linear programming, Heuristic algorithm, k-opt, Traveling salesman problem, 

Cutting stock problem, Stock reduction problem, Cloud computing, Green computing 
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CHAPTER 1 INTRODUCTION 

Optimization is to search for the best solution from a domain of feasible solutions. In the 

simplest form, it is to find the minimal or maximal value of a function while satisfying a set of 

constraints. It is a process of searching for the best solutions using certain algorithms and 

techniques. One most cited example of optimization is to find the best way to achieve maximum 

profits utilizing limited resources.  

Integer optimization is a special branch of general optimization that requires integer 

solutions for the problem. This constraint only limits the final result in integer and does not pose 

integer requirement to intermediate solutions. Thus, the intermediate solution can be in integer or 

real. This constraint is often modeled from real life problems. For example, job scheduling is an 

integer optimization problem; product can only be produced in integer units.  

Other complicated constraints in optimizations include, complex objective functions, 

multiple objectives optimization, etc. Objective functions can be linear, polynomial, table 

lookup, etc. There can be multiple objective functions to be optimized in the same time.  

Linear programming (LP) is the classic optimization algorithm. It is very efficient and 

widely used in production especially for large complex linear optimization problems. But it is 

limited to linear objective functions and constrains. The general LP results are in fractions. 

Integer linear programming (ILP) and Mixed Integer Linear Programming (MIP) are special 

cases of LP that provide integer solutions. Although they can solve many practical problems, ILP 

and MIP are less efficient than LP and difficult to solve. Both ILP and MIP are extensions of 

classic LP. They typically follow classic LP technique and add additional steps, algorithms (such 

as branch and bound, cutting plane method, etc.) to produce integer solutions. Fractions are 
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commonly used in the algorithms’ intermediate solutions and these fractional intermediate 

solutions are not valid solutions.    

Genetic Algorithm (GA) (John Holland, 1975, 1992) is a bio-inspired global search 

algorithm that mimics nature’s evolution process. It is a multi-point, reward-based search 

algorithm. In the search process, there are multiple valid solutions evolving forward together. 

The reward-based search refers to the fact that only elite solutions participating next generation’s 

evolution. It’s an integer intrinsic search process that fits integer optimization problem very well.  

Unlike invalid fractional intermediate solutions in the LP search process, every solution in GA’s 

search process are valid integer solutions although they may not be the optimal solutions. The 

reward-based approach also suits for multi-objective optimizations since the elitism only requires 

comparing the objective function regardless the function is linear or non-linear. 

GA has been used successfully in many fields. Recent survey suggests that at least thirty-

six human-competitive results were produced by genetic programming (Koza et al. 2005). It is a 

very straightforward algorithm and can be implemented rather quickly. 

 The challenges for GA’s performances are solution quality and search time.  These two 

concerns impede the practical applications of the algorithm. GA is a population based search 

algorithm and there are many solutions in each generation. Solutions in the generation need to be 

involved in one or more evolution operations in each generation to move forward. Based on the 

size of the population, huge amount of calculation may be needed for each generation. 

Compound with necessary randomness in the search process, GA can take very long time to find 

optimal solutions. 

Furthermore, GA may not always provide the optimal solutions. GA generally depends 

on generations of evolution to move the solution forward. The most common stopping criterion 
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is to limit the maximum number of generations, maximum allowed searching time, or solution 

reaches acceptable quality. GA cannot prove the final solution is optimal or not. So, there is 

certain randomness in the quality of the final solutions. 

My research focuses on improving GA’s performance in both solution quality and search 

speed. GA only measures the solution fitness value. The evolution operators are mostly 

randomly applied since there is no measurement on the components. I propose using the 

“Shadow Price” concept to measure the components of the solution in the GA search process. I 

can improve GA operators using the shadow price. Thus, I establish a two-measurement GA. 

The fitness value is used to measure solution and the shadow price is used to measure component 

within a solution. I will propose the theory and use it to solve several classic NP hard problems.  
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CHAPTER 2 IMPORTANCE OF THE RESEARCH 

There are tremendous social and economic values in finding optimal solutions. The value 

of best utilizing limited resources to maximize social benefit can be seen in daily life or in the 

event of disaster. For example, it is very important to most efficiently use limited transportation 

equipment and crew to move stranded passengers in the event of large-scale flight interruption 

such as that caused by volcano eruptions, terrorist attacks, etc. 

 Significant economic value of optimization is everywhere. For example, trimming rolls 

for paper machine is a typical optimization problem and referred as the cutting stock problem 

(CSP). The goal is to improve trim efficiency. A 300 inch wide paper machine can produce half 

million tons of medium weight paper a year. If the price is 600 dollars per ton, the total value of 

the paper is 300 million dollars. A one percent trim efficiency improvement is equivalent to 3 

million dollars a year for this machine. In a paper box plant, trimming corrugator is another CSP 

and the trim efficiency improvement worth even more since it trims multiple layers of paper. For 

a medium sized paper product company that operates multiple paper machines and paper box 

plants, a minor trim efficiency improvement has hug economic impact. 

GA is a new global optimization search method that has been used successfully in many 

fields (Koza, Keane, Streeter, Mydlowec, Yu, & Lanza, 2005). Comparing to other complex 

optimization algorithms such as LP, GA can be used quickly to model the problem and solve it 

with excellent results. It does not add many constraints to the problem.  

However, the performance that includes both the solution quality and convergence speed 

limits GA’s further success in many fields. To reach optimal or near optimal solutions, GA needs 

many generations of evolution and takes much more time than other algorithms such as LP based 

algorithms. GA’s performance is acceptable in many situations, such as static job scheduling, 
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airline flight and crew scheduling, pre-production forecasting, post-production analysis, etc. In 

other areas where real time or near real time optimization is need, such as real time job 

scheduling, flight position control, production adjustment, etc., GA’s performance may not be 

acceptable.  

With the guidance from my advisors, I search for ways to improve GA’s performance. I 

mainly focus on establish a secondary measurement that applies to components of the solution. 

The secondary measurement acts as a complement to the solution’s fitness value measurement. 

This new component measurement can improve GA operators and greatly improve GA’s 

performance. 
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CHAPTER 3 GENETIC ALGORITHM 

3.1 Principles of Genetic Algorithm 

GA (Figure 3.1) is a reward based multi solution search algorithm. It is a branch of bio 

inspired evolutionary algorithm (EA). Comparing to other single solution search algorithms such 

as LP, k-opt algorithm, etc., there are multiple feasible solutions concurrently evolve toward the 

best solution in the GA search process. The multiple generation search process ensures GA a 

global search algorithm.  

There are generally four major phases in the GA search process, initialization, evolution, 

selection, and termination.  

In the initialization phase, a startup solution population is created. Random generating 

initial solutions are commonly used. All solutions in the population have to be feasible. The 

population varies based on the problem to be solved and computing power available. It can be 

range from 10s to hundreds or thousands. The initial solution shall spread out in the search space. 

The more diverse the initial solutions, the better performance GA can achieve since it ensures 

global search.  

The evolution phase evolves current generation forward. The goal is to generate new 

solutions based on current available solutions and hopefully the newly generated solutions are 

better than current ones. There are two major methods to generate new solutions, binary operator 

crossover and unary operator mutation. 

The crossover operator mimics parents producing child in nature. Two solutions are 

selected from the current generation’s solution pool and function as the “parents” to breed. Based 

on problem domain, a breeding method is used to create the “child” solution. The child solution 

inherits certain attributes from both parents. Typical, a certain sub population is selected to 



7 

 

participate the crossover operation. There are multiple ways to selection parents. The general 

goal is to create a child solution that poses good characteristics of both parents and better than 

both parents. 

To generate a new solution, the unary mutation operator modifies the state(s) of one or a 

small number of components of an existing solution. Most time, the newly generated solution is 

much different than the original solution and may not even be a valid solution. Based on the 

problem, the mutation operator may or may not generate a better solution. But it is a very 

important operator that functions as an insurance of a global search. That is, it can bring search 

to an area of search space that has not been visited before. It is especially important when GA 

search stuck to a local optimal solution. In this case, mutation operator can lead search to another 

area and effectively breaks the local trap. There are many methods to select which solution to 

mutate and which component(s) to mutate. 

Aside from mutation and crossover operators, several new solutions are randomly 

generated in the evolution process in general as well. This is to further broaden the search space 

and serves as an extra insurance of a global search. 

After evolution phase generates enough new solutions, selection phase evaluates each 

solution and select good solutions to create the next generation to continue evolution. It is also 

called elitism. A fitness function is typically used to evaluate and compare solutions. Based on 

different problem, the fitness function can be a simple linear function, a polynomial function, a 

table look up, or a very complex optimization problem itself. As one of the stopping criteria in 

general, this fitness function is also used to measure whether solutions meet predefined threshold 

or not. There are many different approaches to select candidate solutions to participate next 
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generation. Selecting good solutions can ensure search towards optimal solutions. Selecting 

random solution ensures global search and avoid local optimal trap. 

The termination phase evaluates the “goodness” of current solutions and decides whether 

continue to evolve or stop. Since the optimal solution(s) is unknown for most problems, 

predefined acceptable solution (defined by fitness function) can be used as one terminating 

criterion. Maximum number of generations or maximum allowed time is also commonly used as 

stopping criteria.  Search progress is another barometer to evaluate GA’s searching process. It 

can be measured by x progress in y generations. Combination of criteria or single criterion can 

be used as the termination condition for search. After search stops, the best solution represents 

the current search result. It can be optimal or near optimal based on the stopping criteria. 

Random selection is used throughout the GA algorithm. It is used to select solution 

participating mutation operation, crossover operation, or to participating next generation’s 

evolution. There are two classic random selection method, roulette wheel and tournament. 

In the roulette wheel selection, each candidate is assigned a probability of getting 

selected. The sum of all candidates’ probabilities is equal to one. The probability of a solution is 

related to its attribute(s). The fitness value can be a good choice. Obviously, solution with a large 

probability has a better chance to be selected. The solution with small probability has a less 

chance to be selected but still can be selected.  

The tournament selection conducts one stage or multi stage tournament. It starts with 

randomly organize candidates into groups. Within each group, a winning candidate is selected 

based on probabilities assigned to the candidates. One way (Tournament Selection, 2010) is to 

assign the best candidate a probability of p, the second best is assigned to p(1-p), the third best is 

assigned to p(1-p)
2
, etc. Roulette wheel selection can also be used here. Winners from each 
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group are random grouped again for next stage tournament. The process repeats until desired 

number of candidates are selected. 

In summary, there are three GA operators that produce new solutions in the evolution 

phase. They are mutation, crossover, and randomize. The mutation operator changes the state of 

a component of a solution to move it closer to the optimal solution. The crossover operator tries 

to create a better new solution from two existing solutions. Randomize operator introduces new 

solutions. The initialization phase builds up the initial feasible solution pool to start off the 

search process. The selection phase creates new generation of solutions to evolve forward from 

current all available solutions. The termination phase ends the search process when predefined 

criteria are met.  
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Figure 3.1 Genetic Algorithm 
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3.2 Opportunities  

 The main challenge that prevents GA’s further success is its performance issue. This 

includes solution quality and search speed.  

Randomness is used throughout the search process, such as building up the initial 

solutions, choosing candidates to apply mutation or crossover operations, selecting solutions to 

form next generations. It is also used in the GA operators. Mutation operator randomly selects a 

component to mutate and mutate to a random state. Crossover operator randomly selects one or 

many crossover point(s) to create new solution. All these randomness guides GA to randomly 

select one or more solutions to evolve and move them to random state. The GA does not have a 

uniformed search direction. It searches multiple directions in the same time. The selection 

ensures GA search moving towards optimal solutions since better solutions are added into 

generations to further evolve. It moves solution population closer to optimal solutions from 

generation to generations in general. 

Randomness is absolutely necessary to GA. It ensures GA a global search algorithm and 

avoid local optimal trap. But it also slows down the search process since randomness can lead 

search to all directions and cause many unnecessary searches. In the worst case, the randomness 

can stall the search process and leads to sub optimal solutions, or visits all viable solutions. 

There is a large amount of calculation in the GA search process. Within each generation 

of search, each individual solution has to go through the process of inspection, evolution 

operation, fitness value evaluation, and selection. It really takes much more time to process all 

solutions in a generation than other single solution search algorithms such as heuristic, LP, etc. 

Multiplying by many generations of evolution (synchronized or desynchronized), the total 

calculation amount is very large. Parallel computing techniques can certainly help. But for large 
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complex GA search problems, where there are thousands of solutions in each generation and 

search for thousands of generations, modern parallel computing techniques still cannot make 

decisive impacts.  

The other time consuming effort in the GA search process is the fitness function 

calculation. For a simple problem, the fitness function can be a polynomial function which 

calculation is rather straightforward and quick. However, the fitness function can be quite 

complex in certain cases. For example, the fitness function can be a complicated matrix 

operation or an optimization problem itself. Although GA poses little constraint on the 

optimization problem, complex fitness function can add significant search time for complex 

problem since the fitness function has to be calculated for all solutions.  

Because GA takes long time to search, time constraint and/or generation constraint are 

typically used as the stopping criteria. The idea is to get the best answer, which may not be the 

optimal solution, within an acceptable time frame. This is the consequence from the GA’s slow 

search speed. GA can stop searching prematurely and provide inferior result.  The solution 

quality is suffered due to the search speed issue. 
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CHAPTER 4 RELATED WORK 

Since its introduction, much work has been dedicated to study GA’s performance. 

Ishibuchi, Nojima, and Tsutomu (2006) studied the performance between single-objective GA 

and multi-objective GA. Using multi-objective knapsack problem, they demonstrated that multi-

objective GA outperformed single-objective GA for low count of objectives problem. This is 

because multi-objective GA can easily move away from local optimal. But when the objective 

count increases, the multi-objective GA became less efficient. Simoncini, Collard, Verel, and 

Clergue (2007) studied the impact of selection pressure to the performance of GA. They 

confirmed that the selection pressure influence the GA performance using the anisotropic 

selection and the stochastic tournament selection. More accurately compare and measure GA’s 

performance has also been studied (Ang, Chong, & Li, 2002; Deng, Huang, & Tang, 2007). 

Various innovations have been applied to GA to improve its performance. These 

approaches can be roughly categorized as 1) transforming problem, 2) improving GA operators, 

3) adding local search, 4) hybriding with other algorithms, 5) using parallel processing, and 6) 

miscellaneous approaches. 

4.1 Transforming Problem 

Divide and conquer has long been used to solve complex problems. The idea is to divide 

a large complex problem into smaller simpler problems. After solving each individual smaller 

problem, results are combined to get the final solution. Zhang and Li (2007) applied the divide 

and conquer theory into the EA. They decomposed the multi-objective optimization problem into 

related scalar optimization sub problems. The scalar simpler sub problems are optimized 

simultaneously and results from them are combined as the final solution. By decomposing, the 
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computation complexity is reduced greatly. Their experiments proved the new algorithm is very 

efficient for 0-1 knapsack problems and continuous multi objective optimization problems. 

Approximating is useful when certain tolerance is allowed in the value. This has 

important practical values in many fields where tolerance is allowed or near optimal solution is 

accepted. Paenke, Branke, and Jin (2006) and Regis and Shoemaker (2004) addressed the fitness 

function’s computation complexity problem by substituting it with an approximate modal. Much 

time can be saved by calculating simpler approximate fitness function. Their experiments proved 

that the approximating is efficient and result qualities are acceptable.  

The goal of problem transformation is to optimize one or more smaller simpler 

problem(s) instead directly working on the more complex larger problems. Combining smaller 

problems’ result, the final solution can be provided for the original problem. By optimizing less 

computation intensive smaller simpler problems and reducing search space, the algorithm can 

find optimal or near optimal solutions quicker. 

4.2 Improving GA Operators 

Syswerda (1991) introduced a new order crossover operation to preserver some order 

information from both parents. It starts with randomly selecting n components from a parent. 

Other non-selected components are passed to the child solution directly from the other parent. 

They shall maintain their position like their parent. The selected n components are inserted into 

the child solution based on their order from the first parent to complete the solution. For 

example, there are two solutions S1= (A, B, C, D, E, F), S2= (B, F, E, D, C, A). If (B, D, E) is 

randomly selected to preserve order from S1, the initial child solution from S2 using non-

selected components is C= (_, F, _, _, C, A). Adding selected components back in, the final child 

solution from the crossover is C= (B, F, D, E, C, A). 
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Nagata and Kobayashi (1999) introduced an edge assembly crossover operator to 

preserve the edge information from both parents. They started with building AB circles (parents 

are named A, B) by selecting connecting edges from each parent alternately. The result is a set of 

AB circles. A heuristic algorithm was used to connecting all AB circles into a final solution. 

They applied the edge assembly crossover operator to the Traveling Salesman Problem (TSP) 

and achieved good results. 

Zhao, Dong, Li, and Yang (2008) added the pheromone concept from the Ant Colony 

Optimization Algorithm (ACO) to enhance the crossover operation. They also used heuristic 

method to solve the multiple- traveling salesman problem (mTSP). In their crossover operator, 

the heuristic method use edge length and next city information. To decide which city to visit, the 

child will look at both parents’ next visiting cities. If both cities from parents have already been 

visited in the current solution, pheromone trail is used to select next visiting city. 

The objective of improving GA operators is to pass some information from parent(s) to 

the newly generated the child. There is no evaluation of whether the information passed actually 

will move the search to the optimal solutions or not. It relies on the selection mechanism to 

control the evolution towards the optimal since the selection will filter out inferior solutions. 

This approach works in general at the cost of more calculations. 

4.3 Adding Local Search 

Noman and Iba (2008) designed a strategy adaptive hill-climbing crossover local search 

(AHCXLS) in their EA. It used a simple hill-climbing algorithm to determine the search length 

adaptively. It took feedback from search result to determine the search length. In their algorithm, 

crossover is repeated until no better solution can be generated. They noticed, “there is no 

straightforward method of selecting the most promising individuals for XLS”. So, they opted to 
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crossover with one good candidate based on the fitness value and one randomly selected 

solution. 

Yang and Liu (2008) applied the local search to the solutions are have gone through 

evolution operation. They searched the neighbor of the solution and replaced it with the best is 

can find. Experiments shown the performance were much improved. 

Tsai, Yang, and Kao (2002) added neighbor-join to the edge assembly crossover 

operation. The neighbor-join operator will generate new solutions by using edges from other 

solutions or generate new edges based on some heuristic information. The goal is to improve 

solution quality. 

Zhao, Dong, Li, and Yang (2008) used local search function to replace the mutation 

operation. They used three types of local search to solve the mTSP problem. 1) Relocation 

moves one city to a different location in the solution. 2) Exchange swaps positions of two cities. 

3) 2-opt swaps end portions of two routes. They rotated these three local search operators. These 

were used in addition to their improvement on the crossover operator described in the above 

section.  

Tseng and Chen (2009) used a two-phase genetic local search algorithm. The genetic 

algorithm was used to search for promising areas in the first phase. The local search was used to 

find the best solutions for the problem. Kaur and Murugappan (2008) used the nearest neighbor 

as the local search algorithm to help populate initial solution pool for the GA. This way, the 

algorithm starts from some better positions. Xuan and Li (2005) used local optimizer, 2-opt, to 

optimize every solution after evolution. Zhang and Koduru (2005) used steepest ascent hill 

climbing as the local search algorithm and also used blend crossover to improve GA’s 

performance.  
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In this category, GA is improved by adding local search capability. The local search can 

be used to enhance crossover operator, mutation operator, initial population build up, and 

optimize resulting solutions from the evolution. Strictly speaking, adding local search to GA 

results a hybrid algorithm. Since local search is used more often, I give it its own separate 

category. 

4.4 Hybriding with Other Algorithms 

There are many hybrid algorithms that combine GA with many other search algorithms 

such as Dantzig(1963) Simplex method, Nelder- Mead simplex method (Koduru, Dong, Das, 

Welch, Roe, & Charbit, 2008; Nelder & Mead, 1965), etc. Most time, these additional search 

algorithms perform local search while GA conducts global search. They are either used to 

optimize solutions that have been applied GA operators (Koduru, Das, Welch, Roe, & Lopez-

Dee, 2005; Robin, Orzati, Moreno, Otte, & Bachtold, 2003) or used in conjunction with the GA 

operators to improve its performance (Bersini, 2002; Tsutsui, Goldberg, & Sastry, 2001). 

Although these are very important approaches, GA is the main algorithm and other algorithms 

are simply assisting GA.   

LP, on the other hand, has many ways to work with GA to create efficient hybrid 

algorithms. Bredstrom, Carlsson, and Ronnqvist (2005) developed models and methods that 

address the combined supply chain and production-planning problem. They developed a mixed-

integer-programming (MIP) model and solved the model using a heuristic solution based on 

branch and bound. The model typically takes hours to solve. So, they created a GA algorithm to 

solve the model. Each solution in the GA is a schedule and they used LP to make other decisions 

for the schedule such as deciding shipping quantity in this case. To further speed up the LP 

computation, they created a performance LP model to approximate the solution. Similar 
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approaches had also been used by El-Araby, Yorino, and Zoka, (2005), El-Araby, Yorino, and 

Sasaki (2002), and Leou (2008) where GAs were used to derive solution and successive linear 

programming (SLP) and Simplex method were used to obtain the fitness values. In these 

approaches, GA is the main driver of the program to conduct global search. LP is the help 

algorithm that optimizes each solution and calculates fitness value. 

LP has also been used to lead the search in the LP and GA hybrid algorithms. To design 

the optimal fuel-cell-based energy network, Hayashi, Takeuchi, and Nozaki (2008) designed a 

hybrid algorithm to account for the differences of equipment. Some energy equipment’s CO2 

emission can be express in linear format and some cannot. LP cannot be used to precisely 

optimize the overall modal. The hybrid algorithm used LP to design the optimal configuration 

and evaluate the fitness function for equipment. GA takes the best LP configuration and 

optimizes the overall installation while take in consideration of each equipment different CO2 

emission characteristics. To design an optimal open magnetic resonance imaging magnet, Wang, 

Xu, Dai, Zhao, Yan, and Kim (2009) first used LP to design the source current distribution and 

used GA to optimize the section size of the cross-section of the coil. Pandey, Dong, Agrawal, 

and Sivalingam (2007), Garg, Konugurthi, and Buyya (2009) designed similar hybrid algorithms 

that use LP to generate initial solutions and have GA to fine-tune the solution. Although this kind 

of LP/GA hybrid algorithm is straightforward conceptually, LP is used to create initial solutions 

and GA searches for the final best solutions, it is a very efficient approach. By using LP 

optimized solutions, GA is really starting the search from near optimal solutions. Thus, GA’s 

search time is reduced significantly and can quickly reach optimal solutions. In certain cases, GA 

can simply fine tune the LP optimized solutions.  
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Mantovani, Modesto, and Garcia (2001) combined GA and LP in a more efficient way. 

They divided the reactive planning optimization problem into operating and planning sub 

problems. The operating sub problem, a nonlinear and no convex problem, was solved by GA. 

The planning sub problem, using real variables and linear problem, was solved by LP. Similar 

approach was also used by Feng, Wang, and Li (2009). 

LP and GA have different strengths. LP is very efficient in solving linear, non-integer 

problems. GA has very little constraints on the objective function. LP can typically reach optimal 

solution in a very short period of time. GA is slower. Integer LP is less efficient. Combining LP 

and GA can typically reach optimal solutions for integer optimization problems quickly. 

4.5 Using Parallel Processing 

Parallel implementations of genetic algorithm (Alba & Tomassini, 2002; Liang, Chung, 

Wong, & Duan, 2007; Massa et al., 2005; Ortiz-Garcia et al. 2009) have also been proposed and 

experimented. There are a number of experiments, published papers with good results. With the 

decreasing cost of computing resource, parallel algorithm became more and more appealing as 

one of the methods to improve algorithm efficiency. There are many different ways to implement 

parallel GA (PGA). 

Hardware implementation of PGA refers to one kind of implementation in which partial 

or complete algorithm (binary code) is encoded into the computer chips. The computer chips 

become specialized for PGA purpose only. The code in the computer chips runs based on 

computer clock cycles without software control. The common benefit of this implementation is 

speed since there is no software involved.  Jelodar, Kamal, Fakhraie, and Ahmadabadi (2006) 

experimented a hardware based PGA using System-on-a-Programmable-Chip (SOPC). They 

implemented three genetic algorithms on SOPC using three different architectures:  a) Standard 



20 

 

single processor genetic algorithm. b) Parallel GA using Master/Slave architecture c) Coarse-

grained PGA. To overcome the inflexibility of hardware based algorithm implementation, the 

authors designed a mixed implementation approach: fitness evaluation in software and all other 

GA/PGA elements in hardware. This approach allows complex fitness functions required by 

difference category of problems.  The experiments result showed the hardware based PGA is 50 

times faster than software based PGA.  

Scott, Samal, and Seth (1995) presented another working hardware based GA using 

FPGA (field programmable gate array). There are two phases in the process. In phase I, user 

enters the parameters of GA and the fitness function, system translate them into hardware image 

and programs the FPGA. In phase II, upon front-end give a “go” signal, programmed FPGA run 

the algorithms without any software interruption. When it’s finished, “done” signal was send to 

the front-end. Finally, Front-end read the result. The authors’ experiment showed speedup factor 

about 15. 

Software implementation refers to PGA implementations where the algorithms run on 

common computing resources without modify any underline hardware. Typically, there are a 

group of general-purpose computers working together to implement PGA. There are four 

models, 1) Global (master/slave) Model, 2) Fine-Grained Model, 3) Coarse-Grained Model, and 

4) Hybrid Model.  

Cantu-Paz (1997) published one of the frequent cited papers on the global model of PGA. 

Based on the principle of divide and conquer, the classic global model uses one global 

population and divides the task of evaluating fitness values of chromosomes among multiple 

processors. In the model, there is a master processor that controls the whole process. The PGA 

algorithm is very similar with serial GA. The master processor starts the PGA process, it 
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initializes the population, and send chromosomes to multiple processors (slaves) to evaluate 

fitness value. After receive result from slave processors, master process performance all other 

GA operators, such as selection, mutation, crossover, etc.  With newly created population, master 

processor sends chromosomes to slave processors to evaluate again. The process repeats until the 

goal is satisfied. 

Benkhider, Baba-Ali, and Drias (2007) proposed a generation less concept on GA and 

two variation of general PGA model. The new GA mimic human population where there is 

general concept of generation, no distinct clear-cut separation of generation and multiple 

generations coexist in the same time. The new GA assigns each chromosome an effective start 

and end time, i.e. a life span. Each chromosome would be replaced after it past its assigned end 

time. In the meanwhile, new chromosomes were “born” and added to the population. They 

proposed two new variations of global PGA. In the semi-asynchronous parallel approach, there 

are two separate processes on the master processor. One is responsible for assigning 

chromosomes to slave processors to evaluation and receiving results from them. The other one is 

responsible of creating new chromosomes. The two processes works concurrently. Main 

algorithm suspends when these two processes start to work and only resumes until both 

processes complete their work. All GA operators are blocked when these two processes are 

active. So, it is a semi asynchronous method. In the asynchronous master/slave approach, the two 

processes do not block any other process. The other process is the main process. It’s the main 

process that responsible for all GA operations (selection, mutation, crossover, etc.). It’s also 

responsible for creating new chromosomes. Both processes work independent of each other and 

only exchange chromosomes when necessary. Thus, this is complete asynchronous approach. 
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The fine-grained architecture targets massive parallel computers. In this architecture, 

there is only one population in the algorithm just like the global PGA architecture. There is no 

master processor. There are a lot of inter-connected processors. They are connected in multiple 

ways and most common is the grid structure. Each processor is responsible for a very small 

population of chromosomes. Each processor executes a serial GA on its own population and 

exchange result with neighbor processors. The ideal case is to have only one individual for every 

processing element available. The efficient communication among interconnected node makes 

the PGA very fast. 

Lee, Park, and Kim (2000) proposed a binary tree structure to connect processors. Each 

processor forwards its best individual to two next level processors and receives one from the top 

processor. This is one-direction propagation. This slows down the chromosome migration rate. 

And the tree structure is dynamic generated based on the position of the best chromosome. They 

tested their proposal on CrayT3E with 64 processors and showed better performance. Li and 

Kirley (2002) introduced a new concept “Percolation” into fine-grained PGA architecture. The 

goal is to ease the selection pressure. They introduced a “seeding” method to the PGA in the 

fine-grained architecture. When algorithm starts, a large number of random chosen processors 

start with a chromosome and neighing processors forms demes. With the process evolving, new 

processors become active and assigned with chromosomes. New processors join neighboring 

demes to form larger demes. Eventually, all processors are active and forms one deme. This 

process forms demes slowly and dynamically. There is no predefined size of deme. This 

approach controls the rate of migration. Population diversity is maintained and high quality 

solutions shall spread to all processors gradually. 
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 Coarse-grained parallel genetic algorithm model uses multiple populations that evolve 

separately and exchange individuals occasionally. It is also referred as multi-deme or distributed 

PGAs.  The basic idea of coarse-grained model is to divide the search space into several sub-

populations and assign each participating processor a sub-population. Each processor evolves its 

population forward till goals are met. In the process, processors may exchange some good 

chromosomes for speed up purpose. Although one processor may responsible of divide the initial 

population to start the process and collect results at the end, there is no master processor that 

controls each processor. Matsumura, Nakamura, Miyazato, Onaga, and Okech (1997) 

experimented on ring, torus, and hypercube topologies. They concluded that Ring topology and 

emigrant method provide the best result. 

In an attempt to use cycle-steal method to harvest the computing power that scatted over 

the Internet, Berntsson and Tang (2003) studied the coarse-grained architecture of PGA. They 

conducted multiple experiments with different topologies, different migration rate, different 

migration intervals and different failure scenarios. They used 4 faster processors and 4 slow 

processors to build a heterogeneous computing network. To work with Internet's latency and 

bandwidth problems, they concluded that a small migration rate with long migration intervals 

and a fully connected topology would be the best choice. 

The hybrid model, a combination of different model of PGA, is a new model that results 

in algorithms that have the benefits of different PGA models. The new model may show better 

performance than any of the models alone. The combined model is more complex and difficult to 

program. But they do not introduce new analytic problems, and it can be useful when working 

with complex applications. The combination can varies, such as coarse-grained with global 

model, coarse-grained model with coarse-grained model, coarse-grained model with fine grained 
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model, etc. The combination does not limit to within the PGA models. New models can include 

other optimization algorithms, such as LP, nearest neighbor algorithm, etc. 

Lee, Park, & Kim (2001) proposed a hybrid PGA architecture to address two issues, to 

connect large amount of processors in the PGA calculation and to control the migration speed to 

achieve better result (alleviating super chromosome dominating solution space issue). High-level 

processors used coarse-grained model to connect to each other. Chromosome migration rate is 

low. Lower level processors using fine-grained PGA model and the migration rate is high. The 

fine-grained PGA used binary tree model to organize. The tree is built dynamically based on the 

location of the best solution and communication is one directional, from top to bottom only. The 

tree structure decides the processor to receive chromosome from or processors to send to.  To 

further minimize the dominating solution issue, limits are put on migration policy. 

Zhao, Man, Wan, & Bi (2008) introduced a multi-agent hybrid parallel genetic algorithm. 

They combined global PGA model with coarse-grained PGA model. In the new model, there are 

master agents and slave agents. Each master agent (M-agent) is in charge of several slave agents 

(A-agent) to form a global master slave PGA model. The M-agent responsible for the evolution 

process and A-agent helps with the parallel calculation. Several M-agents connect to each other 

to form a coarse grained PGA model. 

Genetic algorithm is a good candidate to be parallelized. The simple algorithm made it 

easy to be implemented and tested. It’s a fault tolerant algorithm since its population can be 

large. PGA can make GA fast and efficient. A good design of PGA shall have following 

attributes. It fully utilizes available computing resources. Communication is efficient and simple. 

Migration policy ensures a diverse sub populations and fast to converge to the global optimal 

solution. 
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4.6 Miscellaneous Approaches 

Yuen, S.Y., & Chow (2009) used a binary space partitioning tree to archive the solutions 

that GA has visited. Based on the binary tree, they designed a novel adaptive mutation operator. 

The mutation operation is replaced by searching the tree. They start with locating the solution to 

be mutated in the tree. Then, they find the nearest neighbor-unvisited subspace of the solution 

and random select one as the mutation result. If all nearest neighbor solution has been visited, 

backtrack to the parent and repeat the process. In the meanwhile, fully visited sub tree can be 

trimmed from the tree. The algorithm visits a nearest unvisited neighbor subspace and randomly 

finds an unvisited solution in it. They named the algorithm as “A Genetic Algorithm That 

Adaptively Mutates and Never Revisits”. 

Throughout GA’s search process, random number is used frequently. A random number 

generator is typically used. It is an algorithm that generates long sequences of random numbers 

based on the initial value. These random numbers are not true random since they are predictable 

and repeatable. The same sequence of numbers can be reproduced by the same algorithm using 

the same initial value. They are pseudo random numbers. Caponetto, Fortuna, Fazzino, and 

Xibilia (2003) replaced random number with chaotic time series sequences in the algorithm. 

Simulation results and their statistical analysis using the t-test method showed distinct 

improvement from using chaotic sequences for the tested problems. 

Singh, Isaacs, Nguyen, Ray, Yao (2008) and Singh, Isaacs, Ray, Smith (2008) proposed 

an Infeasibility Driven Evolutionary Algorithm (IDEA). The algorithm ranks solutions based on 

the original objectives (fitness function) along with additional objectives that reflects constraint 

violation measurement instead of solely rely on the fitness function. It explicitly maintains 
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several infeasible solutions in the generation to maintain the diversity of solution pool. The 

experiments result showed a fast convergence to optimal solutions. 

There are many other development that enhancing the GA’s performance such as 

cooperative co-evolution (Adra, Dodd, Griffin, & Fleming, 2009), convergence accelerator (Tan, 

Teo, & Lau, 2007), etc. Due to the fact that GA is a straight forward global search algorithm and 

has demonstrated its effectiveness in many applications, more and more researchers are spending 

more time enhancing it with many other algorithms or methods. In the meanwhile, GA is 

enjoying more and more applications in many fields.  
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CHAPTER 5 DUALITY AND SHADOW PRICE in LINEAR PROGRAMMING 

5.1 Definition 

Dantzig (1963) stated, “The linear programming model needs an approach to finding a 

solution to a group of simultaneous linear equations and linear inequalities that minimize a linear 

form.” LP is the algorithm to search for an optimal value for a linear objective function that 

satisfies linear equations and linear inequalities. 

Kolman and Beck (1980) defined the standard form for LP as, 

For values of nxxx ,,, 21   which will maximize 

nn xcxcxcz  2211   (5.1) 

Subject to the constraints 

11212111 bxaxaxa nn    

22222121 bxaxaxa nn    (5.2) 

  

mnnmmm bxaxaxa  12211   

  njx j ,2,1,0   

 More conveniently, we can use a matrix notation.  Let 





















mnmm

n

n

aaa

aaa

aaa

A









21

22221

11211

, 





















mb

b

b

b

2

1

, 





















nx

x

x

x

2

1

, 





















nc

c

c

c

2

1

 (5.3) 

 A LP standard form can be rewritten as 

  Maximize  xcz T    (5.4) 

  Subject to   bAx     

            0x  
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The Duality Theorem states that there is an equivalent LP problem for every LP problem. 

One is called the primal problem and the other is called the dual problem.  Dantzig (1963) 

proved the duality theorem. The dual problem for the above standard form is given below. 

For values of myyy ,,, 21   which will minimize 

mm ybybybz  2211'   (5.5) 

Subject to the constraints 

11221111 cyayaya mm    

22222112 cyayaya mm    (5.6) 

  

nmmnnn cyayaya  2211  

  mjy j ,2,1,0   

The matrix representation is 

 Minimize   ybz T'    (5.7) 

  Subject to   cyAT   

            0y  
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The Duality Theorem also states that if the primal problem has an optimal solution (x0) 

and the dual problem has an optimal solution (y0), then  

    00 ' ybzxcz TT    (5.8) 

Solving one LP problem is equivalent to solving its dual problem. Kolman and Beck 

(1980) described the shadow prices as, 

The jth constraint of the dual problem is  
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j

m

i

iij cya 
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   (5.9) 

 

The coefficient aij represents the amount of input i per unit of output j, and the right-hand 

side is the value per unit of output j. This means that the units of the dual variable yi are the 

“value per unit of input i”; the dual variables act as prices, costs, or values of one unit of each of 

the inputs. They are referred as dual prices, fictitious prices, shadow prices, etc. 

In general term, shadow price is the contribution to the objective function that can be 

made by relaxing a constraint by one unit. Different constraints have different shadow prices, 

and every constraint has a shadow price. Each constraint’s shadow price changes along with the 

algorithm searching progress. 

5.2 Shadow Prices in Linear Programming 

LP has been used widely in various industrial fields. With a concrete mathematical 

model, it provides direct relationships among profit and constraints, output and constraints, other 

goals and constraints, etc. The linear models can be solved efficiently. Dantzig’s (1963) Simplex 

method is one of them. 

LP requires all constraints and all possible activities that meet the constraints listed in the 

tabular format. This is not a problem when the number of possible activities is small, such as 

maximizing profit for a small manufacturer. Constraints are material or labor and the objective 

function is defined as profit. It is rather straightforward to define the linear constraints, construct 

the linear objective function and search for optimal solutions for this category of problems. 

It gets complicated where the number of possible activities is very large, such as the 

typical scheduling problems and the cutting stock problems. For these problems, there are a very 

large number of possible activities and make it very challenging to list them in the linear 
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constraints. For a good-sized airline, there are complex flight schedules, a large number of 

routes, and many flight crews. Various goals can be optimized, such as finding the minimal 

number of crews needed to cover all flights while satisfying airline regulations, creating the crew 

schedules while balancing flight hours among crews, creating crew schedules to minimize cost, 

etc.. There are many possible combination of assigning crews to flights. This is an activity 

number explosion problem. For each activity, a separate variable need to be defined for the 

objective function and a separate column in the constraint matrix needs to be created in LP. This 

creates a very large number of variables and constraint columns. It is almost impossible to create 

a LP model with all possible activity combinations listed and constraints defined for this kind of 

problems. Solving these huge problems will be very time consuming and inefficient. 

Gilmore and Gomory (1961, 1963, 1965, & 1966) developed a dynamic column 

generation algorithm to deal with this kind of combination explosion LP problem. They 

demonstrated their algorithm using the complex cutting stock problem. Figure 5.2.1 is the high 

level flow chart of their algorithm. 

The Gilmore and Gomory’s breakthrough is separating the large problem into two 

smaller problems. The objective for the main LP problem (Figure 5.1 Main LP Problem) is to 

find the best solution using current available activities. The sub problem (Figure 5.1 Sub 

Knapsack Problem) is a knapsack problem. The solution from the main problem provides the 

coefficients for the sub problem’s constraints. The solution from the sub problem is a newer and 

better activity that can be utilized by the main algorithm. The process alternates between solving 

the main and the sub problem until there is no better solution that can be generated by the sub 

algorithm.  
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The coefficients supplied by the main algorithm to the sub algorithm are the shadow 

prices (dual prices). The knapsack sub problem is constructed using these shadow prices. For 

different iterations, the main algorithm provides the sub algorithm with different shadow prices 

based on the current best solution. That is, the shadow prices change along with the algorithm’s 

searching process. 
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Figure 5.1 Gilmore and Gomory LP Algorithm 
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CHAPTER 6 SHADOW PRICE GUIDED GENETIC ALGODITHM 

6.1 The Concept  

We have developed a secondary measurement (Shen & Zhang, 2011-1) for solutions in 

the GA using the shadow price concept. We use the shadow prices to measure components in a 

solution as a complement measurement to the fitness function. Thus, we establish a two-

measurement system: fitness values are used to evaluate overall solutions and shadow prices are 

used to evaluate components. 

Using GA to solve a problem P, there is a current solution population R that has n 

solutions and each solution has m components. The jth solution is defined as 

),,,( 21 mjjjj aaaS  where ija represents ith component in jth solution. Then, the current 

solution space is ),,,( 21
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 (6.1) 

  Optimize  xcz T       (6.2) 

  Subject to   bAx ))()((   

           x  is binary variable 0 or 1 

            and 
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
n

i

ix
1

1  

ci is the fitness value of each solution. The objective is to find the solution with the best fitness 

value. There shall be only one x=1 and the rest shall be 0. 
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 This approach cannot deal with the combination explosion situation. We cannot possibly 

enumerate all feasible combinations in the A matrix. For example, there are over 3 million 

possible combinations for a merely 10 cities’ traveling salesman problem.  Secondly, we cannot 

always define the b vector. We probably can create the b vector for the value-combination 

problems. But for the position-combination problems, such as the traveling salesman problem, it 

is very difficult to find the meaning of the b vector or define the relationship between Ax and b.  

The key of our approach is to use shadow price to compare components to further 

improve EA. In EA, we define the shadow price as the relative potential improvement to the 

solution’s (chromosome) fitness value with a change of a component (gene). It’s a relative 

potential improvement since the concept is defined on a single component and a component 

change may force other components’ change to maintain solution feasibility. The improvement 

may or may not be realizable. A change of component states the fact that component change can 

be a value change or a position change.  

Shadow prices can take on different meanings or values for different problems. In the 

traveling salesman problem, it can simply be the possible distance reduction from changing the 

next visiting city. But the definition has to be clear and comparable among components.  

The fitness value represents the current solution’s position in the search space. The 

shadow prices represent potential improvements and directions to evolve. The shadow prices are 

only meaningful in the process of evolution. They shall be used for selecting components to 

evolve and for setting directions for evolution operators. While choosing candidate solutions that 

are close to the optimal to further evolve, we shall also include solutions with bigger potential 

improvements. The potential improvement of a solution can be defined as the sum of all 

components’ potential improvements, which is the sum of all components’ shadow prices.  
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6.2 A Simple Example 

Let’s illustrate our proposal with a simple example. Suppose a problem is defined as  

Maximize 333 )1(10)1(30)1(40  zyxw  (6.3) 

Subject to  4515  zx     (6.4) 

4510  zy     (6.5) 

3000222  zyx     (6.6) 

;0;0;0  zyx     (6.7) 

 It is not a LP problem since the objective function (6.3) and the constraint (6.6) are not 

linear. The optimal solution is 4896905w  when 31.22,0),45(),,( zyx . Using GA to solve 

this problem, we define the fitness function as 

333 )1(10)1(30)1(40),,(  zyxzyxf  (6.8) 

 We can see from the fitness function that increasing x, y or z value increases the fitness 

value, which fits the objective. There also exist some relationships among x, y, z’s contributions 

to the fitness value. That is, when 3)1( x  is increased by 1, the fitness function can be improved 

by 40. When 3)1( y  is increased by 1, the fitness function is improved by 30. The fitness 

function is only improved by 10 when 3)1( z  is increased by 1.  From another perspective, 

increasing 3)1( x  by 1 can produce 3 times more contribution towards fitness value compared 

to 3)1( z . And 3)1( y  is 2 times more efficient than 3)1( z . So, we have relationships about 

contributions among 3)1( x , 3)1( y , and 3)1( z . But we still cannot derive direct relationships 

among x, y, and z since their cube functions is used in the fitness function instead of their linear 

format. Same change on x, y, and z will produce different impact on their cube functions 

when zyx  .   
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 Although the direct contribution relationships among x, y, and z are unknown, it is clear 

that, in general, increasing x yields bigger improvement on fitness value than increasing y does, 

and y is more efficient than z. From constraints (6.4) and (6.5), we can 

derive 3,45,45  zyx .  

There for, we define shadow prices S as  










45,0

)45,0[),79(40
)(

x

xx
xS   (6.9) 










45,0

)45,0[),46(30
)(

y

yy
yS   (6.10) 

]45,0[),3(10)(  zzzS     (6.11) 

The shadow price definition points out the fact that increasing x is more efficient than y 

and increasing y is more efficient than z. The fitness value can potentially be increased by 40 

when x is increased by 1. It’s a relative potential improvement since x’s cube function is used in 

the fitness function and y or z may need to be adjusted due to constraints. Although we can 

simply use coefficient (40, 30, 10) as the shadow prices, these will only represent the potential 

improvements and give no directions for GA to search. With the above definitions, we can 

clearly figure out which component has the priority and the direction to evolve. That is 

increasing x first whenever possible, then y, z. So, we define the shadow price as the relative 

potential improvement to the solution’s (chromosome) fitness value with a change of a 

component (gene). 

Suppose we have the following three solutions in a generation of evolution.  

);0,780,10256(),,(;441940),,();2,20,15(1  zyxSzyxfp  

);10,1080,2560(),,(;204040),,();2,10,15(2  zyxSzyxfp  
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);,930,202760(),,(;;196200),,();1,15,10(3  zyxSzyxfp  

Let’s mutate p1. The fitness value gives no hint about how to evolve. The shadow prices 

for p1 indicate that x has the most potential to improve fitness value since it has the biggest 

shadow price. We select x to mutate and try to mutate x into a lower shadow price state, which is 

to realize its potential. Since ]45,0[x  and increasing x will reduce shadow price from the 

definition of S(x), we shall increase x and select a number between 15 and 45. We choose 22. But 

(22, 20, 2) violates constraint (1). We adjust z and get feasible solution p4 

);02280,780,2(),,(;764590),,();1,20,22(4  zyxSzyxfp  

From the above mutation operation, we improve the fitness value by 322650 and reduce 

x’s shadow price. Classic operator mutates a random component to a random direction. The 

impact to the fitness value is random as well. Applying shadow prices to mutation operator is 

better. 

To apply a crossover operator on p2 and p3, fitness values again give us no directions. But 

from their shadow prices, z in p2 and y in p3 have the smallest shadow prices. So, the crossover 

operation shall use them to create the new solution as (x, 15, 2). Since both 10 and 15 satisfy all 

constraints and 15’s shadow price is smaller, we select 15 for x. So, the new solution from the 

crossover operation is 

);01,930,2560(),,(;286990),,();2,15,15(5  zyxSzyxfp  

The new solution’s fitness value is better than both parents. With several components’ 

shadow price reduced, we materialize some potential. Comparing to classic randomized 

crossover operator, this solution is much better.  

We solved this sample problem using classic genetic algorithm and our proposed 

algorithm for a comparison study. To ensure the comparison is valid, we did not introduce any 
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other techniques. All steps of both algorithms were the same except mutation and crossover 

operators. To set the same start up basis, we used the same initial population. Algorithms were 

terminated when there was no improvement for continuous 100 generations. We ran both 

algorithms 10 times. Results from table 6.1 show our new algorithm not only reached better 

solutions than classic algorithm but also used fewer generations. It demonstrates the 

effectiveness of our proposed shadow price guided genetic algorithm.  

Table 6.1 

Simulation results 

 Proposed GA Classic GA 

Testing Generations x,y,z Fitness Generations x,y,z Fitness 

1 171 45.00,31.22,0.00 4896905 181 44.94,31.30,0.00 4889183 

2 173 45.00,31.20,0.00 4895037 206 44.51,31.90,0.00 4838689 

3 201 45.00,31.20,0.00 4895037 128 45.00,31.20,0.00 4895037 

4 218 45.00,31.22,0.00 4896905 218 44.84,31.45,0.00 4878062 

5 108 45.00,31.22,0.00 4896905 145 44.77,31.54,0.00 4868991 

6 112 44.98,31.25,0.00 4894634 305 45.00,31.20,0.00 4895037 

7 173 45.00,31.22,0.00 4896905 210 45.00,31.20,0.00 4895037 

8 228 45.00,31.22,0.00 4896905 157 44.67,31.68,0.00 4857306 

9 115 45.00,31.22,0.00 4896905 161 45.00,31.22,0.00 4896905 

10 270 45.00,31.22,0.00 4896905 384 45.00,31.22,0.00 4896905 

Average 176.9  4896304 209.5  4881115 

 

To conduct a statistical analysis and formal performance comparison between our 

proposed algorithm and the classic algorithm, we have conducted a simulation study with 100 

runs of each algorithm. Table 6.2 presents the mean, standard deviation, medium, and inter-

quartile range for the number of generations from both algorithms. Results indicate that the 

proposed algorithm uses a significantly smaller number of generations compared to the classic 

algorithm (Wilcoxon Two-Sample Test p<0.0001). Table 6.3 lists the mean, standard deviation, 

medium, and inter-quartile range for the fitness values of the two algorithms. Results indicate 

that the proposed algorithm produces significantly larger fitness value than the classic algorithm 
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(Wilcoxon Two-Sample Test p<0.0001). In summary, our proposed GA performs much better 

than the classic GA. 

Table 6.2 

Distribution of the Number of Generations 

  N Mean 
Standard 

Deviation 
Medium 

Inter-quartile 

Range 
Min Max 

Proposed GA Algorithm 100 165.3 55.1 163.5 87 104 352 

Classic GA Algorithm 100 210.7 79.4 198 118 107 464 

 

Table 6.3 

Distribution of the Fitness Values 

  N Mean 
Standard 

Deviation 
Medium 

Inter-quartile 

Range 
Min Max 

Proposed GA Algorithm 100 4895755 990 4895971 2271 4894634 4896905 

Classic GA Algorithm 100 4881970 22295 4893435 22164 4780972 4896905 

 

For the above example, we defined the shadow price as the components’ relative 

potential improvement to the fitness value. We used shadow prices to select component(s) to 

operate on and evolve to directions based on future shadow prices. We demonstrated that the 

shadow price guided operators are better than classic GA operators. We illustrated that our 

proposed two-measurement system, fitness value and shadow price, is better than the one fitness 

value measurement system. 

6.3 Define Shadow Price 

Based on different problems, shadow prices can take on different meanings or values. In 

the traveling salesman problem, it can simply be the possible distance reduction from changing 

the next visiting city from the current one (Shen & Zhang, 2011-1). In manufacture, shadow 

price can be the cost of material, time, etc. (Shen & Zhang, 2010-1, 2010-2, 2012-1). In green 

computing, it can be defined as average energy consumption per instruction (Shen & Zhang, 
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2011-2) or embedded in the procedure (Shen & Zhang, 2012-3). But the definition has to be clear 

and comparable among components. Here are a few guidelines on how to select shadow price. 

1) The shadow price shall enable comparison among components since this is its main 

function in the search. A concrete value is preferred over fuzzy values. The minimum 

requirement is that the shadow price shall allow components comparison within a 

solution. This makes it usable for the mutation operation. If the shadow price definition 

enables components comparison across solutions, crossover operations can benefit from 

it. 

2) The shadow price shall reflect the attribute of a component such as price, cost, material, 

etc. The attribute shall directly or indirectly impact the solution quality (fitness value). 

This requirement is to relate shadow price directly to the problem. Solution’s change can 

change shadow price and vice versa. 

3) The shadow price for the solution (sum of shadow prices from all components) shall 

change with the quality of the solution (fitness value). There is no need to define a math 

function to associate them. The only requirement is to ensure that the shadow price is 

consistent with the search process. Since it reflects the potential improvement in the 

solution from components’ perspective, solution’s shadow price shall reduce while search 

process finds better solutions. In other words, better solution’s shadow price shall be 

smaller than worse solution’s shadow price. This has to holds true for all feasible 

solutions in the search space. This is to define evolution direction. 

4) The shadow price calculation shall be simple and fast. The shadow price concept and 

algorithm introduces more calculations, such as calculating components’ shadow prices, 

comparisons, etc. A quick, straightforward shadow price calculation is necessary. 
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6.4 The Complete Algorithm 

Populate Solution Set with Random 

Feasible Solutions

Calculate Fitness Functions for all 

solutions

Start

Is best solution optimal ?
Reached optimal 

solution

Mutation

Is there new solution added ?

Asses progress and adjust runtime 

parameters

yes

No

Calculate each component’s shadow 

price for the solution

Pick a solution to Mutate

Select a component with high shadow 

price

Mutate the component to a low 

shadow price state

Adjust solution to a feasible solution

Is new solution better then 

original?

Add the new solution to the next 

generation population

yes

No

Repeat for n times

Crossover

Calculate each component’s shadow 

price for the solution

Pick two solutions to crossover

From each solution, pick good 

components (low shadow price) to 

create a new solution

Adjust solution to a feasible solution

Is new solution better then 

original?

Add new solution to the next 

generation population

yes

No

Repeat for m times

Add random generated new solutions

Select solutions with high fitness 

values to complete next generation

No

Figure 6.1 New GA Framework with Shadow Price Guided Operators 
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The principle of our algorithm (Figure 6.1) is to use the shadow prices as the guide to 

direct the search for the optimal solution. For each current feasible solution, we use shadow 

prices to select components and to set the evolution direction. In detail, for the mutation operator, 

we shall pick a component with a higher shadow price to mutate and shall mutate to a lower 

shadow priced state. The goal of the crossover operator is to generate a new solution that inherits 

good components, which have low shadow prices, from both parents.  
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CHAPTER 7 OPTIMIZING THE TRAVELING SALESMAN PROBLEM WITH SGA 

7.1 Introduction 

The Traveling Salesman Problem (TSP) is a classic NP hard combinatorial problem. It 

has been routinely used as a benchmark to verify new algorithms. There are two major categories 

of algorithms used to solve the problem, exact or approximate algorithms. Exact algorithms, such 

as testing all permutations or branch and bound, typically either take very long time to compute 

or reach unsatisfied results.  

There are a lot approximate algorithms that achieve good results. Genetic Algorithm 

(Choi, Kim, & Kim, 2003; Kaur & Murugappan, 2008; Ray, Bandyopadhyay, & Pal 2004), Ant 

Colony Optimization (ACO) (Bianchi, Gambardella, & Dorigo, 2002; Hung, Su, & Lee, 2007), 

Neural Network (NN) (Hasegawa, Ikeguchi, & Aihara, 2002; Vishwanathan & Wunsch, 2001), 

Discrete Particle Swarm Optimization (DPSO) (Wang, Huang, Zhou, & Pang, 2003; Wang, 

Zhang, Yang, Hu, & Liu, 2005; Zhi et al., 2004; Zhong, Zhang, & Chen, 2007), Bee Colony 

Optimization (BCO) (Wong, Low, and Chong 2008), Simulated Annealing (SA) (Kirkpatrick, 

Gelatt, & Vecchi, 1983), Collective Intelligence (Kulkarni & Tai, 2009), and hybrid algorithms 

(Lee, Lee, & Su, 2002; Yang & Zhuang, 2010) have been used to solve the TSP. They all have 

achieved good results. We also use the TSP to validate our proposed algorithm and compare 

results with several of above-mentioned algorithms. 

7.2 Problem Definition 

The Traveling Salesman Problem (symmetric) can be simply stated as: for a given 

number of cities and defined travel distances between any city pairs, find the shortest path (or 
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cost) for a salesman to visit all cities once and only once, and finally return to the departure city. 

Obviously, the fitness function is the distance of the complete path (or cost). 

The TSP is a classic NP hard problem. It is a well-documented and widely studied 

combinational optimization problem. There are a good number of research documents, published 

reference problems, and solutions.  

7.3 Shadow Price Definition 

In the TSP, any city is connected to all other cities by a distance. For a given solution, 

any city is connected to two and only two other cities. Let’s define the TSP as having n cities, C1, 

C2, …,Cn. and the distance is Dij for distance from Ci to Cj. We define a city j’s shadow price Sj 

in a given tour, C1, C2, … Ci,Cj,Ck, …,Cn. as 

 
 


n

q

n

r

rjjkqjijj DDDDS
1 1

)()(    (7.1) 

where qjij DD   and rjjk DD   and  qj, rj  

The shadow price for a city is defined as the sum of all possible distance savings by 

changing the connected cities. This is a relative number that represents the shadow price concept. 

Simply connecting to one or two closer cities may not shorten the tour distance since the 

disconnected cities have to be rejoined into the tour again. The new connections may increase or 

decrease the total tour distance.  

Table 7.1 is a sample TSP distance table from the gr17.tsp from TSPLIB (2009). 
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Table 7.1 

Distance Matrix for gr17.tsp 

City 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 0 633 257 91 412 150 80 134 259 505 353 324 70 211 268 246 121 

2 633 0 390 661 227 488 572 530 555 289 282 638 567 466 420 745 518 

3 257 390 0 228 169 112 196 154 372 262 110 437 191 74 53 472 142 

4 91 661 228 0 383 120 77 105 175 476 324 240 27 182 239 237 84 

5 412 227 169 383 0 267 351 309 338 196 61 421 346 243 199 528 297 

6 150 488 112 120 267 0 63 34 264 360 208 329 83 105 123 364 35 

7 80 572 196 77 351 63 0 29 232 444 292 297 47 150 207 332 29 

8 134 530 154 105 309 34 29 0 249 402 250 314 68 108 165 349 36 

9 259 555 372 175 338 264 232 249 0 495 352 95 189 326 383 202 236 

10 505 289 262 476 196 360 444 402 495 0 154 578 439 336 240 685 390 

11 353 282 110 324 61 208 292 250 352 154 0 435 287 184 140 542 238 

12 324 638 437 240 421 329 297 314 95 578 435 0 254 391 448 157 301 

13 70 567 191 27 346 83 47 68 189 439 287 254 0 145 202 289 55 

14 211 466 74 182 243 105 150 108 326 336 184 391 145 0 57 426 96 

15 268 420 53 239 199 123 207 165 383 240 140 448 202 57 0 483 153 

16 246 745 472 237 528 364 332 349 202 685 542 157 289 426 483 0 336 

17 121 518 142 84 297 35 29 36 236 390 238 301 55 96 153 336 0 

 

We number the cities from 1 to 17. Let’s assume we have a tour as  

C1 C2 C3 C4 C5 C6 C7 C8… C17 C1 

Let’s compute shadow prices for city 4, 5 and 6 
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Above definition and calculation provide us the method to compare components (cities) 

in a solution. From the above shadow prices, we can derive that C4 can produce potentially more 

improvement to the solution than C5. These are possible improvements since they may not be 

realizable. This is the concept of shadow price we proposed earlier.  
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We also define a tour’s shadow price as the summation of all cities’ shadow prices. 

Obviously, tours with higher shadow prices have bigger room for improvement. The optimal 

tour’s shadow price is not guaranteed to be zero nor the smallest by our definition. But, a zero 

shadow priced tour is the optimal tour. For an edge in the tour, a connection from one city to 

another city, the shadow price is defined as the total shadow prices from both cities. This is to 

keep consistent with TSP tour’s shadow price definition.  

7.4 Shadow Price Guided Mutation Operator 

There are two methods to select a subset of solutions for mutation, routes with higher 

shadow prices or routes with low fitness values. It makes sense to choose routes with low fitness 

values since they are potentially better or closer to the optimal solutions. But the solutions that 

are closer to the optimal may not always evolve to the optimal. On the other hand, higher shadow 

priced routes have the best chances of making big improvements. Since GA encourages diversity 

in its population, we use a mixed subset for mutation.  

We select a mutation component (city) based on components’ shadow prices. We prefer 

components with high shadow prices since they promise better improvements. To avoid a local 

optimal trap, we randomly select a component from a pool of high shadow priced components. 

In the above example, C4 has a better chance of being selected to mutate than C5 or C6.  

Mutate to the shortest connection promises the biggest improvement but increases the 

risk of being trapped into a local optimal solution. Using the smallest connection improvement 

may lose opportunities for quick improvements and slow down the search process. Again, we 

create a pool of shorter connections and select one randomly as the new connection. The pool 

size is adjusted dynamically to better reflect the current search progress. In above example, we 

may choose one city from (C1, C6, C7, C8, C9, C13, C14, C17) if we were to mutate C4. 
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7.5 Shadow Price Guided Crossover Operator 

The goal of crossover is to pass good connections (genes) from the parents to the child. 

High shadow priced routes are relatively far from the optimal solutions compared to others. But 

they may have good connections that the child can still benefit from and vice versa. The same 

argument applies to the fitness value as well. It seems that randomly selecting two routes to 

crossover is fair and simple. In order to inherit a good portion of better connections in the 

crossover operation, we choose to select at least one parent route that with a good fitness value. 

The other parent is randomly selected in the current population.  

We use a simple edge insertion algorithm for the crossover operation. The route with a 

good fitness value (smaller) is cloned as the start of the new child route. A number (a dynamic 

parameter) of good connections from the other route are inserted into the child route. These good 

connections are randomly selected from a pool of low shadow priced connections. In this case, 

low shadow priced connections are good connections that have less room for improvements. 

After the crossover operation, we verify the feasibility of the child route and make adjustments if 

necessary. In the above gr17 solution example, edge (C5, C6) has a better chance to be passed to 

the child than edge (C4, C5) since 5465 SSSS  . In semantics, (C5, C6) is a relatively better 

connection than (C4, C5). 

7.6 Solution Validation  

The resulting solution from a GA operator need to be validated to ensure its feasibility 

and adjusted if necessary. The mutation operation creates a new connection between two cities 

and creates two disconnected graphs. Let’s assume we have a tour from table 7.1’s sample 

problem (Figure 7.1) as   

C1 C2 C3 C4 C5 C6 C7 C8… C17 C1  
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If GA select C4 to mutated and reconnect it to C8, two disconnected graphs are created 

(Figure 7.2). This is an invalidate solution.  

There are two methods to adjust the solution. One is inserting the disconnected segment 

into the other side of the mutated city. In the example, we disconnect C3 and C4; connect C3 to C5 

and C7 to C4. The other method is inspecting every connection to find the best location to insert 

the disconnected segment. The first method maintains the stability of the rest tour and fast. The 

second method seeks the local optimal and less efficient. One of the two methods is randomly 

selected to adjust solution in our algorithm. Similar methods are used to validate results from 

crossover operation.  
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Figure 7.1 A Sample Tour 
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Figure 7.2 Result from Mutation 

7.7 Other Techniques  

A shadow price modified 2-opt operator is also used in our algorithm. “In optimization, 

2-opt is a simple local search algorithm first proposed by Croes in 1958 for solving the traveling 

salesman problem. The main idea behind it is to take a route that crosses over itself and reorder it 

so that it does not.” (Watson et al., 1998). Combining the 2-opt operator with other operations in 

the genetic algorithm produced good results for the TSP (Wikipedia 2-opt, 2009). It is a very 

simple heuristic local search algorithm and hampered by performance. The operation time is 

O(n
2
).  

Armed with the shadow price information, we use 2-opt operation to speed up the 

algorithm by eliminating obviously very bad connections in the route. Instead of applying to all 

connections, we only use 2-opt operations for certain high shadow priced connections.  The time 

used is O(n).  
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We use a simple coding schema. For the route start from city 1, C1 C2 C3 … 

Cn C1, we encode it as (C1, C2, C3,…, Cn, C1). 

7.8 Experiments 

We coded our proposed algorithm in C# and executed it on a Pentium 4 2.8GHz machine 

with 2 GB of RAM. While comparing speed with other published results, we only need to 

consider CPU specification and programming language since the memory footprint is rather 

small for the TSP.   

We chose TSPLIB (2009) as the test cases and the data source for our experiment. It is 

one of the mostly used test case sources to verify algorithm’s efficiency. It provides many TSP 

cases with proven optimal routes. Each test case was run ten times. 

To gauge the effectiveness of our algorithm, we compared our results with other 

published Bio inspired researches that used the same test cases from TSPLIB. Table 7.2 is the 

results of our algorithm compared with an innovative genetic algorithm. Table 7.3 is the results 

of our algorithm against an improved Particle Swam Optimization algorithm. Table 7.4 shows 

how our proposed algorithm stacks up against an improved Bee Colony Optimization algorithm.  

Overall, our proposed new algorithm did better in the solution quality and speed than any 

of the others (Shen & Zhang 2011-1). 

Table 7.2 

Comparison with Ray, Bandyopadhyay, and Pal (2004) 

   
Optimal Ray, et al. 2004 Our result 

   Best Best Average Avg Time(s) 

GR24 1272 1272 1272 1272 0.054 

Bayg29 1610 1610 1610 1610 0.097 

GR48 5046 5046 5046 5046 0.825 

ST70 675 685 675 675 4.834 

KroA100 21282 21504 21282 21282 2.987 
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Table 7.3 

Comparison with Zhong, Zhang, and Chen (2007) 

  Optimal Zhong, et al 2007 Our result 

   Best Average Avg Time(s) Best Average Avg Time(s) 

Eil51 426 427 433.64 4.06 426 426.1 11.87 

Berlin52 7542 7542 7598.76 4.12 7542 7542 0.16 

Eil76 538 540 551.72 11.59 538 538 2.70 

KroA100 21282 21296 21689.30 23.95 21282 21282 2.99 

KroA200 29368 29563 30374.30 198.55 29368 29368 115.87 

 

Table 7.4 

Comparison with Wong, Low, and Chong (2008) 

 Optimal Wong, et al. 2008 Our Result 

  % from optimal Distance % from optimal Time(s) 

  Best Average Best Average Best Average Average 

ATT48 10628 0.31 0.83 10628 10628 0 0 0.56 

EIL51 426 0.47 0.85 426 426.1 0 0.0002 11.88 

EIL76 538 0.19 2.01 538 538 0 0 2.70 

EIL101 629 0.95 2.29 629 629 0 0 2.20 

KROA100 21282 2.26 3.43 21282 21282 0 0 2.99 

KROB100 22141 2.24 3.1 22141 22141 0 0 6.12 

KROC100 20749 0.5 1.5 20749 20749 0 0 1.12 

KROD100 21294 1.64 3.25 21294 21294 0 0 14.60 

KROE100 22068 1.73 2.2 22068 22096.8 0 0.0013 218.14 

KROA150 26524 5.03 6.39 26524 26524 0 0 41.08 

KROB150 26130 1.55 3.68 26130 26130 0 0 281.92 

KROA200 29368 2.02 4.26 29368 29368 0 0 115.87 

KROB200 29437 3.1 6.36 29437 29437 0 0 295.23 

LIN105 14379 0.32 1.24 14379 14379 0 0 2.48 

LIN318 42029 6.32 7.55 42029 42113.6 0 0.0020 1233.42 

 

7.9 Summary 

For the TSP, we define shadow price for a city as the sum of all possible distance savings 

by changing the connected cities. It was used to evaluate components and to direct evolutionary 

progress mainly towards the optimal solution. We used it as a secondary solution measurement 

in our proposed two-measurement EA. The simulation results have shown that our new SGA was 

effective and efficient.  
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CHAPTER 8 OPTIMIZING THE CUTTING STOCK PROBLEM WITH SGA 

8.1 Introduction 

The Cutting Stock Problem (CSP) is a very important problem in many industries with 

great economic values. It’s a difficult integer optimization problem. The classic Linear 

Programming algorithm was first used to solve the CSP (Gilmore & Gomory, 1961, 1963, 1965, 

1966). The dynamic column generation technique used a fix-sized matrix to solve the problem. 

But the solution was in fraction. An integer rounding routine had to be applied to the result to 

generate a meaningful solution. Producing infeasible or lower efficiency solutions were expected 

from the rounding process. 

Many other CSP algorithms were developed in the operations research field.  For 

instance, the LP based branch-and-cut-and-price algorithms (Alves & Carvalho, 2008; Belov & 

Scheithauer, 2006) are combinations of LP based branch-and-bound, column generation 

technique and cutting plane algorithms. These are integer LP algorithms that can provide optimal 

solutions. Their deficiencies are the degeneracy problem, the single linear objective function 

limitation and less efficient than traditional non-integer LP algorithms. The heuristic algorithms 

(Cherri, Arenales, & Yanasse, 2009; Cui & Lu, 2009; Liu, Chu, & Wang, 2008; Poldi & Marcos, 

2009; Song, Chu, Nie, & Bennell, 2006) use a set of rules, patterns, and steps to generate feasible 

solution. They are very quick and can provide acceptable near optimal results for small CSPs. 

They are not effective in solving large complex problems since they may degenerate to only 

providing feasible solutions. The hybrid algorithms (Aktin & Özdemir, 2009; Cui & Yang, 2010; 

Yanasse & Lamosa, 2007; Yanasse & Limeira, 2006) combine LP, heuristic algorithms, and 

other algorithms. They can provide very good solutions for targeted fields and their performance 

various.  
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Hinterding and Khan (1994) successfully solved the CSP using GA. The solution was in 

integer and the process was very efficient. Other bio-inspired algorithms such as the Ant Colony 

Algorithm (Levine & Ducatelle, 2004; Lu, Wang, & Chen, 2008; Yang, Li, Huang, Tan, & Zhou, 

2009), the Evolutionary Algorithm (Chiong, Chang, Chai, & Wong, 2008; Yao, Newton, & 

Hoffman, 2002), and the Annealing Algorithm (Yue & Gao, 2009) were also used to solve the 

CSP.  These algorithms provided good integer solutions.  

8.2 Problem Definition 

The CSP is to find the best arrangement of orders to cut from stocks such that minimal 

number of stocks is used. The objective is to use the least amount of stocks to satisfy various 

item requirements. The CSP is formulated as (Hinterding & Khan, 1994): 

Minimize 



Jj

jj xwW ,   (8.1) 

Subject to i

Jj

jij Nxa 


 for i=1,2,…n. (8.2) 

xj teger for j J. 

Where, n = number of orders. 

wj = waste per run of pattern j. 

aij = number of pieces of item i in pattern j. 

xj = number of runs of pattern j. 

Ni = number of pieces of item i. 

If there is only one stock length L in the problem, and li is the length of order i, then 

j

n

i

iij wlaL 
1

 for j J.   (8.3) 
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Adding more stock lengths to the CSP increases the size of the problem and requires 

more search time. But it does not increase the complexity of the problem. Compared to the CSP 

with single stock length, the CSP with multiple stock lengths can have more item combinations 

to potentially improve the trim efficiency. Tables 8.1 and 8.2 present two experimental results 

for the CSP with multiple stock lengths and the CSP with single stock length  (Hinterding & 

Khan, 1994). Both tables include total evaluations, the mean fitness values, the standard 

deviations, and the evaluation number when the optimal solution was found. The fitness value 

represents the efficiency of the solution. A high fitness value means high efficiency and low 

waste. Std. Dev. is the standard deviation to show the distribution of the solutions.  

Table 8.1 

Test results for the CSP with multiple stock lengths 
Case Evaluations Mean fitness Std. Dev. Found at 

1 1184 1 0 407 

2 1184 1 0 740 

3 1184 1 0 407 

4 2294 0.9995 0.0022 2294 

5 2294 0.9998 0.0007 2294 

 

Table 8.2 

Test results for the CSP with single stock length 

Case Evaluations Mean fitness Std. Dev. Found at 

1a 1184 0.9133 0 296 

2a 1184 0.9227 0.0018 1184 

3a 1184 1 0 407 

4a 1184 0.9642 0 851 

5a 2294 0.8479 0.007 2294 

 

 The data from Tables 8.1 and 8.2 suggest that the solutions for the CSP with multiple 

stock lengths have better fitness values than the ones for the CSP with single stock length, and 

the total evaluations are almost the same for both type CSPs.  They exhibit the fact that the CSP 
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with single stock length is at least as complex as the CSP with multiple stock lengths. We used 

the CSP with single stock length to demonstrate our new algorithm. 

8.3 Basic Terminologies 

In the CSP, a pattern is one possible combination of items that can be cut from one single 

stock. The total length of all items in a pattern shall be less or equal to the stock length. A trim, a 

solution of the CSP, is a set of patterns satisfying the order requirements. When using GA or EA 

to solve the CSP, a pattern corresponds to a gene and a trim corresponds to a chromosome. In the 

group based coding schema, a group is a set of items that represents a pattern. The group based 

coding schema is much better than the order based coding schema (Hinterding & Khan, 1994). 

We use group based coding schema.  

Table 8.3 

Sample problem, the stock length is 14 

Item Length   3   4   5   6   7   8   9   10 

No. Required   5   2   1   2   4   2   1   3 

 

We use a sample problem (Table 8.3) from Hinterding and Khan (1994) to introduce our 

new algorithm. In Table 8.3, the data in the first row are the lengths of different order items and 

the data in the second row are their quantities to be produced. The objective is to use the least 

number of stocks to produce these items.  

We use the length of the item to represent the item. In the sample problem, (3,4,5) 

represents a pattern that contains one length 3 item, one length 4 item, and one length 5 item. 

The waste of this pattern is 2 since the total item length is 12 and the stock length is 14. The set 

of patterns {(3,3,8), (5,9), (4,10), (7,7), (3,3,8), (7,7), (4,10), (6,6), (3,10)} represents a trim that 

satisfies the item requirements. This trim’s waste is 3, which is generated by the last two 

patterns. 
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8.4 Shadow Price Definition 

In the CSP, pattern selection links to the trim efficiency directly since the trim waste is 

the summation of waste from all its patterns. The patterns in a trim are evaluated by the waste 

they produce. In the above sample problem, the pattern (3, 4, 5)’s total length is 12 and it yields a 

waste of 2. The total length of pattern (3, 3, 8) is 14 and it produces no waste. Obviously, pattern 

(3, 3, 8) is better than pattern (3, 4, 5), and pattern (3, 3, 8) shall be used more often in the trim. 

There are limitations on whether a good pattern can be used or how many times it can be used in 

a given CSP. Since the requirement for the length 8 item is 2 in the sample problem, pattern (3, 

3, 8) can only be used twice to produce 2 length 8 items and 4 length 3 items. This leaves one 

length 3 item to be produced since the original requirement is 5. This makes pattern (3, 4, 5) a 

candidate for the trim even though it produces a waste of 2. Pattern selection is the key for the 

CSP algorithm. 

From another perspective, we can analyze the price with the stock length. There is no 

waste in pattern (3, 3, 8) since both the stock length and the total length of all items are 14. The 

price for the length 3 item is 3 and the length 8 item is 8. There is a waste of 2 in pattern (3, 4, 5) 

since the total length for all items is 12 and the stock length is 14. The price of 14 is selected to 

fulfill the total item length requirement of 12. Proportionally, the price for the length 3 item is 

3*14/12=3.5, the length 4 item is 4*14/12=4.67, and the length 5 item is 5*14/12=5.83. In 

comparison, we pay more to produce the length 3 item in pattern (3, 4, 5) than in pattern (3, 3, 8). 

We use a stock length of 3.5 to produce one length 3 item and waste 0.5 in pattern (3, 4, 5) in 

contrast to using a stock length of 3 to produce the item and yield no waste in pattern (3, 3, 8). 

The shadow price concept represents the price of an item paid in a trim. It is the average cost of 

an item in a trim. We use Si to denote the shadow price of item i and SPij to denote the shadow 
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price of item i in pattern j. All other notations in formulas conform to the previously used 

symbols.  

 



k

iij
l

L
lSP    for k is the number of items in pattern j, (8.4) 

 
i

ij

i
N

SP
S


     for j is the number of patterns in the trim. (8.5) 

An item’s shadow price is equal to or greater than its length. When it is greater than its 

length, more stock is used in the trim to produce this item than needed. Waste is generated to 

produce this item. If it is equal to the item’s length, there is no waste in the trim to produce this 

item. The shadow price of a pattern is the sum of the shadow prices from all items contained in 

the pattern. It represents the total price of these items in the current trim using this pattern. If the 

shadow prices are used in a new pattern, the new pattern’s shadow price represents the items’ 

total price from the previous trim and the stock length represents their current price. 

8.5 Shadow Price Guided Mutation Operator 

The goal of the mutation operator is to introduce new patterns to the trim when using the 

GA to solve the CSP. Adding a new pattern to the trim is a complicated process since existing 

patterns may be dropped and additional new patterns may be added to complete the trim. The 

fitness value of the trim can only be improved by adding better patterns. It is very challenging to 

create better patterns. 

Randomly generated new patterns and the group mutation operator (Falkenauer & 

Delchambre, 1992) were used in Hinterding and Khan (1994)’s experiments. Poor patterns were 

replaced by randomly generated new patterns.  

Instead of generating random patterns, we use a different approach to create new patterns. 

We intentionally introduce good patterns to the trim to improve its fitness value. For an existing 
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trim, we first calculate the shadow prices for all items based on all patterns in the trim. Then, we 

search for a pattern with the biggest shadow price such that  

Maximize 



n

i

ii SPaS
1

,  (8.6) 





n

i

iilaL
1

.    (8.7) 

If a new pattern is found by maximizing the above function and its shadow price is 

greater than the stock length, the new pattern uses less stock to produce the items in the pattern 

than the existing trim. The existing trim needs the shadow price to produce these items in the 

new pattern. The new pattern only needs one stock. The new pattern produces less waste since 

the stock length is less than the shadow price.  If we create a new trim by inserting this new 

pattern into the existing trim, the new shadow prices for the items in the pattern shall be smaller 

than their previous values. These items are cheaper in the new trim. The new trim’s fitness value 

shall be better than the previous trim as well. 

Our new mutation operator starts with calculating the shadow prices for all items. Then, it 

searches for a new pattern with a shadow price that is greater than the stock length. If a new 

pattern is found, it inserts the pattern into the trim at a random location. Finally, it validates the 

trim. The operation stops if it cannot find a pattern with a shadow price greater than the stock 

length. 

In the trim {(3, 3, 8), (5, 9), (4, 10), (7, 7), (3, 3, 8), (7, 7), (4, 10), (6, 6), (3, 10)} for the 

sample problem, the length 6 item’s shadow price is 7 and the length 8 item’s shadow price is 8. 

Pattern (6, 8) is a potential good pattern since its shadow price of 15 is greater than the stock 

length of 14. That is, it needs a total stock length of 15 to produce one length 6 item and one 

length 8 item in the previous trim. Now, it only needs a total stock length of 14. 
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8.6 Shadow Price Guided Crossover Operator 

The group crossover (BPCX) is a very straightforward operator (Falkenauer & 

Delchambre, 1992). It mainly consists of the following steps: (1) randomly split a parent trim 

into two sections, (2) copy the first section to the child trim, (3) append all patterns from the 

second parent trim to the child trim, and (4) finally append the second section from the first 

parent trim to the child trim. The child trim is validated while patterns are added. Uniform 

Grouping Crossover (UGCX) (Hinterding & Khan, 1994) adds pattern order to the group 

crossover operator. Both BPCX and UGCX randomly merge two parent trims into one child 

trim. There is no intention to improve the child trim in the process.  

In the CSP, two trims can have different patterns and efficiencies. The same items in 

these two trims may consume different amount of stocks since they may belong to different 

patterns. Patterns with less waste are always better. If we quantify an item and its stock 

consumption with the shadow price, we can create a better child trim using the crossover 

operator that selects better patterns from both parents.   

We propose a new crossover operator using the shadow price. The novel crossover 

operator has the following major steps: (1) copy a parent trim to the child trim, (2) calculate 

shadow wastes (shadow price – item length) for all items in the child trim, (3) rank the items by 

their shadow wastes, (4) select an item with a big shadow waste, (5) select all patterns containing 

this item from the other parent and insert them into the child trim, and (6) finally, validate the 

child trim. 

In the sample problem, we have two trims {(3, 3, 8), (5, 9), (4, 10), (7, 7), (3, 3, 8), (7, 7), 

(4, 10), (6, 6), (3, 10)} and {(6, 8), (5, 9), (4, 10), (7, 7), (6, 8), (7, 7), (4, 10), (3, 3, 3, 3), (3, 

10)}. The novel crossover operator copies the first trim to the child trim and calculates the 
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shadow waste for each item. The shadow waste for the length 3 item is 0.046, for the length 6 

item is 1, for the length 10 item is 0.26, and 0 for all other items. Since length 6 item’s shadow 

waste is the biggest, all patterns containing this item from the second parent are copied into the 

child trim. The patterns are (6, 8) and (6, 8).  By adding good patterns from the second parent 

into the child trim, we increase the chance of creating a better child trim. 

8.7 Experiments  

To compare our algorithm with others, we adopted the widely used fitness function that 

defined in Liang et al. (2002) as follows: 

Maximize )(
1

1
1

11








m

j

j
m

j

j

m

v

L

w

m
f .  (8.8) 

In the fitness function, m stands for the number of patterns in the trim. The first term 

within the parenthesis is used to minimize the total waste. The second term is used to minimize 

the number of patterns with waste, where vj=1 when the jth pattern has a waste, and 0 if no 

waste. The objectives of the fitness function (8.8) are (1) minimizing the trim waste and (2) 

reducing the number of patterns with waste.  

We implemented Hinterding and Khan (1994)’s algorithm as Algorithm A. We created 

three new algorithms B, C and D with different mutation operators. The new shadow price 

Guided crossover operator was used for all three versions. All four algorithms and the algorithms 

we compared with used the same fitness function defined above.  

In Algorithm B (Figure 8.1), a few patterns that generated waste were removed from the 

trim before the new shadow price based pattern was inserted, and simple sequential patterns were 

created for any untrimmed items from the deleted patterns. In Algorithm C (Figure 8.2), the new 

shadow price based pattern was added to the trim without removing any patterns. In Algorithm D 
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(Figure 8.3), a few patterns that generated waste were removed from the trim before the new 

shadow price based pattern was inserted, and several more shadow price based patterns were 

created for any untrimmed items from the deleted patterns. 

Mutation

Select a sub population to mutate

Have all solutions mutated ?

Select a solution to mutate

Calculate shadow prices for all items

Find a pattern with the biggest shadow price

Is the new pattern’s shadow price 

greater than the stock length ?

Copy the solution to a new solution

Insert the new pattern into the new solution 

at a random position

Validate the new solution

No

Yes

No

Yes

Calculate wastes for all patterns in the 

new solution

Remove several patterns with waste 

from the new solution

Compare the new solution with the order 

requirements to find all untrimmed items

Generate sequential patterns to produce 

these untrimmed items

 
Figure 8.1 Algorithm B’s mutation operator 
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Mutation

Select a sub population to mutate

Have all solutions mutated ?

Select a solution to mutate

Calculate shadow prices for all items

Find a pattern with the biggest shadow price

Is the new pattern’s shadow price 

greater than the stock length ?

Copy the solution to a new solution

Insert the new pattern into the new solution 

at a random position

Validate the new solution

No

Yes

No

Yes

 
Figure 8.2 Algorithm C’s mutation operator 
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Mutation

Select a sub population to mutate

Have all solutions mutated ?

Select a solution to mutate

Calculate shadow prices for all items

Find a pattern with the biggest shadow price

Is the new pattern’s shadow price 

greater than the stock length ?

Copy the solution to a new solution

Insert the new pattern into the new solution 

at a random position

Validate the new solution

No

Yes

No

Yes

Calculate wastes for all patterns in the 

new solution

Remove several patterns with waste 

from the new solution

Compare the new solution with the order 

requirements to find all untrimmed items

Generate shadow price based patterns to 

produce these untrimmed items

 
Figure 8.3 Algorithm D’s mutation operator 

We implemented all algorithms in C#. Each test case was run 10 times and results were 

averaged for comparison. To compare with other published algorithms, we selected the 

commonly used test cases (Liang et al., 2002). There are 10 single length CSPs ranging from 20 



63 

 

items to 600 items. Table 8.4 lists the test case name, the number of different item sizes and the 

total items required.  

Table 8.4 

Test case summary 

Case Size Count Total Items 

1a 8 20 

2a 8 50 

3a 8 60 

4a 8 60 

5a 18 126 

6a 18 200 

7a 24 200 

8a 24 400 

9a 36 400 

10a 36 600 

Table 8.5 compares mean fitness values from our four algorithms and other algorithms 

(Hinterding & Khan, 1994; Liang et al., 2002; Lu, Wang, & Chen, 2008). The average and the 

maximum fitness values are calculated for other algorithms and our shadow price based 

algorithms (Algorithm B, C, and D).  A higher fitness value means less waste, higher trim 

efficiency and a fewer number of stocks with waste. Figures 8.4 and 8.5 chart the average and 

the maximum fitness values. 

Table 8.5 

Mean Fitness Value Comparison 

  Other Algorithms Our New Algorithms 

Case 

Lu      

Pure- 

ACO 

Lu    

ACO-

MCSP 

Hinterding 

Group 

Based 

Hinterding 

Order 

Based 

Liang   

EP 
Alg. A Avg. Max Alg. B Alg. C Alg. D Avg. Max 

1a 0.8056 0.9133 0.9133 0.9133 0.9133 0.9133 0.8954 0.9133 0.9133 0.9133 0.9133 0.9133 0.9133 

2a 0.8912 0.9231 0.9227 0.9198 0.9231 0.9237 0.9173 0.9237 0.9237 0.9237 0.9237 0.9237 0.9237 

3a 0.9921 1 1 1 1 1 0.9987 1 1 1 1 1 1 

4a 0.9113 0.9638 0.9642 0.9588 0.964 0.9642 0.9544 0.9642 0.9642 0.9642 0.9642 0.9642 0.9642 

5a 0.8312 0.8481 0.8479 0.8489 0.8568 0.8649 0.8496 0.8649 0.8638 0.8647 0.8657 0.8647 0.8657 

6a         0.889 0.9389 0.9140 0.9389 0.9472 0.9475 0.9483 0.9477 0.9483 

7a         0.9529 0.9796 0.9663 0.9796 0.983 0.9821 0.9853 0.9835 0.9853 

8a         0.884 0.9567 0.9204 0.9567 0.975 0.9749 0.9786 0.9762 0.9786 

9a         0.9003 0.9701 0.9352 0.9701 0.9836 0.9808 0.9942 0.9862 0.9942 

10a         0.899 0.9735 0.9363 0.9735 0.9879 0.9878 0.9986 0.9914 0.9986 
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Figure 8.4 Average Mean Fitness Value Comparison 
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Figure 8.5 Maximum Mean Fitness Value Comparisons 

 

 

Table 8.6 compares total waste from our four algorithms and other algorithms (Chiong, 

Chang, Chai, & Wong, 2008; Liang et al., 2002). The average and the minimum total wastes are 

calculated and charted (figures 8.6 and 8.7) for other algorithms and our shadow price based 
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algorithms.  Table 8.7 compares the number of stocks with waste among our four algorithms and 

other algorithms. The average and minimum values are calculated in table 8.7 and charted in 

figures 8.8 and 8.9. In both comparisons, solutions with less total waste and less number of 

stocks with waste are better. 

 

Table 8.6 

Total Waste Comparison 

* With 53 stocks, the minimum total waste is 11450. 11370 is a typo by the authors. 
  Other Algorithms Our New Algorithms 

Case 
Chiong 

EP 
Liang     EP Alg. A Avg. Min Alg. B Alg. C Alg. D Avg. Min 

1a 3 3 3 3 3 3 3 3 3 3 

2a 13 13 13 13 13 13 13 13 13 13 

3a 0 0 0 0 0 0 0 0 0 0 

4a 11 11 11 11 11 11 11 11 11 11 

5a 11370* 11966   11450   11622   11450   11450   11450   11450   11450   11450 

6a 240.6 309.4 120.2 223.4 120.2 103 103 103 103 103 

7a 84 189.6 84 119.2 84 84 84 84 84 84 

8a 308 788 200 432 200 104 92 92 96 92 

9a 250 730 142 374 142 94 106 22 74 22 

10a 190 1037.2 166 464.4 166 118 130 10 86 10 
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Figure 8.6 Average Total Waste Comparisons 
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Figure 8.7 Minimum Total Waste Comparisons 

 

 

Table 8.7 

Number of Stocks with Waste Comparison 

 Other Algorithms Our New Algorithms 

Case 
Chiong 

EP 

Liang 

EP 
Alg. A Avg. Min Alg. B Alg. C Alg. D Avg. Min 

1a 2.8 2 2 2.3 2 2 2 2 2 2 

2a 4.7 4 4 4.2 4 4 4 4 4 4 

3a 0 0 0 0.0 0 0 0 0 0 0 

4a 3.2 1.02 1 1.7 1 1 1 1 1 1 

5a 27.1 22.8 22.2 24.0 22.2 22.4 22 22 22.1 22 

6a 26.5 29.96 23.5 26.7 23.5 21.1 21.1 21 21.1 21 

7a 6.6 7.48 4 6 4 2.5 2.7 1.8 2.3 1.8 

8a 27.4 56.24 30.3 38.0 27.4 19.9 21.2 16.6 19.2 16.6 

9a 17.6 48.54 23.7 29.9 17.6 14.1 15.6 5.3 11.7 5.3 

10a 11.4 73.06 31.7 38.7 11.4 13 12.2 1 8.7 1 
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Figure 8.8 Average Number of Stocks with Waste Comparisons 
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Figure 8.9 Minimum Number of Stocks with Waste Comparisons 

 

For the algorithms speed evaluation, comparing with other published algorithms is 

difficult since the differences from experimental hardware and implementation software can 

skew the result badly. So, we compare among our implementation of Hinterding’s algorithm 

(Algorithm A) and our new algorithms (Algorithm B, C, and D) since they all coded in the same 

language and tested on the same hardware platform. Table 8.8 lists the average generation 
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number when the best solution was found and the average time spent for these algorithms. 

Figures8.10 and 8.11 present them in chart.  

 

Table 8.8 

Speed Comparison 
 Find Generation Time (s) 

Case Alg. A Alg. B Alg. C Alg. D Alg. A Alg. B Alg. C Alg. D 

1a  3.5 2.3 7.6 2.5 0.48 0.76 0.69 1.48 

2a     21.1 10.1 28.6 9.8 1.06 1.36 1.48 2.16 

3a     11.3 7.9 18.5 4.5 0.84 1.22 1.18 1.82 

4a     44.3 24.1 22.2 7.1 1.02 1.43 1.36 2.10 

5a     226.7 74.2 129.9 125.3 6.93 13.39 19.53 68.85 

6a     522.8 208.5 253.6 133.9 19.48 11.44 13.78 13.32 

7a     650.8 352.7 225.2 90.2 17.43 12.29 11.89 9.59 

8a     890.5 377.8 402.1 243.6 56.10 27.66 36.86 33.79 

9a     849.4 564.9 529.8 450.3 60.75 41.36 50.48 62.10 

10a    986 621.7 686.2 411.2 683.21 58.89 88.13 68.41 
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Figure 8.10 Best Solution Found Generation Comparisons 
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Figure 8.11 Time (s) Comparisons 

 

8.8 Results Analysis  

All experimental results indicated that our proposed shadow price based genetic 

algorithms B, C and D performed much better than other current algorithms and Algorithm A. 

Comparing both the average and the best solutions, our new algorithms achieved better quality 

results than other algorithms. Algorithm D had the best results in all cases. Solution quality was 

evaluated by the fitness value, the total waste, and the number of stocks with waste. Measured by 

the generation count when the best solution was found and the total search time, our new 

algorithms spent about same amount of time as the other algorithm for small cases. But our new 

algorithms were much faster when the complexity or the size of the case increased (from case 6a 

to 10a).  

Introducing the shadow price concept into GA had two effects. In traditional GA, random 

search was employed since the GA operators added random patterns into the solution.  In our 

new algorithm, shadow price enabled operators always inserted good patterns into the solution. 

Inserting good patterns is the only way to improve the quality of the solution. With good 
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patterns, our new operators guided the search toward the optimal solution with good speed. Since 

GA is a multi-solution search algorithm, the local optimal traps were avoided by adding new 

random solutions and some randomness in the new operators. Adding good patterns improved 

solution’s quality and shortened search time. 

The other effect was that the new shadow price enabled operators enforced reusing of 

good patterns. The random pattern generator in traditional GA did not prompt good pattern reuse 

since it did not know the quality of the pattern and consecutively generated patterns were 

different. Always searching for good patterns, the new algorithm enforced good pattern reuse 

since the same good pattern were generated repeatedly as long as it could be used in the solution. 

Reusing good patterns improved solution’s quality and algorithm’s search speed.   

From 1a to 10a, test cases’ sizes count and total items count increased. This increased 

their complexity, search space, and search time. Experimental results showed that our algorithms 

were a little better than other algorithms in solving small cases. This was expected since these 

cases’ search spaces were small and the opportunity for pattern reuse was limited. In complex 

cases, our algorithms outperformed others significantly on result quality and speed. In large and 

complex search spaces, guided searching and pattern reusing enabled our new algorithms to get 

quality results with speed.  

In our algorithms (Shen & Zhang 2012-2), algorithm D achieved better results than 

algorithm B and C. It also spent more time than the other two. This was because algorithm D 

employed local search algorithm in two places and others used it only in one place.  More local 

searches enabled algorithm D to get better results but more computations were required for each 

generation. Table 8 shows algorithm D reached best solutions with fewer generations but spent 

more time overall since each generation took longer to complete. 
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In sum, the shadow price based GA operators added guidance to the search process and enabled 

reusing of good patterns. They empowered our new algorithms to achieve better results with less 

time than other algorithms. Our experimental results validated our theory and design.  

8.9 Production Consideration  

In production, there are other important CSP related problems such as the order 

continuity problem, and the knife changing problem, etc. For example, the order continuity 

problem was defined to minimize the order open time in a trim (Hinterding & Khan, 1994). 

Trim efficiency is very important in production since it is directly related to the 

production cost and the material waste. Knife changing is an important factor that keeps 

continuous production. Frequent knife changes may slow down the production process and 

automatic slitters can cost up to a million dollars. An order’s open time is defined as the time 

span between its first and the last item produced. A vehicle’s open time is the duration between 

its first and the last item loaded. As for the continuity problem, the time period that an order is 

open in a trim is not very important since an order can be shipped using multiple vehicles. The 

real important issue is how long a vehicle is open since this is constrained by production 

facilities such as the loading dock space, the warehouse space, etc. It is a production disaster if 

the produced items cannot be loaded into a vehicle for shipping and there is no warehouse space 

for storage. 

Knife changing and continuity are conflict objectives. Since items for a vehicle may 

come from different patterns, frequent knife changes facilitate quick vehicle loading and 

infrequent knife changes prolong the vehicle open time. But both of them are related to the 

number of different patterns in the trim. Fewer different patterns require less knife changes and 

faster vehicle loading.  
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We modified the fitness function to reduce the number of different patterns. 

Maximize  ))((
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In the fitness function, p is the count of different patterns in the trim. We reran our 

algorithms with the new fitness function and tested cases 6a to 10a since test cases 1a to 5a were 

too small to produce meaningful results. Table 8.9 presents the mean fitness values and the 

number of stocks used. Table 8.10 presents the total waste, the number of stocks with waste, and 

the distinct pattern count.  

Table 8.9 

Mean fitness value and number of stocks used 
  A B C D A B C D 

Case   Items Mean Fitness Stocks Used 

6a     200     0.9328     0.9465     0.9478     0.9483 79.3 79 79 79 

7a     200 0.9710 0.9820 0.9819 0.9863 68 68 68 68 

8a     400 0.9551 0.9730 0.9743 0.9783   143.9   143.2   143.1   143 

9a     400 0.9699 0.9813 0.9784 0.9942 150 149.8 150 149 

10a    600 0.9716 0.9895 0.9868 0.9984 216.2 215.8 215.9 215 

 

 

Table 8.10 

Total waste, number of stocks with waste, and distinct pattern count 
 A B C D A B C D A B C D 

Case Total Waste Stocks with Waste Distinct Pattern Count 

6a        128.8    103    103    103    25.3    21.4    21.1 21 18 16 15 15 

7a     84 84 84 84 7 2.5 2.9 1.5 24 22 22 24 

8a     200 116 104 92 32.1 20.7 21.3    16.7 33 27 28 30 

9a     142 118 142 22 24.7 15.4 16.5 5.4    44    39    37    43 

10a    154 106 118 10 35.5 10.8 14.6 1.4 56 43 42 50 

 

The test results showed that all three shadow price based algorithms (B, C, D) performed 

better than the traditional Algorithm A on all measurements of the fitness value, the total stock 

used, the total waste, the number of stocks with waste, and the distinct pattern count. Algorithms 

B, C and D showed strength in different measurements. Algorithm D performed the best in the 

fitness value, the total stock used, the total waste, and the number of stocks with waste. 
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Algorithm C used the least number of distinct patterns with a little sacrifice of efficiency. 

Algorithm B’s performance is between Algorithm C and Algorithm D. 

8.10 Summary 

The key to quickly reach optimal or near-optimal solutions for the CSP is to continuously 

add and reuse good patterns in the trim. Using the shadow price to analyze the current trim, we 

can easily identify which items need to be improved and which items produce less waste. Instead 

of using random patterns, our algorithms select patterns with big shadow prices to reduce the 

waste and improve the trim efficiency. In our new algorithm, shadow price was used directly to 

generate new patterns. 

Our experiments proved that our proposed shadow price based SGA outperformed 

current bio-inspired algorithms. The experiment of minimizing patterns also demonstrated the 

versatility of our new algorithm.  

 

CHAPTER 9 OPTIMIZING THE GREEN COMPUTING PROBLEMS WITH SGA 

9.1 Introduction 

Green computing is to use computers in environmental friendly ways. Computers 

consume energy in two common ways, direct and indirect computing related consumption. 

Energy consumed by supporting devices, such as air conditioning in the data center, is the 

indirect energy consumption. Energy used by computers is the direct energy consumption. 

Together, computing related energy consumption is roughly equivalent to the aviation industry’s 

energy consumption. It accounts for 2% of anthropogenic CO2 from its share of energy 

consumption (Consortium for School Networking Initiative 2010). 



74 

 

 A computer center can host 10,000 or 150,000 servers (Church, Greenberg, & Hamilton 

2008). These mega data centers can support many large companies’ daily operations, conduct 

many e-commerce transactions, perform large scale scientific researches, and provide services to 

many other clients. These data centers use large amount of energy (Laszewski, Wang, Younge, 

& He 2009; Wang, Laszewski, Dayal, He, & Furlani 2009). The energy used by the US servers 

and data centers is significant. It is estimated that they consumed about 61 billion kilowatt-hours 

(kWh) in 2006 (1.5 percent of total U.S. electricity consumption) for a total electricity cost of 

about $4.5 billion. If the trend continues, this demand would rise to 12 gigaWatts (GW) by 2011. 

It would require an additional 10 power plants (US Environmental Protection Agency 2007). 

   Green energy is electricity generated from renewable sources such as solar, wind, 

geothermal, biomass, and small hydro. They are renewable sources and more environmentally 

friendly than traditional electricity generation. They emit little or no air pollution and leave 

behind no radioactive waste like nuclear. Most importantly, they are naturally replenished by the 

earth and sun (Yahoo Green, 2010). 

Brown energy is power generated from environmentally hostile technology. The vast 

majority of electricity in the United States comes from coal, nuclear, large hydro, and natural gas 

plants. They are the single greatest source of air pollution in the United States, contributing to 

both smog and acid rain. They are the greatest single contributor of global climate change gases 

including carbon dioxide and nitrogen oxide (Yahoo Green, 2010). 

Majority of the power we consumed today is non-renewable environmental hostile 

energy. In 2006, green energy only accounts for 7% of total US energy supply. Petroleum, coal 

and natural gas burning generate 86% of the total energy supply (U.S. Energy Information 

Administration, 2010) 
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Many research projects have conducted to improve data centers’ energy efficiency, such 

as improving the design of the data center (Hamann, L pez, & Stepanchuk 2010), improving 

equipment (Cabusao et al. 2010), and improving air conditioning (Iyengar, Schmidt, & Caricari 

2010). They focused on reducing energy consumption and improving supporting devices’ 

efficiency. 

Efficient task scheduling in data center is another approach to save energy. With 

optimized task scheduling, computers can complete tasks using less energy. It also reduces 

energy consumptions from supporting devices. Combined energy savings from efficient task 

scheduling in a large data center can be significant.  

Intelligent task scheduling can be categorized as heuristic algorithms (Li, Liu, & 

Qian,2009; Miao, Qi, Hou, & Dai, 2007; Wang, Laszewski, Dayal, He, & Furlani,2009; Wang, 

Laszewski, Dayal, & Wang, 2010; Xie, Wang, & Wei, 2005; Zhang, Li, & Zhang, 2010), bio-

inspired search algorithms (Chang, Wu, Shann, & Chung, 2008; Tian, & Arslan, 2003), and 

hybrid algorithms derived from them (Liu, Yang, Luo, & Wang,2006; Miao, Qi, Hou, Dai, & 

Shi, 2008; Page & Naughton, 2005). Heuristic algorithms can find good solutions among all 

possible ones, but they do not guarantee that the best will be found. These algorithms usually 

find a solution close to the optimal and they find it very fast.  

Bio-inspired search algorithms find best solutions by simulating nature. The typical 

algorithms are Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), etc. They can find optimal or near optimal solutions. They are less efficient 

than heuristic algorithms. We used SGA to solve the green computing scheduling problems and 

achieved very good results.  
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9.2 Problem Definition  

 In general, the amount of power an electrical device uses is the product of supplying 

voltage and the current it draws. The energy consumed is the product of power and time. In 

addition, computer processor’s speed varies based on the volt-age supplied. Within limits, a 

processor runs faster with higher voltage. Thus, the power consumption of a processor is directly 

linked to its running speed. Over-clocking is one such technique that speeds up the processor by 

raising the voltage. The cost of this speed increase is more energy consumption. Tasks can be 

completed faster with higher speed. It’s an optimization problem to achieve a balance between 

energy and time. 

From green computing perspective, efficient task scheduling can be defined as either 

minimizing energy consumption with schedule length constraint or minimizing schedule length 

with energy consumption constraint (Li 2008). The objective of the first problem is to use the 

least amount of energy to complete all tasks within a given time frame. It is used mainly in real 

time processing environments.  The second problem is to complete tasks as fast as possible under 

given energy limitation. Its objective is to use energy efficiently and has great usage in mobile 

computing, sensor network, etc.  

 The first problem (P1) can be defined as (Zhang, Li, & Zhang, 2010):  n computers in a 

cloud computing system are used to finish m tasks by the deadline time T.  Assume that im  tasks 

i
kP for k=1, 2, …, im are executed on computer i for 



n

i
imm

1

. A changeable speed for task 
i

kP  is 

denoted as
i
kS for i=1, 2, …, n, and k=1, 2, …, im . The speed is defined as the number of 

instructions per second.  The number of instructions of task 
i

kP  is denoted as 
i
kR . The execution 
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time for 
i

kP  on computer i is 
i
k

i
k

S

R
. The total execution time for im  tasks 

i
kP  on computer i is 

defined as 


im

k
i
k

i
k

i
S

R
T

1

. For example (Table 7.3.1), im  tasks 
i

kP  for 41 m , 42 m , and 33 m  on 

three processors,  

Table 9.1  

A Sample Task Schedule 
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The optimization problem for P1 is  

  Minimize 



n
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ki SRCE

1
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

   (9.3) 

Constraints: 11  nmmi , 


n

i
imm

1

, nm  , T
S

Rim

k
i
k

i
k 

1

and i
i
ki bSa   where ia  is the 

minimum speed and ib  is the maximum speed of computer i, respectively, for i=1, 2, …, n, and 

k=1, 2, …, im .  

Processor 1 1
1P  

1
2P  

1
3P  

1
4P  

Processor 2 2
1P  

2
2P  

2
3P  

2
4P  

Processor 3 3
1P  

3
2P  

3
3P   
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The goal of P1 (9.3) is to design a new energy aware task scheduling algorithm that can 

find an optimal or near optimal schedule to compete all m tasks on n computers with minimum 

or near minimum energy E by the deadline time T.  

The second  problem (P2) to be optimized can be defined as, using shortest time to finish 

m tasks on n heterogeneous computers and the total energy can be consumed is less than or equal 

to E.  

Minimize       (9.4) 

      (9.5) 

        (9.6) 

 

In the objective function (9.4), Ti is the execution time of processor i. Equation (9.5) is the 

execution time of k tasks assigned to processor i. Since speed is commonly used in the 

specification of processor, equation (9.5) can be simplified into  

      (9.7) 

     (9.8) 

The objective is to find a schedule such that m tasks are completed in the shortest time 

and energy consumed is within the constraint E. There are multiple sub optimization problems in 

the definition, energy, task, and speed. The first is to optimal distributing energy limitation E to 

each processor Ei.  The second is to optimal assigning tasks {R} to each processor. And the last 

one is to determine optimal running speed for each task assigned to a processor. All three sub 

problems are connected. Assigning higher energy to a processor enables it to process more tasks 

in short period of time. Higher running speed demands more energy. Since the objective is to 
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minimize the longest running time of a processor, all processors have to cooperate in energy and 

task assignment. It’s a very complicated combinational optimization problem. 

It is proven that the schedule length is minimized when all tasks assigned to a processor 

execute with the same power (Li 2008). To achieve the best result, tasks assigned to the same 

processor shall be executed at the same speed since power determines speed.  

Thus, equation (9.5, 9.7, and 9.8) can be simplified to: 

     (9.5’) 

      (9.7’) 

     (9.8’) 

Since all tasks running with the same speed on the same processor and the objective is to 

complete the tasks as fast as possible with assigned energy for the processor, we can use formula 

(9.5’) to calculate the executing time, or formula (9.9) to calculate optimal speed.  This solves 

the third sub optimization problem. What we need to solve now are the sub problems of 

distributing total allowed energy consumption to each processors and assigning tasks to them 

such that the executing time is minimal. 

      (9.9) 

There can be two objective functions when optimizing execution time, minimizing either 

the concurrent running time on all available processors (the max of all processors’ running time) 

or the accumulated execution time from all processors (summation of all processors’ running 

time). Since tasks assigned to a processor shall be executing in the same speed, the later optimal 

problem becomes quite simple. Optimal can be achieved by selecting the most efficient 
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processor and assign all tasks to it. We choose to optimize the difficult problem of optimizing 

concurrent running time (9.4).   

Instead of a minimal function, standard deviation on execution time can also be used as 

the objective function to optimize. It measures the distances from each processors’ execution 

time to the average. The idea is to make all processors sharing the work load and enforce their 

execution time closing to the medium. This is a good objective function in general but may not 

work in a heterogeneous processors environment. In a very diverse setup, processors’ energy and 

execution efficiency can different significantly from one to the other. There can be optimal 

solutions that no work is assigned to less efficient processors. A simple minimal function is both 

efficient in calculation and flexible to cover most scenarios.  

 Both problem P1 and P2 are integer combinatorial optimization problems. The time and 

energy consumption calculations are complicated.  

9.3 Shadow Price Guided GA Operator for P1 

Encoding is straightforward for this problem. The solution consist a list of all processors. 

Each processor has a list of tasks assigned to it. Each task is associated with a few attributes, 

such as total instruction count, execution speed and time, etc. 

Shadow price definition shall reflect the cost of execution each individual task after 

assigned to a processor. In this problem, it’s the energy consumption of the task. Due to the fact 

that different tasks have different number of instructions, task energy consumption can’t be used 

to compare the efficiency of assignments since large task will consume more energy. We can use 

average energy consumption per instruction as the shadow price. Although this helps comparing 

assignments efficiency, the evolution direction is still not clear. The goal is to reduce shadow 
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price, i.e., reduce energy consumption per instruction for a task. There are two methods to 

achieve this, reducing the task execution speed, assigning task to a more efficient processor.  

The minimal power consumption is achieved when all tasks assigned to the processor are 

running at the same speed (Li 2008). This greatly simplified the calculation. To minimize the 

processor’s energy consumption, we sum up all instructions from assigned tasks and calculate 

the minimal energy consumption with the max time allowed. This solves the second optimization 

sub problem. 

Since the optimal speeds for all tasks assigned for a processor are the same, we define the 

shadow price as the average energy consumption per instruction for P1. Furthermore, we move 

the shadow price definition to the processor since there is only one value per processor. This also 

defines the evolution direction and method. That is to reduce processor’s average per instruction 

energy consumption by moving tasks among processors. 

We define two mutation operations (Shen & Zhang, 2011-2), move one task from one 

processor to another and exchange a task between two processors. We further categorize the 

operations as original and shadow price guided mutation operations. Here is the complete 

algorithm. 

Begin 

1. Validate there is at least one feasible solution. 

2. Build initial population. 

3. While stop criteria has not met 

3.1 Select a sub population to randomly apply one of the following operations 

 Classic mutation operation (Move). Randomly select two processors and move one randomly 

selected task from one processor the other. 

 Classic mutation operation (Exchange). Exchange two randomly selected tasks between two 

randomly selected processors. 

 Shadow priced guided mutation operation (Move). 

(a) Calculate shadow prices for all processors. 

(b) Establish a pool of high shadow priced processors and random select one processor (Pa). 

(c) Establish a pool of low shadow priced processors and random select one processor (Pb). 

(d) Random select one task from Pa and move it to Pb. 

 Shadow priced guided mutation operation (Exchange). 

(a) Calculate shadow prices for all processors. 

(b) Establish a pool of high shadow priced processors and random select one processor (Pa). 
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(c) Establish a pool of low shadow priced processors and random select one processor (Pb). 

(d) Sort Pa and Pb’s tasks based on their instruction count. 

(e) Establish a task pool from Pa’s tasks whose instruction counts are more than average and 

random select one task. 

(f) Establish a task pool from Pb’s tasks whose instruction counts are less than average and random 

select one task. 

(g) Exchange the selected tasks between Pa and Pb. 

3.2 Add random solutions 

3.3 Filter and build next generation 

End While 

End 

The mutation operation randomly applies one of the four algorithms for each candidate 

solution. When GA search starts, all four operations have equal opportunities to be used for a 

given solution. The odds of applying each operation changes with the search algorithm 

progressing. Especially when search is trapped in a local optimal or getting close to finish, 

classic mutation operations have better possibilities to be chosen.  

9.4 Shadow Price Guided GA Operator for P2 

The goal (9.4) of this problem is to schedule m tasks on n computers such that the 

concurrent execution time is minimal and the total energy consumption is less than or equals to 

E. Since it is most efficient to schedule tasks on the same processor at the same speed (Li 2008), 

the optimization problem breaks down to two sub problems, optimal distribute energy constraint 

E to n computers and optimal assign m tasks to n computers. The original third sub optimization 

problem, minimizing execution time for a processor i with mi tasks and energy cap of Ei, can be 

solved directly using equation (9.5’) and speed can be calculated using formula (9.9). 

There are two steps to construct a solution, distribute energy constraint and assign tasks. 

It does not impact the solution which task completes first. But both tasks have to be completed 

before the fitness value can be calculated for a solution.   

To solve the scheduling problem, we can either treat it as a nested two optimization 

problems or an optimization problem with two sub tasks. In the nested optimization problem 
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scenario, one sub problem will be selected as the parent problem and used to drive the other child 

problem. For example, if we select energy constraint distribution as the parent problem, the 

search process starts with creating various combinations of energy assignments to processors. 

Each energy constraint assignment will be treated as a separate optimization problem and solved 

individually. Various task assignments are evaluated and the assignment that with the least 

concurrent execution time is the fitness value for the energy assignment. The search process 

evolves the parent energy assignments and searches for best task combinations for each new 

assignment.  The process repeats until the optimal solution is found. 

We can also treat the two optimization tasks as two separate parameters in the same 

optimization problem and create a flat model. In the nested model, parent searches for the 

optimal energy assignment and the child searches for the best task assignments within the parent 

energy assignment. In the flat model, both parameters work together to optimize the same 

objective of minimizing solution execution time for all processors. Thus, we can ignore the 

relationship between these two parameters and only focus on the relationships from the two 

parameters to the solution. We can tune one parameter at a time and rotate. The process can be 

repeated until the optimal solution is found. 

Nested optimization problems are difficult to solve and takes more time to converge 

(Shen & Zhang 2012-1). In comparison, flat models are easier to solve since there is only one 

objective function. The complexity is that there are more parameters in the GA operations. 

Optimizing nested models use tree search and optimizing flat models use linear search with 

rotating parameters.  

To work with flat model, we define two mutation operations, energy mutation and task 

mutation. There are two sub energy mutations, exchange energy between two processors and 
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move some energy from one processor to the other. There are also two sub task mutations, 

exchange a pair of tasks between two processors and move one task from one processor to the 

other. The processors and tasks are randomly selected in the operations. There is no preference 

or direction to move the search process. 

Our enhanced mutation operation only moves some energy from one processor to the 

other. Since the objective is to minimize concurrent execution time and more energy can 

improve speed, we want to move some energy from a short run time processor to a long run time 

processor. The long run time processor will benefit from added energy and shorten the run time. 

But the short run time processor may not have extra energy to give. There may be multiple 

reasons that cause processor use less time, such as the processor is very efficient and can run 

very fast with little energy, the processor is assigned with large amount of energy, or the 

processor is assigned with small tasks. So short run time cannot be used to select energy donor 

processor. A combination of higher energy and less run time makes a good selection criterion.  

In our definition, shadow price represents a component’s potential. Here, shadow price is 

the combination of a processor’s run time and energy assigned. Run time takes precedence over 

energy since we are selecting the energy donor processor. A processor’s shadow price is high 

when it has a short run time and large energy. A processor’s shadow price is low when it has a 

long run time or a short run time and smaller energy. We want to mutate a processor from high 

shadow priced state to a low shadow priced state. The mutation direction set by the shadow 

prices is to mutate a processor with below average run time to a longer run time or less energy 

state.  

The shadow price definition for P1, average energy consumption per instruction or 

average time spent per instruction, does not work for the task mutation here since each processor 
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can be assigned with different energy and tasks. The average energy or time per instruction 

cannot be used to compare among processors. High average energy consumption per instruction 

can exist for processors with various energy or task assignments. Same fact holds true for time 

spent per instruction. 

The goal of task mutation is to move task from a long running processor to a short time 

running processor. The task donor processor is easy to pick. It can simply be one of the long run 

time processors. The receiving processor shall be one of the short run time processors. We need 

to be very careful about selecting receiving processor since it can dramatically increase its run 

time. Since we are not rearranging energy in this task mutation, the ideal receiving processor is 

the one that its energy or execution time is not very sensitive to task increase. That is, task 

increase is not the most influential factor in a processor’s executing time or energy calculation. 

Formula (9.5’) shows execution time calculation with fixed energy and (9.8’) shows energy 

calculation with known speed. Both are exponential functions. In an exponential function, 

exponent has far bigger impact to the result than the base. In both (9.5’) and (9.8’), task 

instruction count is in the base and α is in the exponent. Since α is a positive number and greater 

or equal to 3, α can generate bigger impact to the execute time and energy consumption. While 

comparing 2 processors with same tasks, the one with bigger α consumes more energy if speeds 

are the same or takes more execution time if energies are the same. So, it is preferred to add a 

task to a processor with smaller α since it may cause much small increase to the execution time. 

We define the shadow prices as the combination of execution time and α. We want to mutate the 

task from a long execution time processor to a processor with short execution time and a smaller 

α.  
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Our shadow price enhanced algorithm (Shen & Zhang 2012-3) follows standard GA 

algorithm framework. To avoid local optimal traps, we combine enhanced mutation with 

standard mutation operations.  

 
Begin 

1.    Validate there is at least one feasible solution. 

2 Build initial population. 

3 While stop criteria has not met Repeat 

3.1 Select a sub population to randomly apply one of the following operations 

 Energy move mutation operation  

a) Randomly select two processors  

b) Move some energy from one processor to the other processor 

c) Validate the new solution 

 Energy exchange mutation operation  

a) Randomly select two processors  

b) Exchange energy assignments between them 

c) Validate the new solution 

 Task move mutation operation 

a) Randomly select two processors  

b) Randomly select a task from one processor 

c) Move the randomly selected task from one processor to the other processor 

d) Validate the new solution 

 Task exchange mutation operation 

a) Randomly select two processors  

b) Randomly select a task from each processor 

c) Exchange the selected tasks between the two processors 

d) Validate the new solution 

 Shadow price enhanced energy mutation operation 

a) Sort all processors based on execution time 

b) Split processors into 2 sets, long run time processors and short run time processors 

c) Create a subset from long run time processors to establish an energy receiving processor pool 

Sr 

d) Random select one processor from Sr as the receiving processor Pr 

e) Re-short the short run time processor set based on energy assignment 

f) Create a subset from short run time processors to establish an high energy donating processor 

pool Sd 

g) Random select one processor from Sd as the energy donating processor Pd 

h) Move some energy from Pd to Pr 

i) Validate the new solution 

 Shadow price enhanced task mutation operation 

a) Sort all processors based on execution time 

b) Split processors into 2 sets, long run time processors and short run time processors 

c) Create a subset from long run time processors to establish an task donating processor pool Sd 

d) Random select one processor from Sd as the donating processor Pd 

e) Re-short the short run time processor set based on processor’s α value 

f) Create a subset from short run time processors to establish a small α value task receiving 

processor pool Sr 

g) Random select one processor from Sr as the task receiving processor Pd 

h) Randomly select one task from Pd  and move to Pr 

i) Validate the new solution 

3.2 Add random solutions 
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3.3 Filter and build next generation 

End While 

End 

 

Shadow price represents a state of a component relative to the current solution. It can take 

on many different forms. In this green scheduling problem, the shadow price is embedded in the 

mutation operations due to its complexity. It’s a procedure. It measures the processor execution 

time, energy consumption, and processor’s attribute α. It can greatly improve the search speed 

and solution quality. 

9.5 Experiments for P1 

  To evaluate our new algorithm, we conducted a comparative study between GA and our 

new shadow price guided GA. Both algorithms followed the standard GA framework and were 

identical except the mutation operations used. All four mutation operations were used in the 

shadow price guided GA and only two classic mutation operations were used in the classic GA. 

Both algorithms used the same calculation to optimize the power consumption for a processor 

after tasks have been assigned.  

We coded and tested both algorithms in Microsoft C#. All experiments were run on a 

Lenovo Thinkpad laptop T410 that equipped with Intel Core i5-M520 2.4 GHz CPU and 4 GB of 

memory running Windows 7. Each test case was run at least 10 times. Results were averaged and 

reported. 

We first located published specifications for commercial released CPUs (Wikipedia, 

2010) and selected 20 latest ones for our experiment (Table 9.2). Million instructions per second 

(MIPS) was used to measure the speed of the processors. 
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Table 9.2 

Published Processor Specification 

ID Processor 
Inst. / Second 

(MIPS/MHZ) 

Inst. 

/clock 
cycle 

Year 

Min 

Speed 
(MIPS) 

OverClo

cking 

Improve
ment 

(%) 

Max 

Speed 
(MIPS) 

C Φ 

1 DEC Alpha 21064 EV4 300 / 150 2.7 1992 300 0.09 327 84 0.65 

2 Intel Pentium III 1,354 / 500 2.7 1999 1354 0.15 1557 7 0.75 

3 AMD Athlon 3,561 / 1.2 3 2000 3561 0.23 4380 8 0.57 

4 AMD Athlon XP 2400+ 5,935 / 2.0 3 2002 5935 0.14 6766 86 0.68 

5 Pentium 4 Extreme Edition  9,726 / 3.2 3 2003 9726 0.07 10407 74 0.8 

6 AMD Athlon FX-57  12,000 / 2.8 4.3 2005 12000 0.09 13080 50 0.83 

7 
AMD Athlon 64 3800+ X2 (Dual 
Core) 

14,564 / 2.0 7.3 2005 14564 0.13 16457 60 0.73 

8 ARM Cortex A8 2,000 / 1.0 2 2005 2000 0.18 2360 52 0.56 

9 
Xbox360 IBM "Xenon" Triple 

Core 
19,200 / 3.2 6 2005 19200 0.2 23040 55 0.51 

10 AMD Athlon FX-60 (Dual Core)  18,938 / 2.6 7.3 2006 18938 0.17 22157 62 0.63 

11 Intel Core 2 Extreme X6800  27,079 / 2.93 9.2 2006 27079 0.21 32766 19 0.66 

12 Intel Core 2 Extreme QX6700  49,161 / 2.66 18.5 2006 49161 0.16 57027 22 0.6 

13 PS3 Cell BE (PPE only) 10,240 / 3.2 3.2 2006 10240 0.23 12595 45 0.94 

14 P.A. Semi PA6T-1682M 8,800 / 2.0 4.4 2007 8800 0.25 11000 11 0.75 

15 Intel Core 2 Extreme QX9770  59,455 / 3.2 18.6 2008 59455 0.17 69562 92 0.55 

16 Intel Core i7 Extreme 965EE  76,383 / 3.2 23.9 2008 76383 0.18 90132 11 0.65 

17 
AMD Phenom II X4 940 Black 

Edition  
42,820 / 3.0 14.3 2009 42820 0.15 49243 42 0.56 

18 AMD Phenom II X6 1090T  68,200 / 3.2 21.3 2010 68200 0.12 76384 77 0.91 

19 
Intel Core i7 Extreme Edition 
i980EE  

147,600 / 3.3 44.7 2010 147600 0.14 168264 29 0.71 

20 IBM 5.2-GHz z196  52,286 / 5.2 10.05 2010 52286 0.15 60129 66 0.69 

 

The energy consumption for task k on computer i,
i

kP , is 
1

][


 ii
k

i
ki

i
k SRCE


 and 

3
2

1 
i

i


  for 10  i . To calculate processor’s energy, we need to define constants C and 

  for each processor. Since i
i
ki bSa  and speed i

kS varies based on task, processor assigned 

and time constraint, we also need to define the minimum and maximum speed for each 

processor.  
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 The published CPU specifications define speed certified by manufacture. The CPU is 

most stable at this speed. A lot experiments have been done to improve their speed by 

overclocking. Overclocking consumes more energy. For our experiments, we use published 

speed as the processor’s minimum speed. We use a random number between 5% and 25% as the 

overclocking speed improvement to define the maximum speed for each processor (Table 7.3.2). 

We randomly generated constants C and   for each processor. To improve the quality of 

random number, we used public available true random number generating services (Random, 

Table 9.3  

Energy Consumption Comparison 

  
Gmax=500 Gmax=1000 Gmax=1500 Gmax=2000 

Cp Ct Ega Esga Ega-Esga Ega Esga Ega-Esga Ega Esga Ega-Esga Ega Esga Ega-Esga 

10 500 1.76E+20 1.37E+20 3.90E+19 1.36E+20 1.36E+20 4.90E+15 1.36E+20 1.36E+20 6.50E+15 1.36E+20 1.36E+20 4.51E+15 

10 1000 1.71E+21 9.76E+20 7.31E+20 6.39E+20 5.78E+20 6.05E+19 5.78E+20 5.78E+20 8.50E+16 5.78E+20 5.78E+20 1.46E+16 

10 1500 5.99E+21 3.89E+21 2.10E+21 2.01E+21 1.15E+21 8.59E+20 1.06E+21 9.19E+20 1.43E+20 9.20E+20 9.17E+20 2.10E+18 

10 2000 6.18E+21 4.59E+21 1.59E+21 2.10E+21 1.30E+21 8.00E+20 1.22E+21 7.44E+20 4.77E+20 7.85E+20 6.39E+20 1.46E+20 

10 3000 5.22E+21 3.82E+21 1.40E+21 2.31E+21 1.55E+21 7.51E+20 1.39E+21 9.05E+20 4.89E+20 9.34E+20 5.69E+20 3.65E+20 

10 5000 1.63E+22 1.23E+22 4.00E+21 7.11E+21 5.05E+21 2.06E+21 4.37E+21 2.91E+21 1.46E+21 3.16E+21 1.95E+21 1.21E+21 

20 500 4.62E+19 2.40E+19 2.22E+19 1.11E+19 4.30E+18 6.79E+18 3.85E+18 2.63E+18 1.22E+18 2.66E+18 2.58E+18 8.00E+16 

20 1000 1.40E+21 7.66E+20 6.29E+20 2.49E+20 1.07E+20 1.42E+20 8.43E+19 3.11E+19 5.32E+19 3.45E+19 1.40E+19 2.05E+19 

20 1500 1.73E+22 1.25E+22 4.81E+21 1.31E+21 6.75E+20 6.35E+20 3.52E+20 1.89E+20 1.63E+20 1.68E+20 6.96E+19 9.83E+19 

20 2000 1.79E+22 1.15E+22 6.41E+21 2.44E+21 1.22E+21 1.22E+21 7.30E+20 3.68E+20 3.61E+20 3.01E+20 1.48E+20 1.54E+20 

20 3000 4.58E+21 3.65E+21 9.28E+20 1.61E+21 1.28E+21 3.27E+20 7.94E+20 4.48E+20 3.46E+20 4.26E+20 2.07E+20 2.20E+20 

20 5000 1.65E+22 1.54E+22 1.17E+21 7.22E+21 6.15E+21 1.07E+21 3.74E+21 2.89E+21 8.56E+20 2.36E+21 1.53E+21 8.36E+20 

30 500 1.12E+19 5.23E+18 5.97E+18 3.06E+18 1.68E+18 1.37E+18 1.62E+18 1.09E+18 5.26E+17 1.16E+18 1.04E+18 1.24E+17 

30 1000 1.21E+20 7.27E+19 4.85E+19 3.44E+19 1.67E+19 1.76E+19 1.55E+19 7.38E+18 8.08E+18 8.65E+18 4.80E+18 3.85E+18 

30 1500 3.78E+20 2.47E+20 1.31E+20 1.10E+20 6.17E+19 4.85E+19 5.45E+19 2.71E+19 2.74E+19 2.98E+19 1.38E+19 1.60E+19 

30 2000 4.73E+20 3.25E+20 1.48E+20 1.52E+20 1.01E+20 5.17E+19 6.90E+19 3.44E+19 3.46E+19 3.97E+19 2.08E+19 1.89E+19 

30 3000 3.60E+20 2.81E+20 7.94E+19 1.61E+20 1.13E+20 4.82E+19 8.19E+19 4.83E+19 3.36E+19 4.88E+19 2.64E+19 2.24E+19 

30 5000 8.72E+20 7.07E+20 1.65E+20 5.06E+20 3.72E+20 1.35E+20 2.94E+20 2.13E+20 8.08E+19 1.83E+20 1.18E+20 6.44E+19 

40 500 5.23E+18 2.58E+18 2.65E+18 1.44E+18 5.98E+17 8.39E+17 6.11E+17 3.67E+17 2.44E+17 4.23E+17 3.24E+17 9.97E+16 

40 1000 6.01E+19 4.30E+19 1.71E+19 1.56E+19 7.44E+18 8.20E+18 6.76E+18 2.93E+18 3.83E+18 3.31E+18 1.73E+18 1.58E+18 

40 1500 2.08E+20 1.36E+20 7.28E+19 5.62E+19 3.14E+19 2.48E+19 2.47E+19 1.18E+19 1.29E+19 1.25E+19 5.80E+18 6.73E+18 

40 2000 2.31E+20 1.58E+20 7.36E+19 8.31E+19 5.01E+19 3.30E+19 3.52E+19 1.80E+19 1.71E+19 1.73E+19 8.61E+18 8.71E+18 

40 3000 1.71E+20 1.38E+20 3.22E+19 8.04E+19 5.30E+19 2.74E+19 3.96E+19 2.38E+19 1.58E+19 2.47E+19 1.12E+19 1.34E+19 

40 5000 3.75E+20 3.47E+20 2.85E+19 2.36E+20 1.76E+20 5.96E+19 1.54E+20 9.92E+19 5.46E+19 9.81E+19 5.95E+19 3.85E+19 

50 500 2.90E+18 1.30E+18 1.60E+18 7.67E+17 4.10E+17 3.58E+17 3.89E+17 2.49E+17 1.40E+17 2.75E+17 2.24E+17 5.15E+16 

50 1000 2.66E+19 1.61E+19 1.06E+19 7.09E+18 3.64E+18 3.45E+18 3.35E+18 1.61E+18 1.74E+18 1.93E+18 1.06E+18 8.74E+17 

50 1500 6.23E+19 4.26E+19 1.97E+19 1.99E+19 1.18E+19 8.18E+18 1.01E+19 5.02E+18 5.10E+18 5.94E+18 2.87E+18 3.07E+18 

50 2000 7.55E+19 5.53E+19 2.02E+19 2.67E+19 1.80E+19 8.74E+18 1.37E+19 7.01E+18 6.71E+18 7.65E+18 4.04E+18 3.62E+18 

50 3000 6.24E+19 4.85E+19 1.39E+19 2.94E+19 1.77E+19 1.18E+19 1.47E+19 8.73E+18 5.96E+18 9.73E+18 5.20E+18 4.53E+18 

50 5000 1.47E+20 1.34E+20 1.34E+19 8.20E+19 6.43E+19 1.77E+19 5.18E+19 3.54E+19 1.63E+19 3.63E+19 2.04E+19 1.59E+19 
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2010) instead of using C# library to generate pseudo random numbers. Table 3 list the minimum 

speed, overclocking improvement, maximum speed, constants C and  for each processor used 

in our experiments. 

We also used random number generate service (Random, 2010) to generate tasks’ 

instruction count for our experiments. We set the range of instruction count between 500 and 

100,000. 

Experiment cases were created using different combination of processor count and task 

count. Time constraint for each experiment case was randomly created first. It was validated to 

ensure that there are feasible solutions. Then, it was shortened to ensure not many processors can 

be idle in the optimal solutions. This was to avoid the situation that all tasks were assigned to a 

few high efficient processors. 

  The first test compared final solution quality between two algorithms. Table 9.3 

compares average energy consumptions under different maximum generation limits (Gmax). For 

each combination of CPU count (Cp) and task count (Ct), it lists GA energy consumption (Ega), 

SGA energy consumption (Esga), and there difference (Ega-Esga). Since the objective is to 

minimize energy usage, Ega-Esga greater than 0 states SGA is better than GA and vice versa. 

Table 9.3 shows for all the test cases and maximum generation limits, SGA used less energy than 

GA to complete the tasks. SGA achieved better solution than GA. 

Next, we conducted speed test between the two algorithms. For each test case, we used 

average energy consumption from above test as the stopping criteria. There is no generation 

limit. Algorithm only stops when solution is equal or better than the target energy usage. Table 

9.4 lists the testing result. It lists generations used (Gga, Gsga) and time used (Tga, Tsga). It also 

computes the difference (Gga-Gsga, Tga-Tsga). In this test, less generation and time used is 
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better. If Gga-Gsga or Tga-Tsga is greater than 0, SGA use less generation or time than GA. 

SGA is faster than GA to achieve the same result quality and vice versa. 

Table 9.4 

Speed Comparison 
    Generation  Time 

Cp Ct Gga Gsga Gga-Gsga Tga Tsga Tga-Tsga 

10 500 633 403 230 1.297 0.834 0.463 

10 1000 814 600 214 4.124 3.058 1.066 

10 1500 936 715 221 8.935 6.622 2.313 

10 2000 1001 717 284 14.571 10.745 3.826 

10 3000 1113 808 305 29.792 21.956 7.836 

10 5000 1022 805 217 68.884 54.008 14.876 

20 500 941 650 291 1.871 1.31 0.561 

20 1000 820 675 145 3.342 2.716 0.626 

20 1500 707 587 120 4.826 4.014 0.812 

20 2000 832 691 141 8.211 6.919 1.292 

20 3000 1058 837 221 19.544 16.187 3.357 

20 5000 1007 817 190 42.62 34.748 7.872 

30 500 967 634 333 1.755 1.182 0.573 

30 1000 943 685 258 3.308 2.53 0.778 

30 1500 962 755 207 5.337 4.171 1.166 

30 2000 1003 762 241 7.899 6.1 1.799 

30 3000 1084 832 252 13.893 10.435 3.458 

30 5000 1141 930 211 29.71 23.837 5.873 

40 500 965 652 313 1.876 1.292 0.584 

40 1000 961 733 228 3.195 2.396 0.799 

40 1500 965 742 223 4.673 3.791 0.882 

40 2000 1027 793 234 6.848 5.138 1.71 

40 3000 1131 849 282 12.402 9.776 2.626 

40 5000 1222 916 306 26.614 20.318 6.296 

50 500 964 613 351 1.973 1.292 0.681 

50 1000 948 688 260 2.962 2.158 0.804 

50 1500 1056 761 295 4.674 3.372 1.302 

50 2000 1009 807 202 5.829 4.62 1.209 

50 3000 1087 856 231 10.858 8.578 2.28 

50 5000 1179 919 260 21.367 16.899 4.468 

 

Since table 9.4 shows all values of Gga-Gsga and Tga-Tsga are greater than 0, GA used 

more time than SGA to find equivalent results. SGA is faster than GA to find targeted result. 

9.6 Experiments for P2 

  Similar to P1, we also conducted a comprehensive comparative study between GA and 

our new shadow price enhanced GA. Same set of testing data and environment was used. 
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Step 1 of the algorithm checks for the existence of a valid solution. Formula (9.8) and 

(9.8’) show that energy consumption is at the lowest level when the speed is minimized for a 

given processor. To check if a processor can complete the tasks with limited energy, we only 

need to test it at its lowest speed. To check existence of at least one valid solution, we test all 

tasks for each processor at its lowest speed and compare energy consumptions. If there is one 

processor consumes less than or equal to energy constraint, there is at least one valid solution 

exist for the problem. Otherwise, there is no feasible solution for the problem and algorithm 

aborts.  

We studied algorithms’ performance in two aspects, result quality and convergence 

speed. For result quality, we test algorithm with various test cases under fixed energy constraint 

and fixed generation of evolutions.  

Tables 9.5-9.9 show comparison test results between GA and SPGA. To make it easy to 

read, only the integer portion of data is displayed. The processor count ranges from 10 to 50. The 

task count R ranges from 500 to 5000. The max generation limits (Gmax) are 500, 1000, 1500, 

2000, 3000, and 5000. All combinations of task count R and generation limit Gmax are tested for 

each processor count setup. Each test case was run at least 10 times. Results were averaged and 

reported. The improvement percentages from SPGA optimal solution (Tspga) over GA optimal 

solutions (Tga) are reported in the tables. Since the objective is to minimize concurrent execution 

time, a positive number shows GA’s best solution takes long time than SPGA and SPGA’s result 

is better than GA.  Tables 9.5-9.9 show all positive results. SPGA best solutions used less 

execution time than GA best solutions in all test cases. SPGA reached better solutions than GA.  
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Table 9.5 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 10 Processors 

Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000 

500 44 25 15 8 5 1 

1000 85 56 30 22 12 2 

1500 84 76 51 37 19 8 

2000 74 78 71 50 27 13 

3000 57 70 77 75 45 24 

5000 23 58 68 72 76 50 

 

Table 9.6 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 20 Processors 

Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000 

500 76 58 49 39 28 26 

1000 69 79 70 60 55 41 

1500 57 79 79 74 62 49 

2000 49 78 81 80 73 56 

3000 42 70 76 80 79 67 

5000 31 56 69 75 78 77 

 

Table 9.7 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 30 Processors 

Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000 

500 88 75 61 49 25 18 

1000 90 86 79 72 54 36 

1500 85 90 86 80 68 53 

2000 81 87 90 86 82 68 

3000 69 82 88 89 88 79 

5000 46 76 82 86 90 86 

 

Table 9.8 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 40 Processors 

Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000 

500 81 67 56 45 31 39 

1000 81 83 74 68 60 53 

1500 76 85 84 79 73 61 

2000 70 83 87 85 80 66 

3000 58 79 84 86 86 74 

5000 43 71 79 82 85 85 
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Table 9.9 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 50 Processors 
Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000 

500 88 74 69 63 52 37 

1000 90 85 81 76 72 61 

1500 88 91 89 84 80 72 

2000 85 89 91 88 84 76 

3000 80 85 89 91 90 83 

5000 61 80 85 88 91 89 

 

To study algorithms’ convergence speed, we reran all test cases with same energy 

constraints. Instead of limiting max generations, we set a target fitness value for the algorithms. 

The search only stops when the best solution’s execution time meets the target value. The 

algorithm can take as much time or generations as needed to reach the target. Average execution 

times from above test cases were used as the target value. 

 

Table 9.10 SPGA Search Speed Improvement in Time(s), STga-STspga 

Pc R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000 

10 3 3 10 18 33 60 

20 3 8 12 15 36 52 

30 5 7 10 13 21 42 

40 6 8 12 17 31 43 

50 8 10 12 16 20 38 

 

Tests were run for each combination of processor count (Pc) and task count R. Each test 

was run at least ten times. Results were averaged and reported. Table 9.10 shows SPGA’s search 

time (STspga) savings over GA’s search time (STga), STga-STspga. A positive value shows GA 

takes longer time than SPGA to reach equivalent results. SPGA is faster with a positive value. 

Table 9.11 compares evolution generations used from GA (Gga) over SPGA (Gspga), Gga-Gspga. A 

positive value states that GA took more generations of evolution than the SPGA to reach targeted 

solutions.  Both tables show SPGA is faster than GA. Table 9.10 measures the speed in search 

time and Table 9.11 measures speed in evolution generations.  
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Table 9.11 SPGA Search Speed Improvement in Generations, Gga-Gspga 

Pc R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000 

10 791 538 783 845 782 407 

20 945 1471 1424 1157 1456 1012 

30 1154 1172 1273 1145 1115 1132 

40 1327 1256 1454 1489 1714 1331 

50 1479 1435 1365 1387 1193 1239 

 

All test data and studies showed that final schedules from SPGA used less time to 

complete all tasks than final schedules from GA. SPGA achieved better solutions than GA. 

SPGA also used less time and fewer generations of evolution than GA to reach optimal solutions. 

Overall, SPGA find better results than GA and faster than GA.  

9.7 Summary 

Green energy aware computing is one of the most active research fields. There are many 

complex and challenging topics. Energy aware task scheduling in a multiple heterogeneous 

processors environment is a typical problem,  

We applied our new shadow price guided GA to solve the energy aware task scheduling 

problems and achieved very good results. Experiments showed our new algorithm achieved 

better results than the standard GA and used less time.  

CHAPTER 10 OPTIMIZING THE STOCK REDUCTION PROBLEM WITH SGA 

10.1 Introduction 

In production, the CSP is directly linked to the stock assortment in the inventory. 

Increasing the number of different length stocks can reduce the waste from stock cutting. On the 

other hand, inventory incurs all kinds of expenses, such as stock cost, warehouse management, 

air conditioning, stock aging, etc. Efficient inventory management calls for simple stock 
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assortment and minimal stock on hand while still meeting production requirements with the least 

waste. 

It is an NP hard problem to choose the minimal stock mix and still maintains high trim 

efficiency with low waste. The parent is a Minimizing Stock Mix Problem (MSMP), and the 

children are CSPs. This general problem is commonly referred to as the Stock Reduction 

Problem (SRP). It is an integer combinatorial optimization problem and GA is a good choice to 

solve it. It can solve the parent’s integer combinatorial MSMP and the children CSPs with 

integer results. However, GA takes a long time to solve complex CSPs. Furthermore, it can be 

very time consuming to use an algorithm that nesting GA within another GA to solve the SRP.  

LP algorithms are efficient but limited to linear objective functions and best at non-

integer problems. GA has little restriction on the objective functions but may take a long time to 

converge. A hybrid algorithm merging GA and LP may combine their technical merits to 

generate satisfactory solutions.  

In most LP/GA hybrid algorithms, a divide and conquer strategy is used to separate the 

problem into sub problems. LP and GA solve sub problems separately based on their strengths. 

LP solves non-integer problems, and GA solves integer problems. These hybrid algorithms may 

not very efficient at solving the SRP since both the MSMP and the CSP are integer optimization 

problems.  

We propose a new hybrid algorithm that uses GA to solve the parent problem (MSMP), 

and combines LP and GA to solve the sub problems (CSPs). We use LP to improve GA’s 

performance and GA to improve LP’s integer results. Our test results have shown that our 

algorithm can solve the SRP effectively. 
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10.2 Problem Definition 

The goal of the SRP is to reduce inventory by minimizing the number of different stocks 

needed, i.e., simplifying stock assortment. To satisfy daily production requirements and lead-

time variability, a certain level of inventory for each stock-keeping unit (SKU) need to be 

maintained. It is called Safety Stock. It is very expensive to keep a large number of SKUs. 

Reducing SKUs is a method to lower inventory and cost. There are also other tangible benefits, 

such as easy management, easy inventory replenishment, etc. 

However, it is difficult to define the inventory cost or to measure the cost savings from 

the stock reduction. There are a lot of different costs in production, and not all of them are in the 

form of polynomial functions. For example, the space in owned warehouse is free and it is not 

free if the storage space is rented, warehouse temperature control indirectly links to the inventory 

level, en-route stock may or may not be included in the cost based on contract, etc. Most times, 

inventory cost is simply a part of the overall production costs. But there is one kind of cost that is 

concrete and directly linked to the stock reduction – the cost from trim loss. Reducing stock 

variety can lower trim efficiency (stock cutting efficiency) and produce more waste. Waste in 

production is directly linked to cost. Thus, we chose trim efficiency as the objective for the SRP.  

The SRP can be defined in two ways. One is to minimize the number of different stocks 

needed to satisfy demand while maximizing the trim efficiency. The other is to minimize the 

number of different stocks needed to satisfy demand while meeting a trim efficiency requirement 

- a threshold.  

The two definitions are different but an algorithm that solves the second problem can 

easily be used to solve the first. We can start with solving the CSP using all stocks and get the 

best trim efficiency. Then, the first problem can be transformed to the second problem by using 
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the previous result as the trim efficiency requirement. Solving this problem also provides the 

correct answer for the first problem. So, we use the second problem definition and define the 

fitness function as, 

Minimize LCSPf  *)(    (10.1) 
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EwhenE t
   (10.2) 

Where, S = number of different stocks used in solution, 

 L = total length of different stocks used in solution, 

E = trim efficiency, 

Et = trim efficiency threshold, 

C = constant. 

In the fitness function (10.1), P represents the trim efficiency status. It is less than 1 when 

the current solution meets the trim efficiency requirement. If there are multiple solutions that 

meet the requirement, P also states the preference for high trim efficiency (10.2). If the current 

solution does not meet the trim efficiency requirement, a big penalty of S (the number of 

different stocks used in this solution) is used. L is to signal the preference for shorter stocks when 

possible. Constant C is used to adjust the precision of the trim efficiency.  

10.3 LP/GA Hybrid Algorithm 

In our new hybrid algorithm (Shen & Zhang 2012-1), there are three sub algorithms: (1) 

GA based stock mix minimizing algorithm, (2) the rule-based chromosome preprocess 

algorithm, and (3) LP/GA combined cutting stock algorithm. 

The stock mix minimizing algorithm responsible for selecting subsets of minimal stocks 

to create sub CSPs and controlling the overall algorithm. It is based on the traditional GA. The 

first step is to ensure that there are feasible solutions. It solves the CSP with all available stocks 

and compares the trim efficiency with the threshold. The algorithm stops if there is no feasible 

solution (i.e., with all stocks available, the trim efficiency is still worse than the requirement). 



99 

 

Otherwise, it builds up the initial solution pool with random chromosomes. Then, it loops 

through generations of GA operations until the stopping criterion is met. The stopping criterion 

is that either the algorithm stops progressing or the max number of generations is reached.  

There are three mutation operators in our algorithm: removing one stock from the mix, 

adding one to the stock mix, and swapping one stock in the mix with an unused stock. The 

algorithm uses one of the three operators randomly.  

Begin 

1.  Build a CSP with all available stocks and solve it. If the solution's trim efficiency is worse than the threshold, the  

algorithm stops with no solution. 

2.  Build the initial solution population. 

2.1 Select a random subset of stocks. 

 2.2 Build a CSP using the stock subset. 

 2.3 Solve the CSP. 

2.4 Store the CSP and result in the solution repository. 

 2.5 Repeat steps 2.1 through 2.4 to fill the population. 

3.  Select a subset from current population and mutate. 

3.1 Select a solution from the subset. 

3.2 Extract the stock list from the solution. 

3.3 Randomly apply one of the following mutation operators to the stock list. 

  Add one stock to the list. 

  Remove one stock from the list. 

  Switch one stock from the list with an unused stock. 

 3.4 Create a new CSP using the new stock list. 

3.5 If the new CSP exists in the repository, goto step 3.1. 

3.6 Apply the preprocess algorithm to the new CSP. If it can derive the result, goto 3.1. 

 3.7 Solve the new CSP. 

 3.8 Store the CSP and result in the solution repository. 

 3.9 Repeat steps 3.1 through 3.8 for all solutions in the subset. 

4.  Generate random solutions. 

4.1 Select a random subset of stocks. 

4.2 Build a CSP using the stock subset. 

4.3 If the new CSP exists in the repository, goto step 4.1. 

4.4 Apply the preprocess algorithm to the new CSP. If it can derive the result, goto 4.1. 

4.5 Solve the CSP. 

4.6 Store the CSP and result in the solution repository. 

4.7 Repeat steps 4.1 through 4.6 to generate random solutions.  

5.  Add new solutions from steps 3 and 4 to the current population and sort the population based on solutions’ fitness 

values. 

6.  Select top solutions from the current population to create a new population for the next generation. 

7.  Repeat steps 3 through 6 till either algorithm stops progressing or max generation is met.  

8.  Select the best solution from the current population as the final solution. 

End 
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The rule-based chromosome preprocess algorithm trims the workload for the cutting 

stock algorithm. Based on previously solved problems, we can draw conclusions for certain new 

stock mixes quickly without actually solving the corresponding CSPs. For example, a stock mix 

will not meet the requirement if it is a subset of the stock mix from a previously solved CSP 

whose solution does not meet the trim efficiency requirement. The new CSP does not need to be 

solved. On the flip side, if a stock mix is a superset of the stock mix from a previously solved 

CSP whose solution meets the trim efficiency requirement, we can be sure that the new stock 

mix will meet the requirement and the new CSP does not need to be solved either. Both rules 

state that solving these new problems will not improve the fitness value and the solution. We can 

safely skip them to reduce the workload and speed up the algorithm. 

 Let’s assume that there are two solved problems with stock mix of (10, 20, 30) and (20, 

40). The first one does not meet the trim efficiency requirement and the second one does. If there 

is a new CSP with a stock mix of (10, 20), we do no need to solve it since (10,20) is a subset of 

(10, 20, 30). Indeed, if the CSP with (10, 20, 30) cannot satisfy the requirement, the new CSP 

with (10, 20) cannot either. If there is another new CSP with a stock mix of (20, 30, 40) which is 

a super set of (20, 40), we can just declare that it meets the requirement without actually solving 

it. Since the objective is to reduce the stock mix and the new CSP with (20, 30, 40) cannot 

improve the fitness value, we can safely discard it.  

Begin 

1.  Extract the stock list from the new CSP. 

2.  Search the solution repository for a CSP whose stock list contains the current stock list. 

3.  If a historical CSP is found and its result does not meet the threshold, return the historical CSP’s result and stop. 

4.  Search the solution repository for a CSP whose stock list is contained by the current stock list. 

5.  If a historical CSP is found and its result meets the threshold, return the historical CSP’s result and stop. 

6.  If no historical CSP can be found, return null result. 

End 
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The last one is the cutting stock algorithm. It is used to calculate the fitness function for 

each sub problem created by the above two algorithms. This algorithm is the key to the 

performance and the usability of our stock reduction algorithm. We use a sample problem (Table 

10.1) to illustrate our new algorithm. It is a real problem from paper industry. Table 10.2 lists the 

results of our ten runs using SGA to solve the problem. 

 

Table 10.1  

Sample CSP 

Available Stock Lengths 

816 832 848 864 880 896 912 928 944 960 

976 992 1008 1024 1040 1056 1072 1088 1104 1120 

1136 1152 1168 1184 1200 1216 1232 1248 1264 1280 

1296 1312 1328 1344 1360 1376 1392 1408 1424 1440 

1456 1472 1488 1504 1520 1536 1552 1568 1584   

 

Target Efficiency 0.99 

 

Item Length 404 408 473 527 545 576 584 585 597 604 

No. Required 58 159 105 7 76 1 226 7 42 20 

Item Length 606 636 690 780             

No. Required 62 20 9 284             

 

Table10.2  

GA Result of Sample CSP 

Run Time (s) Waste 

Efficienc

y 

1 3839 6387 0.9900 

2 1345 6323 0.9901 

3 1967 6339 0.9901 

4 2154 6387 0.9900 

5 1323 6355 0.9901 

6 2629 6371 0.9901 

7 1737 6307 0.9902 

8 1534 6291 0.9902 

9 1405 6387 0.9900 

10 2075 6067 0.9905 

Average 2001 6321 0.9901 
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Since the target trim efficiency for the sample problem is 0.99, GA stops when it reaches 

the target. It does not mean that 0.9905 is the best trim efficiency for this problem. If we remove 

the target or raise it, the average trim efficiency shall be better than 0.9901. But the real 

challenge is that GA took an average of 2001 seconds to solve the problem. That’s about 33 

minutes. The best time was 22 minutes and the worst time was 64 minutes. The algorithm was 

run on a powerful Apple Mac Pro Dual Xeon 2.66GHz Dual Core desktop with 6 GB Memory. 

There are mainly two reasons causing GA’s poor performance problem. There is a big 

quantity variance among the items, the smallest is 1 and the largest is 284. This kind of 

distribution prevents a good pattern from being reused multiple times and a lot more patterns 

have to be generated. The second reason is that the large number of different stocks greatly 

expands the number of possible patterns to evaluate. This is the intrinsic performance issue when 

applying GA to complex production problems.  

Table 10.3  

Result From Using the Gilmore and Gomory LP Algorithm 

Index Pattern 

Pattern 

length 

Stock 

Length Sets 

1 545,780 1325 1328 76 

2 408,584 992 992 89 

3 473,597 1070 1072 35 

4 606,780 1386 1392 19 

5 408,473,606 1487 1488 43 

6 408,473,604 1485 1488 20 

7 404,780 1184 1184 58 

8 780,780 1560 1568 50.5 

9 690,780 1470 1472 9 

10 585,597 1182 1184 7 

11 408,473,527 1408 1408 7 

12 576,780 1356 1360 1 

13 584,584 1168 1168 68.5 

14 636,780 1416 1424 20 

Efficiency 0.998247     

 

Apparently, using GA to solve the sub CSPs within the stock reduction algorithm is not 

feasible. With a large number of possible stock combinations and the sub CSPs created from 



103 

 

them, it will take days to solve a complex SRP. Let’s turn to LP. Table 10.3 shows the LP 

solution for the above problem. 

The Gilmore and Gomory’s LP algorithm achieved an efficiency of 0.998247 within 

0.421 seconds. However, pattern 8 and 13 have fractional sets of 50.5 and 68.5. As we 

mentioned above, the cutting stock is an integer problem and a half set cannot be produced. We 

can either round them down to 50 and 68 sets with shortages of one 780 and one 584, or round 

them both up to 51 and 69 sets with extras of one 780 and one 584. Neither solution meets the 

demand exactly. To satisfy the demand, we can round both sets down and add another new 

pattern that creates one 780 and one 584 to the solution. The closest stock length for this is 1376 

with a waste of 12. With the new pattern, the solution’s efficiency is 0.998234 (Table 10.4). 

Instead of adding a new stock to the solution, the stock with a length of 1392 from pattern 4 can 

also be used. The efficiency is 0.998209 using 1392 (Table 10.5). Both rounding methods 

introduce very little loss on the trim efficiency. 

 

Table 10.4 

 Convert LP Solutions to Integer Using Stock 1376 

Index Pattern 

Pattern 

length 

Stock 

Length Sets 

1 545,780 1325 1328 76 

2 408,584 992 992 89 

3 473,597 1070 1072 35 

4 606,780 1386 1392 19 

5 408,473,606 1487 1488 43 

6 408,473,604 1485 1488 20 

7 404,780 1184 1184 58 

8 780,780 1560 1568 50 

9 690,780 1470 1472 9 

10 585,597 1182 1184 7 

11 408,473,527 1408 1408 7 

12 576,780 1356 1360 1 

13 584,584 1168 1168 68 

14 636,780 1416 1424 20 

15 584,780 1364 1376 1 

Efficiency 0.998234     
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Table 10.5  

Convert LP Solutions to Integer Using Stock 1392 

Index Pattern 

Pattern 

length 

Stock 

Length Sets 

1 545,780 1325 1328 76 

2 408,584 992 992 89 

3 473,597 1070 1072 35 

4 606,780 1386 1392 19 

5 408,473,606 1487 1488 43 

6 408,473,604 1485 1488 20 

7 404,780 1184 1184 58 

8 780,780 1560 1568 50 

9 690,780 1470 1472 9 

10 585,597 1182 1184 7 

11 408,473,527 1408 1408 7 

12 576,780 1356 1360 1 

13 584,584 1168 1168 68 

14 636,780 1416 1424 20 

15 584,780 1364 1392 1 

Efficiency 0.998209     

In the above process, we first use LP algorithm to solve the CSP. Then, we round the 

fractional LP result to an integer solution and still maintain excellent trim efficiency. The 

rounded integer solution may not be the best solution, but it meets our trim efficiency 

requirement of 0.99 as well. 

The efficiency loss from the above process varies by problems and tends to be very small 

when there are a lot of sets. The Gilmore and Gomory’s LP algorithm uses a fix-sized matrix and 

the number of total patterns is limited by the number of different items in the problem. The 

maximum pattern count is 14 in the above example. If all patterns require fractional sets, we 

need 7 new patterns of 1 set each to meet the demand using the above approach. Since the 

available stocks space at 16, the most waste from each set is 16. The waste from these 7 new sets 

is 16x7=112. We also add in one half-length of the smallest stock if a new pattern only contains 

one item. The final total waste is    112+816/2=520. Dividing the total waste by the current total 

stock length of 634656, we have 0.0008. That is, our simple rounding routine only cost us about 

0.0008 on efficiency loss in the worst case. This is acceptable in most cases in production since 
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there are many other factors that can cause more trim loss. For large problems, the overall trim 

efficiency is dominated by the large integer sets and the impact from the fractional sets is very 

small.  

Our hybrid LP/GA cutting stock algorithm (Algorithm 10.3) is based on the above 

approach. LP is used first to solve the CSP with the stock mix defined from the previous two 

algorithms. 

Begin 

1. Solve the CSP using LP algorithm. 

2. If the solution does not meet the threshold, return the solution and stop. 

3. If the solution meets the threshold, round the solution into integer. 

4. If the integer solution meets the threshold, return the solution and stop. 

5. If the integer solution does not meet the threshold, solve the CSP using SGA. 

6. Return the result from SGA. 

End 
 

Algorithm 10.3 

 

If the LP result does not meet the targeted trim efficiency requirement, the sub problem is 

declared unsolvable with the current stock mix. A large value is assigned to the fitness function 

as a penalty. If the LP result meets the trim efficiency requirement, we use the above-mentioned 

rounding process to get an integer solution. We round down the solution to integer sets and use a 

local optimizer to find the best patterns to complete the solution. If the converted integer solution 

meets the efficiency requirement, we declare the problem is solved with success and the current 

stock mix can satisfy the required trim efficiency. Otherwise, we start SGA to solve the problem 

and seed it with the integer solution converted from the LP solution. The result from SGA is the 

final answer for the current problem. 

In summary, we use GA as the main algorithm to drive the hybrid LP/GA algorithm. GA 

creates a series of sub CSPs with different stock mixes, the rule based preprocessor trims down 

the search space, and finally the hybrid LP/GA algorithm solves the CSPs. 
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10.4 Experiments 

To evaluate our proposed new algorithm, we first conducted a comparison study. We 

coded our algorithm and a pure GA based algorithm in Microsoft C#. The pure GA based 

algorithm used preprocesses algorithm and SGA (from section 7.2) to solve the CSPs. Both 

algorithms were run on an Apple Mac Pro Dual Xeon 2.66GHz Dual Core desktop with 6 GB 

Memory and Windows XP on VMware. The test problems were created based on an expanded 

version of Liang et al. (2002)’s problem 9. Each problem was run 10 times by each algorithm. 

Results were averaged and reported. 

Table 10.6  

Comparison Study on Item Variations 
Problem Pure GA Algorithm Our New Algorithm 

Name 

Total 

Stock 

Count 

Width 

Count 

Item 

Count Time (s) Efficiency Waste Time (s) Efficiency Waste 

base 10 36 400 1030 0.9954 164 53 0.9954 164 

b12i  10 43 480 950 0.9951 199 50 0.9959 164 

b14i  10 50 560 764 0.9946 250 2 0.9967 150 

b16i  10 57 640 1419 0.9940 320 22 0.9977 120 

b18i  10 64 717 1567 0.9926 461 85 0.9947 331 

b20i  10 72 800 3073 0.9915 618 115 0.9946 391 

Table 10.7  

Comparison Study on Stock Count Variations 
Problem Pure GA Algorithm Our New Algorithm 

Name 

Total 

Stock 

Count 

Width 

Count 

Item 

Count Time (s) Efficiency Waste Time (s) Efficiency Waste 

base 10 36 400 1030 0.9954 164 53 0.9954 164 

b12s  12 36 400 1681 0.9954 164 53 0.9955 162 

b14s  14 36 400 2562 0.9954 164 104 0.9951 176 

b16s  16 36 400 3935 0.9951 176 136 0.9951 176 

b18s  18 36 400 4366 0.9954 164 98 0.9947 189.5 

b20s  20 36 400 4516 0.9951 176 91 0.9958 149 

 

Table 10.6 shows the performance comparison between the two algorithms when the 

problem item count was changed. From Liang et al.’s base problem, we created subsequent 

problems by increasing the width count and the item count by a factor of 20% to upsize the 
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problem. Table 10.7 shows the performance comparison when we add more stock lengths to the 

problem. Both comparisons concluded that our hybrid algorithm was much faster than the pure 

GA approach while still maintains good trim efficiency. They also showed that our hybrid 

algorithm was more effective and efficient for bigger and more complex problems. 

We further tested our new algorithm on 12 real production problems (Table 10.8). It took 

our algorithm from a few minutes up to 45 minutes to solve a problem with good trim efficiency. 

The pure GA approach would have taken a very long time to solve these problems and it may not 

be acceptable in industry.  

Table 10.8  

Production Problem Run Result 

Nam

e 

Total 

Stock 

Count 

Width 

Count 

Item 

Count Time (s) Efficiency Waste 

s1 49 14 1076 792.8 0.9916 5353.4 

s2 49 27 4502 367.1 0.9942 11058.4 

s3 49 38 24184 198.1 0.9994 6226.6 

s4 49 119 29438 975.3 0.9999 953.6 

s5 49 44 17441 180.2 0.9971 20737.6 

s6 49 59 8948 254 0.9982 7057 

s7 49 94 41598 566.8 0.9993 13163.8 

s8 49 49 32958 171.8 0.9949 72739 

s9 49 71 19307 561.1 0.9998 1593.4 

s10 49 142 49869 2656.3 0.9998 5311.6 

s11 49 46 17638 528.2 0.9979 17631.8 

s12 49 51 21083 1532.2 0.9966 33655 

 

10.5 Summary 

In this study, we created a hybrid algorithm to solve very complex nested optimization 

problem. We used SGA and improved the fitness function calculation performance. 

To solve the SRP, we use GA to solve the stock mix selection and the minimizing 

problem. We design a rule-based preprocessor to trim the search space, and then apply the hybrid 
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SGA/LP to solve the CSPs. Our experiments have shown that the new hybrid algorithm is 

efficient and practicable for solving real complex industrial problems effectively. 

Traditional hybrid methods use GA and LP to solve different sub problems separately. 

Our new hybrid algorithm uses both GA and LP to solve the same problem. We Guided GA with 

shadow price information. SGA provides good optimization results, and LP ensures fast 

convergence. Our hybrid algorithm can solve the complex SRPs effectively.  
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CHAPTER 11 CONCLUSION AND FUTURE WORK 

11.1 Conclusion 

In this dissertation, a shadow price Guided two-measurement enabled genetic algorithm 

is proposed. It targets the GA’s performance challenge. The new algorithm’s improvements in 

both solution quality and search speed were proven in the experiments. 

The proposed shadow price concept complements the fitness evaluation in the GA’s 

search process. There are two entities in the GA search process, solution (chromosome) and 

components (genes). Fitness values are used to compare and filter solutions. Shadow prices are 

used to compare and select components in the search process. Together, they constitute the 

proposed two-measurement GA. 

The key of our approach is to use shadow price to compare components to further 

improve GA. We define the shadow price as the relative potential improvement to the solution’s 

fitness value with a change of a component. The fitness value represents the current solution’s 

position in the search space. The shadow prices represent potential improvements and directions 

to evolve.  

In the proposed shadow price guided GA, many better solutions are generated under the 

guidance of shadow price. This reduces the amount of unnecessary calculation and speed up the 

search process. It also enabled SGA to produce better result. 

In the traveling salesman problem experiment, shadow price defines potential 

improvement from a component’s change. In the cutting stock problem experiment, shadow 

price is the cost of the material and directly used to generate better patterns. Procedure embedded 

shadow price in green computing clearly defines the search direction. Stock reduction problem 

experiment blends new SGA with LP to improve the fitness evaluation performance.  
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Theory analysis and all experiments proved the effectiveness of our proposed concept of 

the shadow price guided two-measurement enabled genetic algorithm. 

11.2 Future Work 

Our proposed shadow price guided GA has speed up the search process and improved the 

search result. Due to the fact that GA is a population based search technique, there are a lot of 

calculations in the search algorithm. It needs continuous improvement. 

In the CSP experiments, we used shadow price to directly generate next better solutions. 

We find this is much superior than simply give the directions to search. We shall investment 

more effort to further research using shadow price to generate better solutions directly.  

The other area that we like to further study is the nested optimization problems where the 

objective function is an optimization problem itself. This kind of objective function put extra 

stress on the search engine’s calculation workload. Our research is the continuation of the hybrid 

approach used in the stock reduction problem. We shall find more methods to further improve 

the convergence speed. 
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