
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Spring 3-9-2012

Shadow Price Guided Genetic Algorithms
Gang Shen
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Shen, Gang, "Shadow Price Guided Genetic Algorithms." Dissertation, Georgia State University, 2012.
https://scholarworks.gsu.edu/cs_diss/64

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

SHADOW PRICE GUIDED GENETIC ALGORITHMS

by

GANG SHEN

Under the Direction of Yan-Qing Zhang

ABSTRACT

The Genetic Algorithm (GA) is a popular global search algorithm. Although it has been used

successfully in many fields, there are still performance challenges that prevent GA’s further

success. The performance challenges include: difficult to reach optimal solutions for complex

problems and take a very long time to solve difficult problems. This dissertation is to research

new ways to improve GA’s performance on solution quality and convergence speed. The main

focus is to present the concept of shadow price and propose a two-measurement GA. The new

algorithm uses the fitness value to measure solutions and shadow price to evaluate components.

New shadow price Guided operators are used to achieve good measurable evolutions. Simulation

results have shown that the new shadow price Guided genetic algorithm (SGA) is effective in

terms of performance and efficient in terms of speed.

INDEX WORDS: Genetic algorithm, Shadow price, Optimization, Performance, Hybrid

Algorithm, Linear programming, Heuristic algorithm, k-opt, Traveling salesman problem,

Cutting stock problem, Stock reduction problem, Cloud computing, Green computing

SHADOW PRICE GUIDED GENETIC ALGORITHMS

by

GANG SHEN

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2012

Copyright by

Gang Shen

2012

SHADOW PRICE GUIDED GENETIC ALGORITHMS

by

GANG SHEN

Committee Chair: Yan-Qing Zhang

Committee: Raj Sunderraman

 YingShu Li

 Yichuan Zhao

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2012

iv

ACKNOWLEDGMENTS

I thank my advisor, Dr. Yan-Qing Zhang, for his guidance and help for my Ph.D. study. I truly

appreciate the time and patience he spend helping me completing the program in research,

publishing, and dissertation work. I also thank Dr. Rajshekhar Sunderraman for advising

throughout my study and being a member of dissertation committee. I am grateful for Dr.

Yichuan Zhao and Dr. YingShu Li’s review and suggestion of my research work.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 IMPORTANCE OF THE RESEARCH 4

CHAPTER 3 GENETIC ALGORITHM 6

3.1 Principles of Genetic Algorithm 6

3.2 Opportunities 11

CHAPTER 4 RELATED WORK 13

4.1 Transforming Problem 13

4.2 Improving GA Operators 14

4.3 Adding Local Search 15

4.4 Hybriding with Other Algorithms 17

4.5 Using Parallel Processing 19

4.6 Miscellaneous Approaches 25

CHAPTER 5 DUALITY AND SHADOW PRICE in LINEAR PROGRAMMING 27

5.1 Definition 27

5.2 Shadow Prices in Linear Programming 29

CHAPTER 6 SHADOW PRICE GUIDED GENETIC ALGODITHM 32

vi

6.1 The Concept 32

6.2 A Simple Example 34

6.3 Define Shadow Price 38

6.4 The Complete Algorithm 40

CHAPTER 7 OPTIMIZING THE TRAVELING SALESMAN PROBLEM WITH SGA 42

7.1 Introduction 42

7.2 Problem Definition 42

7.3 Shadow Price Definition 43

7.4 Shadow Price Guided Mutation Operator 45

7.5 Shadow Price Guided Crossover Operator 46

7.6 Solution Validation 46

7.7 Other Techniques 48

7.8 Experiments 49

7.9 Summary 50

CHAPTER 8 OPTIMIZING THE CUTTING STOCK PROBLEM WITH SGA 51

8.1 Introduction 51

8.2 Problem Definition 52

8.3 Basic Terminologies 54

8.4 Shadow Price Definition 55

8.5 Shadow Price Guided Mutation Operator 56

8.6 Shadow Price Guided Crossover Operator 58

8.7 Experiments 59

8.8 Results Analysis 69

8.9 Production Consideration 71

8.10 Summary 73

vii

CHAPTER 9 OPTIMIZING THE GREEN COMPUTING PROBLEMS WITH SGA 73

9.1 Introduction 73

9.2 Problem Definition 76

9.3 Shadow Price Guided GA Operator for P1 80

9.4 Shadow Price Guided GA Operator for P2 82

9.5 Experiments for P1 87

9.6 Experiments for P2 91

9.7 Summary 95

CHAPTER 10 OPTIMIZING THE STOCK REDUCTION PROBLEM WITH SGA 95

10.1 Introduction 95

10.2 Problem Definition 97

10.3 LP/GA Hybrid Algorithm 98

10.4 Experiments 106

10.5 Summary 107

CHAPTER 11 CONCLUSION AND FUTURE WORK 109

11.1 Conclusion 109

11.2 Future Work 110

REFERENCES 111

viii

LIST OF TABLES

Table 6.1 Simulation results 37

Table 6.2 Distribution of the Number of Generations 38

Table 6.3 Distribution of the Fitness Values 39

Table 7.1 Distance Matrix for gr17.tsp 44

Table 7.2 Comparison with the Ray, Bandyopadhyay, and Pal (2004) 49

Table 7.3 Comparison with the Zhong, Zhang, and Chen 50

Table 7.4 Comparison with the Wong, Low, and Chong (2008) 50

Table 8.1 Test results for the CSP with multiple stock lengths 53

Table 8.2 Test results for the CSP with single stock length 53

Table 8.3 Sample problem, the stock length is 14 54

Table 8.4 Test case summary 63

Table 8.5 Mean Fitness Value Comparison 63

Table 8.6 Total Waste Comparison 65

Table 8.7 Number of Stocks with Waste Comparison 66

Table 8.8 Speed Comparison 68

Table 8.9 Mean fitness value and number of stocks used 72

Table 8.10 Total waste, number of stocks with waste, and distinct pattern count 72

Table 9.1 A Sample Task Schedule 77

Table 9.2 Published Processor Specification 88

Table 9.3 Energy Consumption Comparison 89

Table 9.4 Speed Comparison 91

ix

Table 9.5 SPGA Time Improvement over GA for 10 Processors 93

Table 9.6 SPGA Time Improvement over GA for 20 Processors 93

Table 9.7 SPGA Time Improvement over GA for 30 Processors 93

Table 9.8 SPGA Time Improvement over GA for 40 Processors 93

Table 9.9 SPGA Time Improvement over GA for 50 Processors 94

Table 9.10 SPGA Search Speed Improvement in Time(s) 94

Table 9.11 SPGA Search Speed Improvement in Generations 94

Table 10.1 Sample CSP 101

Table 10.2 GA Result of Sample CSP 101

Table 10.3 Result from Using the Gilmore and Gomory LP Algorithm 102

Table 10.4 Convert LP Solutions to Integer Using Stock 1376 103

Table 10.5 Convert LP Solutions to Integer Using Stock 1392 103

Table 10.6 Comparison Study on Item Variations 106

Table 10.7 Comparison Study on Stock Count Variations 106

Table 10.8 Production Problem Run Result 107

x

LIST OF FIGURES

Figure 3.1 Genetic Algorithm 10

Figure 5.1 Gilmore and Gomory LP Algorithm 31

Figure 6.1 New GA Framework with Shadow Price Guided Operators 40

Figure 7.1 A Sample Tour 47

Figure 7.2 Result from Mutation 48

Figure 8.1 Algorithm B’s mutation operator 60

Figure 8.2 Algorithm C’s mutation operator 61

Figure 8.3 Algorithm D’s mutation operator 62

Figure 8.4 Average Mean Fitness Value Comparison 64

Figure 8.5 Maximum Mean Fitness Value Comparison 64

Figure 8.6 Average Total Waste Comparison 65

Figure 8.7 Minimum Total Waste Comparison 66

Figure 8.8 Average Number of Stocks with Waste Comparison 67

Figure 8.9 Minimum Number of Stocks with Waste Comparison 67

Figure 8.10 Best Solution Found Generation Comparison 68

Figure 8.11 Time(s) Comparison 69

xi

LIST OF ABBREVIATIONS

Adaptive Hill-Climbing Crossover Local Search AHCXLS

Ant Colony Optimization ACO

Bee Colony Optimization BCO

Cutting Stock Problem CSP

Discrete Particle Swarm Optimization DPSO

Evolutionary Algorithm EA

Field Programmable Gate Array FPGA

Genetic Algorithm GA

Group Crossover BPCX

Infeasibility Driven Evolutionary Algorithm IDEA

Integer Linear Programming ILP

KiloWatt-Hours kWh

Linear Programming LP

Million Instructions Per Second MIPS

Minimizing Stock Mix Problem MSMP

Mixed Integer Linear Programming MILP

Mixed Integer Programming MIP

Neural Network NN

Parallel Genetic Algorithm PGA

Particle Swarm Optimization PSO

Shadow Price Guided GA SGA

Simulated Annealing SA

xii

Stock Reduction Problem SRP

System on a Programmable Chip SOPC

Traveling Salesman Problem TSP

Uniform Grouping Crossover UGCX

1

CHAPTER 1 INTRODUCTION

Optimization is to search for the best solution from a domain of feasible solutions. In the

simplest form, it is to find the minimal or maximal value of a function while satisfying a set of

constraints. It is a process of searching for the best solutions using certain algorithms and

techniques. One most cited example of optimization is to find the best way to achieve maximum

profits utilizing limited resources.

Integer optimization is a special branch of general optimization that requires integer

solutions for the problem. This constraint only limits the final result in integer and does not pose

integer requirement to intermediate solutions. Thus, the intermediate solution can be in integer or

real. This constraint is often modeled from real life problems. For example, job scheduling is an

integer optimization problem; product can only be produced in integer units.

Other complicated constraints in optimizations include, complex objective functions,

multiple objectives optimization, etc. Objective functions can be linear, polynomial, table

lookup, etc. There can be multiple objective functions to be optimized in the same time.

Linear programming (LP) is the classic optimization algorithm. It is very efficient and

widely used in production especially for large complex linear optimization problems. But it is

limited to linear objective functions and constrains. The general LP results are in fractions.

Integer linear programming (ILP) and Mixed Integer Linear Programming (MIP) are special

cases of LP that provide integer solutions. Although they can solve many practical problems, ILP

and MIP are less efficient than LP and difficult to solve. Both ILP and MIP are extensions of

classic LP. They typically follow classic LP technique and add additional steps, algorithms (such

as branch and bound, cutting plane method, etc.) to produce integer solutions. Fractions are

2

commonly used in the algorithms’ intermediate solutions and these fractional intermediate

solutions are not valid solutions.

Genetic Algorithm (GA) (John Holland, 1975, 1992) is a bio-inspired global search

algorithm that mimics nature’s evolution process. It is a multi-point, reward-based search

algorithm. In the search process, there are multiple valid solutions evolving forward together.

The reward-based search refers to the fact that only elite solutions participating next generation’s

evolution. It’s an integer intrinsic search process that fits integer optimization problem very well.

Unlike invalid fractional intermediate solutions in the LP search process, every solution in GA’s

search process are valid integer solutions although they may not be the optimal solutions. The

reward-based approach also suits for multi-objective optimizations since the elitism only requires

comparing the objective function regardless the function is linear or non-linear.

GA has been used successfully in many fields. Recent survey suggests that at least thirty-

six human-competitive results were produced by genetic programming (Koza et al. 2005). It is a

very straightforward algorithm and can be implemented rather quickly.

 The challenges for GA’s performances are solution quality and search time. These two

concerns impede the practical applications of the algorithm. GA is a population based search

algorithm and there are many solutions in each generation. Solutions in the generation need to be

involved in one or more evolution operations in each generation to move forward. Based on the

size of the population, huge amount of calculation may be needed for each generation.

Compound with necessary randomness in the search process, GA can take very long time to find

optimal solutions.

Furthermore, GA may not always provide the optimal solutions. GA generally depends

on generations of evolution to move the solution forward. The most common stopping criterion

3

is to limit the maximum number of generations, maximum allowed searching time, or solution

reaches acceptable quality. GA cannot prove the final solution is optimal or not. So, there is

certain randomness in the quality of the final solutions.

My research focuses on improving GA’s performance in both solution quality and search

speed. GA only measures the solution fitness value. The evolution operators are mostly

randomly applied since there is no measurement on the components. I propose using the

“Shadow Price” concept to measure the components of the solution in the GA search process. I

can improve GA operators using the shadow price. Thus, I establish a two-measurement GA.

The fitness value is used to measure solution and the shadow price is used to measure component

within a solution. I will propose the theory and use it to solve several classic NP hard problems.

4

CHAPTER 2 IMPORTANCE OF THE RESEARCH

There are tremendous social and economic values in finding optimal solutions. The value

of best utilizing limited resources to maximize social benefit can be seen in daily life or in the

event of disaster. For example, it is very important to most efficiently use limited transportation

equipment and crew to move stranded passengers in the event of large-scale flight interruption

such as that caused by volcano eruptions, terrorist attacks, etc.

 Significant economic value of optimization is everywhere. For example, trimming rolls

for paper machine is a typical optimization problem and referred as the cutting stock problem

(CSP). The goal is to improve trim efficiency. A 300 inch wide paper machine can produce half

million tons of medium weight paper a year. If the price is 600 dollars per ton, the total value of

the paper is 300 million dollars. A one percent trim efficiency improvement is equivalent to 3

million dollars a year for this machine. In a paper box plant, trimming corrugator is another CSP

and the trim efficiency improvement worth even more since it trims multiple layers of paper. For

a medium sized paper product company that operates multiple paper machines and paper box

plants, a minor trim efficiency improvement has hug economic impact.

GA is a new global optimization search method that has been used successfully in many

fields (Koza, Keane, Streeter, Mydlowec, Yu, & Lanza, 2005). Comparing to other complex

optimization algorithms such as LP, GA can be used quickly to model the problem and solve it

with excellent results. It does not add many constraints to the problem.

However, the performance that includes both the solution quality and convergence speed

limits GA’s further success in many fields. To reach optimal or near optimal solutions, GA needs

many generations of evolution and takes much more time than other algorithms such as LP based

algorithms. GA’s performance is acceptable in many situations, such as static job scheduling,

5

airline flight and crew scheduling, pre-production forecasting, post-production analysis, etc. In

other areas where real time or near real time optimization is need, such as real time job

scheduling, flight position control, production adjustment, etc., GA’s performance may not be

acceptable.

With the guidance from my advisors, I search for ways to improve GA’s performance. I

mainly focus on establish a secondary measurement that applies to components of the solution.

The secondary measurement acts as a complement to the solution’s fitness value measurement.

This new component measurement can improve GA operators and greatly improve GA’s

performance.

6

CHAPTER 3 GENETIC ALGORITHM

3.1 Principles of Genetic Algorithm

GA (Figure 3.1) is a reward based multi solution search algorithm. It is a branch of bio

inspired evolutionary algorithm (EA). Comparing to other single solution search algorithms such

as LP, k-opt algorithm, etc., there are multiple feasible solutions concurrently evolve toward the

best solution in the GA search process. The multiple generation search process ensures GA a

global search algorithm.

There are generally four major phases in the GA search process, initialization, evolution,

selection, and termination.

In the initialization phase, a startup solution population is created. Random generating

initial solutions are commonly used. All solutions in the population have to be feasible. The

population varies based on the problem to be solved and computing power available. It can be

range from 10s to hundreds or thousands. The initial solution shall spread out in the search space.

The more diverse the initial solutions, the better performance GA can achieve since it ensures

global search.

The evolution phase evolves current generation forward. The goal is to generate new

solutions based on current available solutions and hopefully the newly generated solutions are

better than current ones. There are two major methods to generate new solutions, binary operator

crossover and unary operator mutation.

The crossover operator mimics parents producing child in nature. Two solutions are

selected from the current generation’s solution pool and function as the “parents” to breed. Based

on problem domain, a breeding method is used to create the “child” solution. The child solution

inherits certain attributes from both parents. Typical, a certain sub population is selected to

7

participate the crossover operation. There are multiple ways to selection parents. The general

goal is to create a child solution that poses good characteristics of both parents and better than

both parents.

To generate a new solution, the unary mutation operator modifies the state(s) of one or a

small number of components of an existing solution. Most time, the newly generated solution is

much different than the original solution and may not even be a valid solution. Based on the

problem, the mutation operator may or may not generate a better solution. But it is a very

important operator that functions as an insurance of a global search. That is, it can bring search

to an area of search space that has not been visited before. It is especially important when GA

search stuck to a local optimal solution. In this case, mutation operator can lead search to another

area and effectively breaks the local trap. There are many methods to select which solution to

mutate and which component(s) to mutate.

Aside from mutation and crossover operators, several new solutions are randomly

generated in the evolution process in general as well. This is to further broaden the search space

and serves as an extra insurance of a global search.

After evolution phase generates enough new solutions, selection phase evaluates each

solution and select good solutions to create the next generation to continue evolution. It is also

called elitism. A fitness function is typically used to evaluate and compare solutions. Based on

different problem, the fitness function can be a simple linear function, a polynomial function, a

table look up, or a very complex optimization problem itself. As one of the stopping criteria in

general, this fitness function is also used to measure whether solutions meet predefined threshold

or not. There are many different approaches to select candidate solutions to participate next

8

generation. Selecting good solutions can ensure search towards optimal solutions. Selecting

random solution ensures global search and avoid local optimal trap.

The termination phase evaluates the “goodness” of current solutions and decides whether

continue to evolve or stop. Since the optimal solution(s) is unknown for most problems,

predefined acceptable solution (defined by fitness function) can be used as one terminating

criterion. Maximum number of generations or maximum allowed time is also commonly used as

stopping criteria. Search progress is another barometer to evaluate GA’s searching process. It

can be measured by x progress in y generations. Combination of criteria or single criterion can

be used as the termination condition for search. After search stops, the best solution represents

the current search result. It can be optimal or near optimal based on the stopping criteria.

Random selection is used throughout the GA algorithm. It is used to select solution

participating mutation operation, crossover operation, or to participating next generation’s

evolution. There are two classic random selection method, roulette wheel and tournament.

In the roulette wheel selection, each candidate is assigned a probability of getting

selected. The sum of all candidates’ probabilities is equal to one. The probability of a solution is

related to its attribute(s). The fitness value can be a good choice. Obviously, solution with a large

probability has a better chance to be selected. The solution with small probability has a less

chance to be selected but still can be selected.

The tournament selection conducts one stage or multi stage tournament. It starts with

randomly organize candidates into groups. Within each group, a winning candidate is selected

based on probabilities assigned to the candidates. One way (Tournament Selection, 2010) is to

assign the best candidate a probability of p, the second best is assigned to p(1-p), the third best is

assigned to p(1-p)
2
, etc. Roulette wheel selection can also be used here. Winners from each

9

group are random grouped again for next stage tournament. The process repeats until desired

number of candidates are selected.

In summary, there are three GA operators that produce new solutions in the evolution

phase. They are mutation, crossover, and randomize. The mutation operator changes the state of

a component of a solution to move it closer to the optimal solution. The crossover operator tries

to create a better new solution from two existing solutions. Randomize operator introduces new

solutions. The initialization phase builds up the initial feasible solution pool to start off the

search process. The selection phase creates new generation of solutions to evolve forward from

current all available solutions. The termination phase ends the search process when predefined

criteria are met.

10

Start

Stop

Yes

No

Evolution

Mutation

Pick a solution to mutate

Mutate the solution

Adjust solution to a feasible solution

Add the new solution to the

population

Repeat for n times

Crossover

Pick two solutions to crossover

Create a new solution from parent

solutions

Adjust solution to a feasible solution

Add the new solution to the

population

Repeat for m times

Randomize

Create a random new solution

Add the new solution to the

population

Repeat for k times

Initialization

Populate solution set with random

feasible solutions

Termination

Is stopping criteria met ?

Selection

Select solutions to create next

generation

Yes

No

Figure 3.1 Genetic Algorithm

11

3.2 Opportunities

 The main challenge that prevents GA’s further success is its performance issue. This

includes solution quality and search speed.

Randomness is used throughout the search process, such as building up the initial

solutions, choosing candidates to apply mutation or crossover operations, selecting solutions to

form next generations. It is also used in the GA operators. Mutation operator randomly selects a

component to mutate and mutate to a random state. Crossover operator randomly selects one or

many crossover point(s) to create new solution. All these randomness guides GA to randomly

select one or more solutions to evolve and move them to random state. The GA does not have a

uniformed search direction. It searches multiple directions in the same time. The selection

ensures GA search moving towards optimal solutions since better solutions are added into

generations to further evolve. It moves solution population closer to optimal solutions from

generation to generations in general.

Randomness is absolutely necessary to GA. It ensures GA a global search algorithm and

avoid local optimal trap. But it also slows down the search process since randomness can lead

search to all directions and cause many unnecessary searches. In the worst case, the randomness

can stall the search process and leads to sub optimal solutions, or visits all viable solutions.

There is a large amount of calculation in the GA search process. Within each generation

of search, each individual solution has to go through the process of inspection, evolution

operation, fitness value evaluation, and selection. It really takes much more time to process all

solutions in a generation than other single solution search algorithms such as heuristic, LP, etc.

Multiplying by many generations of evolution (synchronized or desynchronized), the total

calculation amount is very large. Parallel computing techniques can certainly help. But for large

12

complex GA search problems, where there are thousands of solutions in each generation and

search for thousands of generations, modern parallel computing techniques still cannot make

decisive impacts.

The other time consuming effort in the GA search process is the fitness function

calculation. For a simple problem, the fitness function can be a polynomial function which

calculation is rather straightforward and quick. However, the fitness function can be quite

complex in certain cases. For example, the fitness function can be a complicated matrix

operation or an optimization problem itself. Although GA poses little constraint on the

optimization problem, complex fitness function can add significant search time for complex

problem since the fitness function has to be calculated for all solutions.

Because GA takes long time to search, time constraint and/or generation constraint are

typically used as the stopping criteria. The idea is to get the best answer, which may not be the

optimal solution, within an acceptable time frame. This is the consequence from the GA’s slow

search speed. GA can stop searching prematurely and provide inferior result. The solution

quality is suffered due to the search speed issue.

13

CHAPTER 4 RELATED WORK

Since its introduction, much work has been dedicated to study GA’s performance.

Ishibuchi, Nojima, and Tsutomu (2006) studied the performance between single-objective GA

and multi-objective GA. Using multi-objective knapsack problem, they demonstrated that multi-

objective GA outperformed single-objective GA for low count of objectives problem. This is

because multi-objective GA can easily move away from local optimal. But when the objective

count increases, the multi-objective GA became less efficient. Simoncini, Collard, Verel, and

Clergue (2007) studied the impact of selection pressure to the performance of GA. They

confirmed that the selection pressure influence the GA performance using the anisotropic

selection and the stochastic tournament selection. More accurately compare and measure GA’s

performance has also been studied (Ang, Chong, & Li, 2002; Deng, Huang, & Tang, 2007).

Various innovations have been applied to GA to improve its performance. These

approaches can be roughly categorized as 1) transforming problem, 2) improving GA operators,

3) adding local search, 4) hybriding with other algorithms, 5) using parallel processing, and 6)

miscellaneous approaches.

4.1 Transforming Problem

Divide and conquer has long been used to solve complex problems. The idea is to divide

a large complex problem into smaller simpler problems. After solving each individual smaller

problem, results are combined to get the final solution. Zhang and Li (2007) applied the divide

and conquer theory into the EA. They decomposed the multi-objective optimization problem into

related scalar optimization sub problems. The scalar simpler sub problems are optimized

simultaneously and results from them are combined as the final solution. By decomposing, the

14

computation complexity is reduced greatly. Their experiments proved the new algorithm is very

efficient for 0-1 knapsack problems and continuous multi objective optimization problems.

Approximating is useful when certain tolerance is allowed in the value. This has

important practical values in many fields where tolerance is allowed or near optimal solution is

accepted. Paenke, Branke, and Jin (2006) and Regis and Shoemaker (2004) addressed the fitness

function’s computation complexity problem by substituting it with an approximate modal. Much

time can be saved by calculating simpler approximate fitness function. Their experiments proved

that the approximating is efficient and result qualities are acceptable.

The goal of problem transformation is to optimize one or more smaller simpler

problem(s) instead directly working on the more complex larger problems. Combining smaller

problems’ result, the final solution can be provided for the original problem. By optimizing less

computation intensive smaller simpler problems and reducing search space, the algorithm can

find optimal or near optimal solutions quicker.

4.2 Improving GA Operators

Syswerda (1991) introduced a new order crossover operation to preserver some order

information from both parents. It starts with randomly selecting n components from a parent.

Other non-selected components are passed to the child solution directly from the other parent.

They shall maintain their position like their parent. The selected n components are inserted into

the child solution based on their order from the first parent to complete the solution. For

example, there are two solutions S1= (A, B, C, D, E, F), S2= (B, F, E, D, C, A). If (B, D, E) is

randomly selected to preserve order from S1, the initial child solution from S2 using non-

selected components is C= (_, F, _, _, C, A). Adding selected components back in, the final child

solution from the crossover is C= (B, F, D, E, C, A).

15

Nagata and Kobayashi (1999) introduced an edge assembly crossover operator to

preserve the edge information from both parents. They started with building AB circles (parents

are named A, B) by selecting connecting edges from each parent alternately. The result is a set of

AB circles. A heuristic algorithm was used to connecting all AB circles into a final solution.

They applied the edge assembly crossover operator to the Traveling Salesman Problem (TSP)

and achieved good results.

Zhao, Dong, Li, and Yang (2008) added the pheromone concept from the Ant Colony

Optimization Algorithm (ACO) to enhance the crossover operation. They also used heuristic

method to solve the multiple- traveling salesman problem (mTSP). In their crossover operator,

the heuristic method use edge length and next city information. To decide which city to visit, the

child will look at both parents’ next visiting cities. If both cities from parents have already been

visited in the current solution, pheromone trail is used to select next visiting city.

The objective of improving GA operators is to pass some information from parent(s) to

the newly generated the child. There is no evaluation of whether the information passed actually

will move the search to the optimal solutions or not. It relies on the selection mechanism to

control the evolution towards the optimal since the selection will filter out inferior solutions.

This approach works in general at the cost of more calculations.

4.3 Adding Local Search

Noman and Iba (2008) designed a strategy adaptive hill-climbing crossover local search

(AHCXLS) in their EA. It used a simple hill-climbing algorithm to determine the search length

adaptively. It took feedback from search result to determine the search length. In their algorithm,

crossover is repeated until no better solution can be generated. They noticed, “there is no

straightforward method of selecting the most promising individuals for XLS”. So, they opted to

16

crossover with one good candidate based on the fitness value and one randomly selected

solution.

Yang and Liu (2008) applied the local search to the solutions are have gone through

evolution operation. They searched the neighbor of the solution and replaced it with the best is

can find. Experiments shown the performance were much improved.

Tsai, Yang, and Kao (2002) added neighbor-join to the edge assembly crossover

operation. The neighbor-join operator will generate new solutions by using edges from other

solutions or generate new edges based on some heuristic information. The goal is to improve

solution quality.

Zhao, Dong, Li, and Yang (2008) used local search function to replace the mutation

operation. They used three types of local search to solve the mTSP problem. 1) Relocation

moves one city to a different location in the solution. 2) Exchange swaps positions of two cities.

3) 2-opt swaps end portions of two routes. They rotated these three local search operators. These

were used in addition to their improvement on the crossover operator described in the above

section.

Tseng and Chen (2009) used a two-phase genetic local search algorithm. The genetic

algorithm was used to search for promising areas in the first phase. The local search was used to

find the best solutions for the problem. Kaur and Murugappan (2008) used the nearest neighbor

as the local search algorithm to help populate initial solution pool for the GA. This way, the

algorithm starts from some better positions. Xuan and Li (2005) used local optimizer, 2-opt, to

optimize every solution after evolution. Zhang and Koduru (2005) used steepest ascent hill

climbing as the local search algorithm and also used blend crossover to improve GA’s

performance.

17

In this category, GA is improved by adding local search capability. The local search can

be used to enhance crossover operator, mutation operator, initial population build up, and

optimize resulting solutions from the evolution. Strictly speaking, adding local search to GA

results a hybrid algorithm. Since local search is used more often, I give it its own separate

category.

4.4 Hybriding with Other Algorithms

There are many hybrid algorithms that combine GA with many other search algorithms

such as Dantzig(1963) Simplex method, Nelder- Mead simplex method (Koduru, Dong, Das,

Welch, Roe, & Charbit, 2008; Nelder & Mead, 1965), etc. Most time, these additional search

algorithms perform local search while GA conducts global search. They are either used to

optimize solutions that have been applied GA operators (Koduru, Das, Welch, Roe, & Lopez-

Dee, 2005; Robin, Orzati, Moreno, Otte, & Bachtold, 2003) or used in conjunction with the GA

operators to improve its performance (Bersini, 2002; Tsutsui, Goldberg, & Sastry, 2001).

Although these are very important approaches, GA is the main algorithm and other algorithms

are simply assisting GA.

LP, on the other hand, has many ways to work with GA to create efficient hybrid

algorithms. Bredstrom, Carlsson, and Ronnqvist (2005) developed models and methods that

address the combined supply chain and production-planning problem. They developed a mixed-

integer-programming (MIP) model and solved the model using a heuristic solution based on

branch and bound. The model typically takes hours to solve. So, they created a GA algorithm to

solve the model. Each solution in the GA is a schedule and they used LP to make other decisions

for the schedule such as deciding shipping quantity in this case. To further speed up the LP

computation, they created a performance LP model to approximate the solution. Similar

18

approaches had also been used by El-Araby, Yorino, and Zoka, (2005), El-Araby, Yorino, and

Sasaki (2002), and Leou (2008) where GAs were used to derive solution and successive linear

programming (SLP) and Simplex method were used to obtain the fitness values. In these

approaches, GA is the main driver of the program to conduct global search. LP is the help

algorithm that optimizes each solution and calculates fitness value.

LP has also been used to lead the search in the LP and GA hybrid algorithms. To design

the optimal fuel-cell-based energy network, Hayashi, Takeuchi, and Nozaki (2008) designed a

hybrid algorithm to account for the differences of equipment. Some energy equipment’s CO2

emission can be express in linear format and some cannot. LP cannot be used to precisely

optimize the overall modal. The hybrid algorithm used LP to design the optimal configuration

and evaluate the fitness function for equipment. GA takes the best LP configuration and

optimizes the overall installation while take in consideration of each equipment different CO2

emission characteristics. To design an optimal open magnetic resonance imaging magnet, Wang,

Xu, Dai, Zhao, Yan, and Kim (2009) first used LP to design the source current distribution and

used GA to optimize the section size of the cross-section of the coil. Pandey, Dong, Agrawal,

and Sivalingam (2007), Garg, Konugurthi, and Buyya (2009) designed similar hybrid algorithms

that use LP to generate initial solutions and have GA to fine-tune the solution. Although this kind

of LP/GA hybrid algorithm is straightforward conceptually, LP is used to create initial solutions

and GA searches for the final best solutions, it is a very efficient approach. By using LP

optimized solutions, GA is really starting the search from near optimal solutions. Thus, GA’s

search time is reduced significantly and can quickly reach optimal solutions. In certain cases, GA

can simply fine tune the LP optimized solutions.

19

Mantovani, Modesto, and Garcia (2001) combined GA and LP in a more efficient way.

They divided the reactive planning optimization problem into operating and planning sub

problems. The operating sub problem, a nonlinear and no convex problem, was solved by GA.

The planning sub problem, using real variables and linear problem, was solved by LP. Similar

approach was also used by Feng, Wang, and Li (2009).

LP and GA have different strengths. LP is very efficient in solving linear, non-integer

problems. GA has very little constraints on the objective function. LP can typically reach optimal

solution in a very short period of time. GA is slower. Integer LP is less efficient. Combining LP

and GA can typically reach optimal solutions for integer optimization problems quickly.

4.5 Using Parallel Processing

Parallel implementations of genetic algorithm (Alba & Tomassini, 2002; Liang, Chung,

Wong, & Duan, 2007; Massa et al., 2005; Ortiz-Garcia et al. 2009) have also been proposed and

experimented. There are a number of experiments, published papers with good results. With the

decreasing cost of computing resource, parallel algorithm became more and more appealing as

one of the methods to improve algorithm efficiency. There are many different ways to implement

parallel GA (PGA).

Hardware implementation of PGA refers to one kind of implementation in which partial

or complete algorithm (binary code) is encoded into the computer chips. The computer chips

become specialized for PGA purpose only. The code in the computer chips runs based on

computer clock cycles without software control. The common benefit of this implementation is

speed since there is no software involved. Jelodar, Kamal, Fakhraie, and Ahmadabadi (2006)

experimented a hardware based PGA using System-on-a-Programmable-Chip (SOPC). They

implemented three genetic algorithms on SOPC using three different architectures: a) Standard

20

single processor genetic algorithm. b) Parallel GA using Master/Slave architecture c) Coarse-

grained PGA. To overcome the inflexibility of hardware based algorithm implementation, the

authors designed a mixed implementation approach: fitness evaluation in software and all other

GA/PGA elements in hardware. This approach allows complex fitness functions required by

difference category of problems. The experiments result showed the hardware based PGA is 50

times faster than software based PGA.

Scott, Samal, and Seth (1995) presented another working hardware based GA using

FPGA (field programmable gate array). There are two phases in the process. In phase I, user

enters the parameters of GA and the fitness function, system translate them into hardware image

and programs the FPGA. In phase II, upon front-end give a “go” signal, programmed FPGA run

the algorithms without any software interruption. When it’s finished, “done” signal was send to

the front-end. Finally, Front-end read the result. The authors’ experiment showed speedup factor

about 15.

Software implementation refers to PGA implementations where the algorithms run on

common computing resources without modify any underline hardware. Typically, there are a

group of general-purpose computers working together to implement PGA. There are four

models, 1) Global (master/slave) Model, 2) Fine-Grained Model, 3) Coarse-Grained Model, and

4) Hybrid Model.

Cantu-Paz (1997) published one of the frequent cited papers on the global model of PGA.

Based on the principle of divide and conquer, the classic global model uses one global

population and divides the task of evaluating fitness values of chromosomes among multiple

processors. In the model, there is a master processor that controls the whole process. The PGA

algorithm is very similar with serial GA. The master processor starts the PGA process, it

21

initializes the population, and send chromosomes to multiple processors (slaves) to evaluate

fitness value. After receive result from slave processors, master process performance all other

GA operators, such as selection, mutation, crossover, etc. With newly created population, master

processor sends chromosomes to slave processors to evaluate again. The process repeats until the

goal is satisfied.

Benkhider, Baba-Ali, and Drias (2007) proposed a generation less concept on GA and

two variation of general PGA model. The new GA mimic human population where there is

general concept of generation, no distinct clear-cut separation of generation and multiple

generations coexist in the same time. The new GA assigns each chromosome an effective start

and end time, i.e. a life span. Each chromosome would be replaced after it past its assigned end

time. In the meanwhile, new chromosomes were “born” and added to the population. They

proposed two new variations of global PGA. In the semi-asynchronous parallel approach, there

are two separate processes on the master processor. One is responsible for assigning

chromosomes to slave processors to evaluation and receiving results from them. The other one is

responsible of creating new chromosomes. The two processes works concurrently. Main

algorithm suspends when these two processes start to work and only resumes until both

processes complete their work. All GA operators are blocked when these two processes are

active. So, it is a semi asynchronous method. In the asynchronous master/slave approach, the two

processes do not block any other process. The other process is the main process. It’s the main

process that responsible for all GA operations (selection, mutation, crossover, etc.). It’s also

responsible for creating new chromosomes. Both processes work independent of each other and

only exchange chromosomes when necessary. Thus, this is complete asynchronous approach.

22

The fine-grained architecture targets massive parallel computers. In this architecture,

there is only one population in the algorithm just like the global PGA architecture. There is no

master processor. There are a lot of inter-connected processors. They are connected in multiple

ways and most common is the grid structure. Each processor is responsible for a very small

population of chromosomes. Each processor executes a serial GA on its own population and

exchange result with neighbor processors. The ideal case is to have only one individual for every

processing element available. The efficient communication among interconnected node makes

the PGA very fast.

Lee, Park, and Kim (2000) proposed a binary tree structure to connect processors. Each

processor forwards its best individual to two next level processors and receives one from the top

processor. This is one-direction propagation. This slows down the chromosome migration rate.

And the tree structure is dynamic generated based on the position of the best chromosome. They

tested their proposal on CrayT3E with 64 processors and showed better performance. Li and

Kirley (2002) introduced a new concept “Percolation” into fine-grained PGA architecture. The

goal is to ease the selection pressure. They introduced a “seeding” method to the PGA in the

fine-grained architecture. When algorithm starts, a large number of random chosen processors

start with a chromosome and neighing processors forms demes. With the process evolving, new

processors become active and assigned with chromosomes. New processors join neighboring

demes to form larger demes. Eventually, all processors are active and forms one deme. This

process forms demes slowly and dynamically. There is no predefined size of deme. This

approach controls the rate of migration. Population diversity is maintained and high quality

solutions shall spread to all processors gradually.

23

 Coarse-grained parallel genetic algorithm model uses multiple populations that evolve

separately and exchange individuals occasionally. It is also referred as multi-deme or distributed

PGAs. The basic idea of coarse-grained model is to divide the search space into several sub-

populations and assign each participating processor a sub-population. Each processor evolves its

population forward till goals are met. In the process, processors may exchange some good

chromosomes for speed up purpose. Although one processor may responsible of divide the initial

population to start the process and collect results at the end, there is no master processor that

controls each processor. Matsumura, Nakamura, Miyazato, Onaga, and Okech (1997)

experimented on ring, torus, and hypercube topologies. They concluded that Ring topology and

emigrant method provide the best result.

In an attempt to use cycle-steal method to harvest the computing power that scatted over

the Internet, Berntsson and Tang (2003) studied the coarse-grained architecture of PGA. They

conducted multiple experiments with different topologies, different migration rate, different

migration intervals and different failure scenarios. They used 4 faster processors and 4 slow

processors to build a heterogeneous computing network. To work with Internet's latency and

bandwidth problems, they concluded that a small migration rate with long migration intervals

and a fully connected topology would be the best choice.

The hybrid model, a combination of different model of PGA, is a new model that results

in algorithms that have the benefits of different PGA models. The new model may show better

performance than any of the models alone. The combined model is more complex and difficult to

program. But they do not introduce new analytic problems, and it can be useful when working

with complex applications. The combination can varies, such as coarse-grained with global

model, coarse-grained model with coarse-grained model, coarse-grained model with fine grained

24

model, etc. The combination does not limit to within the PGA models. New models can include

other optimization algorithms, such as LP, nearest neighbor algorithm, etc.

Lee, Park, & Kim (2001) proposed a hybrid PGA architecture to address two issues, to

connect large amount of processors in the PGA calculation and to control the migration speed to

achieve better result (alleviating super chromosome dominating solution space issue). High-level

processors used coarse-grained model to connect to each other. Chromosome migration rate is

low. Lower level processors using fine-grained PGA model and the migration rate is high. The

fine-grained PGA used binary tree model to organize. The tree is built dynamically based on the

location of the best solution and communication is one directional, from top to bottom only. The

tree structure decides the processor to receive chromosome from or processors to send to. To

further minimize the dominating solution issue, limits are put on migration policy.

Zhao, Man, Wan, & Bi (2008) introduced a multi-agent hybrid parallel genetic algorithm.

They combined global PGA model with coarse-grained PGA model. In the new model, there are

master agents and slave agents. Each master agent (M-agent) is in charge of several slave agents

(A-agent) to form a global master slave PGA model. The M-agent responsible for the evolution

process and A-agent helps with the parallel calculation. Several M-agents connect to each other

to form a coarse grained PGA model.

Genetic algorithm is a good candidate to be parallelized. The simple algorithm made it

easy to be implemented and tested. It’s a fault tolerant algorithm since its population can be

large. PGA can make GA fast and efficient. A good design of PGA shall have following

attributes. It fully utilizes available computing resources. Communication is efficient and simple.

Migration policy ensures a diverse sub populations and fast to converge to the global optimal

solution.

25

4.6 Miscellaneous Approaches

Yuen, S.Y., & Chow (2009) used a binary space partitioning tree to archive the solutions

that GA has visited. Based on the binary tree, they designed a novel adaptive mutation operator.

The mutation operation is replaced by searching the tree. They start with locating the solution to

be mutated in the tree. Then, they find the nearest neighbor-unvisited subspace of the solution

and random select one as the mutation result. If all nearest neighbor solution has been visited,

backtrack to the parent and repeat the process. In the meanwhile, fully visited sub tree can be

trimmed from the tree. The algorithm visits a nearest unvisited neighbor subspace and randomly

finds an unvisited solution in it. They named the algorithm as “A Genetic Algorithm That

Adaptively Mutates and Never Revisits”.

Throughout GA’s search process, random number is used frequently. A random number

generator is typically used. It is an algorithm that generates long sequences of random numbers

based on the initial value. These random numbers are not true random since they are predictable

and repeatable. The same sequence of numbers can be reproduced by the same algorithm using

the same initial value. They are pseudo random numbers. Caponetto, Fortuna, Fazzino, and

Xibilia (2003) replaced random number with chaotic time series sequences in the algorithm.

Simulation results and their statistical analysis using the t-test method showed distinct

improvement from using chaotic sequences for the tested problems.

Singh, Isaacs, Nguyen, Ray, Yao (2008) and Singh, Isaacs, Ray, Smith (2008) proposed

an Infeasibility Driven Evolutionary Algorithm (IDEA). The algorithm ranks solutions based on

the original objectives (fitness function) along with additional objectives that reflects constraint

violation measurement instead of solely rely on the fitness function. It explicitly maintains

26

several infeasible solutions in the generation to maintain the diversity of solution pool. The

experiments result showed a fast convergence to optimal solutions.

There are many other development that enhancing the GA’s performance such as

cooperative co-evolution (Adra, Dodd, Griffin, & Fleming, 2009), convergence accelerator (Tan,

Teo, & Lau, 2007), etc. Due to the fact that GA is a straight forward global search algorithm and

has demonstrated its effectiveness in many applications, more and more researchers are spending

more time enhancing it with many other algorithms or methods. In the meanwhile, GA is

enjoying more and more applications in many fields.

27

CHAPTER 5 DUALITY AND SHADOW PRICE in LINEAR PROGRAMMING

5.1 Definition

Dantzig (1963) stated, “The linear programming model needs an approach to finding a

solution to a group of simultaneous linear equations and linear inequalities that minimize a linear

form.” LP is the algorithm to search for an optimal value for a linear objective function that

satisfies linear equations and linear inequalities.

Kolman and Beck (1980) defined the standard form for LP as,

For values of nxxx ,,, 21  which will maximize

nn xcxcxcz  2211 (5.1)

Subject to the constraints

11212111 bxaxaxa nn  

22222121 bxaxaxa nn   (5.2)



mnnmmm bxaxaxa  12211 

 njx j ,2,1,0 

 More conveniently, we can use a matrix notation. Let





















mnmm

n

n

aaa

aaa

aaa

A









21

22221

11211

,





















mb

b

b

b

2

1

,





















nx

x

x

x

2

1

,





















nc

c

c

c

2

1

 (5.3)

 A LP standard form can be rewritten as

 Maximize xcz T (5.4)

 Subject to bAx 

 0x

28

The Duality Theorem states that there is an equivalent LP problem for every LP problem.

One is called the primal problem and the other is called the dual problem. Dantzig (1963)

proved the duality theorem. The dual problem for the above standard form is given below.

For values of myyy ,,, 21  which will minimize

mm ybybybz  2211' (5.5)

Subject to the constraints

11221111 cyayaya mm  

22222112 cyayaya mm   (5.6)



nmmnnn cyayaya  2211

 mjy j ,2,1,0 

The matrix representation is

 Minimize ybz T' (5.7)

 Subject to cyAT 

 0y

where





















my

y

y

y

2

1

The Duality Theorem also states that if the primal problem has an optimal solution (x0)

and the dual problem has an optimal solution (y0), then

 00 ' ybzxcz TT  (5.8)

Solving one LP problem is equivalent to solving its dual problem. Kolman and Beck

(1980) described the shadow prices as,

The jth constraint of the dual problem is

29

j

m

i

iij cya 
1

 (5.9)

The coefficient aij represents the amount of input i per unit of output j, and the right-hand

side is the value per unit of output j. This means that the units of the dual variable yi are the

“value per unit of input i”; the dual variables act as prices, costs, or values of one unit of each of

the inputs. They are referred as dual prices, fictitious prices, shadow prices, etc.

In general term, shadow price is the contribution to the objective function that can be

made by relaxing a constraint by one unit. Different constraints have different shadow prices,

and every constraint has a shadow price. Each constraint’s shadow price changes along with the

algorithm searching progress.

5.2 Shadow Prices in Linear Programming

LP has been used widely in various industrial fields. With a concrete mathematical

model, it provides direct relationships among profit and constraints, output and constraints, other

goals and constraints, etc. The linear models can be solved efficiently. Dantzig’s (1963) Simplex

method is one of them.

LP requires all constraints and all possible activities that meet the constraints listed in the

tabular format. This is not a problem when the number of possible activities is small, such as

maximizing profit for a small manufacturer. Constraints are material or labor and the objective

function is defined as profit. It is rather straightforward to define the linear constraints, construct

the linear objective function and search for optimal solutions for this category of problems.

It gets complicated where the number of possible activities is very large, such as the

typical scheduling problems and the cutting stock problems. For these problems, there are a very

large number of possible activities and make it very challenging to list them in the linear

30

constraints. For a good-sized airline, there are complex flight schedules, a large number of

routes, and many flight crews. Various goals can be optimized, such as finding the minimal

number of crews needed to cover all flights while satisfying airline regulations, creating the crew

schedules while balancing flight hours among crews, creating crew schedules to minimize cost,

etc.. There are many possible combination of assigning crews to flights. This is an activity

number explosion problem. For each activity, a separate variable need to be defined for the

objective function and a separate column in the constraint matrix needs to be created in LP. This

creates a very large number of variables and constraint columns. It is almost impossible to create

a LP model with all possible activity combinations listed and constraints defined for this kind of

problems. Solving these huge problems will be very time consuming and inefficient.

Gilmore and Gomory (1961, 1963, 1965, & 1966) developed a dynamic column

generation algorithm to deal with this kind of combination explosion LP problem. They

demonstrated their algorithm using the complex cutting stock problem. Figure 5.2.1 is the high

level flow chart of their algorithm.

The Gilmore and Gomory’s breakthrough is separating the large problem into two

smaller problems. The objective for the main LP problem (Figure 5.1 Main LP Problem) is to

find the best solution using current available activities. The sub problem (Figure 5.1 Sub

Knapsack Problem) is a knapsack problem. The solution from the main problem provides the

coefficients for the sub problem’s constraints. The solution from the sub problem is a newer and

better activity that can be utilized by the main algorithm. The process alternates between solving

the main and the sub problem until there is no better solution that can be generated by the sub

algorithm.

31

The coefficients supplied by the main algorithm to the sub algorithm are the shadow

prices (dual prices). The knapsack sub problem is constructed using these shadow prices. For

different iterations, the main algorithm provides the sub algorithm with different shadow prices

based on the current best solution. That is, the shadow prices change along with the algorithm’s

searching process.

Create Initial Feasible Solution

Create Problem Matrix

Will a slack variable improve

solution?

Adding a slack variable into the

problem

Processing new problem to find the

pivot for Gaussian elimination

Gaussian elimination, calculate

shadow price and objective function

Replacing departing activity with new

activity (or slack variable)

Extract shadow price

Forming a knapsack problem

Solving knapsack problem

Adding a new activity into the problem

Is there a new solution?
Reached optimal

solution

Start

Yes

No

Yes

No

Main LP Problem Sub Knapsack Problem

Figure 5.1 Gilmore and Gomory LP Algorithm

32

CHAPTER 6 SHADOW PRICE GUIDED GENETIC ALGODITHM

6.1 The Concept

We have developed a secondary measurement (Shen & Zhang, 2011-1) for solutions in

the GA using the shadow price concept. We use the shadow prices to measure components in a

solution as a complement measurement to the fitness function. Thus, we establish a two-

measurement system: fitness values are used to evaluate overall solutions and shadow prices are

used to evaluate components.

Using GA to solve a problem P, there is a current solution population R that has n

solutions and each solution has m components. The jth solution is defined as

),,,(21 mjjjj aaaS  where ija represents ith component in jth solution. Then, the current

solution space is),,,(21

T

n

TT SSSR  . Furthermore, we can define a correspondent LP problem

as:





















mnmm

n

n

aaa

aaa

aaa

A









21

22221

11211

,





















mb

b

b

b

2

1

,





















nx

x

x

x

2

1

,





















nc

c

c

c

2

1

 (6.1)

 Optimize xcz T (6.2)

 Subject to bAx))()((

 x is binary variable 0 or 1

 and 



n

i

ix
1

1

ci is the fitness value of each solution. The objective is to find the solution with the best fitness

value. There shall be only one x=1 and the rest shall be 0.

33

 This approach cannot deal with the combination explosion situation. We cannot possibly

enumerate all feasible combinations in the A matrix. For example, there are over 3 million

possible combinations for a merely 10 cities’ traveling salesman problem. Secondly, we cannot

always define the b vector. We probably can create the b vector for the value-combination

problems. But for the position-combination problems, such as the traveling salesman problem, it

is very difficult to find the meaning of the b vector or define the relationship between Ax and b.

The key of our approach is to use shadow price to compare components to further

improve EA. In EA, we define the shadow price as the relative potential improvement to the

solution’s (chromosome) fitness value with a change of a component (gene). It’s a relative

potential improvement since the concept is defined on a single component and a component

change may force other components’ change to maintain solution feasibility. The improvement

may or may not be realizable. A change of component states the fact that component change can

be a value change or a position change.

Shadow prices can take on different meanings or values for different problems. In the

traveling salesman problem, it can simply be the possible distance reduction from changing the

next visiting city. But the definition has to be clear and comparable among components.

The fitness value represents the current solution’s position in the search space. The

shadow prices represent potential improvements and directions to evolve. The shadow prices are

only meaningful in the process of evolution. They shall be used for selecting components to

evolve and for setting directions for evolution operators. While choosing candidate solutions that

are close to the optimal to further evolve, we shall also include solutions with bigger potential

improvements. The potential improvement of a solution can be defined as the sum of all

components’ potential improvements, which is the sum of all components’ shadow prices.

34

6.2 A Simple Example

Let’s illustrate our proposal with a simple example. Suppose a problem is defined as

Maximize 333)1(10)1(30)1(40  zyxw (6.3)

Subject to 4515  zx (6.4)

4510  zy (6.5)

3000222  zyx (6.6)

;0;0;0  zyx (6.7)

 It is not a LP problem since the objective function (6.3) and the constraint (6.6) are not

linear. The optimal solution is 4896905w when 31.22,0),45(),,(zyx . Using GA to solve

this problem, we define the fitness function as

333)1(10)1(30)1(40),,( zyxzyxf (6.8)

 We can see from the fitness function that increasing x, y or z value increases the fitness

value, which fits the objective. There also exist some relationships among x, y, z’s contributions

to the fitness value. That is, when 3)1(x is increased by 1, the fitness function can be improved

by 40. When 3)1(y is increased by 1, the fitness function is improved by 30. The fitness

function is only improved by 10 when 3)1(z is increased by 1. From another perspective,

increasing 3)1(x by 1 can produce 3 times more contribution towards fitness value compared

to 3)1(z . And 3)1(y is 2 times more efficient than 3)1(z . So, we have relationships about

contributions among 3)1(x , 3)1(y , and 3)1(z . But we still cannot derive direct relationships

among x, y, and z since their cube functions is used in the fitness function instead of their linear

format. Same change on x, y, and z will produce different impact on their cube functions

when zyx  .

35

 Although the direct contribution relationships among x, y, and z are unknown, it is clear

that, in general, increasing x yields bigger improvement on fitness value than increasing y does,

and y is more efficient than z. From constraints (6.4) and (6.5), we can

derive 3,45,45  zyx .

There for, we define shadow prices S as










45,0

)45,0[),79(40
)(

x

xx
xS (6.9)










45,0

)45,0[),46(30
)(

y

yy
yS (6.10)

]45,0[),3(10)( zzzS (6.11)

The shadow price definition points out the fact that increasing x is more efficient than y

and increasing y is more efficient than z. The fitness value can potentially be increased by 40

when x is increased by 1. It’s a relative potential improvement since x’s cube function is used in

the fitness function and y or z may need to be adjusted due to constraints. Although we can

simply use coefficient (40, 30, 10) as the shadow prices, these will only represent the potential

improvements and give no directions for GA to search. With the above definitions, we can

clearly figure out which component has the priority and the direction to evolve. That is

increasing x first whenever possible, then y, z. So, we define the shadow price as the relative

potential improvement to the solution’s (chromosome) fitness value with a change of a

component (gene).

Suppose we have the following three solutions in a generation of evolution.

);0,780,10256(),,(;441940),,();2,20,15(1  zyxSzyxfp

);10,1080,2560(),,(;204040),,();2,10,15(2  zyxSzyxfp

36

);,930,202760(),,(;;196200),,();1,15,10(3  zyxSzyxfp

Let’s mutate p1. The fitness value gives no hint about how to evolve. The shadow prices

for p1 indicate that x has the most potential to improve fitness value since it has the biggest

shadow price. We select x to mutate and try to mutate x into a lower shadow price state, which is

to realize its potential. Since]45,0[x and increasing x will reduce shadow price from the

definition of S(x), we shall increase x and select a number between 15 and 45. We choose 22. But

(22, 20, 2) violates constraint (1). We adjust z and get feasible solution p4

);02280,780,2(),,(;764590),,();1,20,22(4  zyxSzyxfp

From the above mutation operation, we improve the fitness value by 322650 and reduce

x’s shadow price. Classic operator mutates a random component to a random direction. The

impact to the fitness value is random as well. Applying shadow prices to mutation operator is

better.

To apply a crossover operator on p2 and p3, fitness values again give us no directions. But

from their shadow prices, z in p2 and y in p3 have the smallest shadow prices. So, the crossover

operation shall use them to create the new solution as (x, 15, 2). Since both 10 and 15 satisfy all

constraints and 15’s shadow price is smaller, we select 15 for x. So, the new solution from the

crossover operation is

);01,930,2560(),,(;286990),,();2,15,15(5  zyxSzyxfp

The new solution’s fitness value is better than both parents. With several components’

shadow price reduced, we materialize some potential. Comparing to classic randomized

crossover operator, this solution is much better.

We solved this sample problem using classic genetic algorithm and our proposed

algorithm for a comparison study. To ensure the comparison is valid, we did not introduce any

37

other techniques. All steps of both algorithms were the same except mutation and crossover

operators. To set the same start up basis, we used the same initial population. Algorithms were

terminated when there was no improvement for continuous 100 generations. We ran both

algorithms 10 times. Results from table 6.1 show our new algorithm not only reached better

solutions than classic algorithm but also used fewer generations. It demonstrates the

effectiveness of our proposed shadow price guided genetic algorithm.

Table 6.1

Simulation results

 Proposed GA Classic GA

Testing Generations x,y,z Fitness Generations x,y,z Fitness

1 171 45.00,31.22,0.00 4896905 181 44.94,31.30,0.00 4889183

2 173 45.00,31.20,0.00 4895037 206 44.51,31.90,0.00 4838689

3 201 45.00,31.20,0.00 4895037 128 45.00,31.20,0.00 4895037

4 218 45.00,31.22,0.00 4896905 218 44.84,31.45,0.00 4878062

5 108 45.00,31.22,0.00 4896905 145 44.77,31.54,0.00 4868991

6 112 44.98,31.25,0.00 4894634 305 45.00,31.20,0.00 4895037

7 173 45.00,31.22,0.00 4896905 210 45.00,31.20,0.00 4895037

8 228 45.00,31.22,0.00 4896905 157 44.67,31.68,0.00 4857306

9 115 45.00,31.22,0.00 4896905 161 45.00,31.22,0.00 4896905

10 270 45.00,31.22,0.00 4896905 384 45.00,31.22,0.00 4896905

Average 176.9 4896304 209.5 4881115

To conduct a statistical analysis and formal performance comparison between our

proposed algorithm and the classic algorithm, we have conducted a simulation study with 100

runs of each algorithm. Table 6.2 presents the mean, standard deviation, medium, and inter-

quartile range for the number of generations from both algorithms. Results indicate that the

proposed algorithm uses a significantly smaller number of generations compared to the classic

algorithm (Wilcoxon Two-Sample Test p<0.0001). Table 6.3 lists the mean, standard deviation,

medium, and inter-quartile range for the fitness values of the two algorithms. Results indicate

that the proposed algorithm produces significantly larger fitness value than the classic algorithm

38

(Wilcoxon Two-Sample Test p<0.0001). In summary, our proposed GA performs much better

than the classic GA.

Table 6.2

Distribution of the Number of Generations

 N Mean
Standard

Deviation
Medium

Inter-quartile

Range
Min Max

Proposed GA Algorithm 100 165.3 55.1 163.5 87 104 352

Classic GA Algorithm 100 210.7 79.4 198 118 107 464

Table 6.3

Distribution of the Fitness Values

 N Mean
Standard

Deviation
Medium

Inter-quartile

Range
Min Max

Proposed GA Algorithm 100 4895755 990 4895971 2271 4894634 4896905

Classic GA Algorithm 100 4881970 22295 4893435 22164 4780972 4896905

For the above example, we defined the shadow price as the components’ relative

potential improvement to the fitness value. We used shadow prices to select component(s) to

operate on and evolve to directions based on future shadow prices. We demonstrated that the

shadow price guided operators are better than classic GA operators. We illustrated that our

proposed two-measurement system, fitness value and shadow price, is better than the one fitness

value measurement system.

6.3 Define Shadow Price

Based on different problems, shadow prices can take on different meanings or values. In

the traveling salesman problem, it can simply be the possible distance reduction from changing

the next visiting city from the current one (Shen & Zhang, 2011-1). In manufacture, shadow

price can be the cost of material, time, etc. (Shen & Zhang, 2010-1, 2010-2, 2012-1). In green

computing, it can be defined as average energy consumption per instruction (Shen & Zhang,

39

2011-2) or embedded in the procedure (Shen & Zhang, 2012-3). But the definition has to be clear

and comparable among components. Here are a few guidelines on how to select shadow price.

1) The shadow price shall enable comparison among components since this is its main

function in the search. A concrete value is preferred over fuzzy values. The minimum

requirement is that the shadow price shall allow components comparison within a

solution. This makes it usable for the mutation operation. If the shadow price definition

enables components comparison across solutions, crossover operations can benefit from

it.

2) The shadow price shall reflect the attribute of a component such as price, cost, material,

etc. The attribute shall directly or indirectly impact the solution quality (fitness value).

This requirement is to relate shadow price directly to the problem. Solution’s change can

change shadow price and vice versa.

3) The shadow price for the solution (sum of shadow prices from all components) shall

change with the quality of the solution (fitness value). There is no need to define a math

function to associate them. The only requirement is to ensure that the shadow price is

consistent with the search process. Since it reflects the potential improvement in the

solution from components’ perspective, solution’s shadow price shall reduce while search

process finds better solutions. In other words, better solution’s shadow price shall be

smaller than worse solution’s shadow price. This has to holds true for all feasible

solutions in the search space. This is to define evolution direction.

4) The shadow price calculation shall be simple and fast. The shadow price concept and

algorithm introduces more calculations, such as calculating components’ shadow prices,

comparisons, etc. A quick, straightforward shadow price calculation is necessary.

40

6.4 The Complete Algorithm

Populate Solution Set with Random

Feasible Solutions

Calculate Fitness Functions for all

solutions

Start

Is best solution optimal ?
Reached optimal

solution

Mutation

Is there new solution added ?

Asses progress and adjust runtime

parameters

yes

No

Calculate each component’s shadow

price for the solution

Pick a solution to Mutate

Select a component with high shadow

price

Mutate the component to a low

shadow price state

Adjust solution to a feasible solution

Is new solution better then

original?

Add the new solution to the next

generation population

yes

No

Repeat for n times

Crossover

Calculate each component’s shadow

price for the solution

Pick two solutions to crossover

From each solution, pick good

components (low shadow price) to

create a new solution

Adjust solution to a feasible solution

Is new solution better then

original?

Add new solution to the next

generation population

yes

No

Repeat for m times

Add random generated new solutions

Select solutions with high fitness

values to complete next generation

No

Figure 6.1 New GA Framework with Shadow Price Guided Operators

41

The principle of our algorithm (Figure 6.1) is to use the shadow prices as the guide to

direct the search for the optimal solution. For each current feasible solution, we use shadow

prices to select components and to set the evolution direction. In detail, for the mutation operator,

we shall pick a component with a higher shadow price to mutate and shall mutate to a lower

shadow priced state. The goal of the crossover operator is to generate a new solution that inherits

good components, which have low shadow prices, from both parents.

42

CHAPTER 7 OPTIMIZING THE TRAVELING SALESMAN PROBLEM WITH SGA

7.1 Introduction

The Traveling Salesman Problem (TSP) is a classic NP hard combinatorial problem. It

has been routinely used as a benchmark to verify new algorithms. There are two major categories

of algorithms used to solve the problem, exact or approximate algorithms. Exact algorithms, such

as testing all permutations or branch and bound, typically either take very long time to compute

or reach unsatisfied results.

There are a lot approximate algorithms that achieve good results. Genetic Algorithm

(Choi, Kim, & Kim, 2003; Kaur & Murugappan, 2008; Ray, Bandyopadhyay, & Pal 2004), Ant

Colony Optimization (ACO) (Bianchi, Gambardella, & Dorigo, 2002; Hung, Su, & Lee, 2007),

Neural Network (NN) (Hasegawa, Ikeguchi, & Aihara, 2002; Vishwanathan & Wunsch, 2001),

Discrete Particle Swarm Optimization (DPSO) (Wang, Huang, Zhou, & Pang, 2003; Wang,

Zhang, Yang, Hu, & Liu, 2005; Zhi et al., 2004; Zhong, Zhang, & Chen, 2007), Bee Colony

Optimization (BCO) (Wong, Low, and Chong 2008), Simulated Annealing (SA) (Kirkpatrick,

Gelatt, & Vecchi, 1983), Collective Intelligence (Kulkarni & Tai, 2009), and hybrid algorithms

(Lee, Lee, & Su, 2002; Yang & Zhuang, 2010) have been used to solve the TSP. They all have

achieved good results. We also use the TSP to validate our proposed algorithm and compare

results with several of above-mentioned algorithms.

7.2 Problem Definition

The Traveling Salesman Problem (symmetric) can be simply stated as: for a given

number of cities and defined travel distances between any city pairs, find the shortest path (or

43

cost) for a salesman to visit all cities once and only once, and finally return to the departure city.

Obviously, the fitness function is the distance of the complete path (or cost).

The TSP is a classic NP hard problem. It is a well-documented and widely studied

combinational optimization problem. There are a good number of research documents, published

reference problems, and solutions.

7.3 Shadow Price Definition

In the TSP, any city is connected to all other cities by a distance. For a given solution,

any city is connected to two and only two other cities. Let’s define the TSP as having n cities, C1,

C2, …,Cn. and the distance is Dij for distance from Ci to Cj. We define a city j’s shadow price Sj

in a given tour, C1, C2, … Ci,Cj,Ck, …,Cn. as

 
 


n

q

n

r

rjjkqjijj DDDDS
1 1

)()((7.1)

where qjij DD  and rjjk DD  and qj, rj

The shadow price for a city is defined as the sum of all possible distance savings by

changing the connected cities. This is a relative number that represents the shadow price concept.

Simply connecting to one or two closer cities may not shorten the tour distance since the

disconnected cities have to be rejoined into the tour again. The new connections may increase or

decrease the total tour distance.

Table 7.1 is a sample TSP distance table from the gr17.tsp from TSPLIB (2009).

44

Table 7.1

Distance Matrix for gr17.tsp

City 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 633 257 91 412 150 80 134 259 505 353 324 70 211 268 246 121

2 633 0 390 661 227 488 572 530 555 289 282 638 567 466 420 745 518

3 257 390 0 228 169 112 196 154 372 262 110 437 191 74 53 472 142

4 91 661 228 0 383 120 77 105 175 476 324 240 27 182 239 237 84

5 412 227 169 383 0 267 351 309 338 196 61 421 346 243 199 528 297

6 150 488 112 120 267 0 63 34 264 360 208 329 83 105 123 364 35

7 80 572 196 77 351 63 0 29 232 444 292 297 47 150 207 332 29

8 134 530 154 105 309 34 29 0 249 402 250 314 68 108 165 349 36

9 259 555 372 175 338 264 232 249 0 495 352 95 189 326 383 202 236

10 505 289 262 476 196 360 444 402 495 0 154 578 439 336 240 685 390

11 353 282 110 324 61 208 292 250 352 154 0 435 287 184 140 542 238

12 324 638 437 240 421 329 297 314 95 578 435 0 254 391 448 157 301

13 70 567 191 27 346 83 47 68 189 439 287 254 0 145 202 289 55

14 211 466 74 182 243 105 150 108 326 336 184 391 145 0 57 426 96

15 268 420 53 239 199 123 207 165 383 240 140 448 202 57 0 483 153

16 246 745 472 237 528 364 332 349 202 685 542 157 289 426 483 0 336

17 121 518 142 84 297 35 29 36 236 390 238 301 55 96 153 336 0

We number the cities from 1 to 17. Let’s assume we have a tour as

C1 C2 C3 C4 C5 C6 C7 C8… C17 C1

Let’s compute shadow prices for city 4, 5 and 6

3813)383()228()()(
17

1

17

1

44

17

1

17

1

4454344    
   q r

rq

q r

rq DDDDDDS (7.2)

2100)267()383()()(
17

1

17

1

55

17

1

17

1

5565455    
   q r

rq

q r

rq DDDDDDS (7.3)

1697)63()267()()(
17

1

17

1

66

17

1

17

1

6676566    
   q r

rq

q r

rq DDDDDDS (7.4)

Above definition and calculation provide us the method to compare components (cities)

in a solution. From the above shadow prices, we can derive that C4 can produce potentially more

improvement to the solution than C5. These are possible improvements since they may not be

realizable. This is the concept of shadow price we proposed earlier.

45

We also define a tour’s shadow price as the summation of all cities’ shadow prices.

Obviously, tours with higher shadow prices have bigger room for improvement. The optimal

tour’s shadow price is not guaranteed to be zero nor the smallest by our definition. But, a zero

shadow priced tour is the optimal tour. For an edge in the tour, a connection from one city to

another city, the shadow price is defined as the total shadow prices from both cities. This is to

keep consistent with TSP tour’s shadow price definition.

7.4 Shadow Price Guided Mutation Operator

There are two methods to select a subset of solutions for mutation, routes with higher

shadow prices or routes with low fitness values. It makes sense to choose routes with low fitness

values since they are potentially better or closer to the optimal solutions. But the solutions that

are closer to the optimal may not always evolve to the optimal. On the other hand, higher shadow

priced routes have the best chances of making big improvements. Since GA encourages diversity

in its population, we use a mixed subset for mutation.

We select a mutation component (city) based on components’ shadow prices. We prefer

components with high shadow prices since they promise better improvements. To avoid a local

optimal trap, we randomly select a component from a pool of high shadow priced components.

In the above example, C4 has a better chance of being selected to mutate than C5 or C6.

Mutate to the shortest connection promises the biggest improvement but increases the

risk of being trapped into a local optimal solution. Using the smallest connection improvement

may lose opportunities for quick improvements and slow down the search process. Again, we

create a pool of shorter connections and select one randomly as the new connection. The pool

size is adjusted dynamically to better reflect the current search progress. In above example, we

may choose one city from (C1, C6, C7, C8, C9, C13, C14, C17) if we were to mutate C4.

46

7.5 Shadow Price Guided Crossover Operator

The goal of crossover is to pass good connections (genes) from the parents to the child.

High shadow priced routes are relatively far from the optimal solutions compared to others. But

they may have good connections that the child can still benefit from and vice versa. The same

argument applies to the fitness value as well. It seems that randomly selecting two routes to

crossover is fair and simple. In order to inherit a good portion of better connections in the

crossover operation, we choose to select at least one parent route that with a good fitness value.

The other parent is randomly selected in the current population.

We use a simple edge insertion algorithm for the crossover operation. The route with a

good fitness value (smaller) is cloned as the start of the new child route. A number (a dynamic

parameter) of good connections from the other route are inserted into the child route. These good

connections are randomly selected from a pool of low shadow priced connections. In this case,

low shadow priced connections are good connections that have less room for improvements.

After the crossover operation, we verify the feasibility of the child route and make adjustments if

necessary. In the above gr17 solution example, edge (C5, C6) has a better chance to be passed to

the child than edge (C4, C5) since 5465 SSSS  . In semantics, (C5, C6) is a relatively better

connection than (C4, C5).

7.6 Solution Validation

The resulting solution from a GA operator need to be validated to ensure its feasibility

and adjusted if necessary. The mutation operation creates a new connection between two cities

and creates two disconnected graphs. Let’s assume we have a tour from table 7.1’s sample

problem (Figure 7.1) as

C1 C2 C3 C4 C5 C6 C7 C8… C17 C1

47

If GA select C4 to mutated and reconnect it to C8, two disconnected graphs are created

(Figure 7.2). This is an invalidate solution.

There are two methods to adjust the solution. One is inserting the disconnected segment

into the other side of the mutated city. In the example, we disconnect C3 and C4; connect C3 to C5

and C7 to C4. The other method is inspecting every connection to find the best location to insert

the disconnected segment. The first method maintains the stability of the rest tour and fast. The

second method seeks the local optimal and less efficient. One of the two methods is randomly

selected to adjust solution in our algorithm. Similar methods are used to validate results from

crossover operation.

C2

C3

C4

C16

C15

C14

C5
C6

C7

C11

C10

C8

C1

C17

C13

C12

C9

Figure 7.1 A Sample Tour

48

C2

C3

C4

C16

C15

C14

C5
C6

C7

C11

C10

C8

C1

C17

C13

C12

C9

Figure 7.2 Result from Mutation

7.7 Other Techniques

A shadow price modified 2-opt operator is also used in our algorithm. “In optimization,

2-opt is a simple local search algorithm first proposed by Croes in 1958 for solving the traveling

salesman problem. The main idea behind it is to take a route that crosses over itself and reorder it

so that it does not.” (Watson et al., 1998). Combining the 2-opt operator with other operations in

the genetic algorithm produced good results for the TSP (Wikipedia 2-opt, 2009). It is a very

simple heuristic local search algorithm and hampered by performance. The operation time is

O(n
2
).

Armed with the shadow price information, we use 2-opt operation to speed up the

algorithm by eliminating obviously very bad connections in the route. Instead of applying to all

connections, we only use 2-opt operations for certain high shadow priced connections. The time

used is O(n).

49

We use a simple coding schema. For the route start from city 1, C1 C2 C3 …

Cn C1, we encode it as (C1, C2, C3,…, Cn, C1).

7.8 Experiments

We coded our proposed algorithm in C# and executed it on a Pentium 4 2.8GHz machine

with 2 GB of RAM. While comparing speed with other published results, we only need to

consider CPU specification and programming language since the memory footprint is rather

small for the TSP.

We chose TSPLIB (2009) as the test cases and the data source for our experiment. It is

one of the mostly used test case sources to verify algorithm’s efficiency. It provides many TSP

cases with proven optimal routes. Each test case was run ten times.

To gauge the effectiveness of our algorithm, we compared our results with other

published Bio inspired researches that used the same test cases from TSPLIB. Table 7.2 is the

results of our algorithm compared with an innovative genetic algorithm. Table 7.3 is the results

of our algorithm against an improved Particle Swam Optimization algorithm. Table 7.4 shows

how our proposed algorithm stacks up against an improved Bee Colony Optimization algorithm.

Overall, our proposed new algorithm did better in the solution quality and speed than any

of the others (Shen & Zhang 2011-1).

Table 7.2

Comparison with Ray, Bandyopadhyay, and Pal (2004)

Optimal Ray, et al. 2004 Our result

 Best Best Average Avg Time(s)

GR24 1272 1272 1272 1272 0.054

Bayg29 1610 1610 1610 1610 0.097

GR48 5046 5046 5046 5046 0.825

ST70 675 685 675 675 4.834

KroA100 21282 21504 21282 21282 2.987

50

Table 7.3

Comparison with Zhong, Zhang, and Chen (2007)

 Optimal Zhong, et al 2007 Our result

 Best Average Avg Time(s) Best Average Avg Time(s)

Eil51 426 427 433.64 4.06 426 426.1 11.87

Berlin52 7542 7542 7598.76 4.12 7542 7542 0.16

Eil76 538 540 551.72 11.59 538 538 2.70

KroA100 21282 21296 21689.30 23.95 21282 21282 2.99

KroA200 29368 29563 30374.30 198.55 29368 29368 115.87

Table 7.4

Comparison with Wong, Low, and Chong (2008)

 Optimal Wong, et al. 2008 Our Result

 % from optimal Distance % from optimal Time(s)

 Best Average Best Average Best Average Average

ATT48 10628 0.31 0.83 10628 10628 0 0 0.56

EIL51 426 0.47 0.85 426 426.1 0 0.0002 11.88

EIL76 538 0.19 2.01 538 538 0 0 2.70

EIL101 629 0.95 2.29 629 629 0 0 2.20

KROA100 21282 2.26 3.43 21282 21282 0 0 2.99

KROB100 22141 2.24 3.1 22141 22141 0 0 6.12

KROC100 20749 0.5 1.5 20749 20749 0 0 1.12

KROD100 21294 1.64 3.25 21294 21294 0 0 14.60

KROE100 22068 1.73 2.2 22068 22096.8 0 0.0013 218.14

KROA150 26524 5.03 6.39 26524 26524 0 0 41.08

KROB150 26130 1.55 3.68 26130 26130 0 0 281.92

KROA200 29368 2.02 4.26 29368 29368 0 0 115.87

KROB200 29437 3.1 6.36 29437 29437 0 0 295.23

LIN105 14379 0.32 1.24 14379 14379 0 0 2.48

LIN318 42029 6.32 7.55 42029 42113.6 0 0.0020 1233.42

7.9 Summary

For the TSP, we define shadow price for a city as the sum of all possible distance savings

by changing the connected cities. It was used to evaluate components and to direct evolutionary

progress mainly towards the optimal solution. We used it as a secondary solution measurement

in our proposed two-measurement EA. The simulation results have shown that our new SGA was

effective and efficient.

51

CHAPTER 8 OPTIMIZING THE CUTTING STOCK PROBLEM WITH SGA

8.1 Introduction

The Cutting Stock Problem (CSP) is a very important problem in many industries with

great economic values. It’s a difficult integer optimization problem. The classic Linear

Programming algorithm was first used to solve the CSP (Gilmore & Gomory, 1961, 1963, 1965,

1966). The dynamic column generation technique used a fix-sized matrix to solve the problem.

But the solution was in fraction. An integer rounding routine had to be applied to the result to

generate a meaningful solution. Producing infeasible or lower efficiency solutions were expected

from the rounding process.

Many other CSP algorithms were developed in the operations research field. For

instance, the LP based branch-and-cut-and-price algorithms (Alves & Carvalho, 2008; Belov &

Scheithauer, 2006) are combinations of LP based branch-and-bound, column generation

technique and cutting plane algorithms. These are integer LP algorithms that can provide optimal

solutions. Their deficiencies are the degeneracy problem, the single linear objective function

limitation and less efficient than traditional non-integer LP algorithms. The heuristic algorithms

(Cherri, Arenales, & Yanasse, 2009; Cui & Lu, 2009; Liu, Chu, & Wang, 2008; Poldi & Marcos,

2009; Song, Chu, Nie, & Bennell, 2006) use a set of rules, patterns, and steps to generate feasible

solution. They are very quick and can provide acceptable near optimal results for small CSPs.

They are not effective in solving large complex problems since they may degenerate to only

providing feasible solutions. The hybrid algorithms (Aktin & Özdemir, 2009; Cui & Yang, 2010;

Yanasse & Lamosa, 2007; Yanasse & Limeira, 2006) combine LP, heuristic algorithms, and

other algorithms. They can provide very good solutions for targeted fields and their performance

various.

52

Hinterding and Khan (1994) successfully solved the CSP using GA. The solution was in

integer and the process was very efficient. Other bio-inspired algorithms such as the Ant Colony

Algorithm (Levine & Ducatelle, 2004; Lu, Wang, & Chen, 2008; Yang, Li, Huang, Tan, & Zhou,

2009), the Evolutionary Algorithm (Chiong, Chang, Chai, & Wong, 2008; Yao, Newton, &

Hoffman, 2002), and the Annealing Algorithm (Yue & Gao, 2009) were also used to solve the

CSP. These algorithms provided good integer solutions.

8.2 Problem Definition

The CSP is to find the best arrangement of orders to cut from stocks such that minimal

number of stocks is used. The objective is to use the least amount of stocks to satisfy various

item requirements. The CSP is formulated as (Hinterding & Khan, 1994):

Minimize 



Jj

jj xwW , (8.1)

Subject to i

Jj

jij Nxa 


 for i=1,2,…n. (8.2)

xj teger for j J.

Where, n = number of orders.

wj = waste per run of pattern j.

aij = number of pieces of item i in pattern j.

xj = number of runs of pattern j.

Ni = number of pieces of item i.

If there is only one stock length L in the problem, and li is the length of order i, then

j

n

i

iij wlaL 
1

 for j J. (8.3)

53

Adding more stock lengths to the CSP increases the size of the problem and requires

more search time. But it does not increase the complexity of the problem. Compared to the CSP

with single stock length, the CSP with multiple stock lengths can have more item combinations

to potentially improve the trim efficiency. Tables 8.1 and 8.2 present two experimental results

for the CSP with multiple stock lengths and the CSP with single stock length (Hinterding &

Khan, 1994). Both tables include total evaluations, the mean fitness values, the standard

deviations, and the evaluation number when the optimal solution was found. The fitness value

represents the efficiency of the solution. A high fitness value means high efficiency and low

waste. Std. Dev. is the standard deviation to show the distribution of the solutions.

Table 8.1

Test results for the CSP with multiple stock lengths
Case Evaluations Mean fitness Std. Dev. Found at

1 1184 1 0 407

2 1184 1 0 740

3 1184 1 0 407

4 2294 0.9995 0.0022 2294

5 2294 0.9998 0.0007 2294

Table 8.2

Test results for the CSP with single stock length

Case Evaluations Mean fitness Std. Dev. Found at

1a 1184 0.9133 0 296

2a 1184 0.9227 0.0018 1184

3a 1184 1 0 407

4a 1184 0.9642 0 851

5a 2294 0.8479 0.007 2294

 The data from Tables 8.1 and 8.2 suggest that the solutions for the CSP with multiple

stock lengths have better fitness values than the ones for the CSP with single stock length, and

the total evaluations are almost the same for both type CSPs. They exhibit the fact that the CSP

54

with single stock length is at least as complex as the CSP with multiple stock lengths. We used

the CSP with single stock length to demonstrate our new algorithm.

8.3 Basic Terminologies

In the CSP, a pattern is one possible combination of items that can be cut from one single

stock. The total length of all items in a pattern shall be less or equal to the stock length. A trim, a

solution of the CSP, is a set of patterns satisfying the order requirements. When using GA or EA

to solve the CSP, a pattern corresponds to a gene and a trim corresponds to a chromosome. In the

group based coding schema, a group is a set of items that represents a pattern. The group based

coding schema is much better than the order based coding schema (Hinterding & Khan, 1994).

We use group based coding schema.

Table 8.3

Sample problem, the stock length is 14

Item Length 3 4 5 6 7 8 9 10

No. Required 5 2 1 2 4 2 1 3

We use a sample problem (Table 8.3) from Hinterding and Khan (1994) to introduce our

new algorithm. In Table 8.3, the data in the first row are the lengths of different order items and

the data in the second row are their quantities to be produced. The objective is to use the least

number of stocks to produce these items.

We use the length of the item to represent the item. In the sample problem, (3,4,5)

represents a pattern that contains one length 3 item, one length 4 item, and one length 5 item.

The waste of this pattern is 2 since the total item length is 12 and the stock length is 14. The set

of patterns {(3,3,8), (5,9), (4,10), (7,7), (3,3,8), (7,7), (4,10), (6,6), (3,10)} represents a trim that

satisfies the item requirements. This trim’s waste is 3, which is generated by the last two

patterns.

55

8.4 Shadow Price Definition

In the CSP, pattern selection links to the trim efficiency directly since the trim waste is

the summation of waste from all its patterns. The patterns in a trim are evaluated by the waste

they produce. In the above sample problem, the pattern (3, 4, 5)’s total length is 12 and it yields a

waste of 2. The total length of pattern (3, 3, 8) is 14 and it produces no waste. Obviously, pattern

(3, 3, 8) is better than pattern (3, 4, 5), and pattern (3, 3, 8) shall be used more often in the trim.

There are limitations on whether a good pattern can be used or how many times it can be used in

a given CSP. Since the requirement for the length 8 item is 2 in the sample problem, pattern (3,

3, 8) can only be used twice to produce 2 length 8 items and 4 length 3 items. This leaves one

length 3 item to be produced since the original requirement is 5. This makes pattern (3, 4, 5) a

candidate for the trim even though it produces a waste of 2. Pattern selection is the key for the

CSP algorithm.

From another perspective, we can analyze the price with the stock length. There is no

waste in pattern (3, 3, 8) since both the stock length and the total length of all items are 14. The

price for the length 3 item is 3 and the length 8 item is 8. There is a waste of 2 in pattern (3, 4, 5)

since the total length for all items is 12 and the stock length is 14. The price of 14 is selected to

fulfill the total item length requirement of 12. Proportionally, the price for the length 3 item is

3*14/12=3.5, the length 4 item is 4*14/12=4.67, and the length 5 item is 5*14/12=5.83. In

comparison, we pay more to produce the length 3 item in pattern (3, 4, 5) than in pattern (3, 3, 8).

We use a stock length of 3.5 to produce one length 3 item and waste 0.5 in pattern (3, 4, 5) in

contrast to using a stock length of 3 to produce the item and yield no waste in pattern (3, 3, 8).

The shadow price concept represents the price of an item paid in a trim. It is the average cost of

an item in a trim. We use Si to denote the shadow price of item i and SPij to denote the shadow

56

price of item i in pattern j. All other notations in formulas conform to the previously used

symbols.




k

iij
l

L
lSP for k is the number of items in pattern j, (8.4)

i

ij

i
N

SP
S


 for j is the number of patterns in the trim. (8.5)

An item’s shadow price is equal to or greater than its length. When it is greater than its

length, more stock is used in the trim to produce this item than needed. Waste is generated to

produce this item. If it is equal to the item’s length, there is no waste in the trim to produce this

item. The shadow price of a pattern is the sum of the shadow prices from all items contained in

the pattern. It represents the total price of these items in the current trim using this pattern. If the

shadow prices are used in a new pattern, the new pattern’s shadow price represents the items’

total price from the previous trim and the stock length represents their current price.

8.5 Shadow Price Guided Mutation Operator

The goal of the mutation operator is to introduce new patterns to the trim when using the

GA to solve the CSP. Adding a new pattern to the trim is a complicated process since existing

patterns may be dropped and additional new patterns may be added to complete the trim. The

fitness value of the trim can only be improved by adding better patterns. It is very challenging to

create better patterns.

Randomly generated new patterns and the group mutation operator (Falkenauer &

Delchambre, 1992) were used in Hinterding and Khan (1994)’s experiments. Poor patterns were

replaced by randomly generated new patterns.

Instead of generating random patterns, we use a different approach to create new patterns.

We intentionally introduce good patterns to the trim to improve its fitness value. For an existing

57

trim, we first calculate the shadow prices for all items based on all patterns in the trim. Then, we

search for a pattern with the biggest shadow price such that

Maximize 



n

i

ii SPaS
1

, (8.6)





n

i

iilaL
1

. (8.7)

If a new pattern is found by maximizing the above function and its shadow price is

greater than the stock length, the new pattern uses less stock to produce the items in the pattern

than the existing trim. The existing trim needs the shadow price to produce these items in the

new pattern. The new pattern only needs one stock. The new pattern produces less waste since

the stock length is less than the shadow price. If we create a new trim by inserting this new

pattern into the existing trim, the new shadow prices for the items in the pattern shall be smaller

than their previous values. These items are cheaper in the new trim. The new trim’s fitness value

shall be better than the previous trim as well.

Our new mutation operator starts with calculating the shadow prices for all items. Then, it

searches for a new pattern with a shadow price that is greater than the stock length. If a new

pattern is found, it inserts the pattern into the trim at a random location. Finally, it validates the

trim. The operation stops if it cannot find a pattern with a shadow price greater than the stock

length.

In the trim {(3, 3, 8), (5, 9), (4, 10), (7, 7), (3, 3, 8), (7, 7), (4, 10), (6, 6), (3, 10)} for the

sample problem, the length 6 item’s shadow price is 7 and the length 8 item’s shadow price is 8.

Pattern (6, 8) is a potential good pattern since its shadow price of 15 is greater than the stock

length of 14. That is, it needs a total stock length of 15 to produce one length 6 item and one

length 8 item in the previous trim. Now, it only needs a total stock length of 14.

58

8.6 Shadow Price Guided Crossover Operator

The group crossover (BPCX) is a very straightforward operator (Falkenauer &

Delchambre, 1992). It mainly consists of the following steps: (1) randomly split a parent trim

into two sections, (2) copy the first section to the child trim, (3) append all patterns from the

second parent trim to the child trim, and (4) finally append the second section from the first

parent trim to the child trim. The child trim is validated while patterns are added. Uniform

Grouping Crossover (UGCX) (Hinterding & Khan, 1994) adds pattern order to the group

crossover operator. Both BPCX and UGCX randomly merge two parent trims into one child

trim. There is no intention to improve the child trim in the process.

In the CSP, two trims can have different patterns and efficiencies. The same items in

these two trims may consume different amount of stocks since they may belong to different

patterns. Patterns with less waste are always better. If we quantify an item and its stock

consumption with the shadow price, we can create a better child trim using the crossover

operator that selects better patterns from both parents.

We propose a new crossover operator using the shadow price. The novel crossover

operator has the following major steps: (1) copy a parent trim to the child trim, (2) calculate

shadow wastes (shadow price – item length) for all items in the child trim, (3) rank the items by

their shadow wastes, (4) select an item with a big shadow waste, (5) select all patterns containing

this item from the other parent and insert them into the child trim, and (6) finally, validate the

child trim.

In the sample problem, we have two trims {(3, 3, 8), (5, 9), (4, 10), (7, 7), (3, 3, 8), (7, 7),

(4, 10), (6, 6), (3, 10)} and {(6, 8), (5, 9), (4, 10), (7, 7), (6, 8), (7, 7), (4, 10), (3, 3, 3, 3), (3,

10)}. The novel crossover operator copies the first trim to the child trim and calculates the

59

shadow waste for each item. The shadow waste for the length 3 item is 0.046, for the length 6

item is 1, for the length 10 item is 0.26, and 0 for all other items. Since length 6 item’s shadow

waste is the biggest, all patterns containing this item from the second parent are copied into the

child trim. The patterns are (6, 8) and (6, 8). By adding good patterns from the second parent

into the child trim, we increase the chance of creating a better child trim.

8.7 Experiments

To compare our algorithm with others, we adopted the widely used fitness function that

defined in Liang et al. (2002) as follows:

Maximize)(
1

1
1

11








m

j

j
m

j

j

m

v

L

w

m
f . (8.8)

In the fitness function, m stands for the number of patterns in the trim. The first term

within the parenthesis is used to minimize the total waste. The second term is used to minimize

the number of patterns with waste, where vj=1 when the jth pattern has a waste, and 0 if no

waste. The objectives of the fitness function (8.8) are (1) minimizing the trim waste and (2)

reducing the number of patterns with waste.

We implemented Hinterding and Khan (1994)’s algorithm as Algorithm A. We created

three new algorithms B, C and D with different mutation operators. The new shadow price

Guided crossover operator was used for all three versions. All four algorithms and the algorithms

we compared with used the same fitness function defined above.

In Algorithm B (Figure 8.1), a few patterns that generated waste were removed from the

trim before the new shadow price based pattern was inserted, and simple sequential patterns were

created for any untrimmed items from the deleted patterns. In Algorithm C (Figure 8.2), the new

shadow price based pattern was added to the trim without removing any patterns. In Algorithm D

60

(Figure 8.3), a few patterns that generated waste were removed from the trim before the new

shadow price based pattern was inserted, and several more shadow price based patterns were

created for any untrimmed items from the deleted patterns.

Mutation

Select a sub population to mutate

Have all solutions mutated ?

Select a solution to mutate

Calculate shadow prices for all items

Find a pattern with the biggest shadow price

Is the new pattern’s shadow price

greater than the stock length ?

Copy the solution to a new solution

Insert the new pattern into the new solution

at a random position

Validate the new solution

No

Yes

No

Yes

Calculate wastes for all patterns in the

new solution

Remove several patterns with waste

from the new solution

Compare the new solution with the order

requirements to find all untrimmed items

Generate sequential patterns to produce

these untrimmed items

Figure 8.1 Algorithm B’s mutation operator

61

Mutation

Select a sub population to mutate

Have all solutions mutated ?

Select a solution to mutate

Calculate shadow prices for all items

Find a pattern with the biggest shadow price

Is the new pattern’s shadow price

greater than the stock length ?

Copy the solution to a new solution

Insert the new pattern into the new solution

at a random position

Validate the new solution

No

Yes

No

Yes

Figure 8.2 Algorithm C’s mutation operator

62

Mutation

Select a sub population to mutate

Have all solutions mutated ?

Select a solution to mutate

Calculate shadow prices for all items

Find a pattern with the biggest shadow price

Is the new pattern’s shadow price

greater than the stock length ?

Copy the solution to a new solution

Insert the new pattern into the new solution

at a random position

Validate the new solution

No

Yes

No

Yes

Calculate wastes for all patterns in the

new solution

Remove several patterns with waste

from the new solution

Compare the new solution with the order

requirements to find all untrimmed items

Generate shadow price based patterns to

produce these untrimmed items

Figure 8.3 Algorithm D’s mutation operator

We implemented all algorithms in C#. Each test case was run 10 times and results were

averaged for comparison. To compare with other published algorithms, we selected the

commonly used test cases (Liang et al., 2002). There are 10 single length CSPs ranging from 20

63

items to 600 items. Table 8.4 lists the test case name, the number of different item sizes and the

total items required.

Table 8.4

Test case summary

Case Size Count Total Items

1a 8 20

2a 8 50

3a 8 60

4a 8 60

5a 18 126

6a 18 200

7a 24 200

8a 24 400

9a 36 400

10a 36 600

Table 8.5 compares mean fitness values from our four algorithms and other algorithms

(Hinterding & Khan, 1994; Liang et al., 2002; Lu, Wang, & Chen, 2008). The average and the

maximum fitness values are calculated for other algorithms and our shadow price based

algorithms (Algorithm B, C, and D). A higher fitness value means less waste, higher trim

efficiency and a fewer number of stocks with waste. Figures 8.4 and 8.5 chart the average and

the maximum fitness values.

Table 8.5

Mean Fitness Value Comparison

 Other Algorithms Our New Algorithms

Case

Lu

Pure-

ACO

Lu

ACO-

MCSP

Hinterding

Group

Based

Hinterding

Order

Based

Liang

EP
Alg. A Avg. Max Alg. B Alg. C Alg. D Avg. Max

1a 0.8056 0.9133 0.9133 0.9133 0.9133 0.9133 0.8954 0.9133 0.9133 0.9133 0.9133 0.9133 0.9133

2a 0.8912 0.9231 0.9227 0.9198 0.9231 0.9237 0.9173 0.9237 0.9237 0.9237 0.9237 0.9237 0.9237

3a 0.9921 1 1 1 1 1 0.9987 1 1 1 1 1 1

4a 0.9113 0.9638 0.9642 0.9588 0.964 0.9642 0.9544 0.9642 0.9642 0.9642 0.9642 0.9642 0.9642

5a 0.8312 0.8481 0.8479 0.8489 0.8568 0.8649 0.8496 0.8649 0.8638 0.8647 0.8657 0.8647 0.8657

6a 0.889 0.9389 0.9140 0.9389 0.9472 0.9475 0.9483 0.9477 0.9483

7a 0.9529 0.9796 0.9663 0.9796 0.983 0.9821 0.9853 0.9835 0.9853

8a 0.884 0.9567 0.9204 0.9567 0.975 0.9749 0.9786 0.9762 0.9786

9a 0.9003 0.9701 0.9352 0.9701 0.9836 0.9808 0.9942 0.9862 0.9942

10a 0.899 0.9735 0.9363 0.9735 0.9879 0.9878 0.9986 0.9914 0.9986

64

0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

Other Algorithms Our New Algorithms

Figure 8.4 Average Mean Fitness Value Comparison

0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

Other Algorithms Our New Algorithms

Figure 8.5 Maximum Mean Fitness Value Comparisons

Table 8.6 compares total waste from our four algorithms and other algorithms (Chiong,

Chang, Chai, & Wong, 2008; Liang et al., 2002). The average and the minimum total wastes are

calculated and charted (figures 8.6 and 8.7) for other algorithms and our shadow price based

65

algorithms. Table 8.7 compares the number of stocks with waste among our four algorithms and

other algorithms. The average and minimum values are calculated in table 8.7 and charted in

figures 8.8 and 8.9. In both comparisons, solutions with less total waste and less number of

stocks with waste are better.

Table 8.6

Total Waste Comparison

* With 53 stocks, the minimum total waste is 11450. 11370 is a typo by the authors.
 Other Algorithms Our New Algorithms

Case
Chiong

EP
Liang EP Alg. A Avg. Min Alg. B Alg. C Alg. D Avg. Min

1a 3 3 3 3 3 3 3 3 3 3

2a 13 13 13 13 13 13 13 13 13 13

3a 0 0 0 0 0 0 0 0 0 0

4a 11 11 11 11 11 11 11 11 11 11

5a 11370* 11966 11450 11622 11450 11450 11450 11450 11450 11450

6a 240.6 309.4 120.2 223.4 120.2 103 103 103 103 103

7a 84 189.6 84 119.2 84 84 84 84 84 84

8a 308 788 200 432 200 104 92 92 96 92

9a 250 730 142 374 142 94 106 22 74 22

10a 190 1037.2 166 464.4 166 118 130 10 86 10

0

100

200

300

400

500

600

700

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

Other Algorithms Our New Algorithms

Figure 8.6 Average Total Waste Comparisons

66

0

50

100

150

200

250

300

350

400

450

500

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

Other Algorithms Our New Algorithms

Figure 8.7 Minimum Total Waste Comparisons

Table 8.7

Number of Stocks with Waste Comparison

 Other Algorithms Our New Algorithms

Case
Chiong

EP

Liang

EP
Alg. A Avg. Min Alg. B Alg. C Alg. D Avg. Min

1a 2.8 2 2 2.3 2 2 2 2 2 2

2a 4.7 4 4 4.2 4 4 4 4 4 4

3a 0 0 0 0.0 0 0 0 0 0 0

4a 3.2 1.02 1 1.7 1 1 1 1 1 1

5a 27.1 22.8 22.2 24.0 22.2 22.4 22 22 22.1 22

6a 26.5 29.96 23.5 26.7 23.5 21.1 21.1 21 21.1 21

7a 6.6 7.48 4 6 4 2.5 2.7 1.8 2.3 1.8

8a 27.4 56.24 30.3 38.0 27.4 19.9 21.2 16.6 19.2 16.6

9a 17.6 48.54 23.7 29.9 17.6 14.1 15.6 5.3 11.7 5.3

10a 11.4 73.06 31.7 38.7 11.4 13 12.2 1 8.7 1

67

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

Other Algorithms Our New Algorithms

Figure 8.8 Average Number of Stocks with Waste Comparisons

0

5

10

15

20

25

30

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

Other Algorithms Our New Algorithms

Figure 8.9 Minimum Number of Stocks with Waste Comparisons

For the algorithms speed evaluation, comparing with other published algorithms is

difficult since the differences from experimental hardware and implementation software can

skew the result badly. So, we compare among our implementation of Hinterding’s algorithm

(Algorithm A) and our new algorithms (Algorithm B, C, and D) since they all coded in the same

language and tested on the same hardware platform. Table 8.8 lists the average generation

68

number when the best solution was found and the average time spent for these algorithms.

Figures8.10 and 8.11 present them in chart.

Table 8.8

Speed Comparison
 Find Generation Time (s)

Case Alg. A Alg. B Alg. C Alg. D Alg. A Alg. B Alg. C Alg. D

1a 3.5 2.3 7.6 2.5 0.48 0.76 0.69 1.48

2a 21.1 10.1 28.6 9.8 1.06 1.36 1.48 2.16

3a 11.3 7.9 18.5 4.5 0.84 1.22 1.18 1.82

4a 44.3 24.1 22.2 7.1 1.02 1.43 1.36 2.10

5a 226.7 74.2 129.9 125.3 6.93 13.39 19.53 68.85

6a 522.8 208.5 253.6 133.9 19.48 11.44 13.78 13.32

7a 650.8 352.7 225.2 90.2 17.43 12.29 11.89 9.59

8a 890.5 377.8 402.1 243.6 56.10 27.66 36.86 33.79

9a 849.4 564.9 529.8 450.3 60.75 41.36 50.48 62.10

10a 986 621.7 686.2 411.2 683.21 58.89 88.13 68.41

0

100

200

300

400

500

600

700

800

900

1000

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

Alg. A Alg. B Alg. C Alg. D

Figure 8.10 Best Solution Found Generation Comparisons

69

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

Alg A. Alg. B Alg. C Alg. D

Figure 8.11 Time (s) Comparisons

8.8 Results Analysis

All experimental results indicated that our proposed shadow price based genetic

algorithms B, C and D performed much better than other current algorithms and Algorithm A.

Comparing both the average and the best solutions, our new algorithms achieved better quality

results than other algorithms. Algorithm D had the best results in all cases. Solution quality was

evaluated by the fitness value, the total waste, and the number of stocks with waste. Measured by

the generation count when the best solution was found and the total search time, our new

algorithms spent about same amount of time as the other algorithm for small cases. But our new

algorithms were much faster when the complexity or the size of the case increased (from case 6a

to 10a).

Introducing the shadow price concept into GA had two effects. In traditional GA, random

search was employed since the GA operators added random patterns into the solution. In our

new algorithm, shadow price enabled operators always inserted good patterns into the solution.

Inserting good patterns is the only way to improve the quality of the solution. With good

70

patterns, our new operators guided the search toward the optimal solution with good speed. Since

GA is a multi-solution search algorithm, the local optimal traps were avoided by adding new

random solutions and some randomness in the new operators. Adding good patterns improved

solution’s quality and shortened search time.

The other effect was that the new shadow price enabled operators enforced reusing of

good patterns. The random pattern generator in traditional GA did not prompt good pattern reuse

since it did not know the quality of the pattern and consecutively generated patterns were

different. Always searching for good patterns, the new algorithm enforced good pattern reuse

since the same good pattern were generated repeatedly as long as it could be used in the solution.

Reusing good patterns improved solution’s quality and algorithm’s search speed.

From 1a to 10a, test cases’ sizes count and total items count increased. This increased

their complexity, search space, and search time. Experimental results showed that our algorithms

were a little better than other algorithms in solving small cases. This was expected since these

cases’ search spaces were small and the opportunity for pattern reuse was limited. In complex

cases, our algorithms outperformed others significantly on result quality and speed. In large and

complex search spaces, guided searching and pattern reusing enabled our new algorithms to get

quality results with speed.

In our algorithms (Shen & Zhang 2012-2), algorithm D achieved better results than

algorithm B and C. It also spent more time than the other two. This was because algorithm D

employed local search algorithm in two places and others used it only in one place. More local

searches enabled algorithm D to get better results but more computations were required for each

generation. Table 8 shows algorithm D reached best solutions with fewer generations but spent

more time overall since each generation took longer to complete.

71

In sum, the shadow price based GA operators added guidance to the search process and enabled

reusing of good patterns. They empowered our new algorithms to achieve better results with less

time than other algorithms. Our experimental results validated our theory and design.

8.9 Production Consideration

In production, there are other important CSP related problems such as the order

continuity problem, and the knife changing problem, etc. For example, the order continuity

problem was defined to minimize the order open time in a trim (Hinterding & Khan, 1994).

Trim efficiency is very important in production since it is directly related to the

production cost and the material waste. Knife changing is an important factor that keeps

continuous production. Frequent knife changes may slow down the production process and

automatic slitters can cost up to a million dollars. An order’s open time is defined as the time

span between its first and the last item produced. A vehicle’s open time is the duration between

its first and the last item loaded. As for the continuity problem, the time period that an order is

open in a trim is not very important since an order can be shipped using multiple vehicles. The

real important issue is how long a vehicle is open since this is constrained by production

facilities such as the loading dock space, the warehouse space, etc. It is a production disaster if

the produced items cannot be loaded into a vehicle for shipping and there is no warehouse space

for storage.

Knife changing and continuity are conflict objectives. Since items for a vehicle may

come from different patterns, frequent knife changes facilitate quick vehicle loading and

infrequent knife changes prolong the vehicle open time. But both of them are related to the

number of different patterns in the trim. Fewer different patterns require less knife changes and

faster vehicle loading.

72

We modified the fitness function to reduce the number of different patterns.

Maximize))((
1

1
1

1

2

1








m

j

j
m

j

j

m

p

m

v

L

w

m
f . (8.9)

In the fitness function, p is the count of different patterns in the trim. We reran our

algorithms with the new fitness function and tested cases 6a to 10a since test cases 1a to 5a were

too small to produce meaningful results. Table 8.9 presents the mean fitness values and the

number of stocks used. Table 8.10 presents the total waste, the number of stocks with waste, and

the distinct pattern count.

Table 8.9

Mean fitness value and number of stocks used
 A B C D A B C D

Case Items Mean Fitness Stocks Used

6a 200 0.9328 0.9465 0.9478 0.9483 79.3 79 79 79

7a 200 0.9710 0.9820 0.9819 0.9863 68 68 68 68

8a 400 0.9551 0.9730 0.9743 0.9783 143.9 143.2 143.1 143

9a 400 0.9699 0.9813 0.9784 0.9942 150 149.8 150 149

10a 600 0.9716 0.9895 0.9868 0.9984 216.2 215.8 215.9 215

Table 8.10

Total waste, number of stocks with waste, and distinct pattern count
 A B C D A B C D A B C D

Case Total Waste Stocks with Waste Distinct Pattern Count

6a 128.8 103 103 103 25.3 21.4 21.1 21 18 16 15 15

7a 84 84 84 84 7 2.5 2.9 1.5 24 22 22 24

8a 200 116 104 92 32.1 20.7 21.3 16.7 33 27 28 30

9a 142 118 142 22 24.7 15.4 16.5 5.4 44 39 37 43

10a 154 106 118 10 35.5 10.8 14.6 1.4 56 43 42 50

The test results showed that all three shadow price based algorithms (B, C, D) performed

better than the traditional Algorithm A on all measurements of the fitness value, the total stock

used, the total waste, the number of stocks with waste, and the distinct pattern count. Algorithms

B, C and D showed strength in different measurements. Algorithm D performed the best in the

fitness value, the total stock used, the total waste, and the number of stocks with waste.

73

Algorithm C used the least number of distinct patterns with a little sacrifice of efficiency.

Algorithm B’s performance is between Algorithm C and Algorithm D.

8.10 Summary

The key to quickly reach optimal or near-optimal solutions for the CSP is to continuously

add and reuse good patterns in the trim. Using the shadow price to analyze the current trim, we

can easily identify which items need to be improved and which items produce less waste. Instead

of using random patterns, our algorithms select patterns with big shadow prices to reduce the

waste and improve the trim efficiency. In our new algorithm, shadow price was used directly to

generate new patterns.

Our experiments proved that our proposed shadow price based SGA outperformed

current bio-inspired algorithms. The experiment of minimizing patterns also demonstrated the

versatility of our new algorithm.

CHAPTER 9 OPTIMIZING THE GREEN COMPUTING PROBLEMS WITH SGA

9.1 Introduction

Green computing is to use computers in environmental friendly ways. Computers

consume energy in two common ways, direct and indirect computing related consumption.

Energy consumed by supporting devices, such as air conditioning in the data center, is the

indirect energy consumption. Energy used by computers is the direct energy consumption.

Together, computing related energy consumption is roughly equivalent to the aviation industry’s

energy consumption. It accounts for 2% of anthropogenic CO2 from its share of energy

consumption (Consortium for School Networking Initiative 2010).

74

 A computer center can host 10,000 or 150,000 servers (Church, Greenberg, & Hamilton

2008). These mega data centers can support many large companies’ daily operations, conduct

many e-commerce transactions, perform large scale scientific researches, and provide services to

many other clients. These data centers use large amount of energy (Laszewski, Wang, Younge,

& He 2009; Wang, Laszewski, Dayal, He, & Furlani 2009). The energy used by the US servers

and data centers is significant. It is estimated that they consumed about 61 billion kilowatt-hours

(kWh) in 2006 (1.5 percent of total U.S. electricity consumption) for a total electricity cost of

about $4.5 billion. If the trend continues, this demand would rise to 12 gigaWatts (GW) by 2011.

It would require an additional 10 power plants (US Environmental Protection Agency 2007).

 Green energy is electricity generated from renewable sources such as solar, wind,

geothermal, biomass, and small hydro. They are renewable sources and more environmentally

friendly than traditional electricity generation. They emit little or no air pollution and leave

behind no radioactive waste like nuclear. Most importantly, they are naturally replenished by the

earth and sun (Yahoo Green, 2010).

Brown energy is power generated from environmentally hostile technology. The vast

majority of electricity in the United States comes from coal, nuclear, large hydro, and natural gas

plants. They are the single greatest source of air pollution in the United States, contributing to

both smog and acid rain. They are the greatest single contributor of global climate change gases

including carbon dioxide and nitrogen oxide (Yahoo Green, 2010).

Majority of the power we consumed today is non-renewable environmental hostile

energy. In 2006, green energy only accounts for 7% of total US energy supply. Petroleum, coal

and natural gas burning generate 86% of the total energy supply (U.S. Energy Information

Administration, 2010)

75

Many research projects have conducted to improve data centers’ energy efficiency, such

as improving the design of the data center (Hamann, L pez, & Stepanchuk 2010), improving

equipment (Cabusao et al. 2010), and improving air conditioning (Iyengar, Schmidt, & Caricari

2010). They focused on reducing energy consumption and improving supporting devices’

efficiency.

Efficient task scheduling in data center is another approach to save energy. With

optimized task scheduling, computers can complete tasks using less energy. It also reduces

energy consumptions from supporting devices. Combined energy savings from efficient task

scheduling in a large data center can be significant.

Intelligent task scheduling can be categorized as heuristic algorithms (Li, Liu, &

Qian,2009; Miao, Qi, Hou, & Dai, 2007; Wang, Laszewski, Dayal, He, & Furlani,2009; Wang,

Laszewski, Dayal, & Wang, 2010; Xie, Wang, & Wei, 2005; Zhang, Li, & Zhang, 2010), bio-

inspired search algorithms (Chang, Wu, Shann, & Chung, 2008; Tian, & Arslan, 2003), and

hybrid algorithms derived from them (Liu, Yang, Luo, & Wang,2006; Miao, Qi, Hou, Dai, &

Shi, 2008; Page & Naughton, 2005). Heuristic algorithms can find good solutions among all

possible ones, but they do not guarantee that the best will be found. These algorithms usually

find a solution close to the optimal and they find it very fast.

Bio-inspired search algorithms find best solutions by simulating nature. The typical

algorithms are Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO), etc. They can find optimal or near optimal solutions. They are less efficient

than heuristic algorithms. We used SGA to solve the green computing scheduling problems and

achieved very good results.

76

9.2 Problem Definition

 In general, the amount of power an electrical device uses is the product of supplying

voltage and the current it draws. The energy consumed is the product of power and time. In

addition, computer processor’s speed varies based on the volt-age supplied. Within limits, a

processor runs faster with higher voltage. Thus, the power consumption of a processor is directly

linked to its running speed. Over-clocking is one such technique that speeds up the processor by

raising the voltage. The cost of this speed increase is more energy consumption. Tasks can be

completed faster with higher speed. It’s an optimization problem to achieve a balance between

energy and time.

From green computing perspective, efficient task scheduling can be defined as either

minimizing energy consumption with schedule length constraint or minimizing schedule length

with energy consumption constraint (Li 2008). The objective of the first problem is to use the

least amount of energy to complete all tasks within a given time frame. It is used mainly in real

time processing environments. The second problem is to complete tasks as fast as possible under

given energy limitation. Its objective is to use energy efficiently and has great usage in mobile

computing, sensor network, etc.

 The first problem (P1) can be defined as (Zhang, Li, & Zhang, 2010): n computers in a

cloud computing system are used to finish m tasks by the deadline time T. Assume that im tasks

i
kP for k=1, 2, …, im are executed on computer i for 



n

i
imm

1

. A changeable speed for task
i

kP is

denoted as
i
kS for i=1, 2, …, n, and k=1, 2, …, im . The speed is defined as the number of

instructions per second. The number of instructions of task
i

kP is denoted as
i
kR . The execution

77

time for
i

kP on computer i is
i
k

i
k

S

R
. The total execution time for im tasks

i
kP on computer i is

defined as 


im

k
i
k

i
k

i
S

R
T

1

. For example (Table 7.3.1), im tasks
i

kP for 41 m , 42 m , and 33 m on

three processors,

Table 9.1

A Sample Task Schedule

 The energy for
i

kP on computer i is
1

][


 ii
k

i
ki

i
k SRCE


 (9.1)

where iC is a constant, 3
2

1 
i

i


 for 10  i , i=1, 2, …, n, and k=1, 2, …, im .

The total energy is 



n

i

im

k

ii
k

i
ki SRCE

1

1
][


 (9.2)

The optimization problem for P1 is

 Minimize 



n

i

im

k

ii
k

i
ki SRCE

1

1
][


 (9.3)

Constraints: 11  nmmi , 


n

i
imm

1

, nm  , T
S

Rim

k
i
k

i
k 

1

and i
i
ki bSa  where ia is the

minimum speed and ib is the maximum speed of computer i, respectively, for i=1, 2, …, n, and

k=1, 2, …, im .

Processor 1 1
1P

1
2P

1
3P

1
4P

Processor 2 2
1P

2
2P

2
3P

2
4P

Processor 3 3
1P

3
2P

3
3P

78

The goal of P1 (9.3) is to design a new energy aware task scheduling algorithm that can

find an optimal or near optimal schedule to compete all m tasks on n computers with minimum

or near minimum energy E by the deadline time T.

The second problem (P2) to be optimized can be defined as, using shortest time to finish

m tasks on n heterogeneous computers and the total energy can be consumed is less than or equal

to E.

Minimize (9.4)

 (9.5)

 (9.6)

In the objective function (9.4), Ti is the execution time of processor i. Equation (9.5) is the

execution time of k tasks assigned to processor i. Since speed is commonly used in the

specification of processor, equation (9.5) can be simplified into

 (9.7)

 (9.8)

The objective is to find a schedule such that m tasks are completed in the shortest time

and energy consumed is within the constraint E. There are multiple sub optimization problems in

the definition, energy, task, and speed. The first is to optimal distributing energy limitation E to

each processor Ei. The second is to optimal assigning tasks {R} to each processor. And the last

one is to determine optimal running speed for each task assigned to a processor. All three sub

problems are connected. Assigning higher energy to a processor enables it to process more tasks

in short period of time. Higher running speed demands more energy. Since the objective is to

79

minimize the longest running time of a processor, all processors have to cooperate in energy and

task assignment. It’s a very complicated combinational optimization problem.

It is proven that the schedule length is minimized when all tasks assigned to a processor

execute with the same power (Li 2008). To achieve the best result, tasks assigned to the same

processor shall be executed at the same speed since power determines speed.

Thus, equation (9.5, 9.7, and 9.8) can be simplified to:

 (9.5’)

 (9.7’)

 (9.8’)

Since all tasks running with the same speed on the same processor and the objective is to

complete the tasks as fast as possible with assigned energy for the processor, we can use formula

(9.5’) to calculate the executing time, or formula (9.9) to calculate optimal speed. This solves

the third sub optimization problem. What we need to solve now are the sub problems of

distributing total allowed energy consumption to each processors and assigning tasks to them

such that the executing time is minimal.

 (9.9)

There can be two objective functions when optimizing execution time, minimizing either

the concurrent running time on all available processors (the max of all processors’ running time)

or the accumulated execution time from all processors (summation of all processors’ running

time). Since tasks assigned to a processor shall be executing in the same speed, the later optimal

problem becomes quite simple. Optimal can be achieved by selecting the most efficient

80

processor and assign all tasks to it. We choose to optimize the difficult problem of optimizing

concurrent running time (9.4).

Instead of a minimal function, standard deviation on execution time can also be used as

the objective function to optimize. It measures the distances from each processors’ execution

time to the average. The idea is to make all processors sharing the work load and enforce their

execution time closing to the medium. This is a good objective function in general but may not

work in a heterogeneous processors environment. In a very diverse setup, processors’ energy and

execution efficiency can different significantly from one to the other. There can be optimal

solutions that no work is assigned to less efficient processors. A simple minimal function is both

efficient in calculation and flexible to cover most scenarios.

 Both problem P1 and P2 are integer combinatorial optimization problems. The time and

energy consumption calculations are complicated.

9.3 Shadow Price Guided GA Operator for P1

Encoding is straightforward for this problem. The solution consist a list of all processors.

Each processor has a list of tasks assigned to it. Each task is associated with a few attributes,

such as total instruction count, execution speed and time, etc.

Shadow price definition shall reflect the cost of execution each individual task after

assigned to a processor. In this problem, it’s the energy consumption of the task. Due to the fact

that different tasks have different number of instructions, task energy consumption can’t be used

to compare the efficiency of assignments since large task will consume more energy. We can use

average energy consumption per instruction as the shadow price. Although this helps comparing

assignments efficiency, the evolution direction is still not clear. The goal is to reduce shadow

81

price, i.e., reduce energy consumption per instruction for a task. There are two methods to

achieve this, reducing the task execution speed, assigning task to a more efficient processor.

The minimal power consumption is achieved when all tasks assigned to the processor are

running at the same speed (Li 2008). This greatly simplified the calculation. To minimize the

processor’s energy consumption, we sum up all instructions from assigned tasks and calculate

the minimal energy consumption with the max time allowed. This solves the second optimization

sub problem.

Since the optimal speeds for all tasks assigned for a processor are the same, we define the

shadow price as the average energy consumption per instruction for P1. Furthermore, we move

the shadow price definition to the processor since there is only one value per processor. This also

defines the evolution direction and method. That is to reduce processor’s average per instruction

energy consumption by moving tasks among processors.

We define two mutation operations (Shen & Zhang, 2011-2), move one task from one

processor to another and exchange a task between two processors. We further categorize the

operations as original and shadow price guided mutation operations. Here is the complete

algorithm.

Begin

1. Validate there is at least one feasible solution.

2. Build initial population.

3. While stop criteria has not met

3.1 Select a sub population to randomly apply one of the following operations

 Classic mutation operation (Move). Randomly select two processors and move one randomly

selected task from one processor the other.

 Classic mutation operation (Exchange). Exchange two randomly selected tasks between two

randomly selected processors.

 Shadow priced guided mutation operation (Move).

(a) Calculate shadow prices for all processors.

(b) Establish a pool of high shadow priced processors and random select one processor (Pa).

(c) Establish a pool of low shadow priced processors and random select one processor (Pb).

(d) Random select one task from Pa and move it to Pb.

 Shadow priced guided mutation operation (Exchange).

(a) Calculate shadow prices for all processors.

(b) Establish a pool of high shadow priced processors and random select one processor (Pa).

82

(c) Establish a pool of low shadow priced processors and random select one processor (Pb).

(d) Sort Pa and Pb’s tasks based on their instruction count.

(e) Establish a task pool from Pa’s tasks whose instruction counts are more than average and

random select one task.

(f) Establish a task pool from Pb’s tasks whose instruction counts are less than average and random

select one task.

(g) Exchange the selected tasks between Pa and Pb.

3.2 Add random solutions

3.3 Filter and build next generation

End While

End

The mutation operation randomly applies one of the four algorithms for each candidate

solution. When GA search starts, all four operations have equal opportunities to be used for a

given solution. The odds of applying each operation changes with the search algorithm

progressing. Especially when search is trapped in a local optimal or getting close to finish,

classic mutation operations have better possibilities to be chosen.

9.4 Shadow Price Guided GA Operator for P2

The goal (9.4) of this problem is to schedule m tasks on n computers such that the

concurrent execution time is minimal and the total energy consumption is less than or equals to

E. Since it is most efficient to schedule tasks on the same processor at the same speed (Li 2008),

the optimization problem breaks down to two sub problems, optimal distribute energy constraint

E to n computers and optimal assign m tasks to n computers. The original third sub optimization

problem, minimizing execution time for a processor i with mi tasks and energy cap of Ei, can be

solved directly using equation (9.5’) and speed can be calculated using formula (9.9).

There are two steps to construct a solution, distribute energy constraint and assign tasks.

It does not impact the solution which task completes first. But both tasks have to be completed

before the fitness value can be calculated for a solution.

To solve the scheduling problem, we can either treat it as a nested two optimization

problems or an optimization problem with two sub tasks. In the nested optimization problem

83

scenario, one sub problem will be selected as the parent problem and used to drive the other child

problem. For example, if we select energy constraint distribution as the parent problem, the

search process starts with creating various combinations of energy assignments to processors.

Each energy constraint assignment will be treated as a separate optimization problem and solved

individually. Various task assignments are evaluated and the assignment that with the least

concurrent execution time is the fitness value for the energy assignment. The search process

evolves the parent energy assignments and searches for best task combinations for each new

assignment. The process repeats until the optimal solution is found.

We can also treat the two optimization tasks as two separate parameters in the same

optimization problem and create a flat model. In the nested model, parent searches for the

optimal energy assignment and the child searches for the best task assignments within the parent

energy assignment. In the flat model, both parameters work together to optimize the same

objective of minimizing solution execution time for all processors. Thus, we can ignore the

relationship between these two parameters and only focus on the relationships from the two

parameters to the solution. We can tune one parameter at a time and rotate. The process can be

repeated until the optimal solution is found.

Nested optimization problems are difficult to solve and takes more time to converge

(Shen & Zhang 2012-1). In comparison, flat models are easier to solve since there is only one

objective function. The complexity is that there are more parameters in the GA operations.

Optimizing nested models use tree search and optimizing flat models use linear search with

rotating parameters.

To work with flat model, we define two mutation operations, energy mutation and task

mutation. There are two sub energy mutations, exchange energy between two processors and

84

move some energy from one processor to the other. There are also two sub task mutations,

exchange a pair of tasks between two processors and move one task from one processor to the

other. The processors and tasks are randomly selected in the operations. There is no preference

or direction to move the search process.

Our enhanced mutation operation only moves some energy from one processor to the

other. Since the objective is to minimize concurrent execution time and more energy can

improve speed, we want to move some energy from a short run time processor to a long run time

processor. The long run time processor will benefit from added energy and shorten the run time.

But the short run time processor may not have extra energy to give. There may be multiple

reasons that cause processor use less time, such as the processor is very efficient and can run

very fast with little energy, the processor is assigned with large amount of energy, or the

processor is assigned with small tasks. So short run time cannot be used to select energy donor

processor. A combination of higher energy and less run time makes a good selection criterion.

In our definition, shadow price represents a component’s potential. Here, shadow price is

the combination of a processor’s run time and energy assigned. Run time takes precedence over

energy since we are selecting the energy donor processor. A processor’s shadow price is high

when it has a short run time and large energy. A processor’s shadow price is low when it has a

long run time or a short run time and smaller energy. We want to mutate a processor from high

shadow priced state to a low shadow priced state. The mutation direction set by the shadow

prices is to mutate a processor with below average run time to a longer run time or less energy

state.

The shadow price definition for P1, average energy consumption per instruction or

average time spent per instruction, does not work for the task mutation here since each processor

85

can be assigned with different energy and tasks. The average energy or time per instruction

cannot be used to compare among processors. High average energy consumption per instruction

can exist for processors with various energy or task assignments. Same fact holds true for time

spent per instruction.

The goal of task mutation is to move task from a long running processor to a short time

running processor. The task donor processor is easy to pick. It can simply be one of the long run

time processors. The receiving processor shall be one of the short run time processors. We need

to be very careful about selecting receiving processor since it can dramatically increase its run

time. Since we are not rearranging energy in this task mutation, the ideal receiving processor is

the one that its energy or execution time is not very sensitive to task increase. That is, task

increase is not the most influential factor in a processor’s executing time or energy calculation.

Formula (9.5’) shows execution time calculation with fixed energy and (9.8’) shows energy

calculation with known speed. Both are exponential functions. In an exponential function,

exponent has far bigger impact to the result than the base. In both (9.5’) and (9.8’), task

instruction count is in the base and α is in the exponent. Since α is a positive number and greater

or equal to 3, α can generate bigger impact to the execute time and energy consumption. While

comparing 2 processors with same tasks, the one with bigger α consumes more energy if speeds

are the same or takes more execution time if energies are the same. So, it is preferred to add a

task to a processor with smaller α since it may cause much small increase to the execution time.

We define the shadow prices as the combination of execution time and α. We want to mutate the

task from a long execution time processor to a processor with short execution time and a smaller

α.

86

Our shadow price enhanced algorithm (Shen & Zhang 2012-3) follows standard GA

algorithm framework. To avoid local optimal traps, we combine enhanced mutation with

standard mutation operations.

Begin

1. Validate there is at least one feasible solution.

2 Build initial population.

3 While stop criteria has not met Repeat

3.1 Select a sub population to randomly apply one of the following operations

 Energy move mutation operation

a) Randomly select two processors

b) Move some energy from one processor to the other processor

c) Validate the new solution

 Energy exchange mutation operation

a) Randomly select two processors

b) Exchange energy assignments between them

c) Validate the new solution

 Task move mutation operation

a) Randomly select two processors

b) Randomly select a task from one processor

c) Move the randomly selected task from one processor to the other processor

d) Validate the new solution

 Task exchange mutation operation

a) Randomly select two processors

b) Randomly select a task from each processor

c) Exchange the selected tasks between the two processors

d) Validate the new solution

 Shadow price enhanced energy mutation operation

a) Sort all processors based on execution time

b) Split processors into 2 sets, long run time processors and short run time processors

c) Create a subset from long run time processors to establish an energy receiving processor pool

Sr

d) Random select one processor from Sr as the receiving processor Pr

e) Re-short the short run time processor set based on energy assignment

f) Create a subset from short run time processors to establish an high energy donating processor

pool Sd

g) Random select one processor from Sd as the energy donating processor Pd

h) Move some energy from Pd to Pr

i) Validate the new solution

 Shadow price enhanced task mutation operation

a) Sort all processors based on execution time

b) Split processors into 2 sets, long run time processors and short run time processors

c) Create a subset from long run time processors to establish an task donating processor pool Sd

d) Random select one processor from Sd as the donating processor Pd

e) Re-short the short run time processor set based on processor’s α value

f) Create a subset from short run time processors to establish a small α value task receiving

processor pool Sr

g) Random select one processor from Sr as the task receiving processor Pd

h) Randomly select one task from Pd and move to Pr

i) Validate the new solution

3.2 Add random solutions

87

3.3 Filter and build next generation

End While

End

Shadow price represents a state of a component relative to the current solution. It can take

on many different forms. In this green scheduling problem, the shadow price is embedded in the

mutation operations due to its complexity. It’s a procedure. It measures the processor execution

time, energy consumption, and processor’s attribute α. It can greatly improve the search speed

and solution quality.

9.5 Experiments for P1

 To evaluate our new algorithm, we conducted a comparative study between GA and our

new shadow price guided GA. Both algorithms followed the standard GA framework and were

identical except the mutation operations used. All four mutation operations were used in the

shadow price guided GA and only two classic mutation operations were used in the classic GA.

Both algorithms used the same calculation to optimize the power consumption for a processor

after tasks have been assigned.

We coded and tested both algorithms in Microsoft C#. All experiments were run on a

Lenovo Thinkpad laptop T410 that equipped with Intel Core i5-M520 2.4 GHz CPU and 4 GB of

memory running Windows 7. Each test case was run at least 10 times. Results were averaged and

reported.

We first located published specifications for commercial released CPUs (Wikipedia,

2010) and selected 20 latest ones for our experiment (Table 9.2). Million instructions per second

(MIPS) was used to measure the speed of the processors.

88

Table 9.2

Published Processor Specification

ID Processor
Inst. / Second

(MIPS/MHZ)

Inst.

/clock
cycle

Year

Min

Speed
(MIPS)

OverClo

cking

Improve
ment

(%)

Max

Speed
(MIPS)

C Φ

1 DEC Alpha 21064 EV4 300 / 150 2.7 1992 300 0.09 327 84 0.65

2 Intel Pentium III 1,354 / 500 2.7 1999 1354 0.15 1557 7 0.75

3 AMD Athlon 3,561 / 1.2 3 2000 3561 0.23 4380 8 0.57

4 AMD Athlon XP 2400+ 5,935 / 2.0 3 2002 5935 0.14 6766 86 0.68

5 Pentium 4 Extreme Edition 9,726 / 3.2 3 2003 9726 0.07 10407 74 0.8

6 AMD Athlon FX-57 12,000 / 2.8 4.3 2005 12000 0.09 13080 50 0.83

7
AMD Athlon 64 3800+ X2 (Dual
Core)

14,564 / 2.0 7.3 2005 14564 0.13 16457 60 0.73

8 ARM Cortex A8 2,000 / 1.0 2 2005 2000 0.18 2360 52 0.56

9
Xbox360 IBM "Xenon" Triple

Core
19,200 / 3.2 6 2005 19200 0.2 23040 55 0.51

10 AMD Athlon FX-60 (Dual Core) 18,938 / 2.6 7.3 2006 18938 0.17 22157 62 0.63

11 Intel Core 2 Extreme X6800 27,079 / 2.93 9.2 2006 27079 0.21 32766 19 0.66

12 Intel Core 2 Extreme QX6700 49,161 / 2.66 18.5 2006 49161 0.16 57027 22 0.6

13 PS3 Cell BE (PPE only) 10,240 / 3.2 3.2 2006 10240 0.23 12595 45 0.94

14 P.A. Semi PA6T-1682M 8,800 / 2.0 4.4 2007 8800 0.25 11000 11 0.75

15 Intel Core 2 Extreme QX9770 59,455 / 3.2 18.6 2008 59455 0.17 69562 92 0.55

16 Intel Core i7 Extreme 965EE 76,383 / 3.2 23.9 2008 76383 0.18 90132 11 0.65

17
AMD Phenom II X4 940 Black

Edition
42,820 / 3.0 14.3 2009 42820 0.15 49243 42 0.56

18 AMD Phenom II X6 1090T 68,200 / 3.2 21.3 2010 68200 0.12 76384 77 0.91

19
Intel Core i7 Extreme Edition
i980EE

147,600 / 3.3 44.7 2010 147600 0.14 168264 29 0.71

20 IBM 5.2-GHz z196 52,286 / 5.2 10.05 2010 52286 0.15 60129 66 0.69

The energy consumption for task k on computer i,
i

kP , is
1

][


 ii
k

i
ki

i
k SRCE


 and

3
2

1 
i

i


 for 10  i . To calculate processor’s energy, we need to define constants C and

 for each processor. Since i
i
ki bSa  and speed i

kS varies based on task, processor assigned

and time constraint, we also need to define the minimum and maximum speed for each

processor.

89

 The published CPU specifications define speed certified by manufacture. The CPU is

most stable at this speed. A lot experiments have been done to improve their speed by

overclocking. Overclocking consumes more energy. For our experiments, we use published

speed as the processor’s minimum speed. We use a random number between 5% and 25% as the

overclocking speed improvement to define the maximum speed for each processor (Table 7.3.2).

We randomly generated constants C and  for each processor. To improve the quality of

random number, we used public available true random number generating services (Random,

Table 9.3

Energy Consumption Comparison

Gmax=500 Gmax=1000 Gmax=1500 Gmax=2000

Cp Ct Ega Esga Ega-Esga Ega Esga Ega-Esga Ega Esga Ega-Esga Ega Esga Ega-Esga

10 500 1.76E+20 1.37E+20 3.90E+19 1.36E+20 1.36E+20 4.90E+15 1.36E+20 1.36E+20 6.50E+15 1.36E+20 1.36E+20 4.51E+15

10 1000 1.71E+21 9.76E+20 7.31E+20 6.39E+20 5.78E+20 6.05E+19 5.78E+20 5.78E+20 8.50E+16 5.78E+20 5.78E+20 1.46E+16

10 1500 5.99E+21 3.89E+21 2.10E+21 2.01E+21 1.15E+21 8.59E+20 1.06E+21 9.19E+20 1.43E+20 9.20E+20 9.17E+20 2.10E+18

10 2000 6.18E+21 4.59E+21 1.59E+21 2.10E+21 1.30E+21 8.00E+20 1.22E+21 7.44E+20 4.77E+20 7.85E+20 6.39E+20 1.46E+20

10 3000 5.22E+21 3.82E+21 1.40E+21 2.31E+21 1.55E+21 7.51E+20 1.39E+21 9.05E+20 4.89E+20 9.34E+20 5.69E+20 3.65E+20

10 5000 1.63E+22 1.23E+22 4.00E+21 7.11E+21 5.05E+21 2.06E+21 4.37E+21 2.91E+21 1.46E+21 3.16E+21 1.95E+21 1.21E+21

20 500 4.62E+19 2.40E+19 2.22E+19 1.11E+19 4.30E+18 6.79E+18 3.85E+18 2.63E+18 1.22E+18 2.66E+18 2.58E+18 8.00E+16

20 1000 1.40E+21 7.66E+20 6.29E+20 2.49E+20 1.07E+20 1.42E+20 8.43E+19 3.11E+19 5.32E+19 3.45E+19 1.40E+19 2.05E+19

20 1500 1.73E+22 1.25E+22 4.81E+21 1.31E+21 6.75E+20 6.35E+20 3.52E+20 1.89E+20 1.63E+20 1.68E+20 6.96E+19 9.83E+19

20 2000 1.79E+22 1.15E+22 6.41E+21 2.44E+21 1.22E+21 1.22E+21 7.30E+20 3.68E+20 3.61E+20 3.01E+20 1.48E+20 1.54E+20

20 3000 4.58E+21 3.65E+21 9.28E+20 1.61E+21 1.28E+21 3.27E+20 7.94E+20 4.48E+20 3.46E+20 4.26E+20 2.07E+20 2.20E+20

20 5000 1.65E+22 1.54E+22 1.17E+21 7.22E+21 6.15E+21 1.07E+21 3.74E+21 2.89E+21 8.56E+20 2.36E+21 1.53E+21 8.36E+20

30 500 1.12E+19 5.23E+18 5.97E+18 3.06E+18 1.68E+18 1.37E+18 1.62E+18 1.09E+18 5.26E+17 1.16E+18 1.04E+18 1.24E+17

30 1000 1.21E+20 7.27E+19 4.85E+19 3.44E+19 1.67E+19 1.76E+19 1.55E+19 7.38E+18 8.08E+18 8.65E+18 4.80E+18 3.85E+18

30 1500 3.78E+20 2.47E+20 1.31E+20 1.10E+20 6.17E+19 4.85E+19 5.45E+19 2.71E+19 2.74E+19 2.98E+19 1.38E+19 1.60E+19

30 2000 4.73E+20 3.25E+20 1.48E+20 1.52E+20 1.01E+20 5.17E+19 6.90E+19 3.44E+19 3.46E+19 3.97E+19 2.08E+19 1.89E+19

30 3000 3.60E+20 2.81E+20 7.94E+19 1.61E+20 1.13E+20 4.82E+19 8.19E+19 4.83E+19 3.36E+19 4.88E+19 2.64E+19 2.24E+19

30 5000 8.72E+20 7.07E+20 1.65E+20 5.06E+20 3.72E+20 1.35E+20 2.94E+20 2.13E+20 8.08E+19 1.83E+20 1.18E+20 6.44E+19

40 500 5.23E+18 2.58E+18 2.65E+18 1.44E+18 5.98E+17 8.39E+17 6.11E+17 3.67E+17 2.44E+17 4.23E+17 3.24E+17 9.97E+16

40 1000 6.01E+19 4.30E+19 1.71E+19 1.56E+19 7.44E+18 8.20E+18 6.76E+18 2.93E+18 3.83E+18 3.31E+18 1.73E+18 1.58E+18

40 1500 2.08E+20 1.36E+20 7.28E+19 5.62E+19 3.14E+19 2.48E+19 2.47E+19 1.18E+19 1.29E+19 1.25E+19 5.80E+18 6.73E+18

40 2000 2.31E+20 1.58E+20 7.36E+19 8.31E+19 5.01E+19 3.30E+19 3.52E+19 1.80E+19 1.71E+19 1.73E+19 8.61E+18 8.71E+18

40 3000 1.71E+20 1.38E+20 3.22E+19 8.04E+19 5.30E+19 2.74E+19 3.96E+19 2.38E+19 1.58E+19 2.47E+19 1.12E+19 1.34E+19

40 5000 3.75E+20 3.47E+20 2.85E+19 2.36E+20 1.76E+20 5.96E+19 1.54E+20 9.92E+19 5.46E+19 9.81E+19 5.95E+19 3.85E+19

50 500 2.90E+18 1.30E+18 1.60E+18 7.67E+17 4.10E+17 3.58E+17 3.89E+17 2.49E+17 1.40E+17 2.75E+17 2.24E+17 5.15E+16

50 1000 2.66E+19 1.61E+19 1.06E+19 7.09E+18 3.64E+18 3.45E+18 3.35E+18 1.61E+18 1.74E+18 1.93E+18 1.06E+18 8.74E+17

50 1500 6.23E+19 4.26E+19 1.97E+19 1.99E+19 1.18E+19 8.18E+18 1.01E+19 5.02E+18 5.10E+18 5.94E+18 2.87E+18 3.07E+18

50 2000 7.55E+19 5.53E+19 2.02E+19 2.67E+19 1.80E+19 8.74E+18 1.37E+19 7.01E+18 6.71E+18 7.65E+18 4.04E+18 3.62E+18

50 3000 6.24E+19 4.85E+19 1.39E+19 2.94E+19 1.77E+19 1.18E+19 1.47E+19 8.73E+18 5.96E+18 9.73E+18 5.20E+18 4.53E+18

50 5000 1.47E+20 1.34E+20 1.34E+19 8.20E+19 6.43E+19 1.77E+19 5.18E+19 3.54E+19 1.63E+19 3.63E+19 2.04E+19 1.59E+19

90

2010) instead of using C# library to generate pseudo random numbers. Table 3 list the minimum

speed, overclocking improvement, maximum speed, constants C and  for each processor used

in our experiments.

We also used random number generate service (Random, 2010) to generate tasks’

instruction count for our experiments. We set the range of instruction count between 500 and

100,000.

Experiment cases were created using different combination of processor count and task

count. Time constraint for each experiment case was randomly created first. It was validated to

ensure that there are feasible solutions. Then, it was shortened to ensure not many processors can

be idle in the optimal solutions. This was to avoid the situation that all tasks were assigned to a

few high efficient processors.

 The first test compared final solution quality between two algorithms. Table 9.3

compares average energy consumptions under different maximum generation limits (Gmax). For

each combination of CPU count (Cp) and task count (Ct), it lists GA energy consumption (Ega),

SGA energy consumption (Esga), and there difference (Ega-Esga). Since the objective is to

minimize energy usage, Ega-Esga greater than 0 states SGA is better than GA and vice versa.

Table 9.3 shows for all the test cases and maximum generation limits, SGA used less energy than

GA to complete the tasks. SGA achieved better solution than GA.

Next, we conducted speed test between the two algorithms. For each test case, we used

average energy consumption from above test as the stopping criteria. There is no generation

limit. Algorithm only stops when solution is equal or better than the target energy usage. Table

9.4 lists the testing result. It lists generations used (Gga, Gsga) and time used (Tga, Tsga). It also

computes the difference (Gga-Gsga, Tga-Tsga). In this test, less generation and time used is

91

better. If Gga-Gsga or Tga-Tsga is greater than 0, SGA use less generation or time than GA.

SGA is faster than GA to achieve the same result quality and vice versa.

Table 9.4

Speed Comparison
 Generation Time

Cp Ct Gga Gsga Gga-Gsga Tga Tsga Tga-Tsga

10 500 633 403 230 1.297 0.834 0.463

10 1000 814 600 214 4.124 3.058 1.066

10 1500 936 715 221 8.935 6.622 2.313

10 2000 1001 717 284 14.571 10.745 3.826

10 3000 1113 808 305 29.792 21.956 7.836

10 5000 1022 805 217 68.884 54.008 14.876

20 500 941 650 291 1.871 1.31 0.561

20 1000 820 675 145 3.342 2.716 0.626

20 1500 707 587 120 4.826 4.014 0.812

20 2000 832 691 141 8.211 6.919 1.292

20 3000 1058 837 221 19.544 16.187 3.357

20 5000 1007 817 190 42.62 34.748 7.872

30 500 967 634 333 1.755 1.182 0.573

30 1000 943 685 258 3.308 2.53 0.778

30 1500 962 755 207 5.337 4.171 1.166

30 2000 1003 762 241 7.899 6.1 1.799

30 3000 1084 832 252 13.893 10.435 3.458

30 5000 1141 930 211 29.71 23.837 5.873

40 500 965 652 313 1.876 1.292 0.584

40 1000 961 733 228 3.195 2.396 0.799

40 1500 965 742 223 4.673 3.791 0.882

40 2000 1027 793 234 6.848 5.138 1.71

40 3000 1131 849 282 12.402 9.776 2.626

40 5000 1222 916 306 26.614 20.318 6.296

50 500 964 613 351 1.973 1.292 0.681

50 1000 948 688 260 2.962 2.158 0.804

50 1500 1056 761 295 4.674 3.372 1.302

50 2000 1009 807 202 5.829 4.62 1.209

50 3000 1087 856 231 10.858 8.578 2.28

50 5000 1179 919 260 21.367 16.899 4.468

Since table 9.4 shows all values of Gga-Gsga and Tga-Tsga are greater than 0, GA used

more time than SGA to find equivalent results. SGA is faster than GA to find targeted result.

9.6 Experiments for P2

 Similar to P1, we also conducted a comprehensive comparative study between GA and

our new shadow price enhanced GA. Same set of testing data and environment was used.

92

Step 1 of the algorithm checks for the existence of a valid solution. Formula (9.8) and

(9.8’) show that energy consumption is at the lowest level when the speed is minimized for a

given processor. To check if a processor can complete the tasks with limited energy, we only

need to test it at its lowest speed. To check existence of at least one valid solution, we test all

tasks for each processor at its lowest speed and compare energy consumptions. If there is one

processor consumes less than or equal to energy constraint, there is at least one valid solution

exist for the problem. Otherwise, there is no feasible solution for the problem and algorithm

aborts.

We studied algorithms’ performance in two aspects, result quality and convergence

speed. For result quality, we test algorithm with various test cases under fixed energy constraint

and fixed generation of evolutions.

Tables 9.5-9.9 show comparison test results between GA and SPGA. To make it easy to

read, only the integer portion of data is displayed. The processor count ranges from 10 to 50. The

task count R ranges from 500 to 5000. The max generation limits (Gmax) are 500, 1000, 1500,

2000, 3000, and 5000. All combinations of task count R and generation limit Gmax are tested for

each processor count setup. Each test case was run at least 10 times. Results were averaged and

reported. The improvement percentages from SPGA optimal solution (Tspga) over GA optimal

solutions (Tga) are reported in the tables. Since the objective is to minimize concurrent execution

time, a positive number shows GA’s best solution takes long time than SPGA and SPGA’s result

is better than GA. Tables 9.5-9.9 show all positive results. SPGA best solutions used less

execution time than GA best solutions in all test cases. SPGA reached better solutions than GA.

93

Table 9.5 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 10 Processors

Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000

500 44 25 15 8 5 1

1000 85 56 30 22 12 2

1500 84 76 51 37 19 8

2000 74 78 71 50 27 13

3000 57 70 77 75 45 24

5000 23 58 68 72 76 50

Table 9.6 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 20 Processors

Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000

500 76 58 49 39 28 26

1000 69 79 70 60 55 41

1500 57 79 79 74 62 49

2000 49 78 81 80 73 56

3000 42 70 76 80 79 67

5000 31 56 69 75 78 77

Table 9.7 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 30 Processors

Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000

500 88 75 61 49 25 18

1000 90 86 79 72 54 36

1500 85 90 86 80 68 53

2000 81 87 90 86 82 68

3000 69 82 88 89 88 79

5000 46 76 82 86 90 86

Table 9.8 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 40 Processors

Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000

500 81 67 56 45 31 39

1000 81 83 74 68 60 53

1500 76 85 84 79 73 61

2000 70 83 87 85 80 66

3000 58 79 84 86 86 74

5000 43 71 79 82 85 85

94

Table 9.9 SPGA Time Improvement over GA (Tga-Tspga)x100/Tga for 50 Processors
Gmax R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000

500 88 74 69 63 52 37

1000 90 85 81 76 72 61

1500 88 91 89 84 80 72

2000 85 89 91 88 84 76

3000 80 85 89 91 90 83

5000 61 80 85 88 91 89

To study algorithms’ convergence speed, we reran all test cases with same energy

constraints. Instead of limiting max generations, we set a target fitness value for the algorithms.

The search only stops when the best solution’s execution time meets the target value. The

algorithm can take as much time or generations as needed to reach the target. Average execution

times from above test cases were used as the target value.

Table 9.10 SPGA Search Speed Improvement in Time(s), STga-STspga

Pc R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000

10 3 3 10 18 33 60

20 3 8 12 15 36 52

30 5 7 10 13 21 42

40 6 8 12 17 31 43

50 8 10 12 16 20 38

Tests were run for each combination of processor count (Pc) and task count R. Each test

was run at least ten times. Results were averaged and reported. Table 9.10 shows SPGA’s search

time (STspga) savings over GA’s search time (STga), STga-STspga. A positive value shows GA

takes longer time than SPGA to reach equivalent results. SPGA is faster with a positive value.

Table 9.11 compares evolution generations used from GA (Gga) over SPGA (Gspga), Gga-Gspga. A

positive value states that GA took more generations of evolution than the SPGA to reach targeted

solutions. Both tables show SPGA is faster than GA. Table 9.10 measures the speed in search

time and Table 9.11 measures speed in evolution generations.

95

Table 9.11 SPGA Search Speed Improvement in Generations, Gga-Gspga

Pc R= 500 R= 1000 R= 1500 R= 2000 R= 3000 R= 5000

10 791 538 783 845 782 407

20 945 1471 1424 1157 1456 1012

30 1154 1172 1273 1145 1115 1132

40 1327 1256 1454 1489 1714 1331

50 1479 1435 1365 1387 1193 1239

All test data and studies showed that final schedules from SPGA used less time to

complete all tasks than final schedules from GA. SPGA achieved better solutions than GA.

SPGA also used less time and fewer generations of evolution than GA to reach optimal solutions.

Overall, SPGA find better results than GA and faster than GA.

9.7 Summary

Green energy aware computing is one of the most active research fields. There are many

complex and challenging topics. Energy aware task scheduling in a multiple heterogeneous

processors environment is a typical problem,

We applied our new shadow price guided GA to solve the energy aware task scheduling

problems and achieved very good results. Experiments showed our new algorithm achieved

better results than the standard GA and used less time.

CHAPTER 10 OPTIMIZING THE STOCK REDUCTION PROBLEM WITH SGA

10.1 Introduction

In production, the CSP is directly linked to the stock assortment in the inventory.

Increasing the number of different length stocks can reduce the waste from stock cutting. On the

other hand, inventory incurs all kinds of expenses, such as stock cost, warehouse management,

air conditioning, stock aging, etc. Efficient inventory management calls for simple stock

96

assortment and minimal stock on hand while still meeting production requirements with the least

waste.

It is an NP hard problem to choose the minimal stock mix and still maintains high trim

efficiency with low waste. The parent is a Minimizing Stock Mix Problem (MSMP), and the

children are CSPs. This general problem is commonly referred to as the Stock Reduction

Problem (SRP). It is an integer combinatorial optimization problem and GA is a good choice to

solve it. It can solve the parent’s integer combinatorial MSMP and the children CSPs with

integer results. However, GA takes a long time to solve complex CSPs. Furthermore, it can be

very time consuming to use an algorithm that nesting GA within another GA to solve the SRP.

LP algorithms are efficient but limited to linear objective functions and best at non-

integer problems. GA has little restriction on the objective functions but may take a long time to

converge. A hybrid algorithm merging GA and LP may combine their technical merits to

generate satisfactory solutions.

In most LP/GA hybrid algorithms, a divide and conquer strategy is used to separate the

problem into sub problems. LP and GA solve sub problems separately based on their strengths.

LP solves non-integer problems, and GA solves integer problems. These hybrid algorithms may

not very efficient at solving the SRP since both the MSMP and the CSP are integer optimization

problems.

We propose a new hybrid algorithm that uses GA to solve the parent problem (MSMP),

and combines LP and GA to solve the sub problems (CSPs). We use LP to improve GA’s

performance and GA to improve LP’s integer results. Our test results have shown that our

algorithm can solve the SRP effectively.

97

10.2 Problem Definition

The goal of the SRP is to reduce inventory by minimizing the number of different stocks

needed, i.e., simplifying stock assortment. To satisfy daily production requirements and lead-

time variability, a certain level of inventory for each stock-keeping unit (SKU) need to be

maintained. It is called Safety Stock. It is very expensive to keep a large number of SKUs.

Reducing SKUs is a method to lower inventory and cost. There are also other tangible benefits,

such as easy management, easy inventory replenishment, etc.

However, it is difficult to define the inventory cost or to measure the cost savings from

the stock reduction. There are a lot of different costs in production, and not all of them are in the

form of polynomial functions. For example, the space in owned warehouse is free and it is not

free if the storage space is rented, warehouse temperature control indirectly links to the inventory

level, en-route stock may or may not be included in the cost based on contract, etc. Most times,

inventory cost is simply a part of the overall production costs. But there is one kind of cost that is

concrete and directly linked to the stock reduction – the cost from trim loss. Reducing stock

variety can lower trim efficiency (stock cutting efficiency) and produce more waste. Waste in

production is directly linked to cost. Thus, we chose trim efficiency as the objective for the SRP.

The SRP can be defined in two ways. One is to minimize the number of different stocks

needed to satisfy demand while maximizing the trim efficiency. The other is to minimize the

number of different stocks needed to satisfy demand while meeting a trim efficiency requirement

- a threshold.

The two definitions are different but an algorithm that solves the second problem can

easily be used to solve the first. We can start with solving the CSP using all stocks and get the

best trim efficiency. Then, the first problem can be transformed to the second problem by using

98

the previous result as the trim efficiency requirement. Solving this problem also provides the

correct answer for the first problem. So, we use the second problem definition and define the

fitness function as,

Minimize LCSPf  *)((10.1)



 


S

EE
P

t)(1

else

EwhenE t
 (10.2)

Where, S = number of different stocks used in solution,

 L = total length of different stocks used in solution,

E = trim efficiency,

Et = trim efficiency threshold,

C = constant.

In the fitness function (10.1), P represents the trim efficiency status. It is less than 1 when

the current solution meets the trim efficiency requirement. If there are multiple solutions that

meet the requirement, P also states the preference for high trim efficiency (10.2). If the current

solution does not meet the trim efficiency requirement, a big penalty of S (the number of

different stocks used in this solution) is used. L is to signal the preference for shorter stocks when

possible. Constant C is used to adjust the precision of the trim efficiency.

10.3 LP/GA Hybrid Algorithm

In our new hybrid algorithm (Shen & Zhang 2012-1), there are three sub algorithms: (1)

GA based stock mix minimizing algorithm, (2) the rule-based chromosome preprocess

algorithm, and (3) LP/GA combined cutting stock algorithm.

The stock mix minimizing algorithm responsible for selecting subsets of minimal stocks

to create sub CSPs and controlling the overall algorithm. It is based on the traditional GA. The

first step is to ensure that there are feasible solutions. It solves the CSP with all available stocks

and compares the trim efficiency with the threshold. The algorithm stops if there is no feasible

solution (i.e., with all stocks available, the trim efficiency is still worse than the requirement).

99

Otherwise, it builds up the initial solution pool with random chromosomes. Then, it loops

through generations of GA operations until the stopping criterion is met. The stopping criterion

is that either the algorithm stops progressing or the max number of generations is reached.

There are three mutation operators in our algorithm: removing one stock from the mix,

adding one to the stock mix, and swapping one stock in the mix with an unused stock. The

algorithm uses one of the three operators randomly.

Begin

1. Build a CSP with all available stocks and solve it. If the solution's trim efficiency is worse than the threshold, the

algorithm stops with no solution.

2. Build the initial solution population.

2.1 Select a random subset of stocks.

 2.2 Build a CSP using the stock subset.

 2.3 Solve the CSP.

2.4 Store the CSP and result in the solution repository.

 2.5 Repeat steps 2.1 through 2.4 to fill the population.

3. Select a subset from current population and mutate.

3.1 Select a solution from the subset.

3.2 Extract the stock list from the solution.

3.3 Randomly apply one of the following mutation operators to the stock list.

 Add one stock to the list.

 Remove one stock from the list.

 Switch one stock from the list with an unused stock.

 3.4 Create a new CSP using the new stock list.

3.5 If the new CSP exists in the repository, goto step 3.1.

3.6 Apply the preprocess algorithm to the new CSP. If it can derive the result, goto 3.1.

 3.7 Solve the new CSP.

 3.8 Store the CSP and result in the solution repository.

 3.9 Repeat steps 3.1 through 3.8 for all solutions in the subset.

4. Generate random solutions.

4.1 Select a random subset of stocks.

4.2 Build a CSP using the stock subset.

4.3 If the new CSP exists in the repository, goto step 4.1.

4.4 Apply the preprocess algorithm to the new CSP. If it can derive the result, goto 4.1.

4.5 Solve the CSP.

4.6 Store the CSP and result in the solution repository.

4.7 Repeat steps 4.1 through 4.6 to generate random solutions.

5. Add new solutions from steps 3 and 4 to the current population and sort the population based on solutions’ fitness

values.

6. Select top solutions from the current population to create a new population for the next generation.

7. Repeat steps 3 through 6 till either algorithm stops progressing or max generation is met.

8. Select the best solution from the current population as the final solution.

End

100

The rule-based chromosome preprocess algorithm trims the workload for the cutting

stock algorithm. Based on previously solved problems, we can draw conclusions for certain new

stock mixes quickly without actually solving the corresponding CSPs. For example, a stock mix

will not meet the requirement if it is a subset of the stock mix from a previously solved CSP

whose solution does not meet the trim efficiency requirement. The new CSP does not need to be

solved. On the flip side, if a stock mix is a superset of the stock mix from a previously solved

CSP whose solution meets the trim efficiency requirement, we can be sure that the new stock

mix will meet the requirement and the new CSP does not need to be solved either. Both rules

state that solving these new problems will not improve the fitness value and the solution. We can

safely skip them to reduce the workload and speed up the algorithm.

 Let’s assume that there are two solved problems with stock mix of (10, 20, 30) and (20,

40). The first one does not meet the trim efficiency requirement and the second one does. If there

is a new CSP with a stock mix of (10, 20), we do no need to solve it since (10,20) is a subset of

(10, 20, 30). Indeed, if the CSP with (10, 20, 30) cannot satisfy the requirement, the new CSP

with (10, 20) cannot either. If there is another new CSP with a stock mix of (20, 30, 40) which is

a super set of (20, 40), we can just declare that it meets the requirement without actually solving

it. Since the objective is to reduce the stock mix and the new CSP with (20, 30, 40) cannot

improve the fitness value, we can safely discard it.

Begin

1. Extract the stock list from the new CSP.

2. Search the solution repository for a CSP whose stock list contains the current stock list.

3. If a historical CSP is found and its result does not meet the threshold, return the historical CSP’s result and stop.

4. Search the solution repository for a CSP whose stock list is contained by the current stock list.

5. If a historical CSP is found and its result meets the threshold, return the historical CSP’s result and stop.

6. If no historical CSP can be found, return null result.

End

101

The last one is the cutting stock algorithm. It is used to calculate the fitness function for

each sub problem created by the above two algorithms. This algorithm is the key to the

performance and the usability of our stock reduction algorithm. We use a sample problem (Table

10.1) to illustrate our new algorithm. It is a real problem from paper industry. Table 10.2 lists the

results of our ten runs using SGA to solve the problem.

Table 10.1

Sample CSP

Available Stock Lengths

816 832 848 864 880 896 912 928 944 960

976 992 1008 1024 1040 1056 1072 1088 1104 1120

1136 1152 1168 1184 1200 1216 1232 1248 1264 1280

1296 1312 1328 1344 1360 1376 1392 1408 1424 1440

1456 1472 1488 1504 1520 1536 1552 1568 1584

Target Efficiency 0.99

Item Length 404 408 473 527 545 576 584 585 597 604

No. Required 58 159 105 7 76 1 226 7 42 20

Item Length 606 636 690 780

No. Required 62 20 9 284

Table10.2

GA Result of Sample CSP

Run Time (s) Waste

Efficienc

y

1 3839 6387 0.9900

2 1345 6323 0.9901

3 1967 6339 0.9901

4 2154 6387 0.9900

5 1323 6355 0.9901

6 2629 6371 0.9901

7 1737 6307 0.9902

8 1534 6291 0.9902

9 1405 6387 0.9900

10 2075 6067 0.9905

Average 2001 6321 0.9901

102

Since the target trim efficiency for the sample problem is 0.99, GA stops when it reaches

the target. It does not mean that 0.9905 is the best trim efficiency for this problem. If we remove

the target or raise it, the average trim efficiency shall be better than 0.9901. But the real

challenge is that GA took an average of 2001 seconds to solve the problem. That’s about 33

minutes. The best time was 22 minutes and the worst time was 64 minutes. The algorithm was

run on a powerful Apple Mac Pro Dual Xeon 2.66GHz Dual Core desktop with 6 GB Memory.

There are mainly two reasons causing GA’s poor performance problem. There is a big

quantity variance among the items, the smallest is 1 and the largest is 284. This kind of

distribution prevents a good pattern from being reused multiple times and a lot more patterns

have to be generated. The second reason is that the large number of different stocks greatly

expands the number of possible patterns to evaluate. This is the intrinsic performance issue when

applying GA to complex production problems.

Table 10.3

Result From Using the Gilmore and Gomory LP Algorithm

Index Pattern

Pattern

length

Stock

Length Sets

1 545,780 1325 1328 76

2 408,584 992 992 89

3 473,597 1070 1072 35

4 606,780 1386 1392 19

5 408,473,606 1487 1488 43

6 408,473,604 1485 1488 20

7 404,780 1184 1184 58

8 780,780 1560 1568 50.5

9 690,780 1470 1472 9

10 585,597 1182 1184 7

11 408,473,527 1408 1408 7

12 576,780 1356 1360 1

13 584,584 1168 1168 68.5

14 636,780 1416 1424 20

Efficiency 0.998247

Apparently, using GA to solve the sub CSPs within the stock reduction algorithm is not

feasible. With a large number of possible stock combinations and the sub CSPs created from

103

them, it will take days to solve a complex SRP. Let’s turn to LP. Table 10.3 shows the LP

solution for the above problem.

The Gilmore and Gomory’s LP algorithm achieved an efficiency of 0.998247 within

0.421 seconds. However, pattern 8 and 13 have fractional sets of 50.5 and 68.5. As we

mentioned above, the cutting stock is an integer problem and a half set cannot be produced. We

can either round them down to 50 and 68 sets with shortages of one 780 and one 584, or round

them both up to 51 and 69 sets with extras of one 780 and one 584. Neither solution meets the

demand exactly. To satisfy the demand, we can round both sets down and add another new

pattern that creates one 780 and one 584 to the solution. The closest stock length for this is 1376

with a waste of 12. With the new pattern, the solution’s efficiency is 0.998234 (Table 10.4).

Instead of adding a new stock to the solution, the stock with a length of 1392 from pattern 4 can

also be used. The efficiency is 0.998209 using 1392 (Table 10.5). Both rounding methods

introduce very little loss on the trim efficiency.

Table 10.4

 Convert LP Solutions to Integer Using Stock 1376

Index Pattern

Pattern

length

Stock

Length Sets

1 545,780 1325 1328 76

2 408,584 992 992 89

3 473,597 1070 1072 35

4 606,780 1386 1392 19

5 408,473,606 1487 1488 43

6 408,473,604 1485 1488 20

7 404,780 1184 1184 58

8 780,780 1560 1568 50

9 690,780 1470 1472 9

10 585,597 1182 1184 7

11 408,473,527 1408 1408 7

12 576,780 1356 1360 1

13 584,584 1168 1168 68

14 636,780 1416 1424 20

15 584,780 1364 1376 1

Efficiency 0.998234

104

Table 10.5

Convert LP Solutions to Integer Using Stock 1392

Index Pattern

Pattern

length

Stock

Length Sets

1 545,780 1325 1328 76

2 408,584 992 992 89

3 473,597 1070 1072 35

4 606,780 1386 1392 19

5 408,473,606 1487 1488 43

6 408,473,604 1485 1488 20

7 404,780 1184 1184 58

8 780,780 1560 1568 50

9 690,780 1470 1472 9

10 585,597 1182 1184 7

11 408,473,527 1408 1408 7

12 576,780 1356 1360 1

13 584,584 1168 1168 68

14 636,780 1416 1424 20

15 584,780 1364 1392 1

Efficiency 0.998209

In the above process, we first use LP algorithm to solve the CSP. Then, we round the

fractional LP result to an integer solution and still maintain excellent trim efficiency. The

rounded integer solution may not be the best solution, but it meets our trim efficiency

requirement of 0.99 as well.

The efficiency loss from the above process varies by problems and tends to be very small

when there are a lot of sets. The Gilmore and Gomory’s LP algorithm uses a fix-sized matrix and

the number of total patterns is limited by the number of different items in the problem. The

maximum pattern count is 14 in the above example. If all patterns require fractional sets, we

need 7 new patterns of 1 set each to meet the demand using the above approach. Since the

available stocks space at 16, the most waste from each set is 16. The waste from these 7 new sets

is 16x7=112. We also add in one half-length of the smallest stock if a new pattern only contains

one item. The final total waste is 112+816/2=520. Dividing the total waste by the current total

stock length of 634656, we have 0.0008. That is, our simple rounding routine only cost us about

0.0008 on efficiency loss in the worst case. This is acceptable in most cases in production since

105

there are many other factors that can cause more trim loss. For large problems, the overall trim

efficiency is dominated by the large integer sets and the impact from the fractional sets is very

small.

Our hybrid LP/GA cutting stock algorithm (Algorithm 10.3) is based on the above

approach. LP is used first to solve the CSP with the stock mix defined from the previous two

algorithms.

Begin

1. Solve the CSP using LP algorithm.

2. If the solution does not meet the threshold, return the solution and stop.

3. If the solution meets the threshold, round the solution into integer.

4. If the integer solution meets the threshold, return the solution and stop.

5. If the integer solution does not meet the threshold, solve the CSP using SGA.

6. Return the result from SGA.

End

Algorithm 10.3

If the LP result does not meet the targeted trim efficiency requirement, the sub problem is

declared unsolvable with the current stock mix. A large value is assigned to the fitness function

as a penalty. If the LP result meets the trim efficiency requirement, we use the above-mentioned

rounding process to get an integer solution. We round down the solution to integer sets and use a

local optimizer to find the best patterns to complete the solution. If the converted integer solution

meets the efficiency requirement, we declare the problem is solved with success and the current

stock mix can satisfy the required trim efficiency. Otherwise, we start SGA to solve the problem

and seed it with the integer solution converted from the LP solution. The result from SGA is the

final answer for the current problem.

In summary, we use GA as the main algorithm to drive the hybrid LP/GA algorithm. GA

creates a series of sub CSPs with different stock mixes, the rule based preprocessor trims down

the search space, and finally the hybrid LP/GA algorithm solves the CSPs.

106

10.4 Experiments

To evaluate our proposed new algorithm, we first conducted a comparison study. We

coded our algorithm and a pure GA based algorithm in Microsoft C#. The pure GA based

algorithm used preprocesses algorithm and SGA (from section 7.2) to solve the CSPs. Both

algorithms were run on an Apple Mac Pro Dual Xeon 2.66GHz Dual Core desktop with 6 GB

Memory and Windows XP on VMware. The test problems were created based on an expanded

version of Liang et al. (2002)’s problem 9. Each problem was run 10 times by each algorithm.

Results were averaged and reported.

Table 10.6

Comparison Study on Item Variations
Problem Pure GA Algorithm Our New Algorithm

Name

Total

Stock

Count

Width

Count

Item

Count Time (s) Efficiency Waste Time (s) Efficiency Waste

base 10 36 400 1030 0.9954 164 53 0.9954 164

b12i 10 43 480 950 0.9951 199 50 0.9959 164

b14i 10 50 560 764 0.9946 250 2 0.9967 150

b16i 10 57 640 1419 0.9940 320 22 0.9977 120

b18i 10 64 717 1567 0.9926 461 85 0.9947 331

b20i 10 72 800 3073 0.9915 618 115 0.9946 391

Table 10.7

Comparison Study on Stock Count Variations
Problem Pure GA Algorithm Our New Algorithm

Name

Total

Stock

Count

Width

Count

Item

Count Time (s) Efficiency Waste Time (s) Efficiency Waste

base 10 36 400 1030 0.9954 164 53 0.9954 164

b12s 12 36 400 1681 0.9954 164 53 0.9955 162

b14s 14 36 400 2562 0.9954 164 104 0.9951 176

b16s 16 36 400 3935 0.9951 176 136 0.9951 176

b18s 18 36 400 4366 0.9954 164 98 0.9947 189.5

b20s 20 36 400 4516 0.9951 176 91 0.9958 149

Table 10.6 shows the performance comparison between the two algorithms when the

problem item count was changed. From Liang et al.’s base problem, we created subsequent

problems by increasing the width count and the item count by a factor of 20% to upsize the

107

problem. Table 10.7 shows the performance comparison when we add more stock lengths to the

problem. Both comparisons concluded that our hybrid algorithm was much faster than the pure

GA approach while still maintains good trim efficiency. They also showed that our hybrid

algorithm was more effective and efficient for bigger and more complex problems.

We further tested our new algorithm on 12 real production problems (Table 10.8). It took

our algorithm from a few minutes up to 45 minutes to solve a problem with good trim efficiency.

The pure GA approach would have taken a very long time to solve these problems and it may not

be acceptable in industry.

Table 10.8

Production Problem Run Result

Nam

e

Total

Stock

Count

Width

Count

Item

Count Time (s) Efficiency Waste

s1 49 14 1076 792.8 0.9916 5353.4

s2 49 27 4502 367.1 0.9942 11058.4

s3 49 38 24184 198.1 0.9994 6226.6

s4 49 119 29438 975.3 0.9999 953.6

s5 49 44 17441 180.2 0.9971 20737.6

s6 49 59 8948 254 0.9982 7057

s7 49 94 41598 566.8 0.9993 13163.8

s8 49 49 32958 171.8 0.9949 72739

s9 49 71 19307 561.1 0.9998 1593.4

s10 49 142 49869 2656.3 0.9998 5311.6

s11 49 46 17638 528.2 0.9979 17631.8

s12 49 51 21083 1532.2 0.9966 33655

10.5 Summary

In this study, we created a hybrid algorithm to solve very complex nested optimization

problem. We used SGA and improved the fitness function calculation performance.

To solve the SRP, we use GA to solve the stock mix selection and the minimizing

problem. We design a rule-based preprocessor to trim the search space, and then apply the hybrid

108

SGA/LP to solve the CSPs. Our experiments have shown that the new hybrid algorithm is

efficient and practicable for solving real complex industrial problems effectively.

Traditional hybrid methods use GA and LP to solve different sub problems separately.

Our new hybrid algorithm uses both GA and LP to solve the same problem. We Guided GA with

shadow price information. SGA provides good optimization results, and LP ensures fast

convergence. Our hybrid algorithm can solve the complex SRPs effectively.

109

CHAPTER 11 CONCLUSION AND FUTURE WORK

11.1 Conclusion

In this dissertation, a shadow price Guided two-measurement enabled genetic algorithm

is proposed. It targets the GA’s performance challenge. The new algorithm’s improvements in

both solution quality and search speed were proven in the experiments.

The proposed shadow price concept complements the fitness evaluation in the GA’s

search process. There are two entities in the GA search process, solution (chromosome) and

components (genes). Fitness values are used to compare and filter solutions. Shadow prices are

used to compare and select components in the search process. Together, they constitute the

proposed two-measurement GA.

The key of our approach is to use shadow price to compare components to further

improve GA. We define the shadow price as the relative potential improvement to the solution’s

fitness value with a change of a component. The fitness value represents the current solution’s

position in the search space. The shadow prices represent potential improvements and directions

to evolve.

In the proposed shadow price guided GA, many better solutions are generated under the

guidance of shadow price. This reduces the amount of unnecessary calculation and speed up the

search process. It also enabled SGA to produce better result.

In the traveling salesman problem experiment, shadow price defines potential

improvement from a component’s change. In the cutting stock problem experiment, shadow

price is the cost of the material and directly used to generate better patterns. Procedure embedded

shadow price in green computing clearly defines the search direction. Stock reduction problem

experiment blends new SGA with LP to improve the fitness evaluation performance.

110

Theory analysis and all experiments proved the effectiveness of our proposed concept of

the shadow price guided two-measurement enabled genetic algorithm.

11.2 Future Work

Our proposed shadow price guided GA has speed up the search process and improved the

search result. Due to the fact that GA is a population based search technique, there are a lot of

calculations in the search algorithm. It needs continuous improvement.

In the CSP experiments, we used shadow price to directly generate next better solutions.

We find this is much superior than simply give the directions to search. We shall investment

more effort to further research using shadow price to generate better solutions directly.

The other area that we like to further study is the nested optimization problems where the

objective function is an optimization problem itself. This kind of objective function put extra

stress on the search engine’s calculation workload. Our research is the continuation of the hybrid

approach used in the stock reduction problem. We shall find more methods to further improve

the convergence speed.

111

REFERENCES

Adra, S. F., Dodd, T. J., Griffin, I. A., & Fleming, P.J. (2009). Convergence Acceleration

Operator for Multiobjective Optimization. IEEE Transactions on Evolutionary

Computation, 13(4), 825-847.

Aktin, T., & Özdemir, R.G. (2009). An integrated approach to the one-dimensional cutting stock

problem in coronary stent manufacturing. European Journal of Operational Research,

Vol. 196, Issue 2, 737-743.

Alba, E., & Tomassini, M. (2002), Parallelism and evolutionary algorithms, IEEE Trans.

Evolutionary Computation, vol. 6, issue 5, pp. 443-462.

Alves, C., & Carvalho, J.M. (2008). A stabilized branch-and-price-and-cut algorithm for the

multiple length cutting stock problem. Computers & Operations Research, Vol. 35, Issue

4, 1315-1328.

Ang, K. H., Chong, G., & Li, Y. (2002). Preliminary statement on the current progress of multi-

objective evolutionary algorithm performance measurement. Congress on Evolutionary

Computation, 2, 1139-1144.

Belov, G., & Scheithauer, G. (2006). A branch-and-cut-and-price algorithm for one-dimensional

stock cutting and two-dimensional two-stage cutting. European Journal of Operational

Research, Vol. 171, Issue 1, 85-106.

Benkhider, S., Baba-Ali, A.R., & Drias, H. (2007). A new generationless parallel evolutionary

algorithm for combinatorial optimization. IEEE Congress on Evolutionary Computation

2007. 4691 – 4697.

Berntsson, J., & Tang, M.(2003). A convergence model for asynchronous parallel genetic

algorithms. The 2003 Congress on Evolutionary Computation, 4, 2627 – 2634.

112

Bersini, H. (2002). The immune and chemical crossovers. IEEE Transactions on Evolutionary

Computation, 6(3), 306–313.

Bianchi, L.,Gambardella, L.M., & Dorigo, M. (2002). An ant colony optimization approach to

the probabilistic traveling salesman problem, Proceedings of the PPSN-VII, Seventh

International Conference on Parallel Problem Solving from Nature, Lecture Notes in

Computer Science. Springer Verlag, Berlin, Germany,

Bredstrom, D., Carlsson, D., & Ronnqvist, M. (2005). A hybrid algorithm for distribution

problems. IEEE Transactions on Intelligent Systems, 20(4), 19 – 25.

Cabusao G, Mochizuki M, Mashiko K, Kobayashi T, Singh R, Nguyen T, Wu P (2010) Data

center energy conservation utilizing a heat pipe based ice storage system CPMT

Symposium Japan, 2010 IEEE. doi: 10.1109/CPMTSYMPJ.2010.5680287. Publication

Year: 2010, Page(s): 1 - 4

Cantu-Paz, E. (1997). Design Efficient Master_Slave Parallel Genetic Algorithms.

http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.28.4982&rep=rep1&type=pdf.

Accessed March 2009. Also available at: Proceeding of the Third Annual Conference on

Genetic Programming, 455-460.

Caponetto, R., Fortuna, L., Fazzino, S., & Xibilia, M.G. (2003). Chaotic sequences to improve

the performance of evolutionary algorithms. IEEE Transactions on Evolutionary

Computation, 7(3), 289-304.

Chang, P.C., Wu, I.W., Shann, J.J., & Chung, C.P, (2008). ETAHM: An energy-aware task

allocation algorithm for heterogeneous multiprocessor, 45th ACM/IEEE Design

Automation Conference, 2008, pp. 776 – 779.

http://citeseerx.ist.psu.edu/viewdoc/download

113

Cherri, A.C., Arenales, M.N., & Yanasse, H.H. (2009). The one-dimensional cutting stock

problem with usable leftover – A heuristic approach. European Journal of Operational

Research, Vol. 196, Issue 3, 897-908.

Chiong, R., Chang, Y.Y., Chai, P.C., & Wong A. L. (2008). A selective mutation based

evolutionary programming for solving Cutting Stock Problem without contiguity. IEEE

Congress on Evolutionary Computation, 1671 – 1677. doi: 10.1109/CEC.2008.4631015

Choi, I.C., Kim, S.I., & Kim, H.S. (2003). A genetic algorithm with a mixed region search for

the asymmetric traveling salesman problem, Computer Operations Research. 30 (5),

773–786.

Church, k., Greenberg, A., Hamilton, J. (2008) On delivering embarrassingly distributed cloud

services, In ACM HotNets VII, 2008. http://www.techrepublic.com/whitepapers/on-

delivering-embarrassingly-distributed-cloud-services/2388125

Consortium for School Networking Initiative, (2010), “Some Facts About Computer Energy

Use”,http://www.cosn.org/Initiatives/GreenComputing/InterestingFacts/tabid/4639/Defau

lt.aspx, Accessed Oct. 2010.

Cui, Y., & Lu, Y. (2009). Heuristic algorithm for a cutting stock problem in the steel bridge

construction. Computers & Operations Research, Vol. 36, Issue 2, 612-622.

Cui, Y., & Yang, Y. (2010). A heuristic for the one-dimensional cutting stock problem with

usable leftover. European Journal of Operational Research, Vol. 204, Issue 2, 245-250.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University Press.

Deng, G.Q., Huang, Z.C., & Tang, M. (2007). Research in the Performance Assessment of

Multi-objective Optimization Evolutionary Algorithms. International Conference on

Communications, Circuits and Systems, 915-918.

http://www.cosn.org/Initiatives/GreenComputing/InterestingFacts/tabid/4639/

114

El-Araby, E. E., Yorino, N., & Zoka, Y. (2005). Optimal procurement of VAR ancillary service

in the electricity market considering voltage security. IEEE International Symposium on

Circuits and Systems, 5, 5290-5293.

El-Araby, E. E., Yorino, N., & Sasaki, H. (2002). A comprehensive approach for FACTS devices

optimal allocation to mitigate voltage collapse. IEEE/PES Conference and Exhibition

Transmission and Distribution.

Falkenauer, E., & Delchambre, A. (1992). A genetic algorithm for bin packing and line

balancing. Proceedings of 1992 IEEE International Conference on Robotics and

Automation, Vol. 2, 1186 – 1192. doi: 10.1109/ROBOT.1992.220088

Feng, C., Wang, X., & Li, F. (2009). Optimal maintenance scheduling of power producers

considering unexpected unit failure. Generation, Transmission & Distribution, IET, 3,

460-471.

Garg, S., Konugurthi, P., & Buyya, R. (2009) A Linear Programming Driven Genetic Algorithm

for Meta-Scheduling on Utility Grids. Accessed in Aug 2009 at:

http://arxiv.org/ftp/arxiv/papers/0903/0903.1389.pdf.

Gilmore, P.C., & Gomory, R. E. (1961). A Linear Programming Approach to the Cutting-Stock

Problem. Operations Research, 9, 849–859.

Gilmore, P.C., & Gomory, R.E. (1963). A linear programming approach to the cutting-stock

problem, Part II. Operations Research, 11, 863–888.

Gilmore, P.C., & Gomory, R.E. (1965). Multistage cutting stock problems of two and more

dimensions. Operations Research 13, 94–120.

Gilmore, P.C., & Gomory, R.E. (1966). The theory and computation of knapsack functions.

Operations Research, 14, 1045–1074.

http://arxiv.org/ftp/arxiv/papers/0903/0903.1389.pdf

115

Green Computing (2010). Retrieved from http://en.wikipedia.org/wiki/Green_computing.

Hamann H.F., L pez, , Stepanchuk A (2010) Thermal zones for more efficient data center

energy management Thermal and Thermomechanical Phenomena in Electronic Systems

(ITherm), 2010 12th IEEE Intersociety Conference on doi:

10.1109/ITHERM.2010.5501332. Publication Year: 2010, Page(s): 1 – 6

Hasegawa, M., Ikeguchi, T., & Aihara, K. (2002). Solving large scale traveling salesman

problems by chaotic neurodynamics, Neural Networks 15 (2), 271–283.

Hayashi, T., Takeuchi, A., & Nozaki, Y. (2008). A method for determining optimum design for

fuel-cell-based energy network. IEEE 30th International Conference on

Telecommunications Energy, 1-7.

Hinterding R., & Khan L. (1994). Genetic algorithms for cutting stock problems: with and

without contiguity. Progress in evolutionary computation. Lecture notes in artificial

intelligence, vol. 956, 166-186.

Hinterding, R. (1997). Self-adaptation using multi-chromosomes. IEEE International Conference

on Evolutionary Computation, 87 – 91.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan

Press.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence. The MIT Press.

Hung, K.S., Su, S.F., & Lee, Z.J. (2007). Improving ant colony optimization algorithms for

solving traveling salesman problems, Journal of Advanced Computational Intelligence

and Intelligent Informatics 11 (4) , 433–434.

http://en.wikipedia.org/wiki/Green_computing

116

Ishibuchi, H., Nojima, Y., & Tsutomu, D. (2006). Comparison between Single-Objective and

Multi-Objective Genetic Algorithms: Performance Comparison and Performance

Measures. IEEE Congress on Evolutionary Computation, 1143-1150.

Iyengar M, Schmidt R, Caricari J, Reducing energy usage in data centers through control of

Room Air Conditioning units Thermal and Thermomechanical Phenomena in Electronic

Systems (ITherm), 2010 12th IEEE Intersociety Conference on doi:

10.1109/ITHERM.2010.5501418. Publication Year: 2010, Page(s): 1 – 11

Jelodar, M.S.; Kamal, M.; Fakhraie, S.M.; Ahmadabadi, M.N.(2006). SOPC-Based Parallel

Genetic Algorithm. IEEE Congress on Evolutionary Computation, 2800 - 2806.

Kaur, D. and Murugappan, M.M. (2008) Performance enhancement in solving Traveling

Salesman Problem using hybrid genetic algorithm. Annual Meeting of the North

American of Fuzzy Information Processing Society. 1 – 6

Kirkpatrick, S., Gelatt, C. & Vecchi, M. (1983) Optimization by simulated annealing, Science

220, 671–680.

Kolman, B., & Beck, R.E. (1980) Elementary Linear Programming with Applications, Academic

Press, Inc. Chapter 2,3.

Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., & Lanza, G. (2005). Genetic

Programming IV: Routine Human-Competitive Machine Intelligence. Springer.

Koduru, P., Das, S., Welch, S.M., Roe, J., & Lopez-Dee, Z.P. (2005). A co-evolutionary hybrid

algorithm for multi-objective optimization of gene regulatory network models. Genetic

and Evolutionary Computation Conference. 393–399.

Koduru, P., Dong, Z.S., Das, S., Welch, S.M., Roe, J.L., & Charbit, E., (2008), A Multiobjective

Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation

117

Models of Gene Networks, IEEE Trans. Evolutionary Computation, vol. 12, issue 5, pp.

572-590.

Kulkarni, A.J. & Tai, K. (2009) Probability Collectives: A multi-agent approach for solving

combinatorial optimization problems, Applied Soft Computing, to be published.

Laszewski, G. von, Wang, L., Younge, A.J., He, X., (2009). Power-aware scheduling of virtual

machines in DVFS-enabled clusters, IEEE Intl. Conf. on Cluster Computing and

Workshops, 2009, pp.1-10, doi: 10.1109/CLUSTR.2009.5289182.

Lee, Z.-J., Lee, C.-Y. & Su, S.-F.(2002) An immunity-based ant colony optimization algorithm

for solving weapon–target assignment problem, Applied Soft Computing, 2 (1), 39-47

Lee, C.-H., Park, S.-H., & Kim, J.-H. (2000). Topology and migration policy of fine-grained

parallel evolutionary algorithms for numerical optimization. Proceedings of the 2000

Congress on Evolutionary Computation, 1, 70 – 76.

Lee, C.-H., Park, K.-H., & Kim, J.-H. (2001). Hybrid parallel, evolutionary algorithms for

constrained optimization utilizing PC clustering. Proceedings of the 2001 Congress on

Evolutionary Computation, 2, 1436 – 1441.

Leou, R.-C. (2008). An economic analysis model for the energy storage systems in a deregulated

market. IEEE International Conference on Sustainable Energy Technologies, 744–749.

Levine, J., & Ducatelle, F. (2004). Ant colony optimization and local search for bin packing and

cutting stock problems. Retrieved December 10, 2009, from http://www.palgrave-

journals.com/jors/journal/v55/n7/full/2601771a.html

Li, K. (2008). Performance Analysis of Power-Aware Task Scheduling Algorithms on

Multiprocessor Computers with Dynamic Voltage and Speed. IEEE Transactions on

Parallel and Distributed Systems, 19(11), 1484-1497.

http://www.palgrave-journals.com/jors/journal/v55/n7/full/2601771a.html
http://www.palgrave-journals.com/jors/journal/v55/n7/full/2601771a.html

118

Li, X., & Kirley, M. (2002) The effects of varying population density in a fine-grained parallel

genetic algorithm. Proceedings of the 2002 Congress on Evolutionary Computation. 2,

1709 – 1714.

Li, Y., Liu, Y., & Qian, D., (2009). A Heuristic Energy-aware Scheduling Algorithm for

Heterogeneous Clusters, 2009 15th Intl. Conf. on Parallel and Distributed Systems

(ICPADS), pp. 407 - 413, doi:10.1109/ICPADS.2009.33.

Liang, C.H., Chung, C.Y., Wong, K.P., & Duan, X.Z. (2007), Parallel Optimal Reactive Power

Flow Based on Cooperative Co-Evolutionary Differential Evolution and Power System

Decomposition, IEEE Trans. Power Systems, vol. 22, issue 1, pp. 249-257.

Liang, K.-H., Yao, X., Newton, C., & Hoffman, D. (2002). A new evolutionary approach to

cutting stock problems with and without contiguity. Computers & Operations Research,

Vol. 29, Issue 12, 1641-1659.

Liu, Y., Chu, C.B., & Wang, K.L. (2008). A heuristic procedure based on column generation to

solve a cutting stock problem. IEEE International Conference on Industrial Engineering

and Engineering Management.

Liu, Y., Yang, H., Luo, R., & Wang, H., (2006). Combining Genetic Algorithms Based Task

Mapping and Optimal Voltage Selection for Energy-Efficient Distributed System

Synthesis, 2006 Intl. Conf. on Communications, Circuits and System , vol. 3, pp. 2074 -

2078, doi: 10.1109/ICCCAS.2006.285087.

Lu, Q., Wang, Z., & Chen, M. (2008). An Ant Colony Optimization Algorithm for the One-

Dimensional Cutting Stock Problem with Multiple Stock Lengths. Fourth International

Conference on Natural Computation, Vol. 7, 475-479. doi: 10.1109/ICNC.2008.208

119

Mantovani, J.R.S., Modesto, S.A.G., & Garcia, A.V. (2001). VAr planning using genetic

algorithm and linear programming. Generation, Transmission and Distribution, 148(3),

257-262.

Massa, A., Franceschini, D., Franceschini, G., Pastorino, M., Raffetto, M., & Donelli, M. (2005)

Parallel GA-based approach for microwave imaging applications, IEEE Trans. Antennas

and Propagation, vol. 53, issue 10, pp. 3118-3127.

Matsumura, T., Nakamura, M., Miyazato, D., Onaga, K., & Okech, J.(1997). Effects of

chromosome migration on a parallel and distributed genetic algorithm. Third

International Symposium on Parallel Architectures, Algorithms, and Networks, 357 –

361.

Miao, L., Qi, Y., Hou, D., & Dai, Y.H., (2007). Energy-Aware Scheduling Tasks on Chip

Multiprocessor, Third International Conference on Natural Computation, 2007, vol. 4,

pp. 319 - 323, doi: 10.1109/ICNC.2007.356.

Miao, L., Qi, Y., Hou, D., Dai, Y.H., & Shi, Y., (2008). A multi-objective hybrid genetic

algorithm for energy saving task scheduling in CMP system, IEEE Intl. Conf. on

Systems, Man and Cybernetics, 2008, pp. 197–201, doi: 10.1109/ICSMC.2008.4811274.

Nagata, Y., & Kobayashi, S. (1999). An analysis of edge assembly crossover for the traveling

salesman problem. 1999 IEEE International Conference on Systems, Man, and

Cybernetics, 3. 628 – 633.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer

Journal, 7(4), 308–313.

Noman, N., & Iba, H. (2008). Accelerating Differential Evolution Using an Adaptive Local

Search. IEEE Transactions on Evolutionary Computation, 12(1), 107-125.

120

Ortiz-Garcia, E.G., Martinez-Bernabeu, L., Salcedo-Sanz, S., Florez-Revuelta, F., Perez-Bellido,

A.M., & Portilla-Figueras, A. (2009). A Parallel evolutionary algorithm for the hub

location problem with fully interconnected backbone and access networks, IEEE Congr.

Evolutionary Computation, pp. 1501-1506, 18-21 May 2009.

Paenke, I., Branke, J., & Jin, Y.C. (2006). Efficient search for robust solutions by means of

evolutionary algorithms and fitness approximation. IEEE Transactions on Evolutionary

Computation, 10(4). 405-420.

Page, A.J., & Naughton, T.J., (2005). Dynamic Task Scheduling using Genetic Algorithms for

Heterogeneous Distributed Computing, 19th IEEE Intl. Conf. on Parallel and Distributed

Processing, 2005. DOI: 10.1109/IPDPS.2005.184

Pandey, S., Dong, S.Q., Agrawal, P., & Sivalingam, K. (2007). A Hybrid Approach to Optimize

Node Placements in Hierarchical Heterogeneous Networks. IEEE Conference on

Wireless Communications and Networking, 3918-3923.

Poldi, K.C., & Marcos, M.N. (2009). Heuristics for the one-dimensional cutting stock problem

with limited multiple stock lengths. Computers & Operations Research, Vol. 36, Issue 6,

2074-2081.

Random.org, http://www.random.org. Accessed Oct. 2010.

Ray, S.S., Bandyopadhyay, S. & Pal, S.K.(2004) New operators of genetic algorithms for

traveling salesman problem. ICPR 2004. Proceedings of the 17th International

Conference on Pattern Recognition, 2004. 2, 497 - 500.

Regis, R. G., & Shoemaker, C. A. (2004). Local function approximation in evolutionary

algorithms for the optimization of costly functions. IEEE Transactions on Evolutionary

Computation, 8(5). 490 - 505.

121

Robin, F., Orzati, A., Moreno, E., Otte, J. H., & Bachtold, W. (2003). Simulation and

evolutionary optimization of electron-beam lithography with genetic and simplex-

downhill algorithms. IEEE Transaction on Evolution Computation, 7(1), 69–82.

Scott, S.D.; Samal, A.; Seth, S. (1995). HGA: A Hardware-Based Genetic Algorithm. Field-

Programmable Gate Arrays. Proceedings of the Third International ACM Symposium on

FPGA, 53 – 59.

Shen, G. and Zhang, Y. Q. (2010-1) "A Novel Genetic Algorithm", The 9th International FLINS

Conference on Foundations and Applications of Computational Intelligence

(FLINS2010), Aug. 2-4, 2010.

Shen, G. and Zhang, Y. Q. (2010-2) "Solving the Stock Reduction Problem with the Genetic

Linear Programming Algorithm", The 2010 International Conference on Computational

and Information Sciences (ICCIS2010), Dec. 17 - 19, 2010.

Shen, G. and Zhang, Y. Q. (2011-1) “A New Evolutionary Algorithm Using Shadow Price

Guided Operators”, Applied Soft Computing, vol. 11, issue 2, pp. 1983-1992, DOI

10.1016/j.asoc.2010.06.014

Shen, G. and Zhang, Y. Q. (2011-2) “A Shadow Price Guided Genetic Algorithm for Energy

Aware Task Scheduling on Cloud Computers”, International Conference on Swam

Intelligence (ICSI) 2011, 522-529.

Shen, G. and Zhang, Y. Q. (2012-1) “An Evolutionary Linear Programming Algorithm for

Solving the Stock Reduction Problem”, International Journal of Computer Applications

in Technology (IJCAT), 2012.

122

Shen, G. and Zhang, Y. Q. (2012-2) “Shadow Price Based Genetic Algorithms for the Cutting

Stock Problem”, International Journal of Artificial Intelligence and Soft Computing

(IJAISC) , 2012.

Shen, G. and Zhang, Y. Q. (2012-3) “Power Consumption Constrained Task Scheduling Using

Enhanced Genetic Algorithms”, Evolutionary Based Solutions for Green Computing,

Springer, 2012.

Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., & Yao, X. (2008). Performance of infeasibility

driven evolutionary algorithm (IDEA) on constrained dynamic single objective

optimization problems. IEEE Congress on Evolutionary Computation, 3127-3134.

Singh, H. K., Isaacs, A., Ray, T., & Smith, W. (2008). Infeasibility Driven Evolutionary

Algorithm (IDEA) for Engineering Design Optimization. 21st Australasian Joint

Conference on Artificial Intelligence, 104–115.

 Simoncini, D., Collard, P., Verel, S., & Clergue, M. (2007). On the influence of selection

operators on performances in cellular Genetic Algorithms. IEEE Congress on

Evolutionary Computation, 4706 - 4713.

Song, X., Chu, C.B., Nie, Y.Y., & Bennell, J.A. (2006). An iterative sequential heuristic

procedure to a real-life 1.5-dimensional cutting stock problem. European Journal of

Operational Research, Vol. 175, Issue 3, 1870-1889.

Syswerda, G. (1991) Schedule Optimization Using Genetic Algorithm. In Handbook of Genetic

Algorithms. Van Nostrand Reinhold.

Tan, T. G., Teo, J., & Lau, H.K. (2007). Performance Scalability of a Cooperative Coevolution

Multiobjective Evolutionary Algorithm. International Conference on Computational

Intelligence and Security, 119-123.

123

Tian, L., & Arslan, T., (2003). A genetic algorithm for energy efficient device scheduling in real-

time systems, 2003 Congress on Evolutionary Computation , pp.242-247.

Tournament Selection (2010). Retrieved from http://en.wikipedia.org/wiki/Tournament_selection

Tsai, H.-K., Yang, J.-M., & Kao, C.-Y. (2002). Solving traveling salesman problems by

combining global and local search mechanisms. Congress on Evolutionary Computation,

2002. 2, 1290 – 1295.

Tseng, L.-Y., & Chen, S.-C. (2009). Two-Phase Genetic Local Search Algorithm for the

Multimode Resource-Constrained Project Scheduling Problem. IEEE Transactions on

Evolutionary Computation, 13(4), 848-857.

TSPLIB (2009). http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ Accessed Dec. 2009.

Tsutsui, S., Goldberg, D. E., & Sastry, K. (2001). Linkage learning in real coded GAs with

simplex crossover. 5th International Conference on Artificial Evolution, 73–84.

US Environmental Protection Agency. (2010). “EPA Report on Serverand Data Center Energy

Efficiency”, August 2007.

http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_R

eport_Congress_Final1.pdf . Accessed Oct. 2010.

U.S. Energy Information Administration Independent Statistic and Analysis, (2010). "Renewable

Energy Consumption and Electricity Preliminary 2006 Statistics",

http://www.eia.doe.gov/cneaf/solar.renewables/page/prelim_trends/rea_prereport.html,

accessed Oct. 2010.

Vishwanathan, N. & Wunsch, D.C. (2001). ART/SOFM: a hybrid approach to the TSP, INNS–

IEEE International Joint Conference on Neural Networks (IJCNN’01), 4.

http://en.wikipedia.org/wiki/Tournament_selection
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf%20.%20Accessed%20Oct.%202010
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf%20.%20Accessed%20Oct.%202010

124

Wang, K.-P., Huang, L., Zhou, C.-G., & Pang, W., (2003). Particle swarm optimization for

traveling salesman problem, Proceedings of the Second International Conference on

Machine Learning and Cybernetics, 1583–1585.

Wang, L., Laszewski, G. von, Dayal, J., He, X., & Furlani, T. R., (2009). Thermal Aware

Workload Scheduling with Backfilling for Green Data Centers, the 28th IEEE Intl. Conf.

on Performance Computing and Communications, Dec 2009, doi:

10.1109/PCCC.2009.5403821. (2009)

Wang, L., Laszewski, G.V., Dayal, J., & Wang, F. (2010). Towards Energy Aware Scheduling

for Precedence Constrained Parallel Tasks in a Cluster with DVFS, 2010 10th IEEE/ACM

Intl. Conf. on Cluster, Cloud and Grid Computing (CCGrid) , pp. 368 - 377, doi:

10.1109/CCGRID.2010.19

Wang, Q.L., Xu, G.X., Dai, Y.M., Zhao, B.Z., Yan, L.G., & Kim, K.M. (2009). Design of Open

High Magnetic Field MRI Superconducting Magnet With Continuous Current and

Genetic Algorithm Method. IEEE Transactions on Applied Superconductivity, 19(3),

2289-2292.

Wang, C., Zhang, J., Yang, J. Hu, C., & Liu, J., (2005), A modified particle swarm optimization

algorithm and its applications for solving travelling salesman problem, Proceedings of

the International Conference on Neural Networks and Brain, ICNN, 2, 689–694.

Watson, J., Ross, C., Eisele, V., Denton, J., Bins, J., Guerra, C., Whitley, D., & Howe, A. (1998).

The Traveling Salesrep Problem, edge assembly crossover, and 2-opt.

http://jason.denton.googlepages.com/tsp_ga.pdf (1998).

Wikipedia 2-opt (2009) http://en.wikipedia.org/wiki/2-opt, Accessed Dec. 2009.

125

Wilipedia, Instructions Per Secound, (2010). http://en.wikipedia.org/wiki/

 Instructions_per_second, accessed Oct. 2010.

Wong, L.-P., Low, M.Y.H., & Chong, C.S. (2008) A Bee Colony Optimization Algorithm for

Traveling Salesman Problem. AICMS (2008), 818 – 823.

Xie, Y., Wang, Z. & S. Wei, (2005). An efficient algorithm for nonpreemptive periodic task

scheduling under energy constraints, 6th Intl. Conf. on ASIC, pp. 128-131, doi:

10.1109/ICASIC.2005.1611282.

Xuan, W., & Li, Y. (2005) Solving Traveling Salesman Problem by Using A Local Evolutionary

Algorithm. IEEE International Conference on Granular Computing. 1, 318 – 321.

Yahoo Green, (2010). Sustainable Energy 101, http://green.yahoo.com/global-

warming/globalgreen-140/sustainable-energy-101.html, accessed Oct. 2010.

Yanasse, H.H., & Lamosa, M.J.P. (2007). An integrated cutting stock and sequencing problem.

European Journal of Operational Research, Vol. 183, Issue 3, 1353-1370.

Yanasse, H.H., & Limeira, M.S. (2006). A hybrid heuristic to reduce the number of different

patterns in cutting stock problems. Computers & Operations Research, Vol. 33, Issue 9,

2744-2756.

Yang, B., Li, C., Huang, L., Tan, Y., & Zhou, C. (2009). Solving One-dimensional Cutting-

Stock Problem Based on Ant Colony Optimization. Fifth International Joint Conference

on INC, IMS and IDC, 1188 - 1191. doi: 10.1109/NCM.2009.233.

Yang K., & Liu, X.B.(2008). Improving the Performance of the Pareto Fitness Genetic

Algorithm for Multi-Objective Discrete Optimization. International Symposium on

Computational Intelligence and Design, 2, 394-397.

http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/

126

Yang, J. & Zhuang, Y., (2010). An improved ant colony optimization algorithm for solving a

complex combinatorial optimization problem, Applied Soft Computing, 10 (2), 653-660

Yue, Q., & Gao, L. (2009). Genetic annealing algorithm for cutting stock problem in furniture

industry. IEEE 10th International Conference on Computer-Aided Industrial Design &

Conceptual Design, 87-91. doi: 10.1109/CAIDCD.2009.5374979.

 Yuen, S.Y., & Chow, C. K. (2009). A Genetic Algorithm That Adaptively Mutates and Never

Revisits. IEEE Transactions on Evolutionary Computation, 13(2), 454-472.

Zhang, H., & Ishikawa, M. (2005). Performance Improvement of Hybrid Real-Coded Genetic

Algorithm with Local Search and Its Applications. International Conference on

Computational Intelligence for Modeling, Control and Automation, and International

Conference Intelligent Agents, Web Technologies and Internet Commerce, 1. 1171-1176,

Zhang, Q., & Li, H. (2007). MOEA/D: A Multiobjective Evolutionary Algorithm Based on

Decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712-731.

Zhang, L.M., Li, K., & Zhang, Y.Q., (2010). Green Task Scheduling Algorithms with Speeds

Optimization on Heterogeneous Cloud Servers, 2010 IEEE/ACM Intl. Conf. on Green

Computing and Communications (GreenCom2010), pp. 76-80.

Zhao, F., Dong, J., Li, S., & Yang, X. (2008) An improved genetic algorithm for the multiple

traveling salesman problem. Control and Decision Conference. 1935 – 1939.

Zhao, T., Man, Z., Wan, Z., & Bi, G. (2008) A CGS-MSM Parallel Genetic Algorithm Based on

Multi-agent. Second International Conference on Genetic and Evolutionary Computing.

10 – 13.

127

Zhi, X.H., Xing, X.L., Wang, Q.X., Zhang, L.H., Yang, X.W., Zhou, C.G., & Laing, Y.C.,

(2004) A discrete PSO method for generalized TSP problem, Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics, 4, 2378–2383.

Zhong, W., Zhang, J., and Chen, W. (2007) A novel Discrete Particle Swarm Optimization to

Solve Traveling Salesman Problem, Evolutionary Computation, (2007), 3283 – 3287

	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 3-9-2012

	Shadow Price Guided Genetic Algorithms
	Gang Shen
	Recommended Citation

	Dissertation Proposal

