23,641 research outputs found

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Barnes Hospital Bulletin

    Get PDF
    https://digitalcommons.wustl.edu/bjc_barnes_bulletin/1046/thumbnail.jp

    A hybrid model for capturing implicit spatial knowledge

    Get PDF
    This paper proposes a machine learning-based approach for capturing rules embedded in users’ movement paths while navigating in Virtual Environments (VEs). It is argued that this methodology and the set of navigational rules which it provides should be regarded as a starting point for designing adaptive VEs able to provide navigation support. This is a major contribution of this work, given that the up-to-date adaptivity for navigable VEs has been primarily delivered through the manipulation of navigational cues with little reference to the user model of navigation

    Genetic algorithm for controllers in elevator groups: analysis and simulation during lunchpeak traffic

    Get PDF
    The efficient performance of elevator group system controllers becomes a first order necessity when the buildings have a high utilisation ratio of the elevators, such as in professional buildings. We present a genetic algorithm that is compared with traditional controller algorithms in industry applications. An ARENA simulation scenario is created during heavy lunchpeak traffic conditions. The results allow us to affirm that our genetic algorithm reaches a better performance attending to the system waiting times than THV algorithm

    Multi-Objective Flight Control for Ride Quality Improvement for Flexible Aircraft

    Get PDF
    This paper describes a multi-objective flight control system design for ride quality improvement for flexible aircraft using multi-functional distributed flight control surfaces. A multi-objective optimal control design is developed to provide an acceleration suppression capability in conjunction with a gust load alleviation in order to provide ride quality improvement. A gust estimation is developed to estimate the gust load using a recursive least-squares algorithm. A ride quality assessment study is conducted using a flexible wing generic transport model. Six different flight control designs are implemented. The study shows that ride quality can be significantly improved with the acceleration suppression control

    Education vs. Entertainment: A Cultural History of Children's Software

    Get PDF
    Part of the Volume on the Ecology of Games: Connecting Youth, Games, and Learning This chapter draws on ethnographic material to consider the cultural politics and recent history of children's software and reflects on how this past can inform our current efforts to mobilize games for learning. The analysis uses a concept of genre as a way of making linkages across the distributed but interconnected circuit of everyday play, software content, and industry context. Organized through three genres in children's software -- academic, entertainment, and construction -- the body of the chapter describes how these genres play out within a production and advertising context, in the design of particular software titles, and at sites of play in after-school computer centers where the fieldwork was conducted

    Comparing Elevator Strategies for a Parking Lot

    Get PDF
    In this paper, we compare elevator strategies for a parking garage. It is assumed that the parking garage has several floors and there is an elevator which can stop on each floor. We begin by considering 4 strategies detailed in page 23. For each strategy, we loop the program 100 times, and get 100 mean values for wait times. Welch\u27s test confirms highly significant differences among the 4 strategies. Repeating the analysis multiple times we see that the best of the 4 strategies is strategy 2, which places the elevator on floor 2 (the median floor) after use

    Seeking Optimum System Settings for Physical Activity Recognition on Smartwatches

    Full text link
    Physical activity recognition (PAR) using wearable devices can provide valued information regarding an individual's degree of functional ability and lifestyle. In this regards, smartphone-based physical activity recognition is a well-studied area. Research on smartwatch-based PAR, on the other hand, is still in its infancy. Through a large-scale exploratory study, this work aims to investigate the smartwatch-based PAR domain. A detailed analysis of various feature banks and classification methods are carried out to find the optimum system settings for the best performance of any smartwatch-based PAR system for both personal and impersonal models. To further validate our hypothesis for both personal (The classifier is built using the data only from one specific user) and impersonal (The classifier is built using the data from every user except the one under study) models, we tested single subject validation process for smartwatch-based activity recognition.Comment: 15 pages, 2 figures, Accepted in CVC'1
    corecore