24 research outputs found

    Distributed field estimation in wireless sensor networks

    Get PDF
    This work takes into account the problem of distributed estimation of a physical field of interest through a wireless sesnor networks

    Distributed field estimation in wireless sensor networks

    Get PDF
    This work takes into account the problem of distributed estimation of a physical field of interest through a wireless sesnor networks

    LCCC focus period and workshop on Dynamics and Control in Networks

    Get PDF

    A Heuristic Charging Cost Optimization Algorithm for Residential Charging of Electric Vehicles

    Get PDF
    The charging loads of electric vehicles (EVs) at residential premises are controlled through a tariff system based on fixed timing. The conventional tariff system presents the herding issue, such as with many connected EVs, all of them are directed to charge during the same off-peak period, which results in overloading the power grid and high charging costs. Besides, the random nature of EV users restricts them from following fixed charging times. Consequently, the real-time pricing scenarios are natural and can support optimizing the charging load and cost for EV users. This paper aims to develop charging cost optimization algorithm (CCOA) for residential charging of EVs. The proposed CCOA coordinates the charging of EVs by heuristically learning the real-time price pattern and the EV’s information, such as the battery size, current state-of-charge, and arrival departure times. In contrast to the holistic price, the CCOA determines a threshold price value for each arrival and departure sequence of EVs and accordingly coordinates the charging process with optimizing the cost at each scheduling period. The charging cost is captured at the end of each charging activity and the cumulative cost is calculated until the battery’s desired capacity. Various charging scenarios for individual and aggregated EVs with random arrival sequences of EVs against the real-time price pattern are simulated through MATLAB. The simulation results show that the proposed algorithm outperforms with a low charging cost while avoiding the overloading of the grid compared to the conventional uncoordinated, flat-rate, and time-of-use systems

    Resource Management in Cloud-based Radio Access Networks: a Distributed Optimization Perspective

    Get PDF
    University of Minnesota Ph.D. dissertation. 2015. Major: Electrical Engineering. Advisor: Zhi-Quan Luo. 1 computer file (PDF); ix, 136 pages.In this dissertation, we consider the base station (BS) and the resource management problems for the cloud-based radio access network (C-RAN). The main difference of the envisioned future 5G network architecture is the adoption of multi-tier BSs to extend the coverage of the existing cellular BSs. Each of the BS is connected to the multi-hop backhaul network with limited bandwidth. For provisioning the network, the cloud centers have been proposed to serve as the control centers. These differences give rise to many practical challenges. The main focus of this dissertation is the distributed strategy across the cloud centers. First, we show that by jointly optimizing the transceivers and determining the active set of BSs, high system resource utilization can be achieved with only a small number of BSs. In particular, we provide efficient distributed algorithms for such joint optimization problem, under the following two common design criteria: i) minimization of the total power consumption at the BSs, and ii) maximization of the system spectrum efficiency. In both cases, we introduce a nonsmooth regularizer to facilitate the activation of the most appropriate BSs, and the algorithms are, respectively, developed with Alternating Direction Method of Multipliers (ADMM) and weighted minimum mean square error (WMMSE) algorithm. In the second part, we further explicitly consider the backhaul limitation issues. We propose an efficient algorithm for joint resource allocation across the wireless links and the flow control over the entire network. The algorithm, which maximizes the utility function of the rates among all the transmitted commodities, is based on a decomposition approach leverages both the ADMM and the WMMSE algorithms. This algorithm is shown to be easily parallelizable within cloud centers and converges globally to a stationary solution. Lastly, since ADMM has been popular for solving large-scale distributed convex optimization, we further consider the issues of the network synchronization across the cloud centers. We propose an ADMM-type implementation that can handle a specific form of asynchronism based on the so-called BSUM-M algorithm, a new variant of ADMM. We show that the proposed algorithm converges to the global optimal solution

    Fundamental limits in Gaussian channels with feedback: confluence of communication, estimation, and control

    Get PDF
    The emerging study of integrating information theory and control systems theory has attracted tremendous attention, mainly motivated by the problems of control under communication constraints, feedback information theory, and networked systems. An often overlooked element is the estimation aspect; however, estimation cannot be studied isolatedly in those problems. Therefore, it is natural to investigate systems from the perspective of unifying communication, estimation, and control;This thesis is the first work to advocate such a perspective. To make Matters concrete, we focus on communication systems over Gaussian channels with feedback. For some of these channels, their fundamental limits for communication have been studied using information theoretic methods and control-oriented methods but remain open. In this thesis, we address the problems of characterizing and achieving the fundamental limits for these Gaussian channels with feedback by applying the unifying perspective;We establish a general equivalence among feedback communication, estimation, and feedback stabilization over the same Gaussian channels. As a consequence, we see that the information transmission (communication), information processing (estimation), and information utilization (control), seemingly different and usually separately treated, are in fact three sides of the same entity. We then reveal that the fundamental limitations in feedback communication, estimation, and control coincide: The achievable communication rates in the feedback communication problems can be alternatively given by the decay rates of the Cramer-Rao bounds (CRB) in the associated estimation problems or by the Bode sensitivity integrals in the associated control problems. Utilizing the general equivalence, we design optimal feedback communication schemes based on the celebrated Kalman filtering algorithm; these are the first deterministic, optimal communication schemes for these channels with feedback (except for the degenerated AWGN case). These schemes also extend the Schalkwijk-Kailath (SK) coding scheme and inherit its useful features, such as reduced coding complexity and improved performance. Hence, this thesis demonstrates that the new perspective plays a significant role in gaining new insights and new results in studying Gaussian feedback communication systems. We anticipate that the perspective could be extended to more general problems and helpful in building a theoretically and practically sound paradigm that unifies information, estimation, and control

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin
    corecore