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Abstract: The charging loads of electric vehicles (EVs) at residential premises are controlled through
a tariff system based on fixed timing. The conventional tariff system presents the herding issue, such
as with many connected EVs, all of them are directed to charge during the same off-peak period,
which results in overloading the power grid and high charging costs. Besides, the random nature
of EV users restricts them from following fixed charging times. Consequently, the real-time pricing
scenarios are natural and can support optimizing the charging load and cost for EV users. This paper
aims to develop charging cost optimization algorithm (CCOA) for residential charging of EVs. The
proposed CCOA coordinates the charging of EVs by heuristically learning the real-time price pattern
and the EV’s information, such as the battery size, current state-of-charge, and arrival & departure
times. In contrast to the holistic price, the CCOA determines a threshold price value for each arrival
and departure sequence of EVs and accordingly coordinates the charging process with optimizing
the cost at each scheduling period. The charging cost is captured at the end of each charging activity
and the cumulative cost is calculated until the battery’s desired capacity. Various charging scenarios
for individual and aggregated EVs with random arrival sequences of EVs against the real-time price
pattern are simulated through MATLAB. The simulation results show that the proposed algorithm
outperforms with a low charging cost while avoiding the overloading of the grid compared to the
conventional uncoordinated, flat-rate, and time-of-use systems.

Keywords: charging cost; electric vehicles; heuristic algorithm; optimization; real-time price

1. Introduction

Global warming affects human life in various ways, such as increasing temperature,
rising sea levels, and severe floods. It is mainly caused by the massive CO2 emission
from petroleum, natural gas, coal, geothermal, and automobile industries due to internal
combustion engines (ICEs) automobiles discharging unhealthy CO2. Cars and trucks emit
almost 26%, while other transportation methods account for about 12% of carbon dioxide
emissions [1]. In the USA, transportation is the second-largest source (34%) of CO2 emission,
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where light-duty vehicles (passenger cars and light trucks) and medium- and heavy-duty
vehicles are responsible for almost 60% and 23%, respectively [2]. In 2019 about 1817 MMT
emission of CO2 from the transportation sector was recorded by the US department of
energy [3]. Besides, the transportation sector is heavily dependent on the use of fossil fuels.
Consequently, the automobile industry is rapidly moving towards electrified transportation,
reducing CO2 and dependencies on fossil fuels. Electric vehicles (EVs) possess numerous
potential advantages over traditional vehicles, such as being environment friendly, the
low cost of fuel, safety, being reliable, compact, and lightweight [4]. The EVs can be
used as a distributed storage and could support power grid and microgrids, especially
during peak demand through vehicle-to-grid (V2G) technology [5]. However, a large-scale
penetration of EVs overloads the power grid with additional power demand, which may
cause overloading of the transformer, feeder congestion, circuit faults, and instability in
the overall grid operation [6]. The additional power demand requires the installation of
new power generating sources and upgrading the existing power grid. However, this is
not a feasible option, due to the high generation and infrastructure upgrade cost. A more
feasible option is to shift the charging load from on-peak to off-peak time, assuming that
the EVs are plugged in for charging in the evening after arrival at home [7]. This case takes
advantage of the electricity tariff system and the dwell time of EVs to shift the charging
load from on-peak to off-peak times and thereby respecting the grid operational boundaries.
The utility companies provide different tariff systems with peak, mid-peak, and off-peak
rates for customer convenience. These tariff systems provide fixed prices for specific times
known as a time-of-use (TOU) tariff system. EV owners have the choice to either charge
their EVs with or without fixed rate tariff systems. However, due to the uncertain nature of
EV owners, it is difficult for them to follow the fixed TOU system. Besides, due to the fixed
prices, the EVs herd toward the off-peak period, which results in overloading the grid [8].
Therefore, compared to the TOU system, the real-time prices (i.e., often update every
15 min) are more economical for grid operators and EV owners [9]. However, the charging
control algorithm requires inputs, such as driving habits (i.e., arrival and departure time),
battery characteristics (i.e., battery capacity and state-of-charge (SoC), and electricity market
price using a communication network [10,11].

The proposed charging cost optimization algorithm (CCOA) considered various fac-
tors such as driving habits (i.e., arrival and departure times), battery characteristics (i.e.,
SoC and battery capacity), and real-time electricity market price pattern along with a proper
communication network system [12–14]. An EV initiates a charging request after being
plugged into the charging station. The CCOA loads data from the EV and day-ahead
electricity price pattern (i.e., considering that the current day has a similar consumption
and pattern) from the utility company. In contrast to the holistic price, the proposed CCOA
computes a threshold price value for each arrival and departure sequence of EVs and ac-
cordingly controls the charging process with optimizing the cost at each scheduling period.
The charging cost is captured at the end of each charging activity and the cumulative cost
is calculated until the battery’s desired capacity. Various charging scenarios with different
characteristics of EVs against the real-time prices profile were simulated through MATLAB.
The simulation result shows that the proposed algorithm outperforms with a low charging
cost in comparison to the uncoordinated, flat-rate, and time-of-use systems. The main
contribution of this work is three fold:

• We developed a charging cost optimization algorithm that learns the characteristics
of EVs and real-time price patterns and computes a threshold value of price for each
arrival and departure sequence of EVs. The threshold value is utilized to schedule
the charging operation of EVs with minimizing the charging cost and respecting the
operational constraints of the power grid.

• We show how the different schemes influence the charging cost and grid overloading
by developing charging scenarios for individual and aggregated EVs with fixed and
random arrival and departure sequences against the real-time electricity price patterns.



Energies 2022, 15, 1304 3 of 18

• We evaluated the performance of the proposed CCOA against the uncoordinated,
flat-rate, and time-of-use systems in terms of charging cost and grid overloading.

The rest of this paper is organized as follows. Section 2 discusses the literature survey.
Section 3 presents the proposed algorithm. The simulation results and discussion are
presented in Section 4 and Section 5 concludes the paper with related future work.

2. Literature Survey

In the EVs research, various studies considered the power and daily commute distance
patterns with the objective functions of minimizing the power losses, voltage deviation,
and fleet consumption for aggregated EVs [15–17]. A charging load optimization algorithm
for a fleet of EVs based on dynamic programming with the assumption of arrival and
departure sequence of 8:00 AM and 6:00 PM was studied in [9]. Their proposed scheme
showed approximately, a 17% reduction in the daily load profile compared to the conven-
tional dumb charging scheme. The authors in [18] studied the charging load optimization
of aggregated households through V2G technology. The study considered 63 households,
such that each household was assigned a random electric load profile obtained from Bel-
gian households, and the EV’s SoC was approximated, between 20% and 60% through
uniform distribution. The authors in [19] considered various factors (i.e., transformer’s
load, voltage limits, and parking availability) and employed a genetic algorithm (GA) for
computing an optimal load pattern for the aggregated EVs. The study investigated various
uncontrolled and controlled charging case studies with different penetration ratios of EVs
and concluded, that about 85% and 5% were allowed to charge at the valley and peak
periods, while in the remaining hours, 10% EVs were charged. The study in [20] suggested
a Monte Carlo-based charging control method for aggregated EVs by utilizing the avail-
able data on the distribution of departure time, commuting distance, and average power
consumption. The work in [21] analyzed the stochastic characteristics of EVs by obtaining
the datasets from the Netherlands transportation network. The time of each trip and the
traveling distance were considered stochastic variables, and the battery SoC was obtained
using the traveled history. Then the power demand of EVs based on the real commuting
distance for domestic charging was modeled using a Monte Carlo simulation approach.
The authors in [22] developed a multi-location charging scheme for EVs using their travel
distances. In this work, the national household travel survey (NHTS) driving dataset was
used to derive statistical distributions of travel patterns. Then a simulation was performed
to generate trip chains using start time, end time, driving distance, and the end location
from the NHTS dataset. The work in [23] presented a data-driven stochastic optimization
algorithm for reducing the energy cost of commercial buildings in the Southern California
region. The work considered the uncertainty associated with the availability of plug-in
electric vehicles (PEVs) for charge and discharge and modeled the energy cost optimization
problem using mixed integer linear programming (MILP). The study in [24] considered
the local electricity market to develop an energy trading mechanism for consumers and
prosumers to reduce congestion, energy cost, and intermediate players, such as retailers. In
our previous works [25–27], we highlighted the requirements of the power grid, parking lot
operators, and developed charging and discharging algorithms based on fuzzy inference
systems. The developed fuzzy inference system was able to incorporate the uncertain
available power, the SoC, and the dwell time of EVs into an aggregated control variable.
The developed algorithm utilized the aggregated control variable to coordinate the charging
and discharging of EVs in each sampling period. The authors in [28] considered the driving
cycles from traffic information for optimal management of EV charging. The proposed
scheme was simulated with several standard driving cycles, and the results showed signifi-
cant improvement in comparison to rule-based control and a depletion sustenance control
scheme. A game-theoretic with a non-cooperative strategy coupled with the electricity
prices for minimizing the charging cost of PEVs was proposed in [29].

In contrast to the electricity prices profiles, these papers mostly studied the power
consumption pattern while optimizing the charging and discharging of a load of EVs.
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The study in [30] introduces three different tariff systems (i.e., electricity rates) for co-
ordinating the charging operations of EVs at residential premises. These tariff systems
correspond to fixed electricity rates (i.e., constant rates), time-of-use electricity rates (i.e.,
dual rates, according to off-peak and on-peak periods), and real-time rates (i.e., the rates
which vary according to the time of day). The work combined the electricity tariff systems,
the vehicle commuting distances, and the battery types to approximate the charging start
time and the overall duration of the charging for each type of battery. The proposed method
is applied to a 38-node distribution system from the U.K. and compared with four different
charging scenarios (i.e., uncontrolled domestic charging, uncontrolled off-peak domestic
charging, smart domestic charging, and uncontrolled public charging). The performance
was measured through electric load profiles for different penetration levels of EVs.

However, this work assumed a long stay time of EVs while ignoring the dwell time
of EVs, and thereby the computed charging schedule may not be feasible for EVs with
different dwell times. To fill the gap, we develop a charging CCOA that utilizes the battery
size, current SoC, arrival departure times, and the real-time price profile for coordinating
the charging schedules within the dwell times of the EVs with optimizing the cost at each
scheduling period. The developed CCOA captures the charging cost of each charging
activity and aggregates the holistic cost until the battery’s desired capacity of each EV.

3. Proposed Charging Cost Optimization Algorithm

The charging process of EVs can be performed via either uncoordinated or coordinated
charging. The former case depends on the connection and starts charging immediately once
the EVs are plugged into the CSs. In contrast, the latter case coordinates the charging of EVs
by considering some external factors such as the power system requirements, the driving
behavior, the charging time and cost, and the power demand of EVs. This section provides a
detailed discussion on the two charging categories and presents the underlying mechanism
of the proposed CCOA.

3.1. Uncoordinated Charging

The uncoordinated charging is generally based on the EV user’s energy requirements
and the availability of the CS. For instance, the EVs need a recharge to fulfill the charging
need for their next trip journey. The uncoordinated charging begins the charging process
as soon as an EV is plugged into a CS. By modeling the uncoordinated charging method,
it is possible to find the consequences of the charging behavior on the grid side, such
as the electric load and the charging cost at the customer’s premises. In this work, we are
interested in modeling the charging activities of EVs for analyzing the cogent effect on the
charging cost. A detailed procedure of the uncoordinated charging process is illustrated
in the flowchart in Figure 1. At any t, the algorithm checks whether an EV is plugged or
not. If no connection is detected, the algorithm increments the t and repeats the checking
process again. However, if an EV is connected, it collects the data from the EVs and checks
the SoC against the BC, and calculates the electric load and cost for each charging activity.
This process continues until the battery is fully charged. Then it checks the time against
the maximum time limit and accordingly increments the time step to either repeat the
procedure or terminate the algorithm.

3.2. Coordinated Charging

In contrast to uncoordinated charging, the coordinated charging algorithms aim to
determine the time moments (i.e., charging schedule) that represent the start or stop of
the battery charging process. Therefore, the algorithms are modeled based on external
factors such as electric load profile, vehicle trip distance, electricity tariff-based system,
and real-time electric load and price profiles. This section presents a detailed discussion
concerning the TOU tariff systems and the proposed CCOA algorithms.
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3.2.1. Time-of-Use Tariff Systems

The tariff system defines electricity rate structures concerning different periods, thus
called TOU [31]. These systems are adopted to encourage the EV owners to recharge
vehicles during off-peak time. Three different tariff system such as flat, single, and mul-
titariff systems are discussed in [30]. According to their work, the standard tariff system
uses a fixed electricity rate. In the presence of TOU, the C for i-th is a function of the E
consumption with the P in that particular time of use period. Considering the following
example with discrete time steps, we deduce the formulation for the charging cost C of an
i-th EV.

Figure 1. Flowchart of uncoordinated charging of electric vehicles (EVs).

Let us consider the scheduled EV1 (Figure 2b) discussed in [32] having a battery
capacity of 40 kWh. The EV1 has an ta and td such that (ta = 3, td = 12) and has a SoC of
25% (10 kWh). Considering the arrival and departure sequence, the St is computed to be
10 time steps i.e., (St = td − ta +1) such that the arrival is at the start while the departure
is at the end of time steps ta = 3 and td = 12. It is envisioned that each time step is 15 min
with delivering energy E = 5 kW/t) and thereby requires 6 time steps to complete the
charging requirements. The coordinated charging considers a decision variable D for EV1
(i.e., DEV1 ) to control the charging process according to the three tariff systems as illustrated
in Figure 2. First is the flat-rate tariff in which the EV is charged with an average fixed price
P for every kWh, as shown in Figure 2a. In this case, each of the time steps costs the same
price, and thereby the charging cost is proportional to the energy consumption. Second is
the TOU tariff, in which the prices are based on the time of use of energy consumption and
remain constant until a certain period.



Energies 2022, 15, 1304 6 of 18

Figure 2. Illustration of charging process and the cost. (a). Standard tariff with flat rate (b). Different
time-of-use (TOU) tariff systems.

Usually, the prices are average prices linked to the day-ahead spot price. Depending on
the TOU, there can be three different possible prices, the P1, P2, and P3 [33]. The charging
cost of EV1 can be computed according to the sum of the product of charging power
(charging energy), charging price, and the decision variable at each time. Let CEV1 denote
the charging cost of EV1 for the consumed energy E with the charging price P in each time
step t. The charging cost based on a flat rate tariff can be computed as CEV1 = (E× P×
D(t3)) + (E× P×D(t4)) + (E× P×D(t5)) + (E× P×D(t10)) + (E× P×D(t11)) + (E×
P×D(t12)). The charging cost with TOU tariff is CEV1 = (E× P1×D(t3)) + (E× P1×
D(t4)) + (E× P2×D(t5)) + (E× P3×D(t10)) + (E× P3×D(t11)) + (E× P3×D(t12)).
This implies that with constant energy consumption E in each time step t, the charging cost
CEVi for the i-th EV is computed for each of the tariff systems using Equation (1).

CEVi (t) =

{
∑td

t=ta
(E(t)× Pi(t)× D(t)) ∀Pi = P flat price

∑td
t=ta

(E(t)× Pi(t)× D(t)) ∀Pi, P1 6= P2 6= P3 Time-of-Use price
(1)

where the flat prices are the average constant charging cost in each time step and are usually
computed for 24 h. Similarly, the tariff system corresponds to different prices according
to the off-peak, mid-peak, and on-peak time steps, with a constant average cost for four
h (i.e., 00:00–04:00, 01:00–05:00, 02:00–06:00, 03:00–07:00, and 04:00–08:00) [28]. However,
the dynamic nature of EV owner’s behavior on arrival, departure & stay time, and their
distinct energy requirements are the major obstacles in following the TOU tariff systems.
The real-time prices are a more natural option for optimizing the charging cost but present
complexity and challenges when dealing with the multiple inputs from both the EVs and
the power grid in each time step [34].

3.2.2. The Proposed Charging Cost Optimization Algorithm

The proposed CCOA optimizes the charging cost of EVs through real-time prices
following the system model, as shown in Figure 3. It consists of several functional com-
ponents including, the power grid, grid operators (i.e., TSO, DSO, and the utility grid
operators), the LV distribution network, CCOA, and the households with EVs. The power
grid is the power generation source from various sources such as coal, natural gas, nuclear,
and renewable energies sources (i.e., solar and wind) [35]. The TSO is responsible for the
smooth operations and reliable transmission of power from generation (power grid) to the
given area (i.e., DSO) by a high voltage transmission, as well as robust and cost-efficient
network [36].
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Figure 3. System model of the proposed charging cost optimization algorithm (CCOA).

In coordination with the TSO, the DSO facilitates the end-users by managing and
distributing the energy from the power grid to the consumers through the LV-distribution
network [37]. The utility company deals with the economic aspect of electricity in the
wholesale and retail markets. The wholesale and retail markets correspond to the electricity
trade between the utility company, the power grid, and consumers [38]. The CCOA deals
with the retail market prices and coordinates the charging operation of EVs according to the
real-time price within their stay time. The stay time St of an i-th EV (i.e., Sti ) is a function of
the arrival–departure sequence (tai , tdi

), and the Er is the function of SoC and BC as given
by Equations (2) and (3):

Sti = tdi
− tai (2)

Er
i (t) =

{
(1− SoCi(t))× BCi If charge until full battery
(SoCr

i (t)− SoCi(t))× BCi If charge until required SoC.
(3)

Considering a constant Cr at each time step t, the RT and i-th EV (i.e., RTi) depend
upon the amount of energy demanded as computed in Equation (4). The Ph can thus be
computed according to price vector P and the stay time St, for each arrival and departure
sequence (ta, td) as given in Equation (5):

RTi =
Ei
Cr

(4)

Ph =
1

Sti

td

∑
t=ta

×P(t). (5)

The energy consumption E at each time step t is a function of SoC, BC, and the Cr as
computed in Equation (6). We define the objective function of minimizing the charging cost
C for the i-th EV, which is defined as the sum of the product of the energy consumption E
and the charging price P, as computed in Equation (7).

Ei = (SoCi(t− 1)× BCi) + (η × D(t)× Cr) (6)
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min
(D, t, i)

Ci =

tdi

∑
t=tai

Ei(t)× Di(t)× P(t) (7)

subject to: RTi ≤ Sti (8)

P(t) ≤ Ph (9)

Cmin
r (t) ≤ Cr(t) ≤ Cmax

r (t) (10)

SoCmin(t) ≤ SoCi(t) ≤ SoCmax(t) (11)

where D is the binary decision control variable with values [0, 1] representing postpone
and charge operations. The objective function Equation (7) is subject to several linear
constraints, for example the required time RT to charge should be less than the stay time
St and the price P at any time step t, and should be less than the computed threshold
price values Ph as given in Equations (8) and (9). Similarly, the charging rate Cr should
be within Cmin

r and Cmin
r while the SoC should follow the SoCmin and SoCmax boundaries

as defined by Equations (10) and (11) [39,40]. To resolve the objective function for optimiz-
ing the charging cost, we present two algorithms given in Algorithms 1 and 2 with the
following details.

Algorithm 1 Main Algorithm of the proposed charging cost optimization algorithm (CCOA)
Input: Arrival and departure times, battery capacity, state-of-charge, and price profile
Output: Optimal charging cost and electric load profiles

1: Initialize the system local and global variables
2: Load the electric load (L) and price (P) vectors
3: for t← 1 to |T| do
4: for i← 1 to |N| do
5: Compute St and Er . According to Equations (2) and (3)
6: Compute RT and Ph . According to Equations (4) and (5)
7: Validate constraint defined in Equation (9)
8: for j← 1 to |P| do
9: if

(
P[j] ≤ Ph[i]

)
then . Validate constraint defined in Equation (8)

10: FTS[i]← P[j] . Feasible time steps for charging
11: end if
12: j← j + 1
13: end for
14: end for
15: temp← FTS[1]
16: for i← 1 to |N| do
17: for k← 2 to |FTS| do
18: while

(
l ≤ |RT[i]|

)
do

19: if
(

FTS[k] ≤ temp
)

then
20: OTS[l]← FTS[k] . Optimal time steps with lowest cost
21: D[i]← 1
22: temp← FTS[k]
23: end if
24: l ← l + 1
25: end while
26: end for
27: Charge_Control

(
N[i], OTS[l], RT[i], SoC[i], BC[i], Er[i], D[i], P, L

)
28: Print the updated results
29: end for
30: t← t + 1
31: end for

Step 1. Initialize all the system local and global variables (i.e., N, t, i, j, k, and the arrays) and
load L and price P vectors.
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Step 2. Collect the input data and compute the stay time St, required energy Er, required
time steps RT, and the threshold price Ph value for each of the i-th EVs, using
Equations (2)–(5). Moreover, for each EV, validate the constraint defined in
Equation (9).

Step 3. Collect the FTS for charging each of the i-th EVs according the threshold price value
defined within their arrival and departure sequence in lines 7 to 12.

Step 4. Get the first price value from the feasible time steps FTS a.k.a. the feasible solution
set and compute the OTS by setting the decision D variable for each of the i-th EV in
lines 15 to 25.

Step 5. Call the subroutine Charge_Control (i.e., Algorithm 2). First, it validates constraints
defined by Equations (10) and (11). Then, it checks the optimal charging steps,
the decision variable, and the energy requirements and thereby controls the charging
process of EVs according to their optimal schedules. For each charging, the activity
updates the charging cost and the electric load vectors in lines 6 to 12. Finally, it
returns the updated SoC, charging cost C, and electric load L vectors to Algorithm 1.

Step 6. Print the updated results. Increment the time step t and repeat the process for the
remaining intervals.

Algorithm 2 Charge_Control
(

N[i], OTS[l], RT[i], SoC[i], BC[i], Er[i], D[i], P, L
)

1: Initialize local variables
2: for j← 1 to |P| do
3: while

(
l ≤ |RT[i]|

)
do

4: Validate constraint defined in Equations (10) and (11)
5: if

(
(P[j] == OTS[l] || D[i] == 1) && SoC[i] ≤ Er[i]

)
then

6: (SoC[i]× BC[i])← (SoC[i]× BC[i]) + (η × Cr) . Charge i-th EV
7: C[l]← C[l] + C[l + 1] . Update charging cost
8: L[l]← L[l] + (SoC[i]× BC[i]) . Update electric load
9: else

10: SoC[i]← SoC[i− 1]
11: C[l]← C[l]
12: L[l]← L[l]
13: end if
14: l ← l + 1
15: end while
16: end for
17: Return updated

(
SoC[i], C[l], and L[l]

)
4. Simulation Results and Discussion

The simulation is based on three types of price profiles, including real-time, flat-rate,
and time-of-use TOU [41], as illustrated in Figure 4. Moreover, we conduct charging
scenarios for individual and aggregated EVs with fixed and random arrival and departure
sequences to evaluate the efficiency of the proposed CCOA against UCC, CFR, and CTOU,
respectively. For all these scenarios, we assume a η = 0.95 [42], charging rate (Cr = 6.6 kWh)
[43], and time step (t = 15 min), while the rest of their details are presented as follows.
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Figure 4. Real-time, flat-rate, and time-of-use price profiles.

4.1. Individual Charging Scenario

In this scenario, we consider a single household with the baseload (i.e., electric load)
profile shown in Figure 5. Moreover, it assumes the EV with known parameters such as
arrival & departure time sequence, SoC, V, and i, as given in Table 1. The battery charging
process with different charging schemes is shown, in Figure 6. The battery charges in
different time steps according to the different schemes. Depending on the connection and
flat charging cost, the charging process starts immediately with UCC and CFR charging
schemes. The CTOU delays charging until the off-peak period, while the proposed CCOA
finds the most optimal time steps and controls the charging process according to the real-
time price pattern. Following the charging process, each charging scheme has a different
charging load, as shown in Figure 7. All three schemes, except the CCOA, result in a new
peak load. The new peak with UCC and CFR is 3.56 kW, while it is 3.27 kW with the
CTOU scheme.

Figure 5. Electric load (i.e., baseload) profile of a typical household.
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Table 1. Input parameters for an individual charging scenario.

Parameters Values Description Reference

V 220 V Voltage
[42]I 30 Amp Current

Cr 6.6 kWh Fast charger
BC 53 kWh Tesla

ta 5:45 PM Arrital time [44]td 9:15 AM Departure time

SoC 0.4 Stored energy
-SoCmin 0.2 Minimum energy

SoCmax 1 Until BC

RT 19.5 Required time steps Equation (4)

Figure 6. Battery charging process with uncontrolled charging (UCC), coordinated charging based on
flat-rate (CFR), coordinated charging based on time-of-use (CTOU), and charging cost optimization
algorithm (CCOA).

Figure 7. Electric load profiles concerning UCC, CFR, CTOU, and CCOA charging schemes.

The efficiency of CTOU depends on the required time RT steps for charging and thereby
exceeding the RT from the TOU period results in overloading the grid load. However,
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the CCOA learns the real-time prices to find the most optimal time steps for charging
such that it avoids grid overload. Following the charging schedules and the grid load,
a comparison of charging cost with UCC, CFR, CTOU, and CCOA is illustrated in Figure 8.
Compared to all three schemes, the CCOA results in optimal charging cost, and thereby
the accumulated charging cost is 265.10, 151.50, 137.27, and 131.90 cents concerning the
UCC, CFR, CTOU, and CCOA, respectively. This implies that for an EV, the proposed
CCOA reduces the charging cost by 133.20, 19.60, and 5.37 cents compared to the UCC,
CFR, and CTOU methods.

Figure 8. Charging costs concerning UCC, CFR, CTOU, and CCOA charging schemes.

4.2. Aggregated Charging Scenario

To investigate the impact of aggregated EVs on the distribution level, we considered a
LV distributed network connecting 102 houses, as shown in Figure 9 [25]. The electric load
on the LV distributed network is the sum of all the baseloads of the connected houses and
the EVs energy consumption. In realistic situations, the LV distribution network supports
EVs with different battery types and capacities. Consequently, EVs with battery capacities
of 40 kWh and 53 kWh with a 50% penetration level for each battery type are considered
in an aggregated scenario [42,45]. To realize the distinct behavior of the EV users, we
generate a random arrival and departure sequences using Gaussian distribution with
µ = 6:00 PM, σ = 3 h and µ = 10:00 AM, σ = 2.5 h, obtained from the PDF of NHTS [46],
respectively as given in Figure 10. The arrival time SoC for the EVs are distributed through
uniform distribution between 20% to 50% of their battery capacities, as given in Figure 11.
The different charging methods correspond to different charging loads. A comparison of the
charging load concerning the UCC, CFR, CTOU, and CCOA is shown as a violin graph in
Figure 12. The average load is about 213.76 kW with the UCC and CFR methods, while it is
185.51 kW and 178.68 kW with the CTOU and CCOA methods. Thus, the CCOA reduces the
average charging load by 35.08 kW and 6.83 kW compared to the UCC and CFR, and CTOU
methods. The proposed CCOA efficiently handles the charging that helps to maintain the
load, while the UCC and CFR, and the CTOU result in new peak loads. The charging cost
for the UCC, CFR, CTOU, and CCOA is compared in Figure 13. The figure shows that the
UCC has the highest charging cost followed by the CFR and CTOU, while the proposed
CCOA has the least cost. The average charging cost is 66.25, 47.65, 38.86, and 29.93 cents
with respect to UCC, CFR, CTOU, and CCOA methods, respectively. This implies that
the CCOA reduces the average charging cost by 60.00%, 43.00%, and 35.00% cents/kW
compared to the UCC, CFR, and CTOU methods, respectively.
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Figure 9. Low voltage distribution network with aggregated households and EV loads.

Figure 10. Arrival and departure distribution of electric vehicles (EVs).

Figure 11. Arrival time state-of-charge (SoC) distribution against each type of battery capacity.
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Figure 12. Violin graph of charging load profile concerning UCC, CFR, CTOU, and CCOA schemes.

Figure 13. Charging cost of EVs concerning UCC, CFR, CTOU, and CCOA schemes.

5. Conclusions

In this paper, we developed charging cost optimization algorithms CCOA based on
real-time prices for the residential charging of EVs. The proposed CCOA computes a
threshold price value for each arrival and departure sequence of EVs and accordingly
coordinates the charging process with optimizing the cost while avoiding gird overloading
at each scheduling period. The CCOA computes the holistic charging cost until the battery’s
desired capacity by capturing the cost of each charging activity. Various charging scenarios
with individual and aggregated EVs against the real-time price pattern are simulated
through MATLAB. The simulation results are verified against the UCC, CFR, and CTOU
methods. In the case of individual charging scenarios, the CCOA reduced the charging
cost by 133.20, 19.60, and 5.37 cents/kW while avoiding grid overloading compared to the
UCC, CFR, and CTOU methods. Considering the aggregated scenario, the CCOA reduced
the average load by 35.08 kW and 6.83 kW compared to the UCC and CFR, and CTOU
methods. The average charging cost is minimized by 60.00%, 43.00%, and 35.00% cents
compared to the UCC, CFR, and CTOU methods, respectively.

This work utilized the day-ahead electric load and price profiles assuming similar
household consumption and prices patterns; however, forecasting the electric load and
price profiles using neural network algorithms will result in more accurate and realistic
analysis. Consequently, in future, the proposed work will focus on incorporating the
electric load and prices historical data and neural network-based models.
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Nomenclature
EVs electric vehicles
CCOA charging cost optimization algorithms
CO2 carbon dioxide
ICEs internal combustion engines
MMT million metric ton
V2G vehicle-to-grid
TOU time of use
SoC state-of-charge
SoCmin minimum state-of-charge
SoCmax maximum state-of-charge
GA genetic algorithm
NHTS National Household Travel Survey
PEVs plug-in electric vehicles
MILP mixed integer linear programming
CSs charging stations
t time step
BC battery capacity
C charging cost
i index of an EV
E energy
P charging price
ta arrival time
td departure time
St stay time
D decision control variable
kWh kilowatt-hour
P1 off-peak/valley price
P2 mid-peak price price
P3 on-peak price price
TSO transmission system operator
DSO distribution system operator
LV low-voltage
Er required amount of energy
BC battery capacity
Cr charging rate
Cmin

r minimum charging rate
Cmin

r maximum charging rate
RT required time to charge
Ph threshold price value
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L electric load
N number of EVs array/vector
T maximum number of simulation steps
i, j, k loop control variables
FTS feasible time steps array/vector
OTS optimal time steps array/vector
UCC uncoordinated charging
CFR coordinated charging based on flat-rate
CTOU coordinated charging based on time-of-use
V voltage
I current
µ mean
σ standard deviation
η charging efficiency
PDF probability distribution function

References
1. Beliveau, M.; Rehberger, J.; Rowell, J.; Xarras, A. A Study on Hybrid Cars: Environmental Effects and Consumer Habits.

Bachelor’s Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2010.
2. Lee, W.; Schubert, E.; Li, Y.; Li, S.; Bobba, D.; Sarlioglu, B. Electrification of turbocharger and supercharger for downsized

internal combustion engines and hybrid electric vehicles-benefits and challenges. In Proceedings of the 2016 IEEE Transportation
Electrification Conference and Expo (ITEC), Dearborn, Michigan, 27–29 June 2016; pp. 1–6.

3. Domke, G.M.; Walters, B.F.; Nowak, D.J.; Smith, J.; Nichols, M.C.; Ogle, S.M.; Coulston, J.; Wirth, T. Greenhouse gas emissions
and removals from forest land, woodlands, and urban trees in the United States, 1990–2019. In Resource Update FS–307; US
Department of Agriculture, Forest Service, Northern Research Station. 5: Madison, WI, USA, 2021; Volume 307.

4. Arora, S.; Priolkar, J. Simulation and analysis of hybrid energy source for electric vehicle. In Proceedings of the 2016 IEEE 1st
International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016;
pp. 1–6.

5. Lee, E.H.P.; Lukszo, Z. Scheduling fuel cell electric vehicles as power plants in a community microgrid. In Proceedings of the
2016 IEEE Pes Innovative Smart Grid Technologies Conference Europe (Isgt-Europe), Ljubljana, Slovenia, 9–12 October 2016; pp.
1–6.

6. Shao, S.; Pipattanasomporn, M.; Rahman, S. Grid integration of electric vehicles and demand response with customer choice.
IEEE Trans. Smart Grid 2012, 3, 543–550.

7. Khan, R.H.; Stüdli, S.; Khan, J.Y. A network controlled load management scheme for domestic charging of electric vehicles. In
Proceedings of the 2013 Australasian Universities Power Engineering Conference (AUPEC), Hobart, Australia, 29 September–3
October 2013.

8. Rahim, M.H.; Javaid, N.; Shafiq, S.; Iqbal, M.N.; Khalid, M.U.; Memon, U.U. Exploiting heuristic techniques for efficient energy
management system in smart grid. In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing
Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 54–59.

9. Detzler, S.; Eichhorn, C.; Karnouskos, S. Charging optimization of enterprise electric vehicles for participation in demand
response. In Proceedings of the 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST),
Vienna, Austria, 7–11 September 2015; pp. 284–289.

10. Shahzad, A.; Xiong, N.; Irfan, M.; Lee, M.; Hussain, S.; Khaltar, B. A SCADA intermediate simulation platform to enhance the
system security. In Proceedings of the 2015 17th International Conference on Advanced Communication Technology (ICACT),
Phoenix Park, Korea, 1–3 July 2015; pp. 368–373.

11. Hussain, S.; Kim, Y.C. Simulation studies of resilient communication network architecture for monitoring and control wind
power farms. In Proceedings of the 2015 17th International Conference on Advanced Communication Technology (ICACT),
Phoenix Park, Korea, 1–3 July 2015; pp. 653–658.

12. Hussain, S.; Kim, Y.C. Multilayer communication network architecture for wind power farm. In Proceedings of the 2014 IEEE
19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD),
Athens, Greece, 1–3 December 2014; pp. 105–109.

13. Carli, R.; Dotoli, M. A distributed control algorithm for waterfilling of networked control systems via consensus. IEEE Control
Syst. Lett. 2017, 1, 334–339.

14. Hussain, S.; Kim, Y.C.; Jan, Q.; Ali, Z. Simulation Studies of Reconfigurable Communication Network for Southwest Offshore
Wind Farm South Korea. In Proceedings of the 2019 2nd International Conference on Communication, Computing and Digital
systems (C-CODE), Islamabad, Pakistan, 6–7 March 2019; pp. 58–63.

15. Panday, A.; Bansal, H.O. A review of optimal energy management strategies for hybrid electric vehicle. Int. J. Veh. Technol.
2014, 2014 .



Energies 2022, 15, 1304 17 of 18

16. Braun, A.; Rid, W. The influence of driving patterns on energy consumption in electric car driving and the role of regenerative
braking. Transp. Res. Procedia 2017, 22, 174–182.

17. Paterakis, N.G.; Gibescu, M. A methodology to generate power profiles of electric vehicle parking lots under different operational
strategies. Appl. Energy 2016, 173, 111–123.

18. Mets, K.; Verschueren, T.; De Turck, F.; Develder, C. Exploiting V2G to optimize residential energy consumption with electrical
vehicle (dis) charging. In Proceedings of the 2011 IEEE First International Workshop on Smart Grid Modeling and Simulation
(SGMS), Brussels, Belgium, 17 October 2011; pp. 7–12.

19. Alonso, M.; Amaris, H.; Germain, J.G.; Galan, J.M. Optimal charging scheduling of electric vehicles in smart grids by heuristic
algorithms. Energies 2014, 7, 2449–2475.

20. Sandels, C.; Franke, U.; Ingvar, N.; Nordström, L.; Hamren, R. Vehicle to grid—Monte Carlo simulations for optimal aggregator
strategies. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October
2010; pp. 1–8.

21. Lojowska, A.; Kurowicka, D.; Papaefthymiou, G.; van der Sluis, L. From transportation patterns to power demand: Stochastic
modeling of uncontrolled domestic charging of electric vehicles. In Proceedings of the 2011 IEEE Power and Energy Society
General Meeting; Detroit, MI, USA, 2011; pp. 1–7.

22. Wang, D.; Guan, X.; Wu, J.; Gao, J. Analysis of multi-location PEV charging behaviors based on trip chain generation.
In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), Taipei, Taiwan,
18–22 August 2014; pp. 151–156.

23. Yusuf, J.; Watanabe, R.; Ula, S.; Todd, M.; Gomez, H. Data Driven Stochastic Energy Cost Optimization with V2G Operation
in Commercial Buildings. In Proceedings of the 2020 52nd North American Power Symposium (NAPS), Tempe, AZ, USA,
11–13 April 2021; pp. 1–6.

24. Faia, R.; Soares, J.; Vale, Z.; Corchado, J.M. An optimization model for energy community costs minimization considering a local
electricity market between prosumers and electric vehicles. Electronics 2021, 10, 129.

25. Hussain, S.; Ahmed, M.A.; Kim, Y.C. Efficient power management algorithm based on fuzzy logic inference for electric vehicles
parking lot. IEEE Access 2019, 7, 65467–65485.

26. Hussain, S.; Lee, K.B.; A Ahmed, M.; Hayes, B.; Kim, Y.C. Two-stage fuzzy logic inference algorithm for maximizing the quality
of performance under the operational constraints of power grid in electric vehicle parking lots. Energies 2020, 13, 4634.

27. Hussain, S.; Kim, Y.S.; Thakur, S.; Breslin, J.G. Optimization of Waiting Time for Electric Vehicles Using a Fuzzy Inference System.
IEEE Trans. Intell. Transp. Syst. 2022 .

28. Qian, K.; Zhou, C.; Allan, M.; Yuan, Y. Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans.
Power Syst. 2010, 26, 802–810.

29. Ma, Z.; Callaway, D.S.; Hiskens, I.A. Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans.
Control. Syst. Technol. 2011, 21, 67–78.

30. Zhang, P.; Qian, K.; Zhou, C.; Stewart, B.; Hepburn, D. Demand response for optimisation of power systems demand due to EV
charging load. In Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, China, 27–29 March
2012; pp. 1–4.

31. Ansarin, M.; Ghiassi-Farrokhfal, Y.; Ketter, W.; Collins, J. The economic consequences of electricity tariff design in a renewable
energy era. Appl. Energy 2020, 275, 115317.

32. Hussain, S.; Ahmed, M.A.; Lee, K.B.; Kim, Y.C. Fuzzy logic weight based charging scheme for optimal distribution of charging
power among electric vehicles in a parking lot. Energies 2020, 13, 3119.

33. Chen, L.; Huang, X.; Zhang, H.; Luo, Y. A study on coordinated optimization of electric vehicle charging and charging pile
selection. Energies 2018, 11, 1350.

34. Soltani, N.Y.; Kim, S.J.; Giannakis, G.B. Real-time load elasticity tracking and pricing for electric vehicle charging. IEEE Trans.
Smart Grid 2014, 6, 1303–1313.

35. Ghenai, C.; Bettayeb, M. Data analysis of the electricity generation mix for clean energy transition during COVID-19 lockdowns.
In Energy Sources, Part A: Recovery, Utilization, and Environmental Effects; Taylor & Francis: Boca Raton, FL, USA, 2021; pp. 1–21.

36. Venegas, F.G.; Petit, M.; Perez, Y. Active integration of electric vehicles into distribution grids: barriers and frameworks for
flexibility services. Renew. Sustain. Energy Rev. 2021, 145, 111060.

37. Lonergan, K.E.; Sansavini, G. Business structure of electricity distribution system operator and effect on solar photovoltaic
uptake: An empirical case study for Switzerland. Energy Policy 2022, 160, 112683.

38. Kuiken, D. Regulating electricity network reliability. In Elgar Encyclopedia of Environmental Law; Edward Elgar Publishing Limited:
Cheltenham, UK, 2021; pp. 611–620.

39. Carli, R.; Dotoli, M. A distributed control algorithm for optimal charging of electric vehicle fleets with congestion management.
IFAC-PapersOnLine 2018, 51, 373–378.

40. Stüdli, S.; Crisostomi, E.; Middleton, R.; Shorten, R. A flexible distributed framework for realising electric and plug-in hybrid
vehicle charging policies. Int. J. Control 2012, 85, 1130–1145.

41. Algarni, A.; Siegel, H.J.; Maciejewski, A.A.; Suryanarayanan, S. Incorporation of Survey-based Data into an Aggregation
Algorithm for Residential Demand Response. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July
2021; pp. 1–5.



Energies 2022, 15, 1304 18 of 18

42. Dickerman, L.; Harrison, J. A new car, a new grid. IEEE Power Energy Mag. 2010, 8, 55–61.
43. Marková, I.; Oravec, M.; Osvaldová, L.M.; Sventeková, E.; Jurč, D. Magnetic Fields of Devices during Electric Vehicle Charging:
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