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Abstract

In this dissertation, we consider the base station (BS) and the resource manage-

ment problems for the cloud-based radio access network (C-RAN). The main difference

of the envisioned future 5G network architecture is the adoption of multi-tier BSs to

extend the coverage of the existing cellular BSs. Each of the BS is connected to the

multi-hop backhaul network with limited bandwidth. For provisioning the network, the

cloud centers have been proposed to serve as the control centers. These differences

give rise to many practical challenges. The main focus of this dissertation is the dis-

tributed strategy across the cloud centers. First, we show that by jointly optimizing

the transceivers and determining the active set of BSs, high system resource utilization

can be achieved with only a small number of BSs. In particular, we provide efficien-

t distributed algorithms for such joint optimization problem, under the following two

common design criteria: i) minimization of the total power consumption at the BSs,

and ii) maximization of the system spectrum efficiency. In both cases, we introduce a

nonsmooth regularizer to facilitate the activation of the most appropriate BSs, and the

algorithms are, respectively, developed with Alternating Direction Method of Multipli-

ers (ADMM) and weighted minimum mean square error (WMMSE) algorithm. In the

second part, we further explicitly consider the backhaul limitation issues. We propose

an efficient algorithm for joint resource allocation across the wireless links and the flow

control over the entire network. The algorithm, which maximizes the utility function of

the rates among all the transmitted commodities, is based on a decomposition approach

leverages both the ADMM and the WMMSE algorithms. This algorithm is shown to be

easily parallelizable within cloud centers and converges globally to a stationary solution.

Lastly, since ADMM has been popular for solving large-scale distributed convex opti-

mization, we further consider the issues of the network synchronization across the cloud

centers. We propose an ADMM-type implementation that can handle a specific form

of asynchronism based on the so-called BSUM-M algorithm, a new variant of ADMM.

We show that the proposed algorithm converges to the global optimal solution.

Keywords: C-RAN; traffic engineering; resource management; BS management;

distributed/parallel algorithm; asynchronous
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Chapter 1

Introduction

The success and proliferation of multimedia rich services and smart mobile devices

have fueled the explosive growth in the demand for high speed wireless data service in

recent years. To accommodate this demand, service providers have increasingly relied

on adding macro/micro/pico/femto base stations (BSs) for better cell coverage and

higher level of quality of service (QoS), resulting in a heterogeneous network (HetNet)

architecture (see [1] and references therein). Note that, for practical applicability, many

of the large number of the deployed BSs is with limited power and/or computation

capabilities. The recent LTE-A standard has also advocated this type of architecture

for coverage extension [2]. The main strength of this type of cellular network lies in its

ability to bring the transmitters and receivers close to each other. Thus, significantly less

transmit power is needed to deliver higher signal quality. Moreover, when the intracell

and intercell interferences introduced by the close proximity of many transmitters and

receivers are properly managed, the system performance can be greatly improved.

In recent years, beyond the traditional orthogonalization techniques, e.g. time di-

vision multiple access or frequency division multiple access, interference management

has been a major focus of the wireless communication research [3, 4]. In case where

the number of deployed BSs is large, however, too much backhaul resources will be

required, which is impractical. These BSs also require substantial operational costs in

the form of static power consumption for supporting the backhaul connection and the

cooling system at the BS sites, complexity for encoding/decoding, etc. [5–9] Therefore,

1
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to keep the operational cost manageable for a more environmental friendly and practi-

cal communication scheme, it is necessary to jointly manage interference and selectively

activate a subset of BSs while shutting down the rest.

Furthermore, in the next generation radio access networks (RAN), many of the large

number of BSs may be connected to the core network without carrier-grade backhaul,

e.g., WIFI access points with digital subscriber line [10]. Therefore, the RAN has

undergone a major structural change, and a novel RAN management methods must be

developed for joint resource allocation in the air interface (e.g., precoder design and

scheduling) and traffic engineering within the multi-hop backhaul network (e.g., traffic

routing) [11–14].

With the advent of cloud computing technologies, one interesting approach gaining

support from both academia and industry, is to manage the entire network by a few

cloud centers. The migration of the computation tasks from BSs to a few cloud centers

is attractive to the operators, since the computational requirements for each BS can

be greatly lowered compared to the traditional ones. This further reduces the costs

for deploying the extra BSs, and the network management can be more effective and

energy efficient. Such software defined, cloud-based RAN (C-RAN) architecture, see

Fig.1.1, has been envisioned as a future 5G architecture, and is expected to achieve

1000x performance improvement over the current 4G technology within the next ten

years. However, despite the attractiveness for system performance improvement, the

increased heterogeneity, network size, cooperation between BSs, and backhaul capability

constraints make interference and resource management for future C-RANs an extremely

complex and challenging task. Specifically, in light of the huge network size, it is crucial

for the joint design problem to be solvable distributedly and in parallel across cloud

centers.

1.1 Literature Review

We briefly summarize the main prior results for BS management, especially on the

topics of clustering/activation, and the resource management approaches in C-RAN.

Our review consists of two parts. In the first part, the main focus is on the wireless

resource management for a RAN without any backhaul network restriction. In the
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Figure 1.1: Illustration of the considered C-RAN system.

second part, the limitation of the backhaul network for C-RAN is also taken into account.

We shall discuss the strength and the limitations of these prior approaches and motivate

the research directions we explore in this dissertation.

1.1.1 Prior Results and Approaches on BS Clustering/Activation

In this subsection, we review the recent advances of interference management techniques

for the HetNet. The focus will be on the BS clustering/activation techniques aiming to

reduce the information exchange overhead and the operational costs for BSs. For the

system operators, if the deployed BSs are properly managed, certain system performance

metrics, e.g., power consumption, system throughput, or fairness between users, can be

greatly improved. These benefits become especially significant when the number of BSs

is large. Specifically, in order to effectively manage multiuser interference between BSs,

among many existing schemes, e.g., schemes in LTE-A [15], two main modes of BS

cooperation have been considered [1]: (1) Joint Processing (JP), in which several BSs

jointly transmit to users by sharing transmitted data via high speed backhaul network;



4

Figure 1.2: Illustration of the downlink multi-cell HetNet.

(2) Coordinated Beamforming (CB), in which BSs mitigate interference by cooperative

transmit beamforming without sharing users’ data. These two approaches complement

each other—JP achieves high spectrum efficiency, while the CB requires less backhaul

capacity. In Fig. 1.2, we illustrate the scenario with 3 cells. Within each cell, JP is

applied with some high speed back-bone connection while across different cells, CB is

applied. For both schemes, the linear beamformers are used at both the transmitters

and the receivers such that the interference between the users is mitigated. Since the

required backhaul capability differs between them, many recent works propose to strike

a balance between the two schemes via BS clustering [16–25]. The idea is to cluster

a small number of BSs together such that JP is used only within each BS cluster,

and across different clusters, CB is used. Some heuristic approaches that choose the

set of BSs according to channel strength [16–18] are insufficient for congestion control,

operational cost management, and fairness provisioning. The approaches that design the

BS clustering based on the advanced interference management techniques have also been

proposed. Along this line of research, two design criteria are mainly used i) minimizing

total power consumption and ii) maximizing the utility function.

Particularly, the traditional power minimization beamforming design (see [26–29])

mainly considers the downlink transmission and assumes only one antenna exists at
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each mobile user. Mathematically, this can be formulated as

min

B∑

b=1

Pb

s.t. SINRk ≥ τk, k = 1, . . . ,K

Other constraints,

where Pb is the power consumption of BS b and τk is the corresponding predetermined

desire QoS for user k. We can also consider different practical constraints such as

interference being zero-forced between users, i.e., interference alignment and interference

neutralization techniques [30–32], the per BS or per antenna power budget, etc. This

design problem has mainly been formulated as a second-order cone program (SOCP),

which is optimally and efficiently solvable by interior point methods [33] with well-

implemented package, e.g., CVX [34]. Furthermore, some distributed approaches [27–29,

35–37] based on uplink-downlink duality or Alternating Direction Method of Multipliers

(ADMM) [38, 39] have been proposed. Building on these approaches, recently, [23, 25]

propose to add proper sparse regularization terms [40,41] to the objective function for

promoting BS clustering in HetNet. As a result, the trade-off between spectral efficiency

and the size of BS clusters is studied. The customized distributed algorithms, which

extend the uplink-downlink property to incorporate the extra sparse terms, have also

been proposed [23,25].

To evaluate the effectiveness and fairness of the interference management techniques

in terms of the users’ data rate, different system utility functions have been proposed.

By denoting Rk as the rate of user k, we consider some commonly used utility functions

as follow:

• Sum rate utility function: U(R1, . . . , RK) =
∑K

k=1Rk

• Harmonic mean utility function: U(R1, . . . , RK) =
(
∑K

k=1R
−1
k

)−1

• Geometric mean utility function: U(R1, . . . , RK) =
(
∏K

k=1Rk

)1/K

• Min rate utility function: U(R1, . . . , RK) = mink Rk
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Therefore, the design criterion can be mathematically formulated as

max U(R1, . . . , RK)

s.t. constraints as in power minimization design,

e.g., power budget limitation.

Such resource management strategies have been extensively studied in the literature

not only for the applications of the wireless communications. For example, when there

is no signal coding across different antennas, this problem can be reduced to the dy-

namic spectrum management problem. This is the core problem of digital subscriber

line (DSL). Unfortunately, in most well-known utility functions, this problem becomes

non-convex and computationally intractable [42]. However, due to its practical impor-

tance, different algorithms have been proposed to tackle this problem, e.g., iterative

water-filling algorithm (IWFA) [43], autonomous spectrum balancing (ASB) [44], opti-

mal spectrum balancing (OSB) [45], successive convex approximation low complexity

(SCALE) algorithm [46], and those in [47–51]. However, these selfish approaches work

well only in low interference or signal-to-noise ratio (SNR) cases.

Recently, there have been several significant advances in the utility maximization

problem for interference management in wireless communication. Among these, some

important results include interference pricing [20, 52, 53], weighted minimum mean

square error (WMMSE) algorithm [54–56], multiplicative linear fractional programming-

based power allocation (MAPEL) algorithm [57], and partial linearization and convex

approximation approach [58]. The detailed theoretical and numerical comparisons be-

tween these approaches can be found in [3, 4, 59]. For some special cases, e.g., the min

rate utility maximization for interference broadcast channel (IBC) when either the BSs

or users are equipped with multiple antennas [26,27,60–62], they have been shown to be

polynomial time solvable. However, these techniques are no longer applicable if there is

more than one frequency tone or in the presence of backhaul network flow constraints.

Moreover, if both BSs and users are equipped with multiple-antennas, the problem is

known to be NP-hard [63, 64]. As in the power minimization design criterion, sparse

optimization techniques have also been applied to these resource allocation problem to

promote the BS clustering [21,24].

Although the prior schemes on BS clustering for both design criteria have addressed
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the trade-off between the effectiveness of interference management and the signaling

overhead, none of the them considers the impact of the static operational cost occurred

when a large number of BSs are activated simultaneously. As a result, the solutions

computed by these algorithms typically require most BSs in the network to remain ac-

tive. To keep the operational cost manageable, the problem of appropriately selecting

a subset of active BSs while shutting down the rest is investigated [22, 65, 66] under

the power minimization design criterion. For example, in [22], the BS activation prob-

lem is formulated as a mixed-integer optimization, which however, is not practical for

large-scale HetNet. In [65], the problem is formulated as a SOCP using sparsity reg-

ularizers. In [66], the optimal solution of the BS activation problem is shown to be

obtainable by solving an exponential number of semidefinite programming (SDP) prob-

lems. Moreover, an effective low complexity heuristic algorithm applying the successive

convex approximation technique [46, 58, 67, 68] is proposed. Although SOCP and SDP

are convex models which can be solved efficiently, direct optimization using standard

package will require a central controller and can be rather slow for a large size network.

1.1.2 Prior Results and Approaches on C-RAN

In this subsection, we review the progress in the resource management and provision

of next generation wireless communication system, i.e., C-RAN architecture. This new

architecture is characterized by several new features: i) there exist multiple cloud control

centers for distributed implementation; and ii) the bandwidth of the backhaul networks

is finite. When the number of deployed low power BSs is large, the boundary between

each small cell becomes blurred. Moreover, the direct high quality backhaul connection

for each of them may not be available. The existing algorithms based on the cellular

architecture are therefore not suitable. For C-RAN, the information exchange over the

multi-hop backhaul network between these BSs should be explicitly considered.

Specifically, scheduling data traffic for each user within the backhaul network can be

viewed as a multi-commodity flow problem. This backhaul traffic engineering problem

involves routing from the source nodes (e.g., the cloud centers with backhaul connec-

tion) to the destination nodes (e.g., the users requesting content). The resulting optimal

solution must guarantee the requested QoS for each end-to-end flow (or commodities

in the terminology of traffic engineering) while satisfying the capacity constraints for
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all the wireless and/or wired links used by the flows. Compared to the traditional

multi-commodity routing in wireline networks [69–73], traffic engineering in the wire-

less setting is much more challenging. Particularly, the difficulty comes from the mul-

tiuser interference of wireless transmission. For each wireless link, the capacity is a

nonconvex function of the transmit precoder, and is not known a priori. Moreover, the

source-destination pairs depend on the resulting user-BS association, which for C-RAN,

is determined by the resulting precoder design. Both are a reflection of a close cou-

pling of the backhaul network and RAN. Therefore, proper and efficient joint provision

methods across the backhaul network and RAN for precoding design will be a central

component of the newly proposed C-RAN concept, which advocates centralized network

provisioning with powerful control centers.

In addition to the BS clustering schemes that implicitly account for the finite back-

haul capacity constraints, the impact of the extra backhaul constrains on wireless re-

source allocation has also been studied recently in the context of joint processing between

BSs, e.g., [74–77]. In [74–76], the joint resource allocation, rate adaptation, and user

association is investigated. However, the formulated joint problem is too complicated,

so certain layering approach has been advocated to improve the system performance

without optimality guarantee. In [77], the authors consider the successive interference

cancelling (SIC) at the receiver side, and an SDP-based flow rate allocation within the

backhaul is proposed. However, these works do not consider the multi-hop routing

between the source and the destination nodes.

The joint physical layer precoder design and the backhaul network layer traffic en-

gineering problem for wireless network has also been considered in the framework of

cross-layer network utility maximization (NUM) problem, see e.g. [78–85] and some

tutorial papers [86–88]. The authors of [78, 87] avoided the nonconvex multiuser inter-

ference by considering only the orthogonal wireless links which effectively reduced the

problem to convex one. By applying similar approaches, in [80] the multiuser interfer-

ence is considered but there is no theoretical guarantee of optimality. In [79,81,86,88],

the interference was considered in a fast fading environment for which the Lagrange

duality gaps can be shown to be zero. But the proposed algorithms required solving

difficult subproblems in the dual domain. In [82], the network was approximated by a

deterministic channel model [89] through which an approximate optimal solution was
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derived. In [83–85], the multiuser interference is handled by exploring the successive

convex approximation technique for some special wireless systems that include certain

backhaul network routing protocols, e.g., power control with back-pressure [85] and

ALOHA medium access control (MAC) [83]. A similar joint optimization problem was

also investigated in [90] for a wireless sensor network whereby a distributed algorithm

capable of converging to the stationary solution is proposed. However, it requires single

antenna nodes and a strongly convex utility function.

Due to the large size of C-RAN architecture, it is crucial that the joint optimiza-

tion problem can be implemented distributedly and/or in parallel over multiple cloud

centers. Most of the existing distributed NUM algorithms is based on the primal/dual

decomposition method with subgradient update [78,87,91–93]. A closely related frame-

work for the distributed implementation has been proposed by the early works of F.

Kelly [72,73]. Compared with the decomposition methods, this framework is based on

some differential equations of the primal variables rather than exploiting duality theory.

Through a Lyapunov type analysis on the differential equations, the convergence prop-

erty can be obtained. The two methods result in similar updating steps while the choice

of stepsize for the decomposition method corresponds to the choice of the underlying

differential equation for Kelly’s framework. However, both approaches can exhibit slow

convergence, and they require the optimization problems to be strongly convex. In con-

trast, a novel parallel and distributed algorithmic framework based on ADMM has been

proposed for this C-RAN provisioning problem [37,94–98]. Empirically, these resulting

algorithms are significantly more efficient than the subgradient-based methods, and no

strong convexity is needed.

When a large number of networked computation nodes, e.g., BSs and network router-

s, are coordinating for the updates, network synchronization becomes an important issue

for the distributed implementations. On the one hand, perfect synchronization among

the network nodes are desirable since the network and the algorithm shall behave in a

predictable manner. On the other hand, perfect synchronization results in complicated

protocol among the nodes, and the performance of the entire network is determined

by the speed of the slowest node. The latter fact is highly relevant in large-scale net-

work processing, as across the network the data sets are often nonuniformly distributed
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and the computational power can differ dramatically. Strictly enforcing network syn-

chronization, in this case, scales poorly over large networks [99]. With respect to this

synchronization issue, the partially asynchronous [38] version of the dual decomposition

again converges slowly, and it further requires that the design objective satisfies some

restrictive conditions [92,100].

Recently, the limited backhaul capability has also been considered when the cloud

centers apply the compress-and-forward scheme and JP scheme is used between BSs,

e.g., [101–103]. In [101,103], an interesting observation has been made which asserts that

under certain scenarios, it may be beneficial to transmit the compressed baseband signals

from central unit to each BS instead of the hard information itself. This individual

compression of baseband signal for each BS is extended recently to joint compression

among BSs [102]. Specifically, it allows the cloud center to compute a joint precoding

strategy for all the BSs, and then compress the precoded messages before sending to the

BSs via the backhaul; see [102] and the references therein. Here the limited backhaul

capacity determines the level of compression needed for each data stream. However, this

line of work usually assume that there is a single-hop direct connection between the BSs

and the cloud centers (except for [104] with much higher computational complexity),

and that the routing of the traffic within the backhaul has been predetermined.

Despite a rich body of literature mentioned above, in the following, we summarize

the main challenges arising from the resource allocation and management in cloud-based

C-RAN, for which this dissertation tries to handle:

• Resource Management in RAN: Most of the existing works on multi-cell interfer-

ence management assume that the BS-user assignment is known and fixed. How-

ever, in C-RAN, users are simultaneously covered by a large number of BSs with

different capabilities and loading status. The traditional approach that chooses

the set of BSs with strong channel strength is insufficient. Moreover, the finite

bandwidth within the backhaul network complicates the choice of BSs. Hence,

dynamic selection for the serving BSs becomes a crucial aspect in optimizing the

overall system performance.

• Traffic Engineering Together with Interference Management: In the context of
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C-RAN, the flow rate control for the entire network should be done in conjunc-

tion with the multiuser interference management. Hence, the existing works on

traffic engineering should be extended to accommodate the nonconvex capacity

constraints caused by multiuser interference, which has not been explicitly con-

sidered yet. Moreover, even without the backhaul network consideration, most

of the formulated problems with multi-user interference are already NP-hard in

general [42, 63,64].

• Distributed/Parallel Implementation: Due to the large number of deployed BSs,

the size of the resulted joint optimization problem can be huge. As a result,

directly solving the problem may still be difficult in real time, even the com-

munication overhead between each agent in the network can be ignored. Up to

now, primal/dual decomposition or the framework based on Lyapunov analysis

have been applied to exploit the structure of the problem for parallel implemen-

tation with easy subproblems. However, the convergence rate strongly depends

on whether the problem is strongly convex or not. Thus, the computation and

communication overheads - caused by the algorithms - adversely affect the overall

system throughput. Furthermore, for scalability of the network size, the distribut-

ed implementations need to incorporate certain asynchronism among cloud control

centers arising from the uneven data distributions and the varying computational

capabilities at each node.

1.2 The Main Contributions

In this dissertation, new interference and BS management techniques are proposed to

respond the design challenges brought by the huge number of deployed BSs and the

C-RAN architecture. Our results show that the BS activation problem for HetNet and

the joint interference management and backhaul flow control problem for C-RAN can

be efficiently solved in a distributed/parallel way. These approaches are very effective in

terms of system performance and the fairness between the users. We further propose a

framework of distributed algorithms for large-scale optimization problem that can, to a

certain extent, handle the asynchronous issues between cloud control centers. Through-

out this research, advanced optimization techniques will be the key to the development
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of various practical algorithms. We anticipate that the methodologies developed in

this research will significantly influence the design of C-RAN for the next generation

communication systems.

Specifically, in Chapter 2, for the BS activation problem, we propose to design op-

timal downlink transmit beamforming strategies for a HetNet under the following two

criteria: C1) given a prescribed QoS, minimize the total power consumption, and C2)

given the power constraints on each BS, maximize the sum rate performance. In contrast

to the existing literature on the downlink beamforming design, we impose the addition-

al requirement that these design criteria are met with a small number of BSs. In our

formulation, the latter is achieved by imposing certain sparsity patterns in the users’

beamformers. Recently, this idea has also been used in different applications in wire-

less communications, e.g., antenna selection in downlink transmit beamforming [105],

joint power and admission control [106], and the joint precoder design with dynamical

BS clustering [19–21, 24, 25, 107]. From the complexity standpoint, the problems being

considered are computationally challenging: we show that the problem of selecting the

minimum number of active BSs that satisfy a given set of QoS constraints is strongly

NP-hard for a multi-input single-output (MISO) system. Moreover, the existing works

on this joint beamforming design with BS activation scheme [22,65,66] have high com-

putational complexity, and no distributed implementation exists. This motivates us to

design practical signal processing algorithms for the problems C1) and C2). To this

end, our contributions are twofold.

• We generalize the traditional power minimization beamforming design by formu-

lating problem C1) as a SOCP with an extra group LASSO sparsity regular-

izer [40]. We develop efficient customized algorithms for C1) by exploring the

structure of the SOCP and utilizing the ADMM. The main strength of our ap-

proach is that each of its steps is simple, closed-form and can be distributed

among the BSs. For the special case of power minimization design without the

LASSO sparsity regularizer, many distributed approaches have been proposed in

the literature, including those based on uplink-downlink duality [27–29, 35] and

those based on the ADMM algorithm [36, 96]. Compared to them, our proposed

algorithm is computationally more efficient.
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• For the design problem C2), we propose a novel single-stage formulation which

trades spectrum efficiency with the number of active BSs. Note that, for C2), the

sparsity regularizer from C1) cannot be trivially applied. Novel modification for

the regularization terms is crucial for the effective selection. An efficient algorithm

based on the WMMSE algorithm is then devised to compute a stationary solution

for the proposed problem. Once again, this algorithm can be solved distributively

among different BSs.

The results of this chapter have been previously appeared in

• W.-C. Liao, M. Hong, and Z.-Q. Luo. Base station activation and linear transceiv-

er design for utility maximization in heterogeneous networks. In Proc. of 2013

IEEE International Conference on Acoustics, Speech and Signal Processing (

ICASSP), pages 4419-4423, Vancouver, BC, May 2013.

• W.-C. Liao, M. Hong, Y.-F. Liu, and Z.-Q. Luo. Base station activation and linear

transceiver design for optimal resource management in heterogeneous networks.

IEEE Trans. Signal Process., 62(15):3939-3952, Aug. 2014.

In Chapter 3, we consider the joint flow control and physical layer interference

management problem for a large-scale C-RAN. The goal is to maximize the min-rate

among all the requested flows. We propose a new algorithm named N-MaxMin extended

from the max-min WMMSE algorithm [64] to solve the joint optimization problem. To

our knowledge, no existing interference management algorithms can be directly applied

to solve the joint network provisioning problem considered herein. For example, [27,

60–62] exploit the structure of signal-to-interference-plus-noise ratio of wireless links for

solving min-rate maximization. However, these approaches cannot directly deal with

the users’ rate, which is essential when the backhaul flow is jointly considered. We

further propose a special variable splitting scheme and apply the ADMM method to

this problem which allows for efficient distributed and parallel implementation. The

contributions of this chapter are summarized below:

• We provide a novel formulation for the joint backhaul traffic engineering and the

wireless resource management problem in a C-RAN. A new algorithm named N-

MaxMin is proposed to solve the joint optimization problem. This algorithm is
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shown to converge to a stationary solution, and can be extended to networks with

multi-antenna nodes and/or problems with different utility functions. Further-

more, by solving the formulated problem, a subset of BSs is dynamically selected

to serve each user.

• An efficient implementation of the N-MaxMin algorithm is developed by exploiting

the problem structure and utilizing the ADMM technique. The resulting algorithm

has simple closed-form updates in each step and allows for parallel implementation

among cloud centers. These features make the algorithm well suited for the joint

provision of backhaul and radio access networks.

The results of this chapter have been previously appeared in

• W.-C. Liao, M. Hong, and Z.-Q. Luo. Max-min network flow and resource al-

location for backhaul constrained heterogeneous wireless networks. In Proc. of

2014 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 845-849, Florence, May 2014.

• W.-C. Liao, M. Hong, H. Farmanbar, X. Li, Z.-Q. Luo, and H. Zhang. Min flow

rate maximization for software defined radio access networks. IEEE Journal on

Selected Areas in Communications, 32(6):1282-1294, Jun. 2014.

• H. Baligh, M. Hong, W.-C. Liao, Z.-Q. Luo, M. Razaviyayn, M. Sanjabi, and

R. Sun. Cross-layer provision of future cellular networks: A WMMSE-based ap-

proach. IEEE Signal Processing Magazine, 31(6):56-68, Nov. 2014.

• M. Hong, W.-C. Liao, R. Sun and Z.-Q. Luo. Optimization Algorithms for Big

Data with Application in Wireless Networks, Big Data Over Networks, Cambridge

University Press, 2015.

In Chapter 4, we relax the synchronization requirement for the distributed imple-

mentations developed from ADMM approach, e.g., the algorithms in Chapter 2 and

Chapter 3. We propose an asynchronous algorithm based on the Block Successive Up-

per Bound Minimization method of Multipliers (BSUM-M) recently developed in [108].

The latter is a variant of ADMM. In contrast to the existing asynchronous ADMM algo-

rithms [109, 110], the proposed asynchronous algorithm allows each computation node
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to have its own local constraints. The feature gives extra design flexibility to distribute

the computation loads over each local node. The summary of the contributions in this

chapter is as follows.

• We propose an asynchronous BSUM-M algorithm following a semi-asynchronous

scheme. For this semi-asynchronous scheme, the computation nodes, e.g., cloud

control centers, update part of its variables which is coupled to the new incom-

ing information from other nodes. It differs from the well-known partially asyn-

chronous scheme described in [38] in the sense that no out-of-sequence communi-

cation is allowed.

• The proposed semi-asynchronous scheme is very similar to the randomized version

of ADMM [111, 112]. However, in [111, 112], the sequence of variable updates

follows a random distribution, which cannot well model the asynchronism due to

different speed between nodes. In contrast, the semi-asynchronous scheme studied

in this paper is a more practical deterministic counterpart, in which the nodes are

updated following an essentially cyclic rule [91, 113] while each of them has its

own data load and computational capability.

Part of results of this chapter has been previously appeared in

• W.-C. Liao, M. Hong, H. Farmanbar, and Z.-Q. Luo. Semi-asynchronous routing

for large scale hierarchical networks. In Proc. of 2015 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pages 2894-2898,

South Brisbane, Apr. 2015.

1.3 Notations

In this dissertation, we will use the following notations. Boldfaced lowercase (resp.

uppercase) letters are used to represent vectors (resp. matrices). x[a] is the ath element

of the vector x, and A[a, b] denotes the (a, b)th (block) element for matrix A. vec(A) is

the vector derived by the vectorization operator on the matrix A, i.e., stacking columns

of A on top of one another. The notation I denotes the identity matrix, and 0 denotes a

zero vector or matrix. The superscripts ‘H’ and ‘T ’, respectively, stand for the conjugate
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transpose and transpose. The set of all n-dimensional real and complex vectors are

denoted by R
n and C

n respectively. The set of all real and complex m-by-n matrices

are denoted by R
m×n and C

m×n, respectively. The indicator function for a set A is

denoted by 1x∈A, that is, 1x∈A = 1 if x ∈ A, and 1x∈A = 0 otherwise. The projection

function to the nonegative orthant is denoted by (x)+, i.e., (x)+ , max{0, x}. The

diagonalization operator and the block diagonalization operator are denoted by diag(·)
and blkdg{·}, respectively. Also, the notation 0 ≤ a⊥b ≥ 0 means that a, b ≥ 0 and

ab = 0. Some other notations are summarized in Table 1.1.
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Table 1.1: The List of Notations

V The set of nodes in the network

R The set of routers

B The set of BSs

K The set of cells

Bk The set of BSs in cell k

U The set of mobile users

Uk The set of mobile users in cell k

v The joint BF vector of the whole network

vbk
uk

The BF vector from BS bk to user uk
vbk The BF of BS bk
vuk

The joint BF vector for user uk

h
bj
uk

The channel between BS bj to user uk
hj
uk

The channel between cell j to user uk
F Number of subchannel tones

M Number of total commodities in the system

rm Data rate for commodity m

dm The destination node for commodity m

sm The source node for commodity m

L The set of links

Lw The set of wired links

Lwl The set of wireless links

fl,m Transmit rate for commodity m on link l

fl Transmit rate for all commodities link l

Cl The capacity for a wired link l ∈ Lw
vl The precoder for wireless link l

dl The destination node for link l

sl The source node for link l

hln The channel between BS ss to user dl via subchannel fl
I(l) The set of interferer to wireless link l

σ2
u The noise power at user u

Pb The power budget at BS b

N The network (V,L) with V being the set of network nodes
and L being the set of directed links

N i The ith subnetwork (V i,Li) with V i ⊆ V and Li ⊆ L



Chapter 2

Base Station Activation and

Linear Transceiver Design

In a densely deployed HetNet, the number of pico/micro BSs can be comparable with

the number of the users. To reduce the operational overhead of the HetNet, proper

identification of the set of serving BSs becomes an important design issue. In this chap-

ter, we show that by jointly optimizing the transceivers and determining the active set

of BSs, high system resource utilization can be achieved with only a small number of

BSs. In particular, we provide formulations and efficient algorithms for such joint opti-

mization problem, under the following two common design criteria: i) minimization of

the total power consumption at the BSs, and ii) maximization of the system spectrum

efficiency. In both cases, we introduce a nonsmooth regularizer to facilitate the activa-

tion of the most appropriate BSs. We illustrate the efficiency and the efficacy of the

proposed algorithms via extensive numerical simulations.

This chapter is organized as follows. In Sec. 2.1, the system model and the problem

formulation are introduced for both problems C1 and C2. In Sec. 2.2 and 2.3, detailed

algorithms and their analysis are given. In Sec. 2.4, numerical experiments are provided

to show the effectiveness of the proposed approaches.

18
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2.1 Signal Model and Problem Statement

Consider a MISO downlink multi-cell HetNet consisting of a set K , {1, . . . ,K} of cells.
Within each cell k, there is a set Bk = {1, . . . , Bk} distributed BSs which provide service

to users located in different areas of the cell. Denote B =
⋃K

k=1 Bk as the set of all BSs.

Assume that in each cell k, a central controller has the knowledge of all the users’ data as

well as their channel state information (CSI). Its objective is to determine the transmit

beamforming vectors for all BSs within the cell. Let Uk , {1, . . . , Uk} denote the users

located in cell k, and let U ,
⋃K

k=1 Uk denote the set of all users. Each user uk ∈ U is

served jointly by a subset of BSs in Bk. For simplicity of notations, let us assume that

each BS has N transmit antennas.

Let us denote vbk
uk
∈ C

N as the transmit beamformer of BS bk to user uk. Define

v , {vbk
uk
|uk ∈ Uk, bk ∈ Bk, k ∈ K} and vbk , [(vbk

1k
)H , (vbk

2k
)H , . . . , (vbk

Uk
)H ]H respectively

as the collection of all the beamformers (BF) in the network, and the BFs used by BS

bk. The virtual BF for user uk, which consists of all the BFs that serve user uk, is

given by vuk
, [(v1k

uk
)H , (v2k

uk
)H , . . . , (vBk

uk
)H ]H . Let suk

∈ C denote the unit variance

transmitted data for user uk, then the transmitted signal of BS bk can be expressed as

xbk =
∑

uk∈Uk

vbk
uk
suk

. (2.1)

The corresponding received signal of user uk is given by

yuk
=
∑

l∈K
(hl

uk
)Hxl + zuk

, (2.2)

where hbl
uk
∈ C

N denotes the channel vector between the BS bl to user uk; hl
uk

,
[
(h1l

uk
)H , . . . , (hBl

uk
)H
]H ∈ C

NBl denotes the channel matrix between lth cell to user uk;

xk ∈ CNBk is the stacked transmitted signal [(x1k)H , . . . , (xBk )H ]H of all BSs in the kth

cell; zuk
∈ C ∼ CN(0, σ2

uk
) is the additive white Gaussian noise (AWGN) at user uk.

Assuming that each user treats the interference as noise, then the signal-to-interference-

and-noise ratio (SINR) measured at the user uk can be expressed as

SINRuk
=

|vH
uk
hk
uk
|2

σ2
uk

+
∑

(l,j)6=(k,u) |vH
jl
hl
uk
|2 (2.3)
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The achievable rate of user uk can be expressed as

Ruk
(v) = log

(

1 + SINRuk

)

.

In this work, our objective is to activate a small number of BSs to support efficient

utilization of the system resource. Such resource utilization is measured by either one

of the following two criteria: C1) total transmit power consumption; C2) the overall

spectrum efficiency. Ignoring the BS activation problem for now, the BF design prob-

lem that achieves the minimum power consumption subject to QoS constraint can be

formulated as the following SOCP [27]

min
{vbk}

∑

bk∈B
‖vbk‖22

s.t. ‖vbk‖22 ≤ Pbk , ∀ bk ∈ B

|vH
uk
hk
uk
| ≥

√
√
√
√
√τuk



σ2
uk

+
∑

(l,j)6=(k,u)

|vH
jl
hl
uk
|2


, (2.4)

Im(vH
uk
hk
uk
) = 0, ∀ uk ∈ U ,

where τuk
is the prescribed minimum SINR level for user uk; Pbk is the power budget of

BS bk, ∀bk ∈ B, and Im denotes the imaginary part of a complex number. It turns out

that this problem is convex thus can be solved to global optimality [27] in polynomial

time.

A related BF design problem that achieves the maximum spectrum efficiency can

be formulated as the following sum rate maximization problem

max
v

∑

k∈K

∑

uk∈Uk

Ruk
(v) (2.5)

s.t. (vbk )Hvbk ≤ Pbk , ∀bk ∈ B.

Unfortunately, it is well-known that problem (2.5) is strongly NP-hard in general, thus

it is not possible to compute its global optimal solution in polynomial time [42].

In the following sections, we will generalize problems (2.4) and (2.5) by incorporating

nonsmooth sparsity regularizers for BS activation, and then develop algorithms that can

effectively solve the new formulations.
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2.2 Base Station Activation for Power Minimization

2.2.1 The Complexity for BS Activation

Suppose all the BSs are activated, then finding the minimum transmit power that sat-

isfies a given QoS requirement can be formulated in (2.4). We are interested in further

requiring that the QoS targets are supported by the minimum number of BSs. A natu-

ral two-stage approach is to first find the smallest set of BSs that can support the QoS

requirements, followed by solving problem (2.4) using the set of selected BSs. In partic-

ular, a specific BS can be shut down when its BF is a zero vector, i.e., no transmission

occurred. As an illustrating example, in Fig. 2.1, BS 4k is viewed as being turned down

since all subvectors of BF for BS 4k are zero vectors. Therefore, to support the QoS

targets, finding the minimum number of BSs is transformed to finding the BF such that

there are as many BSs with zero vector as possible. Applying this observation, the first

stage problem is given by

min
{vbk}

‖{‖vbk‖2}bk∈B‖0

s.t. ‖vbk‖22 ≤ Pbk , ∀ bk ∈ B

|vH
uk
hk
uk
| ≥

√
√
√
√
√τuk



σ2
uk

+
∑

(l,j)6=(k,u)

|vH
jl
hl
uk
|2


, (2.6)

Im(vH
uk
hk
uk
) = 0, ∀ uk ∈ U

where the ℓ0-norm ‖x‖0 denotes the number of nonzeros elements in a vector x.

It turns out that this two-stage approach can be reformulated into a single-stage

problem shown below

min
{vbk}

‖{‖vbk‖2}bk∈B‖0 + θ
∑

bk∈B
‖vbk‖22

s.t. ‖vbk‖22 ≤ Pbk , ∀ bk ∈ B

|vH
uk
hk
uk
| ≥

√
√
√
√
√τuk



σ2
uk

+
∑

(l,j)6=(k,u)

|vH
jl
hl
uk
|2


, (2.7)

Im(vH
uk
hk
uk
) = 0, ∀ uk ∈ U ,
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Figure 2.1: Illustration of the sparse precoder pattern at cell k. In this example, BS 4k
is shut down due to no transmission occurred.

where θ := 1∑
bk∈B

Pbk

. The following lemma establishes the relationship among problem

(2.7), (2.6) and (2.4).

Lemma 1 The optimal objective value of problem (2.7) lies in [S, S +1) if and only if

the optimal objective value of problem (2.6) is S. Furthermore, among all solutions with

the optimal active BS size equal to S, solving problem (2.7) gives the minimum power

solution.

Proof Suppose v⋆ is an optimal solution of problem (2.6), which yields the optimal objec-

tive value S. Then the objective value of problem (2.7) is S+ 1∑
bk∈B

Pbk

∑

bk∈B ‖v
bk ,⋆‖22 ∈

[S, S +1). On the other hand, suppose v is optimal for problem (2.7) that achieves an

objective within the interval [S, S + 1). Then the optimal solution for (2.6) cannot be

smaller than S. Suppose the contrary, that v⋆ satisfies ‖{‖vbk⋆‖2}bk∈B‖0 ≤ S−1. Then

we have

‖{‖vbk⋆‖2}bk∈B‖0 + θ
∑

bk

‖vbk⋆‖22 ≤ −1 + S + θ
∑

bk

‖vbk⋆‖22 < S,

which contradicts the optimality of v. The last claim is also easy to see by a contradic-

tion argument. �
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Unfortunately, despite the fact that solving the power minimization problem (2.4)

is easy, finding the minimum power and the minimum number of BSs for a given set of

QoS targets turns out to be difficult. The following result makes this claim precise. We

refer the readers to Appendix B for the proof.

Theorem 1 Solving problem (2.7) is strongly NP-hard in the number of BSs, for all

N ≥ 1.

Motivated by the above NP-hardness result, we proceed to design low-complexity

algorithms that can obtain high-quality solutions for problem (2.7). To this end, we

propose to use a popular relaxation scheme for this type of ℓ0-norm minimization prob-

lems (e.g., [40]), which replaces the nonconvex ℓ0-norm by the ℓ1-norm. Specifically,

‖{‖vbk⋆‖2}bk∈B‖0 is relaxed to ‖{‖vbk⋆‖2}bk∈B‖1 =
∑

bk∈B ‖v
bk‖2. Hence, the relaxed

version of the single-stage problem (2.7) can be expressed as

fmin(v) = min
{vbk}

∑

bk∈B
βbk‖vbk‖2 + θ

∑

bk∈B
‖vbk‖22 (2.8a)

s.t. ‖vbk‖22 ≤ Pbk , ∀ bk ∈ B (2.8b)

|vH
uk
hk
uk
| ≥

√
√
√
√
√τuk



σ2
uk

+
∑

(l,j)6=(k,u)

|vH
jl
hl
uk
|2


, (2.8c)

Im(vH
uk
hk
uk
) = 0, ∀ uk ∈ U , (2.8d)

where βbk ∈ R, ∀bk ∈ B are additional given parameters to further control the number

of active BSs of the obtained solution of problem (2.8), c.f. Sec. 2.2.4. In Sec. 2.2.4,

we will further discuss how these parameters can be adaptively chosen. Since problem

(2.8) is a SOCP (just like problem (2.4)), it can be solved to global optimality using a

standard package such as CVX [34]. However, using general purpose solvers can be slow,

especially when the number of variables
∑

k∈KNBkIk and the number of constraints

2|U|+ |B| become large.

In what follows, we will exploit the structure of the problem at hand, and develop

a fast distributed algorithm for solving problem (2.8). Our approach is based on the

well-known ADMM algorithm [39], which we outline briefly below.
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2.2.2 The Proposed ADMM Approach

In this subsection, we will show that our joint BS activation and power minimization

problem (2.8) can be in fact solved very efficiently by using the ADMM, which is briefly

reviewed in Appendix A.

The main idea is to decompose the tightly coupled network problem into several

subproblems of much smaller sizes, each of which can be solved in closed form. For

example, by introducing a copy wqk for the original BF vqk , the objective function of

problem (2.8) can be separated into two parts

∑

bk∈B
βbk‖wbk‖2 + θ

∑

bk∈B
‖vbk‖22, (2.9)

where each part is further separable among the BSs. In this way, after some further

manipulation which will be shown shortly, it turns out that solving the subproblem for

either w or v can be made very easy.

Formally, let us introduce a few new variables

Kjl
uk

= (hl
uk
)Hvjl , ∀ uk, jl ∈ U , (2.10a)

wbk = vbk , ∀ bk ∈ B, (2.10b)

κuk
= κ̂uk

= σuk
∈ R, ∀ uk ∈ U . (2.10c)

and define K , {Kjl
uk
| uk, jl ∈ U}, w , {wbk | bk ∈ B}, v , {vbk | bk ∈ B},

κ , {κuk
| uk ∈ U} and κ̂ , {κ̂uk

| uk ∈ U}. Clearly Kjl
uk

represents the interference

level experienced at user uk contributed by the BF for user jl; wbk is a copy of the

original BF vbk ; κuk
and κ̂uk

are copies of the noise power σuk
.

With these new variables, problem (2.8) can be equivalently expressed as

min
{vbk},{wbk},{Kjl

uk
},{κuk

},{κ̂uk
}

∑

bk∈B
βbk‖wbk‖2 + θ

∑

bk∈B
‖vbk‖22 (2.11a)

s.t. ‖wbk‖22 ≤ Pbk , ∀ bk ∈ B (2.11b)

|Kuk
uk
| ≥

√
√
√
√
√τuk



κ2uk
+

∑

(l,j)6=(k,u)

|Kjl
uk
|2


, (2.11c)

Im(Kuk
uk
) = 0, ∀ uk ∈ U , (2.11d)

(2.10a), (2.10b), and (2.10c). (2.11e)
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The partial augmented Lagrangian function of the above problem is given by (2.12),

L(w,K,κ,v, κ̂,µ,λ, δ) =
∑

bk∈B
βbk‖wbk‖2 + θ

∑

bk∈B
‖vbk‖22 +

∑

uk∈U
(κuk

− κ̂uk
)δuk

+Re




∑

uk,jl∈U
〈Kjl

uk
− (hl

uk
)Hvjl , µ

jl
uk
〉



+Re




∑

bk∈B
〈wbk − vbk ,λbk〉



 (2.12)

+
ρ

2

∑

uk,jl∈U

∣
∣
∣Kjl

uk
− (hl

uk
)Hvjl

∣
∣
∣

2
+

ρ

2

∑

bk∈B
‖wbk − vbk‖22 +

ρ

2

∑

uk∈U
(κuk

− κ̂uk
)2,

where µ , {µjl
uk
∈ C | uk, jl ∈ U}, λ , {λbk ∈ C

Ik | bk ∈ B}, and δ , {δuk
∈ R | uk ∈

U} are, respectively, the Lagrangian dual variables for the constraints (2.10a), (2.10b),

and (2.10c).

It can be readily observed that problem (2.11) is separable among the block variables

{v, κ̂} and {w,K,κ}. Specifically, besides the consistency constraints (2.10), the rest

of the constraints only depend on variables {w,K,κ}. Moreover, it is easily observed

that each term in the objective only depends a single block variable. Furthermore, all

the constraints linking these two block of variables (i.e., (2.10)) are linear equalities.

Therefore, the ADMM algorithm can be directly applied to solve problem (2.11). The

main algorithmic steps are summarized in Algorithm 1, which is summarized in Table

2.1.

Before further investigating how each update procedure can be solved in closed-form,

let us first discuss the convergence result for the proposed algorithm.

Theorem 2 Assume that problem (2.8) is feasible. Every limit point v(t) (or w(t))

generated by Algorithm 1 is an optimal solution of problem (2.8).

Proof . Let us stack all elements of {w,K,κ} and {v, κ̂} to vectors {wstack ∈
C
N |B||U|,Kstack ∈ C

|U|2,κstack ∈ R
|U|} and {vstack ∈ C

N |B||U|, κ̂stack ∈ R
|U|}. Then,

by comparing problem (A.1) and problem (2.11), when x = [wH
stack,K

H
stack,κ

H
stack]

H
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Algorithm 1: ADMM for (2.8):

1: Initialize all primal variables w(0),v(0),K(0) (do not need to be feasible for
problem (2.11)); Initialize all dual variables µ(0),λ(0); t = 0;

2: Repeat
3: Solve the following problem and obtain {w(t+1),K(t+1),κ(t+1)} ((2.14), (2.20))

min
w,K,κ

L(w,K,κ,v(t), κ̂(t),µ(t),λ(t), δ(t))

s.t. ‖wbk‖22 ≤ Pbk , ∀bk ∈ B

|Kuk
uk
| ≥

√
√
√
√
√τuk



κ2uk
+

∑

(l,j)6=(k,u)

|Kjl
uk
|2


,

Im(Kuk
uk
) = 0, ∀ uk ∈ U ;

4: Solve the following problem and obtain v(t+1), κ̂(t+1) ((2.22))

min
v,κ̂

L(w(t+1),K(t+1),κ(t+1),v, κ̂,µ(t),λ(t), δ(t))

s.t. κ̂uk
= σuk

, ∀uk ∈ U ;

5: Update the multipliers by

µjl(t+1)
uk

= µjl(t)
uk

+ ρ
(

Kjl(t+1)
uk

− (hl
uk
)Hv

(t+1)
jl

)

, ∀ uk, jl ∈ U

λbk(t+1) = λbk(t) + ρ(wbk(t+1) − vbk(t+1)), ∀bk ∈ B
δ(t+1)
uk

= δ(t)uk
+ ρ(κ(t+1)

uk
− κ̂(t+1)

uk
), ∀bk ∈ B;

6: t = t+ 1
7: Until Desired stopping criteria is met

Table 2.1: Summary of the proposed Algorithm 1
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and z = [vH
stack, κ̂

H
stack]

H we can observe that

f(x) =
∑

bk∈B
βbk‖wbk‖2, g(z) = θ

∑

bk∈B
‖vbk‖22, A = I, B = −







I 0

Hstack 0

0 I






, c = 0

C1 =
{

x | ‖wbk‖22 ≤ Pbk , ∀ bk ∈ B, Im(Kuk
uk
) = 0,

|Kuk
uk
| ≥

√
√
√
√
√τuk



κ2uk
+

∑

(l,j)6=(k,u)

|Kjl
uk
|2


, ∀ uk ∈ U ,
}

,

C2 = {z | κ̂uk
= σuk

, ∀uk ∈ U},

where Hstack ∈ C
|U|2×N |B||U| is a stacked matrix of {(hk

jl
)H | jl ∈ U , k ∈ K} and 0’s in a

way that Kstack −Hstackvstack = 0 is equivalent to (2.10a).

Since ATA = I and BTB =

[

I+HT
stackHstack 0

0 I

]

are invertible, and both C1

and C2 are convex sets, then by Proposition 1 in Appendix A, we can conclude that

every limit point v(t) (or w(t)) of Algorithm 1 is an optimal solution of problem (2.8).

�

Since the formulated problem (2.8) is strongly convex. Algorithm 1 converges to the

unique optimal solution of problem (2.8).

2.2.3 Step-by-Step Computation for the Proposed Algorithm

In the following, we will explain in detail how each primal variables w,K,κ,v, and

κ̂ (ignoring the superscript iteration index for simplicity) is updated. As will be seen

shortly, the update for the first block {w,K,κ} can be further decomposed into two

independent problems, one for w, and one for {K,κ}.
(1) Update {K,κ}: First observe that the subproblem related to {K,κ} is inde-

pendent of w, and can be decoupled over each user. Therefore it can be written as |U|
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separate problems, with uk-th subproblem expressed as

min
{Kjl

uk
}jl∈U ,κuk

Re




∑

jl∈U
〈Kjl

uk
− (hl

uk
)Hvjl , µ

jl
uk
〉



+ δuk
(κuk

− κ̂uk
)

+
ρ

2

∑

jl∈U

∣
∣
∣Kjl

uk
− (hl

uk
)Hvjl

∣
∣
∣

2
+

ρ

2
(κuk

− κ̂uk
)2

s.t. |Kuk
uk
| ≥

√
√
√
√
√τuk



κ2uk
+

∑

(l,j)6=(k,u)

|Kjl
uk
|2


,

Im(Kuk
uk

) = 0. (2.13)

By completing the squares, this problem can be equivalently written as

min
{Kjl

uk
}jl∈U ,κuk

(

κuk
− κ̂uk

+
δuk

ρ

)2

+
∑

jl∈U

∣
∣
∣
∣
∣
Kjl

uk
− (hl

uk
)Hvjl +

µjl
uk

ρ

∣
∣
∣
∣
∣

2

s.t. |Kuk
uk
| ≥

√
√
√
√
√τuk



κ2uk
+

∑

(l,j)6=(k,u)

|Kjl
uk
|2


,

Im(Kuk
uk
) = 0. (2.14)

Let us use {{Kjl⋆
uk
}jl∈U , κ⋆uk

} to denote the optimal solution of problem (2.14). Then

the corresponding first-order optimality conditions are given by

Kuk⋆
uk

=
1

2
γ⋆ +Re

(

(hk
uk
)Hvuk

− µuk
uk

ρ

)

(2.15a)

Kjl⋆
uk

=

K̄uk

(

(hl
uk
)Hvjl −

µ
jl
uk

ρ

)

K̄uk
+

γ⋆√τuk
2

, ∀jl ∈ U , jl 6= uk (2.15b)

κ⋆uk
=

K̄uk

(

κ̂uk
− δuk

ρ

)

K̄uk
+

γ⋆√τuk
2

(2.15c)

Kuk⋆
uk
≥ √τuk

K̄uk
, γ⋆ ≥ 0,

(
Kuk⋆

uk
−√τuk

K̄uk

)
γ⋆ = 0 (2.15d)

where γ⋆ is the optimal Lagrangian dual variable for the second-order cone constraint

of problem (2.14) and K̄uk
,

√

κ⋆2uk
+
∑

(l,j)6=(k,u)

∣
∣
∣K

jl⋆
uk

∣
∣
∣

2
. If γ⋆ = 0, the objective value
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of problem (2.14) is the minimum possible value, 0, and by complementarity condition

(2.15d), this is possible only if

∣
∣
∣
∣
Re

(

(hk
uk
)Hvuk

− µuk
uk

ρ

)∣
∣
∣
∣
≥ √τuk

√
√
√
√
√(κ̂uk

− δuk

ρ
)2 +

∑

(l,j)6=(k,u)

∣
∣
∣
∣
∣
(hl

uk
)Hvjl −

µjl
uk

ρ

∣
∣
∣
∣
∣

2

, Kuk
.

(2.16)

On the other hand, if (2.16) does not hold, we know that γ⋆ 6= 0, and by complementarity

condition (2.15d), Re(Kuk⋆
uk

) =
√
τuk

K̄uk
holds. Therefore, the optimal dual variable,

γ⋆ can be analytically solved as

γ⋆ = 2

Kuk
− Re

(

(hk
uk
)Hvuk

− µ
uk
uk

ρ

)

1 + τuk

Hence, the optimal solution of problem (2.14) can be solved in closed-form by (2.15a),

(2.15b), and (2.15c) with given γ⋆ and the fact that K̄uk
= Re(Kuk⋆

uk
)/
√
τuk

.

It is worth noting that, this closed-form update rule is made possible by making

κuk
as an optimization variable. This is the reason that we want to introduce extra

variables {κik} and {κ̂ik} in (2.10c).

(2) Update {w}: The subproblem for the optimization variable w can also be

decoupled over |B| separate subproblems, one for each BS qk:

min
w

bk

βbk‖wbk‖2 +
ρ

2
‖wbk − vbk − λbk/ρ‖22

s.t. ‖wbk‖22 ≤ Pbk . (2.17)

By defining bbk = vbk + λbk/ρ, the optimal solution wbk⋆ should satisfy the first-order

optimality condition

ρbbk −wbk⋆(ρ+ 2γbk⋆) ∈ ∂(βbk‖wbk⋆‖2) (2.18a)

‖wbk⋆‖22 ≤ Pbk , γbk⋆ ≥ 0 (2.18b)

(‖wbk⋆‖22 − Pbk)γ
bk⋆ = 0 (2.18c)

where γbk⋆ is the optimal Lagrangian multiplier associated with the quadratic constraint

‖wbk‖22 ≤ Pbk . From (2.18a) and the definition of the subgradient for the ℓ2 norm, we
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have that wbk⋆ = 0 whenever ρ‖bbk‖2 ≤ βbk . When ρ‖bbk‖2 > βbk , we have

ρbbk −wbk⋆(ρ+ 2γbk⋆) = βbk
wbk⋆

‖wbk⋆‖2

=⇒ wbk⋆ =
bbk(ρ‖bbk‖2 − βbk)

(ρ+ 2γbk⋆)‖bbk‖2
. (2.19)

By the complementarity condition, γbk⋆ = 0 if

∥
∥
∥
∥

b
bk (ρ‖bbk ‖2−βbk

)

ρ‖bbk‖2

∥
∥
∥
∥

2

2

≤ Pbk . Otherwise,

γbk⋆ should be chosen such that ‖wbk⋆‖22 = Pbk , which implies that γbk⋆ = (ρ(‖bbk‖2 −
√

Pbk) − βbk)/(2
√

Pbk). Plugging these choices of γbk⋆ into (2.19), then we conclude

that the solution for problem (2.17) is given by

wbk⋆ =







0, ρ‖bbk‖ ≤ βbk ,

b
bk (ρ‖bbk ‖2−βbk

)

ρ‖bbk‖2
, ρ‖bbk‖ > βbk and

∥
∥
∥
∥

b
bk (ρ‖bbk ‖2−βbk

)

ρ‖bbk‖2

∥
∥
∥
∥

2

2

≤ Pbk ,

√
Pbk

b
bk

‖bbk‖2
, otherwise.

(2.20)

(3) Update v, κ̂: From step 4 of Algorithm 1, we readily have κ̂⋆uk
= σuk

, ∀uk ∈ U .
The subproblem for the block variable v can be written as K independent unconstrained

quadratic problems, one for each cell k:

min
{vbk}bk∈Bk

ρ

2

∑

uk∈Uk
jl∈U

∣
∣
∣(hk

jl
)Hvuk

−Kuk

jl
− µuk

jl
/ρ
∣
∣
∣

2
+ θ

∑

bk∈Bk

‖vbk‖22

+
ρ

2

∑

bk∈Bk

‖vbk −wbk + λbk/ρ‖22. (2.21)

The solution for this unconstrained problem is given by

v⋆
uk

=ρ−1
(

(1 + 2θ/ρ)I+HkHkH
)−1

(ρHkKuk +Hµuk + ρwuk
− λuk

), ∀uk ∈ Uk
(2.22)

whereHk =
[

{hk
jl
}jl∈U

]

∈ C
NBk×|U|,Kuk =

[

{Kuk

jl
}jl∈U

]T
∈ C

|U|, µuk = [{µuk

jl
}jl∈U ]T ∈

C
|U|, and λuk

= [(λ1k
uk
)T , . . . , (λBk

uk
)T ]T ∈ C

NBk , with λbk
uk
∈ C

N being the uk-th block

of λbk . Hence, the optimization variable block v can be optimally solved in closed-form

as well.
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2.2.4 Discussions

Computational Costs

As noted above, each step of Algorithm1 can be carried out in closed-form, which makes

Algorithm 1 highly efficient. Specifically, the most computational intensive operation

in Algorithm 1 is the matrix inversion (2.22), which has complexity in the order of

O((NBk)
3). However, this operation only needs to be computed once for each cell

k. As a result, compared to the standard interior point algorithm, which has a per

iteration complexity in the order O((
∑

k∈KNBkUk)
3), the proposed ADMM approach

has a cheaper per iteration computational cost, especially when |B| and |U| are large.

Distributed Implementation

Another advantage of the proposed algorithm is that it can be implemented without a

central controller. Observe that except for {K,κ}, the computation for the rest of the

primal and dual variables can be performed within each cell without any information

exchange among the cells. When updating K and κ, each cell k exchanges |Uk||U|
complex values {(hk

jl
)Hvuk

|jl ∈ U , uk ∈ Uk} with the rest of cells. This is possible since

each cell operator k can collect the locally estimated channel information {hk
jl
| | jl ∈ U}

from BSs via backhaul links or control channels. Once this is done, the subproblems

(2.14) for updating {K,κ} can be again solved independently and simultaneously by

each cell operator. In conclusion, the ADMM approach allows problem (2.8) to be

solved in a distributed manner across cells without a central operator.

The Debiasing Step

After problem (2.8) is solved, performing an additional “de-biasing” step can further

minimize the total power consumption. That is, with the given set of selected active BSs

computed by the proposed single-stage ADMM approach, we can solve problem (2.8)

again, this time without the sparse promoting terms. This can be done by making the

following changes to the proposed algorithm: 1) letting βbk = 0, ∀bk ∈ B; 2) setting θ =

1; 3) only optimize over BSs with vbk⋆ 6= 0. See reference [114] for further justification

of using such de-biasing technique in solving regularized optimization problems.
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The Special Case of Power Minimization Problem

As a byproduct of the proposed ADMM approach, the conventional power minimization

problem (2.4) without active BS selection can also be efficiently solved using a simplified

version of Algorithm 1, by setting βbk = 0, ∀bk ∈ B, and θ = 1. Compared to the

existing approaches for solving the same problem, the proposed ADMM approach is

computationally more efficient. For example, the uplink-downlink duality approach

[29] needs to perform matrix inversion operations with complexity O((NBk)
3) in each

iteration. The other ADMM based algorithms for solving problem (2.4) either needs to

solve SDPs [36] or SOCPs [96] in each iteration.

In contrast, by a novel splitting of the primal variables according to the special

structure of (2.4), our proposed ADMM approach (i.e., Algorithm 1) does not solve

expensive subproblems; the subproblems are all solvable in closed forms.

As a remark, if there are multiple-antennas at both BSs and users, the correspond-

ing MIMO beamforming design for power minimization becomes nonconvex. In this

case, the ADMM is not applicable. However, as in many existing works, e.g., [115],

one can update the transmit and receive beamformers alternately, resulting in convex

subproblems that can still be solved by the ADMM.

Further Reduction of the Number of Active BSs

To achieve the maximum reduction of the number of active BSs, we propose to adap-

tively reweight the coefficients βbk , ∀bk ∈ B. This reweighting technique is popular

in the compressive sensing literature to increase the sparsity level of the solution; see

e.g., [41, 105]. This can be done by first solving problem (2.8), and then updating the

coefficient βbk by

βbk ←−
β
(0)
bk

‖wbk⋆‖+ ǫ
, ∀bk ∈ B, (2.23)

where β
(0)
bk

, ∀bk ∈ B, are the initial βbk of problem (2.8) and ǫ > 0 is a small prescribed

parameter to provide the stability when ‖wbk⋆‖ is too small. With this new set of

βbk , (2.8) is solved again. Intuitively, those BFs that have smaller magnitude will be

penalized more heavily in the comming iteration, thus is more likely to be set to zero.

In our numerical experiments to be shown in Sec. 2.4, indeed we observe that by using
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such reweighting technique, the number of active BSs converges very fast and is much

smaller than that obtained by solving problem (2.8) only once.

2.3 Sum Rate Maximization with Base Station Activation

2.3.1 Problem Formulation

In this section, we show that how BS activation can be incorporated into the design

criteria C2), i.e., maximize the sum rate subject to power constraint. We first note

that, as explained in Sec. 2.1, even without considering BS activation, solving sum rate

maximization problem (2.5) is itself strongly NP-hard. Since this problem remains NP-

hard regardless the number of antennas at each user, we will consider a more general

scenario in which both BSs and users are equipped with multiple antennas.

For simplicity of notation, we assume that all users have L receive antennas. Let us

change the notation of channel from hql
uk

to Hql
uk
∈ C

L×N . In this way, the achievable

rate for user uk becomes

Ruk
(v) = log det

(

I+Hk
uk
vuk

vH
uk
(Hk

uk
)H
( ∑

(l,j)6=(k,u)

Hl
uk
vjlv

H
jl (H

l
uk
)H + σ2

uk
I
)−1
)

.

(2.24)

Similar to the previous section, we aim at jointly maximizing the sum rate and

selecting the active BSs. To this end, we first split the transmit BF vbk
uk

by vbk
uk

= αbk v̄
bk
uk
,

with αbk ∈ [0, 1] representing whether BS bk is switched on. That is, when αbk = 0,

BS bk is switched off, otherwise, BS bk is turned on. In the sequel, we will consider the

following single-stage regularized sum rate maximization problem

max
α,v̄

∑

k∈K

∑

uk∈Uk

Ruk
(v)−

∑

bk∈B
µbk‖αbk‖0

s.t. α2
bk
(v̄bk)H v̄bk ≤ Pbk , ∀bk ∈ Bk, k ∈ K, (2.25)

where µbk ≥ 0, ∀bk ∈ B, is the parameter controlling the number of active BSs;

α , {αk | k ∈ K} with αk , [α1k , α2k , . . . , αBk
]T ∈ R

Bk .

Unfortunately, the ℓ0 norm is not only non-convex but also not continuous. As a

result it is difficult to find even a locally optimal solution for problem (2.25). Similar
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to the previous section, we will relax, in the following, the ℓ0 norm to the ℓ1 norm. In

the way, the regularized sum rate maximization problem becomes

max
α,v̄

∑

k∈K

∑

uk∈Uk

Ruk
(v)−

∑

bk∈B
µbk |αbk |

s.t. α2
bk
(v̄bk)H v̄bk ≤ Pbk , ∀bk ∈ Bk, k ∈ K, (2.26)

In what follows, we will propose an efficient algorithm to compute a stationary solution

for this relaxed problem.

Remark 1 Instead of splitting vbk
uk

and penalizing ‖αk‖1, another natural modification

is to add a group LASSO (Least Absolute Shrinkage and Selection Operator) regulariza-

tion term (e.g., [40]) for each BS’s BF directly, i.e., use the regularization term ‖vbk‖
for BS bk in the objective function of problem (2.5). However, when the power used by

BS bk is large, the magnitude of penalization term can dominate that of the system sum

rate. Thus solving such group-LASSO penalized problem would effectively force the BSs

to use only a small portion of its power budget, which could lead to a dramatic reduction

of the system sum rate. The regularization in (2.26) avoids this problem.

Remark 2 For simplicity and consistency, we have focused on the vector beamformer

case (i.e., one data stream per receiver) in this section. It should be noted that all the

results derived in this section can be straightforwardly extended to the matrix precoder

case [116].

2.3.2 Active BS Selection via a Sparse WMMSE Algorithm

By using a similar argument as in [21, Proposition 1], we can show that the penalized

sum rate maximization problem (2.26) is equivalent to the following penalized weighted

mean square error (MSE) minimization problem

min
α,v̄,u,w

f(v,w,u) +
∑

bk∈B
µbk |αbk | (2.27a)

s.t. f(v,w,u) =
∑

uk∈U
wuk

euk
(uuk

,v) − log(wuk
) (2.27b)

α2
bk
(v̄bk)H v̄bk ≤ Pbk , ∀bk ∈ Bk, k ∈ K. (2.27c)
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In the above expression, u , {uuk
| uk ∈ U} is the set of all receive BFs of the users;

w , {wuk
|uk ∈ U} is the set of non-negative weights; euk

is the MSE for estimating suk
:

euk
(uuk

,v) , (1− uH
uk
Hk

uk
vuk

)(1− uH
uk
Hk

uk
vuk

)H

+
∑

(ℓ,j)6=(k,u)

uH
uk
Hℓ

uk
vjℓv

H
jℓ
(Hℓ

uk
)Huuk

+ σ2
uk
uH
uk
uuk

.

To guarantee convergence of the proposed algorithm, we further replace the pow-

er constraint (2.27c) by a slightly more conservative constraint, namely (v̄bk )H v̄bk ≤
Pbk , α

2
bk
≤ 1. The precise reason for doing so will be explained shortly in the reasoning

of Theorem 3. In this way, the modified penalized weighted MSE minimization problem

for active BS selection is given by

min
α,v̄,u,w

f(v,w,u) +
∑

bk∈B
µbk |αbk | (2.28)

s.t. f(v,w,u) =
∑

uk∈U
wuk

euk
(uuk

,v)− log(wuk
)

(v̄bk)H v̄bk ≤ Pbk , α2
bk
≤ 1, ∀bk ∈ Bk, k ∈ K.

Although the modified power constraint will shrink the original feasible set whenever

α2
bk
6= 0 or ±1, thus may reduce the sum rate performance of the obtained transceiver,

our numerical experiments (to be shown in Section 2.4) suggest that satisfactory sum

rate performance can still be achieved.

Because of the nonconvexity, it is difficult to solve (2.28) to global optimality. In

the following, we propose an efficient algorithm that can at least solve the problem

to a stationary solution. Due to the fact that problem (2.28) is convex in each block

variables, global minimum can be obtained for each block variable when fixing the rest.

Furthermore, the problem is strongly convex for block u and w, respectively, and the

unique optimal solution u⋆
uk

and w⋆
uk
, ∀uk ∈ U , can be obtained in closed-form:

u⋆
uk
(v) =




∑

jl∈U
Hl

uk
vjlv

H
jl
(Hl

uk
)H + σ2

uk
I





−1

Hk
uk
vuk

, J−1
uk

(v)Hk
uk
vuk

(2.29)

w⋆
uk
(v) =

(

1− vH
uk

(

Hk
uk

)H
J−1
uk

(v)Hk
uk
vuk

)−1

. (2.30)
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On the other hand, problem (2.28) can also be rewritten as

min
α,v̄,u,w

f(v,w,u) +
∑

bk∈B
µbk |αbk |+ I1(v̄) + I2(α) (2.31)

where I1(v̄) and I2(α) are indicator functions for both constraints defined respectively

as

I1(v̄) =

{

0, if (v̄bk)H v̄bk ≤ Pbk , ∀bk ∈ Bk, k ∈ K,
∞, otherwise

,

I2(α) =

{

0, if α2
bk
≤ 1, ∀bk ∈ Bk, k ∈ K,

∞, otherwise
.

Observe that when the problem is written in the form of (2.31), all its nonsmooth parts

are separable across block variables α, v̄, u, and w. Such separability is guaranteed

by our modified power constraints, and is referred to as the “regularity condition” for

nonsmooth optimization; see [117] for details about this condition. Combining this

property with the fact that at most two blocks, namely α and v̄, may not have unique

minimizer, a block coordinate descent (BCD) procedure 1 is guaranteed to converge

to the stationary point of problem (2.28). This is proven by Lemma 3.1 and Theorem

4.1 of [117]. The following theorem summarizes the preceding discussion.

Theorem 3 A BCD procedure that iteratively optimizes problem (2.28) for each block

variables u, w, v̄, and α, can always converge to a stationary solution of problem (2.28).

In the following, we discuss in detail how problem (2.28) can be solved for each block

variables in an efficient manner. For blocks u and w, optimal solutions are shown in

(2.29) and (2.30), respectively. For the optimization problem of α, notice that when

fixing (u,w, v̄), the objective of problem (2.28) is separable among the cells. Therefore

K independent subproblems can be solved simultaneously, with the k-th subproblem

assuming the following form

min
αk

(αk)
TAkαk − 2Re(bH

k αk) +
∑

bk∈B
µbk |αbk |

s.t. α2
bk
≤ 1, ∀bk ∈ Bk (2.32)

1 In our context, the BCD procedure refers to the computation strategy that cyclically updates the
blocks u, w, v̄, and α one at a time.
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where

Ak ,
∑

uk∈Uk

diag(v̄uk
)H




∑

jl∈U
wjl(H

k
jl
)Hujlu

H
jl
Hk

jl



 diag(v̄uk
)

bk ,
∑

uk∈Uk

wuk
diag(v̄uk

)H(Hk
uk
)Huuk

.

Problem (2.32) is a quadratically constrained LASSO problem. It can be solved

optimally by again applying a BCD procedure, with the block variables given by αbk ,

∀bk ∈ Bk (e.g., [114]). For the bk-th block, its optimal solution α⋆
bk

must satisfy the

following first-order optimality condition

2(cbk − (Ak[bk, bk] + γ⋆bk)α
⋆
bk
) ∈ µbk∂|α⋆

bk
|, (2.33a)

γ⋆bk ≥ 0, (1− (α⋆
bk
)2) ≥ 0 (2.33b)

(1− (α⋆
bk
)2)γ⋆bk = 0 (2.33c)

where γ⋆bk is the optimal dual variable for the bkth power constraint of problem (2.32),

and cbk , Re(bk[bk]) −
∑

jk 6=bk
Ak[jk, bk]αjk . Therefore, when 2 |cbk | ≤ µbk , we have

α⋆
bk

= 0. In the following, let us focus on the case where 2|cbk | > µbk . In this case,

from the expression of the subgradient (2.33a), we have α⋆
bk

=
−µbk

sign(α⋆
bk

)+2cbk
2(Ak [bk,bk]+γ⋆

bk
) . Since

γ⋆bk ≥ 0, Ak[bk, bk] ≥ 0, and 2|cbk | > µbk , we have sign(α⋆
bk
) = sign(cbk). By plugging

α⋆
bk

into the objective function of problem (2.32), it can be shown the objective value

is an increasing function of γ⋆bk . Therefore, by the monotonicity of γ⋆bk , primal and

dual constraints (2.33b), and the complementarity condition (2.33c), in the case of

2|cbk | > µbk , α
⋆
bk

has the following structure

α⋆
bk

=







−µbk
sign(cbk )+2cbk
2Ak [bk,bk]

, if
∣
∣
∣
−µbk

sign(cbk )+2cbk
2Ak [bk,bk]

∣
∣
∣ < 1

sign(cbk), otherwise
(2.34)

Similarly, when fixing (α,w,u), the optimization problem for v is convex and sep-

arable among K cells, and the k-th subproblem is expressed as

min
v̄uk

, uk∈Uk

∑

uk∈Uk

(
v̄H
uk
Ckv̄uk

− v̄H
uk
Duk

−DH
uk
v̄uk

)

s.t.
∑

uk∈Uk

(v̄bk
uk
)H v̄bk

uk
≤ Pbk , ∀bk ∈ Bk, (2.35)
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where

Ck , α̂k




∑

jl∈U
wjl(H

k
jl
)Hujlu

H
jl
Hk

jl



 α̂k ∈ C
BkN×BkN ,

Duk
, wuk

α̂k(H
k
uk
)Huuk

∈ C
BkN , ∀uk ∈ Uk,

α̂k , diag(α1kI, . . . , αBk
I) ∈ C

BkN×BkN .

We wish to efficiently solve the problem by iteratively updating its block compo-

nents v̄bk , ∀bk ∈ Bk. However, as discussed in Theorem 3, the algorithm convergence

requires that the optimization problem has at most two block components which do

not have unique optimal solution. To furfill this requirement, we add a regularization

term
∑

bk∈Bk
ǫ(v̄bk)H v̄bk to the objection function of problem (2.35) with ǫ > 0. Thus,

when ǫ → 0, the solution for the BF v̄bk⋆ can be obtained by checking the first order

optimality condition, and this can be expressed as

v̄bk⋆
uk

(δbk) =
(
Ck[bk, bk] + δ⋆bkI

)†
(

Duk
[bk]−

∑

jk 6=bk

Ck[bk, jk]v̄
jk⋆
uk

)

, ∀uk ∈ Uk. (2.36)

In the above expression, † denotes the Moore-Penrose pseudoinverse; δ⋆bk ≥ 0 is the op-

timal dual variable for the bk-th power constraint; Ck[bk, jk] ∈ C
N×N and Duk

[bk] ∈ C
N

are, respectively, subblocks of matrices Ck and Duk
. By the complementarity condition,

δ⋆bk = 0 if (v̄bk⋆(0))H v̄bk⋆(0) ≤ Pbk . Otherwise, it should satisfy (v̄bk⋆(δ⋆bk))
H v̄bk⋆(δ⋆bk ) =

Pbk . For the latter case, δ⋆bk can be found by a simple bisection method.

In summary, our main algorithm can be summarized as S-WMMSE algorithm.
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Sparse WMMSE (S-WMMSE) algorithm:

1: Initialization Generate a feasible set of variables {v̄uk
}, uk ∈ U , and let αbk =

1 ∀bk ∈ Bk, k ∈ K.
2: Repeat

3: uuk
← J−1

uk
(v)Hk

uk
vuk

, ∀uk ∈ U
4: wuk

← (1− vH
uk

(
Hk

uk

)H
J−1
uk

(v)Hk
uk
vuk

)−1, ∀uk ∈ U
5: v̄bk is iteratively updated by (2.36), ∀bk ∈ Bk, ∀k ∈ K
6: αbk is iteratively updated by

αbk =

{

0, if 2|cbk | ≤ µbk

(2.34), otherwise
, ∀bk ∈ Bk, k ∈ K

7: Until Desired stopping criteria is met

Similar to what we have done in the previous section, the de-biasing and reweighting

procedures can further improve the sum rate performance and decrease the number

of active BSs, respectively. The de-biasing procedure utilizes the given set of active

BSs computed by the S-WMMSE algorithm, and solve problem (2.28) again, this time

without the sparse promoting terms. In particular we make the following changes to the

S-WMMSE algorithm: 1) letting µbk = 0 for each bk ∈ B; 2) skipping step 6; 3) setting

αbk = sign(α⋆
bk
), ∀bk. In the reweighting procedure, we iteratively apply S-WMMSE to

the reweighted problem with the parameter µbk being updated by

µbk ←−
µ
(0)
bk

|αbk |+ ǫ
, ∀bk ∈ B, (2.37)

where µ
(0)
bk

, ∀bk ∈ B, are the initial µbk of problem (2.28).

Furthermore, the proposed S-WMMSE algorithm can be solved distributively among

each cell, under the following assumptions: i) there is a central controller in each cell; ii)

the central controller for cell k has the CSI Hk
jl
, ∀jl ∈ U , collected from BSs bk ∈ Bk via

high-speed backhaul links between BSs and iii) each user uk ∈ U can locally estimate

the received signal plus noise covariance matrix Juk
and the received channel matrix

Hk
uk
. The last assumption ensures that user uk can update uuk

and wuk
locally. After

updating uuk
and wuk

, each user uk can broadcast them to all the central controllers.

Combined with assumption ii), the central controller in cell k can then update v̄bk and
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αbk , ∀bk ∈ Bk.

2.3.3 Joint active BS selection and BS clustering

In addition to controlling the number of active BSs, we can further optimize the size

of BS clusters by adding an additional penalization on the BFs. Specifically, user uk is

not served by BS bk when vbk
uk

is zero. It follows that user uk is served with a small BS

cluster if ‖vbk
uk
‖ is nonzero for only a few bk’s. Thus, a set of group LASSO regularization

terms,
∑

bk∈Bk

∥
∥vbk

uk

∥
∥, uk ∈ U , can be added to the objective function of problem (2.5)

to reduce the size of BS clusters; see [21] for details. Hence, to jointly control the size of

BS cluster and reducing the BS usage, the objective function of the penalized weighted

MMSE minimization problem (2.28) is now modified as

f(v,w,u) +
∑

k∈K




∑

uk∈Uk

λk

∑

bk∈Bk

‖v̄bk
uk
‖



+
∑

bk∈B
µbk |αbk |, (2.38)

where λk ≥ 0, ∀k ∈ K, is the parameter to control the size of BS cluster in cell k.

For this modified problem, again a BCD procedure with block variables, α, v̄, u, and

w, can be used to compute a locally optimal solution. The only difference from the

algorithm proposed in the previous section is the computation of v̄. This can be carried

out by solving a quadratically constrained group LASSO problem. See in [21, Table I ]

for details.

2.4 Numerical Experiments

In the following numerical experiments, we consider HetNets with at most 10 cells. The

distance between the centers of adjacent cells is set as 2000 meters. In each cell k ∈ K,
we place one BS at the center of the cell (representing the macro BS), and place U users

and B−1 remaining micro BSs randomly and uniformly; see Fig. 2.2 for an illustration

of the network configuration. The channel model we use is Rayleigh channel with zero

mean and variance (200/dqluk
)3Lql

uk
, where dqluk

is the distance between BS ql and user

uk, and 10 log 10(Lql
uk
) ∼ N(0, 64). We also assume that σ2

uk
= σ2, ∀uk ∈ U . All

the simulation results are averaged over 100 channel realizations. The results shown for

problem (2.8), (2.28) and (2.38) are those obtained after performing the de-biasing step.
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Figure 2.2: A randomly generated network configuration

The proposed algorithm is compared to the following two scenarios: 1) all the BSs are

turned on; 2) in each cell, the central BS and a randomly selected fixed number of the

remaining BSs are turned on. Note that for both of these cases, full JP is used within

each cell. Clearly, the first scenario can serve as the performance upper bound, and the

latter can serve as a reasonable heuristic algorithm to select active BSs since BSs and

users are uniformly distributed in each cell.

In the first set of simulations, the total power minimization design criterion is con-

sidered. We set U = 10, B = 20, M = 5, and τuk
= 15dB, ∀uk ∈ U . Furthermore,

we assume that the power budget for BSs in the center of each cell is 10 dB while the

budget for the rest of the BSs is set to be 5dB. Note that all the power considered

here is relative to an implicit reference power. We apply the ADMM approach to solve

the proposed formulation (2.8) with reweighting procedure. Since the objective QoS
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Figure 2.3: Number of active BSs after each reweighting procedure.

τuk
, ∀uk ∈ U may not always be feasible, we declare that this realization is infeasible

if a particular problem realization cannot converge within 2000 ADMM iterations. We

select the stepsize as ρ = 5, and use the following stopping criterion

max

(∥
∥
∥
∥

‖vec(K)‖∞
max(1, ‖K‖F )

∥
∥
∥
∥
,

∥
∥
∥
∥

v −w

max(1, ‖v‖, ‖w‖)

∥
∥
∥
∥
∞
,

max
uk∈U

(|κ2uk
− σ2|), f

min(w(t))− fmin(w(t−1))

fmin(w(t−1))

)

< 10−4.

In Fig. 2.3, we plot the number of active BSs after each reweighting procedure on

βbk , ∀bk ∈ B for 1/σn = 5dB and 10dB, respectively. From this figure, it can be ob-

served that the number of active BSs decreases fast for the first 2 reweighting iterations,

and converges within 6 reweighting iterations. In Fig. 2.4, the obtained minimum total
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Figure 2.4: Power consumption for all scenarios considered.

power is plotted against the number of cells. We can observe that the minimum required

power for BSs selected by the proposed formulation (2.8) is more than that achieved by

activating all the BSs in each cell. This is reasonable since the latter serves as a lower

bound of achievable power consumption. On the other hand, when 1/σ2 = 10dB, we

compare the minimum power consumption achieved by the following two networks: i)

a network with 70% of randomly activated BSs (the center BSs in each cell are always

active) and ii) the network optimized by the proposed algorithm (35.8% ∼ 43.45% of

BSs are activated for each number of cells). It can be observed that the proposed formu-

lation is able to use much smaller number of BSs with similar total transmit power to

support the same set of QoS constraints. This demonstrates the efficacy of the proposed

method. Additionally, Fig. 2.5 plots the required number of ADMM iterations for the
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Figure 2.5: The required number of ADMM iterations for the scenario where all the
BSs are active.

power minimization only design (2.4) (with all BSs being turned on). We observe that

the proposed ADMM approach converges fairly fast. Note that the convergence speed

depends on the channel quality, σ2: when the channel condition is good enough, i.e.,

1/σ2 = 10dB, it converges within 250 ADMM iterations.

In the second simulation set, the sum rate maximization design criterion is investi-

gated. Let U = 10, B = 10, N = 4, L = 2 and P tot denote the total power budget in

each cell. The power budget for BSs located in the center of the cells is P tot/2, and the

rest of the BSs have equal power budgets. For simplicity, we set µbk = µ, ∀bk ∈ B,
λk = λ, ∀k ∈ K, and σ2

uk
= 1, ∀uk ∈ U . The reweighting procedure is performed until

no BS reduction is possible or less than 50% of BSs is active. This is for fair comparison
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Figure 2.6: Sum rate performance comparison for different number of cells and total
power budget.

with random selection scheme turning on 50% of BSs. In Fig. 2.6, the system sum rate

performance for the proposed S-WMMSE algorithm is compared with P tot = 10dB and

30dB. We can observe that S-WMMSE can achieve about 80% of the sum rate compared

to the upper bound while activating around 50% BSs (see Tab. 2.2 for details about the

number of active BSs). Furthermore, while the number of active BSs for S-WMMSE is

about the same as the random selection scheme, the S-WMMSE can still achieve more

than 34% and 23% improvement in sum rate performance for P tot = 10dB and 30dB,

respectively. It is worth noting that when BS clustering is considered, there is no siz-

able decrease in the sum rate performances. However, the total power consumption is

significantly reduced; see Fig. 2.7. This is because when optimizing the BS clustering,
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Number of Cells 4 6 8 10

WMMSE (all BSs) 40 60 80 100

Random BSs Selection (50% BSs) 20 30 40 50

S-WMMSE (µ = 1.5, λ = 0), P tot = 10dB 18.27 26.33 35.24 43.53

S-WMMSE (µ = 1, λ = 0.25), P tot = 10dB 20.18 28.67 38.51 47.04

S-WMMSE (µ = 2.5, λ = 0), P tot = 30dB 21.11 28.38 36.42 45.80

S-WMMSE (µ = 2.5, λ = 0.05), P tot = 30dB 20.21 28.73 37.80 46.95

Table 2.2: The number of active BSs v.s. different number of cells.
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Figure 2.7: Comparison of the power consumption for different schemes with varying
P tot. The total power used for the case where all BSs are active is normalized to 1.

the coverage of each BS is reduced, so does the interference level. As a result, less total

transmit power is able to support similar sum rate performance.

In summary, our simulation results suggest that for the power minimization design

criterion, the proposed ADMM approach can effectively reduce the BS usage while

minimizing the required minimum power consumption. When considering the sum

rate maximization design criterion, the proposed S-WMMSE algorithm can effectively

reduce the BS usage and the size of BS cluster simultaneously. Finally, our simulations

have only considered a simplified HetNet scenario: the uncorrelated Rayleigh channels

with two types of BSs, for which the effectiveness of the proposed algorithms by selective

shutdown of BSs is quite obvious. We caution that these results may not necessarily give
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an accurate performance prediction for more realistic HetNet channel models, e.g., the

channel models discussed in [118]. The latter will require further numerical experiments

in the future.



Chapter 3

Min Flow Rate Maximization

In this chapter, we start to further consider a cloud-based heterogeneous network, i.e.,

C-RAN architecture, of base stations (BSs) connected via a backhaul network of routers

and wired/wireless links with limited capacity. The optimal provision of such network-

s requires proper resource allocation across the radio access links in conjunction with

appropriate traffic engineering within the backhaul network. In this chapter we pro-

pose an efficient algorithm for joint resource allocation across the wireless links and the

flow control over the entire network. The proposed algorithm, which maximizes the

min-rate among all the transmitted commodities, is based on a decomposition approach

that leverages both the ADMM and the WMMSE algorithm. We show that this algo-

rithm is easily parallelizable and converges globally to a stationary solution of the joint

optimization problem. The proposed algorithm can also be extended to networks with

multi-antenna nodes and other utility functions.

The organization of this chapter is as follows. In Sec. 4.2, the system model is

introduced, and the considered joint optimization problem for C-RAN is formulated.

In Sec. 3.2, the considered problem is investigated, and the corresponding proposed

distributed algorithm is outlined with discussion on the distributed implementation

issues. Moreover, the convergence analysis of the proposed algorithm is also provided.

In Sec. 3.3, the closed-form solutions of each updating step is discussed in details. In

Sec. 4.6, the efficacy and the efficiency of the proposed algorithms are demonstrated via

extensive simulations.

48
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3.1 System Model and Problem Formulation

We consider the downlink of a large-scale C-RAN illustrated in Fig. 1.1, where the data

flows are from the network to the users. Let V denote the set of nodes in an C-RAN,

which is comprised of a set of network routers R, a set of BSs B, and a set of mobile

users U . The BSs and mobile users are all equipped with one antenna. Let L denote the

set of directed links that connect the nodes of V. In the ensuing sections, the mth data

flow demanded by the destination node dm ∈ V from the source node sm ∈ V is called

the commodity m. We assume there are a total of M commodities to be transported

over the network. With this definition, a mobile user u ∈ U can serve as the destination

nodes for more than one commodity. For each commodity m, rm ≥ 0 denotes its flow

rate, and fl,m ≥ 0 denotes its rate on link l ∈ L.
The C-RAN has a set of directed links L consisting of both wired and wireless links.

The wired links connect routers in R and BSs in B, and is denoted as Lw , {(sl, dl) ∈
L | ∀ sl, dl ∈ R∪B}. Here (sl, dl) denotes the directed link from node sl to node dl. The

wireless links provide single-hop connections between the BSs and the mobile users. We

assume that each BS divides the spectrum into F orthogonal frequency subchannels,

and refer to each subchannel as a wireless link. Thus a source node, a destination node

and a subchannel uniquely define a wireless link. The set of wireless links can then

be represented as Lwl , {(sl, dl, fl) ∈ L | ∀ sl ∈ B, ∀ dl ∈ U , fl = 1 ∼ F} with

l = (sl, dl, fl) being the wireless link from BS sl to mobile user dl on subchannel fl.

For l, n ∈ Lwl, l 6= n, the channel tap from BS sn to mobile user dl via subchannel

fl is denoted as hln ∈ C. It is nonzero if either the links l and n occupy the same

frequency subchannel (i.e., fl = fn), or sl and dn are not too far away from each other.

Using this notation, the wireless link l is said to be interfered by the set of wireless links

I(l) , {n ∈ Lwl | hln 6= 0}. Note that l ∈ I(l) by definition.

Next we introduce a few system level constraints in both the backhaul and the access

networks. The first set of constraints is related to the link capacity. Assume each wired

link l ∈ Lw has a fixed capacity, Cl. The total flow rate on link l is constrained by

M∑

m=1

fl,m = 1T fl ≤ Cl, ∀ l ∈ Lw. (3.1)
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where 1 is the all-one vector and fl , [fl,1, . . . , fl,M ]T . For a wireless link l, BS sl

allocates power pl for mobile user dl. Assume a linear precoder vl is used by each BS,

then we have vl =
√
pl ∈ R. Letting vl be a real number is without loss of generality,

because single antenna is used by each BS and each user. The advantage of using

transmit precoders as design variables is that it facilitates the subsequent algorithm

development and analysis, and allows easy extension to MIMO networks. Assume that

each mobile user dl treats the interference from interfering links I(l) \ {l} as noise, then
the total flow rate constraint on the wireless link l ∈ Lwl is

M∑

m=1

fl,m = 1T fl ≤ f̄l(v) , log




1 +

|hll|2v2l
∑

n∈I(l)\{l}
|hln|2v2n + σ2

dl




 , ∀ l ∈ Lwl, (3.2)

where v , [{vl}∀ l∈Lwl ]T ; f̄l(v) is the achievable rate on the wireless link l for a given

precoders v; and σ2
dl

is the variance of AWGN at mobile user dl.

The second set of constrains has to do with the per-node flow conservation constraint.

That is, for any node v ∈ V, the total incoming flow should be equal to the total outgoing

flow:
∑

l∈In(v)
fl,m + 1v=smrm =

∑

l∈Out(v)

fl,m + 1v=dmrm, m = 1 ∼M, ∀ v ∈ V, (3.3)

where In(v) , {l ∈ L | dl = v} and Out(v) , {l ∈ L | sl = v} denote the set of links

going into and coming out of a node v respectively.

The third set of constraints requires that the transmit power used by each BS s ∈ B
should be less than a given budget Ps ≥ 0:

∑

l∈Out(s)
⋂Lwl

v2l ≤ Ps, ∀ s ∈ B. (3.4)

In this work, we are interested in maximizing the minimum flow rate of all com-

modities, rmin, while jointly performing the following tasks 1): route M commodities

from node sm to node dm, m = 1 ∼ M ; and 2) design the linear precoder at each BS.

This problem can be formulated as

max
v, r

rmin (3.5a)

s.t. r ≥ 0, rm ≥ rmin, m = 1 ∼M (3.5b)

(3.1), (3.2), (3.3), and (3.4), (3.5c)
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where r , [rmin, {rm, fl,m | l ∈ L}m=1∼M ]T . The constraint (3.5b) is due to the non-

negativeness of flow rates, and the fact that rmin is the min-rate of all commodities.

Optimizing the min-rate utility results in a fair rate allocation, and such utility has been

adopted by many recent works in both the SDN and wireless communities; see [64,119]

and the references therein.

Remark 3 (Difficulties of Solving Problem (3.5)) Problem (3.5) has several distinctive

structures:

i) The feasible set of (3.5) is nonconvex as a result of the wireless rate constraints

(3.2).

ii) The design variables v and r are tightly coupled through the rate expressions in

the constraints (3.2) and (3.3).

iii) The size of the problem is very large.

Together, these special structures make the existing techniques for min-rate maximiza-

tion [27,60–62] inapplicable. For example, [27,60–62] exploit the structure of signal-to-

interference-plus-noise ratio of wireless links, but here we need to directly deal with the

users’ rates f̄l(v) as they are coupled in the constraints. Moreover, the size of the prob-

lem makes it computationally very expensive to repeatedly solve the problems formulated

in [27,61,62] using standard solvers. Hence, the structure of signal-to-interference-plus-

noise ratio of wireless links exploited by existing works cannot be applied. The wireless

rate function, f̄l(v) should be dealt directly.

Remark 4 (Dynamic BS selection) By solving problem (3.5), a subset of BSs is dy-

namically selected to serve each user. Specifically, for commodity m, it is possible for

two different wireless links l 6= n with dl = dn to each carry part of commodity m,

i.e., fl,m > 0 and fn,m > 0. Allowing BS cooperation is an important feature of the

envisioned next generation cellular networks [11,14]. Our proposed formulation and al-

gorithm can be extended to incorporate more advanced cooperation schemes, e.g., joint

processing between BSs, possibly by using different flow control mechanisms such as net-

work coding [80]. For the envisioned next generation networks, which relies heavily on
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various BS cooperation schemes to improve the transmission rate, the proposed formu-

lation accompanied with the algorithm can be extended with given BS cluster for each

commodity and/or applying network coding in the backhaul network [80].

In the following, we propose an efficient distributed algorithm to compute a station-

ary solution of the problem (3.5).

3.2 Joint Traffic Engineering and Interference Manage-

ment

In this section, we propose a distributed algorithm that solves problem (3.5) to a

stationary solution. We emphasize that the difficulty of this problem comes from the

nonconvexity in the wireless link flow rate constraints (3.2), as well as the way that the

flow rates are coupled in the flow conservation constraints (3.3).

3.2.1 Algorithm Outline

We propose to integrate two existing algorithms to solve problem (3.5). The first one

is the max-min WMMSE algorithm developed in [64], which is used for min-rate maxi-

mization. The second is the well-known ADMM algorithm for large-scale optimization.

Central to the proposed approach is the utilization of a relationship between achievable

flow rate for wireless link l ∈ Lwl, i.e., f̄l(v), and the mean square error (MSE) for

estimating the message transmitted on link l. Let us use el(ul,v) to denote the MSE

on link l when user dl applies a linear receive coefficient ul ∈ R to decode the message.

Then el(ul,v) is given by

el(ul,v) = (1− ul|hll|vl)2 + u2l




∑

n∈I(l)\{l}
|hln|2v2n + σ2

dl



 .

The following rate-MSE relationship, a specialization of the results developed in [64,

Lemma 3] to the single antenna scenario, is a key property used in our subsequent

algorithm design.
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Lemma 2 [64, Lemma3 ] For a given l ∈ Lwl, f̄l(v) can be equivalently expressed as

f̄l(v) = max
ul, wl

[1 + log(wl)− wlel(ul,v)] , (3.6)

where wl > 0 is the scalar weight of MSE on link l.

Lemma 2 reformulates f̄l(v) by introducing two extra sets of variables u , {ul | l ∈
Lwl} and w , {wl | l ∈ Lwl}, with one pair of variables {ul, wl} for each wireless link

l. Hence, we reformulate problem (3.5) by replacing f̄l(v) with its weighted MSE. We

call such new constraint a rate-MSE constraint. Using this relationship, we consider the

following modified version of problem (3.5), with two additional variable sets u and w:

max
v, r, u, w

rmin (3.7a)

s.t. (3.1), (3.3), (3.4), and (3.5b) (3.7b)

1T fl ≤ c1,l + c2,lvl −
∑

n∈I(l)
c3,lnv

2
n, ∀ l ∈ Lwl, (3.7c)

where (c1,l, c2,l, c3,ln) are given by c1,l = 1 + log(wl) − wl(1 + σ2
dl
u2l ), c2,l = 2wlul|hll|,

and c3,ln = wlu
2
l |hln|2.

Why do we include these extra optimization variables u and w? First we observe

that for any given {r,v}, the optimal u (resp. w) for (3.6) can be obtained while w

(resp. u) is held fixed. Moreover, these optimal solutions can be expressed in closed

form for any l ∈ Lwl:

ul(v) =

(
∑

n∈I(l)
| hln|2v2n + σ2

dl

)−1

|hll|vl, (3.8)

wl(v) = (1− |hll|vlul(v))−1 . (3.9)

These expressions suggest that for each wireless link l, the variables ul and wl can be

updated locally at mobile user dl, which is independent to other mobile users, if the

interference plus noise and local channel state information are locally known to the

users. Moreover, when u and w are fixed, the problem for updating {r,v} is convex

(note that (3.7) is a convex quadratic problem on the precoders v) and can be solved in

polynomial time. Hence, we propose to apply the alternating optimization technique to
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solve problem (3.7); see the N-MaxMin Algorithm in Table 3.1 for a detailed description.

The following is our main convergence result. Its proof is relegated to Appendix C.

Theorem 4 The sequence {r(t),v(t)} generated by the N-MaxMin Algorithm converges

to a stationary solution of problem (3.5). Moreover, every global optimal solution of

problem (3.5) corresponds to a global optimal solution of the reformulated problem (3.7),

and they achieve the same objective value.

Remark 5 (Relationship to [64, Theorem 2]) The N-MaxMin Algorithm leverages the

rate-MSE relationship developed in [64] to deal with the nonconvex constraint (3.2) in

the general setting of C-RAN, and at the same time uses the ADMM (algorithm 2)

to determine the backhaul network flow. The above convergence result generalizes the

one developed in [64] due to the new network flow constraints (3.1) and (3.3) involved.

Similar result has recently been proposed [120], but only the simplified single-hop backhaul

network is considered.

Remark 6 (Extension to Multiple Antenna Case and Other Utility Functions) The

proposed algorithm can easily handle nodes with multiple transmit/receive antennas.

Specifically, we can use the matrix version of rate-MSE relationship (see [64, Lemma

3]) to replace the capacity constraint on each wireless link. Moreover, the convergence

proof uses the fact that, at optimality, at least one of the constraints rm ≥ rmin, m = 1 ∼
M , is active. For other utility functions, e.g., proportional fairness

∑M
m=1 log(rm) ≥

rproportional, this property still holds, so the convergence analysis can be extended to these

other cases.

3.2.2 An ADMM Approach for Updating {r,v}

Unlike the computation of u and w, the updates for {r,v} do not have closed forms.

This can be a problem for large networks as the size of the subproblem can be huge.

Below we propose to use the ADMM algorithm as a subroutine to update {r,v}. We

choose ADMM because it is well-suited for distributed and parallel implementation,

which is attractive for the considered C-RAN.

To apply ADMM, we first reformulate the subproblem for {r,v} into the standard

form (cf. (A.1)). To this end, we appropriately split the variables in the coupling
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Network Max-Min WMMSE (N-MaxMin) Algorithm:

1: Initialization Generate a feasible set of variables {r,v}, and let t = 1.
2: Repeat
3: u(t) is updated by (3.8)
4: w(t) is updated by (3.9)
5: {r(t),v(t)} is updated by solving the problem (3.7) via Algorithm 2 in Table

3.2
6: t = t+ 1
7: Until A desired stopping criteria is met

Table 3.1: Network Max-Min WMMSE (N-MaxMin) Algorithm

constraints (3.3) and (3.7c) for r and v. Then we show that each step of the resulting

algorithm is easily computable and amenable for distributed implementation.

We first observe that each flow rate fl,m is shared among two flow conservation

constraints, one for node sl and the other for node dl. To induce separable subproblems

and enable distributed computation, two local auxiliary copies of fl,m are introduced,

namely f̂ sl
l,m and f̂dl

l,m, and they are, respectively, stored at node sl and node dl. Similarly,

we introduce two local auxiliary copies for each commodity rate, denoted as r̂smm , r̂dmm ,

m = 1 ∼M , and store them at the source and the destination node of each commodity,

respectively. That is, we introduce the following auxiliary variables:

f̂ sl
l,m = fl,m, f̂dl

l,m = fl,m, ∀ l ∈ L, ∀ m; (3.10a)

r̂smm = rm, r̂dmm = rm, ∀ m. (3.10b)

The flow rate conservation constraints on node v ∈ V can then be rewritten as

∑

l∈In(v)
f̂ v
l,m + 1v=sm r̂vm =

∑

l∈Out(v)

f̂ v
l,m + 1v=dm r̂vm, m = 1 ∼M. (3.11)

Moreover, for the rate-MSE constraint (3.7c), we introduce several copies of the

transmit precoder on a given wireless link n ∈ Lwl, i.e.

vln = vn, ∀ l s.t. n ∈ I(l). (3.12)

Intuitively, by doing such variable splitting, each variable vnl will only appear in

a single rate-MSE constraint. For a given link l ∈ Lwl, its rate-MSE constraint only
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Figure 3.1: The structure of the design variables and the introduced auxiliary variables.
The variables connected by dash lines should be equal to each other. (a) For the mth
commodity, m = 1 ∼M . (b) For the wired link l ∈ Lw. (c) For the wireless link l ∈ Lwl.

depends on the set of precoders {vln | ∀ n ∈ I(l)}, as can be seen below

1T fl ≤ c1,l + c2,lvll −
∑

n∈I(l)
c3,lnv

2
ln, ∀ l ∈ Lwl. (3.13)

In addition, to facilitate the analysis of the convergence, another auxiliary variable r̂ is

introduced such that rmin = r̂min. The relationship between the design variables and

the introduced auxiliary variables is illustrated in Fig. 3.1.

Using these new variables, the updating step for {r,v} is equivalently expressed as

max (rmin + r̂min)/2 (3.14)

s.t. (3.1), (3.4), (3.5b), (3.10), (3.11), (3.12), (3.13), and rmin = r̂min.

It is important to note that the constraints of problem (3.14) (except the linear equality

constraints rmin = r̂min, (3.10) and (3.12)) are now separable between two optimization

variable sets

1. The tuple {r, v̂} where v̂ , [ [vnl,∀ n ∈ Ī(l)],∀ l ∈ Lwl]T with Ī(l) , {n | l ∈ I(n)}
being the set of wireless links with which l interferes.
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2. The tuple {r̂,v} where r̂ , [ r̂min, {r̂smm , f̂ sl
l,m | l ∈ L}Mm=1, {r̂dmm , f̂dl

l,m | l ∈ L}Mm=1 ]
T .

Furthermore, we can write the linear equalities rmin = r̂min, (3.10) and (3.12) as Cr =

r̂, Dv = v̂ with

C =







1 0 0 0 0

0 I 0 I 0

0 0 I 0 I







T

; D = blkdg[{1l}l∈Lwl ],

where 1l is an all one column vector of size equal to |Ī(l)|. Based on this compact

representation, let us use δ, {δsll,m, δdll,m}, {δsmm , δdmm }, and {θnl} to denote the Lagrange

multipliers for equality constraints rmin = r̂min, (3.10a), (3.10b), and (3.12), respectively.

Collect these multipliers to form vectors δ and θ. Let ρ1 > 0 and ρ2 > 0 denote some

constants.

Then the partial augmented Lagrangian function for problem (3.14) is given by

Lρ1,ρ2(r, v̂, r̂,v; δ,θ)

=
rmin + r̂min

2
+

[

δT (r̂−Cr)− ρ1
2
‖r̂−Cr‖2

]

︸ ︷︷ ︸

enforcing linear constraints (3.10)

+
[

θT (Dv − v̂)− ρ2
2
‖Dv − v̂‖2

]

︸ ︷︷ ︸

enforcing linear constraints (3.12)

.

(3.15)

Now it is clear that the ADMM can be used to solve (3.14). The resulting algorithm,

described in Table 3.2, is referred to as Algorithm 2. The convergence of this algo-

rithm to the optimal solutions of problem (3.14) is readily implied by Proposition 1 in

Appendix A (note that both CTC and DTD are full rank matrices).

The detailed step-by-step specification of Algorithm 2 is given in Section 3.3. The

main feature from the derivation therein is that each step in Algorithm 2 can be comput-

ed distributedly in closed-form. More specifically, let there be a master node to coordi-

nate the flow rate for all commodities, then the terms of partial augmented Lagrangian

function (3.15) are separable across each link and node. Similarly, the constraints of

Step 3 and 4 in Table 3.2 are also separable across links and nodes, respectively. Given

these facts, Step 3 of the algorithm is decomposable among all links in the system.

Step 4 of the algorithm is decomposable among all the nodes in the system. Moreover,

the update for each commodity can be done independently at each node. For the dual
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Algorithm 2: ADMM for (3.14):

1: Initialize all primal variables r(0), r̂(0), v(0), v̂(0) (not necessarily a feasible
solution for (3.14)), and all dual variables δ(0), θ(0); set t = 0

2: Repeat
3: Solve the following problem and obtain r(t+1), v̂(t+1):

max
r, v̂

Lρ1,ρ2(r, v̂, r̂
(t),v(t); δ(t),θ(t))

s.t. (3.1), (3.5b), and (3.13). (3.16)

This step can be solved in parallel across all links, cf. (3.20), (3.22), and (3.24).
4: Solve the following problem and obtain r̂(t+1),v(t+1):

max
r̂, v

Lρ1,ρ2(r
(t+1), v̂(t+1), r̂,v; δ(t),θ(t))

s.t. (3.4) and (3.11). (3.17)

This problem can be solved in parallel across all nodes, cf. (3.25), (3.27), and
(3.29).

5: Update the Lagrange dual multipliers δ(t+1) and θ(t+1) by

δ(t+1) = δ(t) − ρ1(r̂
(t+1) −Cr(t+1)),

θ(t+1) = θ(t) − ρ2(Dv(t+1) − v̂(t+1)). (3.18)

6: t = t+ 1
7: Until Desired stopping criterion is met

Table 3.2: Summary of the proposed Algorithm 2
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Figure 3.2: Flow chart of the proposed solution approach (3.5).

updates (3.18), it can be done in each network node independently. These properties

allow the entire algorithm to be easily implemented in a parallel fashion, and for each

ADMM iteration, the computation complexity is O(M |V| + |L|). Fig. 3.2 provides a

flow chart showing the relationship among different subroutines.

3.2.3 Necessary Information Exchange

In this subsection, we elaborate how the N-MaxMin algorithm can be implemented

distributedly.

Let us first look at the implementation for the backhaul network (i.e., ignoring

the wireless links). Consider the update of the optimization variable r in Step 3 of

Algorithm 1. In this step, to update {rmin, {rm}Mm=1} (cf. Step (i) in Appendix 3.3.1),

node vm ∈ {sm, dm} of each commodity m should respectively send
(

r̂vmm − δvmm
ρ1

)

to

the assumed master node. After the master node updates {rmin, {rm}Mm=1}, it would

transmit rm back to these nodes. For updating {fl | ∀ l ∈ Lw} (cf. step (ii) in Section
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3.3.1), the procedure is decoupled across each link. Without loss of generality, we can let

the destination node of each link l ∈ Lw, dl, perform the bisection updating step. The

source node sl should transmit M real values, {f̂ sl
l,m −

δ
sl
l,m

ρ1
}Mm=1, to dl. After updating

fl, dl would transmit them back to sl. After r is computed, the second block variables

r̂ and the Lagrangian dual variable δ are updated in each node without any additional

information exchange, cf. step (ii) in Section 3.3.2 and (3.18).

Next we discuss the implementation for the wireless part, i.e., the update for v, v̂,

and the wireless links of r and r̂. We assume that for each wireless link l ∈ Lwl i) mobile

user dl has local channel state information from all interfering BSs, i.e., hln, ∀ n ∈ I(l);

and ii) ul and wl are updated at the mobile user side. Hence (c1,l, c2,l, c3,ln) are known

locally at mobile user dl. Let us first look at the update for v̂∪{fl | ∀ l ∈ Lwl} (cf. step
(iii) in Section 3.3.1). Recall that this step is decoupled across wireless links, and all

necessary information needed for the computation (such as u, w, v and the channel state

information) is available at each user except {f̂ sl
l,m −

δ
sl
l,m

ρ1
}Mm=1. Once such information

is conveyed to user dl by BS sl, this update can be performed at user dl. After mobile

user dl updates fl, it sends them back to BS sl. Next we analyze the step that updates

v (cf. step (iii) in Section 3.3.2). In order to solve this problem locally at each BS s, the

mobile users d ∈
{
dn | ∀ l ∈ Out(s)

⋂Lwl, n ∈ Ī(l)
}
, i.e., the users whose transmissions

are interfered by BS s, should send
(

vnl +
θnl

ρ2

)

to BS s. After BS s obtains the updated

vl, it can broadcast these quantities back to those mobile users.

Given the above description of information exchange (summarized in Fig. 3.3), Algo-

rithm 1 (and therefore, the N-MaxMin Algorithm) can be implemented in a distributed

and parallel manner. The required information exchange can be reduced significantly if

a priori knowledge about the paths used by the commodities is available.

For a C-RAN, there can be a few cloud centers, each responsible for updating the

flow rates and precoders for a subnetwork of nodes. Suppose that the required channel

state information is collected at the cloud centers, then the entire message passing can

be made much more efficient. Specifically, only those variables belong to the links

across different zones need to be exchanged. Within each subnetwork, a cloud center

can execute its computational steps in parallel without any message exchange overhead.

A more detail discussion on the implementation with subnetwork structure will be given

in Chapter 4
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Figure 3.3: Summary of the required information exchange for each step of Algorithm
2.
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3.3 Derivation of Updating Steps of Algorithm 1

In this section, we go over Algorithm 2 step by step and explain each of its update

procedure. For notational simplicity, we ignore the superscript indices.

3.3.1 Solving Step 3 for Algorithm 2

In this step, problem (3.16) is solved to update {r, v̂}. This problem can be further

decomposed over the variables {rmin, {rm}Mm=1, fl | ∀ l ∈ Lw} and v̂ ∪ {fl | ∀ l ∈ Lwl}.
The first subblock only has to do with the wired links. A closer look at Step 3

of Algorithm 2 reveals that its optimization problem can be solved via two completely

independent subproblems, one for variables {rmin, {rm}Mm=1} and the other for {fl | ∀ l ∈
Lw}. In the following we consider the two problems separately.

(i) Subproblem for {rmin, {rm}Mm=1}: This step updates the current minimum

flow rate among all commodities, and it can be mathematically expressed as

max
rmin

2
− ρ1

2

(

r̂min − rmin −
δ

ρ1

)2

− ρ1
2

M∑

m=1

∑

v∈{sm,dm}

(

r̂vm − rm −
δvm
ρ1

)2

s.t. rmin ≥ 0, rm ≥ rmin, m = 1 ∼M. (3.19)

When rmin is fixed, the optimal {r⋆m}Mm=1 of problem (3.19) can be obtained by the

first-order optimality condition, and this is expressed as

r⋆m = max






rm,

1

2

∑

v∈{sm,dm}

(

r̂vm −
δvm
ρ1

)





. (3.20)

After plugging the obtained r⋆m back to the objective function of problem (3.19), the

gradient of the objective function with respect to rmin is a decreasing function for

rmin ≥ 0. The optimal r⋆min = 0 if the gradient is no more than 0 with rmin = 0.

Otherwise, it can be obtained such that the gradient equals 0.

(ii) Subproblem for {fl | ∀ l ∈ Lw}: It turns out that for this subset of variables,
the corresponding updating procedure can be performed independently over each link.



63

For each link l ∈ Lw, the following optimization problem is solved

min
M∑

m=1

∑

v∈{sl,dl}

(

f̂ v
l,m − fl,m −

δvl,m
ρ1

)2

s.t. 1T fl ≤ Cl, fl ≥ 0. (3.21)

The optimal solution f⋆l can be obtained by the first-order optimality condition

f⋆
l,m =

1

2




∑

v∈{sl, dl}

(

f̂ v
l,m −

δvl,m
ρ1

)

− λ⋆
l

2





+

, (3.22)

where λ⋆
l is the optimal Lagrange dual variable of the capacity constraint on link l. It

can be obtained by bisection procedure such that the complementarity and feasibility

condition for the capacity constraint are satisfied.

(iii) Subproblem for v̂∪{fl | ∀ l ∈ Lwl}: The rest of variables are related only to

the wireless links, and they are in fact decoupled across the wireless links. To be more

specific, the problem for the wireless link l = (s, d, f) ∈ Lwl is shown below

min
ρ1
2

M∑

m=1

∑

v∈{sl,dl}

(

f̂ v
l,m − fl,m −

δvl,m
ρ1

)2

+
ρ2
2

∑

n∈I(l)

(

vn − vln −
θln
ρ2

)2

s.t. fl ≥ 0, and (3.13). (3.23)

The optimal solution of this problem, {f⋆l , v⋆ln | n ∈ I(l)}, can be obtained by the

first-order conditions below

f⋆
l,m =

1

2




∑

v∈{sl,dl}

(

f̂ v
l,m −

δvl,m
ρ1

)

− λ⋆
l

ρ1





+

,

v⋆ln =







(

ρ2(vl − θll
ρ2
) + λ⋆

l c2,l

)

/ (ρ2 + 2λ⋆
l c3,ll) , n = l

ρ2

(

vn − θln
ρ2

)

/ (ρ2 + 2λ⋆
l c3,ln) , ∀ n ∈ I(l) \ {l}

. (3.24)

where λ⋆
l is the optimal Lagrange dual variable for the rate-MSE constraint.

Plug the obtained optimal solutions (3.24) into the rate-MSE constraint of problem

(3.23). The left hand side of the constraint is a decreasing function of λ⋆
l . Furthermore,

the gradient of the right hand side of the rate-MSE constraint with respect to λ⋆
l is

nonnegative.
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Hence, the right hand side of the rate-MSE constraint is an nondecreasing function of

λ⋆
l ≥ 0. Again, by the complementarity condition and the monotonicity of the rate-MSE

constraint, the optimal value of λ⋆
l can be computed via bisection search.

3.3.2 Solving Step 4 for Algorithm 2

The corresponding problem to update {r̂,v}, i.e., step 4 of Algorithm 2, can be decom-

posed into two parts. The first part has to do with the flow rate conservation constraint

with optimization variable r̂, and the second part has to do with v.

The first part can again be separated into two independent subproblems, one for

r̂min and another for the rest of the variables in r̂.

(i) Subproblem for r̂min: The subproblem for variable r̂min is given by the following

easy unconstraint quadratic optimization problem

argmax
r̂min

2
− ρ1

2

(

r̂min − rmin −
δ

ρ1

)2

= rmin +
1 + 2δ

2ρ1
. (3.25)

(ii) Subproblem for {r̂smm , r̂dmm , f̂ sl
l,m, f̂dl

l,m}: In this subproblem, the rest of the

variables in r̂ are updated, subject to the conservation constraints of flow rate. Since the

introduction of the auxiliary local optimization variables, i.e., (3.10), this subproblem

decoupled over each node v ∈ V and commodity m. As such, problem (3.17) decomposes

into a series of simpler problems, one for each tuple (m, v)

min
∑

l∈In(v)∪Out(v)

(

f̂ v
l,m − fl,m −

δvl,m
ρ1

)2

+ 1{sm,dm}(v)

(

r̂vm − rm −
δvm
ρ1

)2

s.t. (3.11).

(3.26)

Since problem (3.26) has only one equality constraint, it admits a closed-form solution.

In particular, denote the optimal dual Lagrangian variable as λ⋆
v,m. By the first-order

optimality condition, the optimal solution for (3.26) is given by

f̂ v⋆
l,m =

{

fl,m +
δv
l,m

ρ1
− λ⋆

v,m, l ∈ Out(v)

fl,m +
δv
l,m

ρ1
+ λ⋆

v,m, l ∈ In(v)
, (3.27a)

r̂v⋆m =

{

rm + δvm
ρ1
− λ⋆

v,m, v = dm

rm + δvm
ρ1

+ λ⋆
v,m, v = sm

, (3.27b)
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where λ⋆
v,m is chosen to satisfy the flow conservation constraint.

(iii) Subproblem for v: The remaining part is for optimization variable v with

power budget constraints, and this updating procedure can be decoupled over each BS.

For BS s ∈ B, the updating rule is,

min
∑

l∈ Out(s)
⋂

Lwl, n∈Ī(l)

(

vl − vnl −
θnl
ρ2

)2

s.t.
∑

l∈ Out(s)
⋂

Lwl

v2l ≤ Ps. (3.28)

By denoting the optimal Lagrange dual variable for the power constraint as λ⋆
s ≥ 0 and

the optimal solution of problem (3.28) as {v⋆l | l ∈ Lwl}, the optimal solutions can be

expressed as

v⋆l =

∑

n∈Ī(l) vnl +
θnl

ρ2

|Ī(l)|+ λ⋆
s

. (3.29)

One can observe that
∑

l∈ Out(s)
⋂

Lwl |v⋆l |2 is a decreasing function of λ⋆
s. So, λ

⋆
s can be

chosen via a bisection search to ensure the complementarity and feasibility conditions

for the power budget constraint.

To summarize, all the steps in Algorithm 2 (including the updating of the Lagrange

dual variables, (3.18)) can be efficiently computed.

3.4 Numerical Experiments

In this section, we report some numerical results on the performance of the proposed

algorithms as applied to a network with 57 BSs and 11 network routers. We have

tested both the the efficacy and the efficiency of the proposed algorithms. The topology

and the connectivity of this network are shown in Fig. 4.7. For the backhaul links of

this network, a fixed capacity is assumed, and is same in both directions. These link

capacities are given as follows:

• links between routers and those between gateway BSs and the routers: 1 (Gnats/s);

• 1-hop to the gateways: 100 (Mnats/s);

• 2-hop to the gateways: [10,50] (Mnats/s);
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Figure 3.4: The considered network consists of 57 BSs and 11 routers with the locations
and the connectivity between these nodes.

• 3-hop to the gateways: [2,5] (Mnats/s);

• More than 4-hop to the gateways: 0 (nats/s).

The number of subchannels is F = 3 and each subchannel has 1 MHz bandwidth.

The power budget for each BS is chosen equally by P = Ps, ∀ s ∈ B, and σ2
d = 1, ∀ d ∈

U . The wireless links follow the Rayleigh distribution with CN(0, (200/dist)3), where

dist is the distance between BS and the corresponding user. The source (destination)

node of each commodity is randomly selected from network routers (mobile users), and

all simulation results are averaged over 100 randomly selected end-to-end commodity

pairs. Below we refer to one round of the N-MaxMin iteration as an outer iteration,

and one round of Algorithm 2 for solving (r,v) as an inner iteration.
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In the first experiment, we assume that all mobile users can be served by BSs within

300 meters and are interfered by all the BSs. For this problem, the parameters of N-

MaxMin algorithm are set to be ρ1 = 0.1 and ρ2 = 0.1, 0.05, and 0, 01 for, respectively,

p = 0dB, 10dB, and 20dB; the termination criterion is

(r
(t+1)
min + r̂

(t+1)
min )− (r

(t)
min + r̂

(t)
min)

r
(t)
min + r̂

(t)
min

< 10−3

max{‖Cr(t) − r̂(t)‖∞, ‖(Dv(t))2 − (v̂(t))2‖∞}} < 5× 10−4

where (·)2 represents elementwise square operation.

For the comparison purpose, the following two heuristic algorithms are considered.

Heuristic 1 (greedy approach):

We assume that each mobile user is served by a single BS on a specific frequency tone.

For each user, we pick the BS and channel pair that has the strongest channel as its

serving BS and channel. After BS-user association is determined, each BS uniformly

allocates its power budget to the available frequency tones as well as to the served users

on each tone.

With the obtained power allocation and BS-user association, the capacity of all wire-

less links are available and fixed, so the min-rate of all commodities can be maximized

by solving a wireline routing problem.

Heuristic 2 (orthogonal wireless transmission):

For the second heuristic algorithm, each BS uniformly allocates its power budget to

each frequency tone. To obtain a tractable problem formulation, we further assume that

each active wireless link is interference free. Hence, each wireless link rate constraints

now becomes convex. To impose this interference free constraint, additional variables

βl ∈ {0, 1}, ∀ l ∈ Lwl are introduced, where βl = 1 if wireless link l is active, otherwise

βl = 0. In this way, there is no interference on wireless link l if
∑

n∈I(l) βn = 1. To
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Figure 3.5: The min-rate achieved by N-MaxMin algorithm and the two heuristic algo-
rithms for different M and power budgets.

summarize, we solve the following optimization problem:

max rmin

s.t. 1T fl ≤ βl log

(

1 +
|hl|2p̄sl/K

σ2
dl

)

,

∑

n∈I(l)
βn = 1, βl ∈ {0, 1}, ∀ l, n ∈ Lwl,

(3.1), (3.3), and (3.5b).

Since the integer constraints on {βl | ∀ l ∈ Lwl} are also intractable, we relax it to

βl = [0, 1]. In this way the problem becomes a large-scale LP, whose solution represents

an upper bound value of this heuristic.

In Fig. 3.5, we show the min-rate performance of different algorithms for different

number of commodities and power budget. We observe that the min-rate achieved by the

N-MaxMin algorithm is more than twice of those achieved by the heuristic algorithms.

In the second set of numerical experiments, we evaluate the proposed N-MaxMin

algorithm using different number of commodity pairs and different power budgets at

the BSs. Here we use the same settings as in the previous experiment, except that all

mobile users are interfered by the BSs within a distance of 800 meters, and that we
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set ρ2 = 0.005 (resp. ρ2 = 0.001) when P = 10 dB (resp. P = 20 dB). The min-rate

performance for the N-MaxMin algorithm and the required number of inner iterations

are plotted in Fig. 3.6. Due to the fact that the obtained {r,v} is far from the stationary

solution in the first few outer iterations, there is no need to complete Algorithm 2 at

the very beginning. Hence, we limit the number of inner iterations to be no more than

500 for the first 5 outer iterations. After the early termination of the inner Algorithm

2, we use the obtained v to update u and w by (3.8) and (3.9), respectively.

In Fig. 3.6(a)–(b), we see that when P = 10 dB, the min-rate converges at about the

10th outer iteration when the number of commodities is up to 30, while less than 500

inner iterations are needed per outer iteration. Moreover, after the 10th outer iteration,

the number of inner ADMM iterations reaches below 100. In Fig. 3.6(c)–(d), the case

with P = 20dB is considered. Clearly the required number of outer iterations is slightly

more than that in the case of P = 10dB, since the objective value and the feasible set

are both larger. However, in all cases the algorithm still converges fairly quickly. Also,

for a cloud-based C-RAN architecture, the network nodes are partitioned into several

subnetworks, each managed by a separate cloud center. In this case, the computation

can be distributed across the cloud centers, with the communication overhead restricted

to only the variables associated with the links connecting the neighboring subnetworks.

In the last set of numerical experiments, we demonstrate how the parallel implemen-

tation can speed up Algorithm 2 considerably. To illustrate the benefit of parallelization,

we consider a larger network (see Fig. 3.7) which is derived by merging two identical BS

networks shown in Fig. 4.7. The new network consists of 126 nodes (12 network routers

and 114 BSs). For simplicity, we removed all the wireless links, so constraints (3.2) and

(3.4) of problem (3.5) are absent. This reduces problem (3.5) to a network flow problem

(a very large linear program).

We implement Algorithm 2 using the Open MPI package, and compare its efficiency

with the commercial LP solver, Gurobi [121]. For the Open MPI implementation, we

use 9 computation cores for each set of network nodes as illustrated in Fig. 3.7. We

choose ρ1 = 0.01 and let the BSs serve as the destination nodes for commodities. Table

4.3 compares the computation time required for different implementation of Algorithm

2 and that of Gurobi. We observe that parallel implementation of Algorithm 2 leads

to more than 5 fold improvement in computation time computed on SunFire X4600
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Figure 3.6: The min-rate performance and the required number of iterations for the
proposed N-MaxMin algorithm. In [(a)(b)] P = 10dB and in [(c)(d)] P = 20dB. In
[(a)(c)], the obtained min-rate versus the iterations of N-MaxMin is plotted. In [(b)(d)],
the required number of inner ADMM iterations is plotted against the iteration for the
outer N-MaxMin algorithm.
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Figure 3.7: The considered network consists of 114 BSs and 11 routers with the locations
and the connectivity between these nodes. Each computation core is responsible for one
group of nodes shown in the figure

server with AMD Opteron 8356 2.3GHz CPUs. We also note that when the problem

size increases, the performance of Gurobi becomes worse than that achieved by the

parallel implementation of Algorithm 2. Thus, the proposed algorithm (implemented in

parallel) appears to scale nicely to large problem sizes.

In the last numerical experiment, we have demonstrated the computational benefits

for the proposed ADMM-based algorithm via distributed and parallel implementation.

However, the proposed distributed algorithm 1 (c.f. Chapter 2) and 2 (c.f. Chapter 3)

demand each computation node to be synchronous to each other. In the next chapter,

we will further relax this synchronization requirement, which can further speed-up the

proposed distributed algorithm.
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# of
Commodities

50 100 300

Time (s)
(Sequential)

1.04 2.03 8.53

Time (s)
(Parallel)

0.20 0.37 1.10

Time (s)
(Gurobi)

0.20 0.64 2.51

# of
Variables

1.4×104 2.9×104 8.7×104

# of
Constraints

2.1×104 4.2×104 1.3×105

Table 3.3: Comparison of computation time used by different implementations for the
routing only problem.



Chapter 4

A Distributed

Semi-Asynchronous Algorithm

for the provision of C-RAN

The ADMM has been popular for solving large-scale convex optimization problems.

Among all its features, ADMM is easily implementable over a network of distributed

nodes, making it the state-of-the-art algorithm for large-scale distributed optimization.

For instance, in the previous chapters, we have proposed Algorithm 1 and 2 for the

distributed implementation. However, these algorithms require the synchronization be-

tween the computation nodes. In this chapter, we propose an asynchronous distributed

algorithm that can handle a specific form of asynchronism arising in the network. Specif-

ically, our proposed algorithm is based on the so-called BSUM-M algorithm [108], a new

variant of ADMM. Theoretically, we show that the proposed algorithm converges to the

global optimal solution under some assumptions on the degree of network asynchrony.

Practically, the effectiveness and efficiency of the proposed asynchronous algorithm are

illustrated through solving the backhaul network routing problem of the C-RAN archi-

tecture.

73
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4.1 Related Works

Asynchronous algorithms such as those studied in the classical work of [38] are less

susceptible to network synchronization error and are more robust to communication

failures. Hence they are of great interests to distributed big data processing. Recently,

many different asynchronous first-order algorithms have been proposed [122–125], under

different assumptions on the network asynchrony. Specifically, [122] allows the gradients

to be updated with random subset of nodes, thus the overall performance of the system

will not be much affected by temporary node failures. In [123–125], the communication

delays between computation nodes have been taken into account, allowing the gradient

at each computation node to be calculated with (possibly) outdated information from

other computation nodes. These algorithms [123–125] have been shown to converge

even in the dynamic scenario.

A different paradigmn for distributed optimization is the ADMM, which has found

applications in a plethora of machine learning and networking problems. Many vari-

ants of ADMM have been proposed in the literature [108, 126–128]. However, only a

few asynchronous versions of ADMM have been proposed [109–112, 129]. In [111], a

randomized version of ADMM is considered where a random subset of nodes are up-

dated at each iteration, a form of network asynchrony closely related to that considered

in [122]. In [112], another randomized ADMM is considered, but it further incorporates

the outdatedness of information between computation nodes. In [109, 110], both the

heterogeneity of computation nodes and communication delays/failures have been in-

corporated into the ADMM framework for the so-called global consensus problem [39].

Furthermore, the algorithm in [110] can deal with not only convex problems but also

a class of nonconvex ones. Although these two algorithms accommodate network asyn-

chrony, they are only shown to work for special optimization problems with consensus

constraint among nodes. Moreover, for [109], no constraint is allowed for the consensus

problem, and for [110], all nonsmooth terms and constraints should be handled by the

central computation node.

In this chapter, we propose one specific asynchronous distributed algorithm based

on the BSUM-M recently developed in [108], which is a variant of ADMM that han-

dles multiple blocks of variables. Our approach follows the semi-asynchronous scheme
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in which the computation nodes update a subset of its variables that are coupled to

the new incoming information from other nodes. The semi-asynchronous scheme differs

from the well-known partially asynchronous scheme described in [38] in the sense that

no out-of-sequence communication is allowed. Moreover, the scheme is very similar to

the asynchronous implementation in [111, 112]. However, in [111, 112], the sequence of

variable updates follows a random distribution, which cannot well model the asynchro-

nism due to different processing speed between computation nodes. In contrast, the

semi-asynchronous scheme studied in this chapter can be viewed as a more practical de-

terministic counterpart, in which the nodes are updated following an essentially cyclic

(EC) rule [91, 113]. Furthermore, unlike the existing asynchronous ADMM algorithm-

s [109,110], the proposed asynchronous algorithm allows each computation node to have

its own local constraints. The latter feature gives extra design flexibility to distribute

the computation loads across different local nodes.

4.2 System Model and Problem Formulation

In this chapter, the following structured convex optimization problem is considered:

min
x

f(x) =
K∑

i=0

fi(xi) (4.1a)

s.t. Ai
ijxi +Aj

ijxj = bij , 0 ≤ i < j ≤ K, (4.1b)

xi ∈ Xi, i = 0 ∼ K, (4.1c)

where the optimization variable x ∈ R
n is partitioned as x =

[
xT
0 , . . . ,x

T
K

]T
with

xi ∈ R
ni , i = 0 ∼ K, and

∑K
i=0 ni = n; Xi, i = 0 ∼ K, is the convex feasible set for

xi and X =
∏K

i=0 Xi; A
i
ij ∈ R

mij×ni and Aj
ij ∈ R

mij×nj , 0 ≤ i < j ≤ K, are arbitrary

matrices that couple variables xi and xj ; fi, i = 0 ∼ K, is a smooth convex function.

Many contemporary problems, especially problems with underlying network structures,

in signal processing, machine learning and communication systems can be formulated

in the form of (4.1); see e.g., [39]. To solve problem (4.1), we start with the augmented
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Lagrangian function of (4.1) as follows:

L(x;λ) =

K∑

i=0

fi(xi) +
∑

0≤i<j≤K

[

〈Ai
ijxi +Aj

ijxj − bij ,λij〉+
ρ

2
‖Ai

ijxi +Aj
ijxj − bij‖2

]

(4.2)

where ρ > 0 is the augmented Lagrangian parameter; λij ∈ R
mij , 0 ≤ i < j ≤ K, is

the Lagrangian dual variables for linear equality constraint (4.1b), and we will denote

λ , [{λT
ij}ij ]T . The ADMM algorithm then solves problem (4.1) by

xt+1
i = arg min

xi∈Xi

L(xt+1
0 , . . . ,xt+1

i−1,xi,x
t
i+1, . . . ,x

t
K ;λt), i = 0 ∼ K, (4.3a)

λt+1
ij = λt

ij + ρ(Ai
ijx

t+1
i +Aj

ijx
t+1
j − bij), 0 ≤ i < j ≤ K, (4.3b)

where t = 1, 2, 3 . . . is the iteration index. For the special case that K = 1, the up-

date procedure (4.3) reduces to the 2-block ADMM algorithm, which can converge to

the optimal primal and dual solutions, i.e., x⋆ and λ⋆, under some mild condition-

s [38, Proposition 4.2]. Here λ⋆ solves the dual problem maxλ[minx∈X L(x;λ)], which

achieves the same optimal dual value as the global minimum of problem (4.1) if strong

duality holds [33]. However, whenK > 1, the multi-block ADMM has been shown to not

always converge [130], and some variants have been proposed to guarantee convergence,

e.g., [108,128,131].

In the following, we make some standard assumptions for the considered problem

(4.1),

(A1) The global minimum and dual optimal value of problem (4.1) is attainable. The

intersection X ∩ int(dom f) ∩ {x | (4.1b)} is nonempty.

(A2) fi(xi), i = 0 ∼ K, has Lipchitz continuous gradient, i.e.,

‖∇fi(v)−∇fi(u)‖ ≤ L‖v − u‖, ∀ v,u ∈ Xi. (4.4)

(A3) The function fi(xi), i = 0 ∼ K, can be decomposed as fi(xi) = gi(Dixi)+〈xi,b〉,
where Di is some given matrix (not necessarily full column rank), and gi(·) is a

strongly convex and continuously differentiable function on int(dom gi), i.e., there

exists some δi > 0 some that

gi(v)− gi(u) ≥ 〈∇gi(u),v − u〉+ δi
2
‖v − u‖2, ∀ v,u ∈ int(dom gi).
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Figure 4.1: An illustrative diagram of the considered distributed system.

(A4) The feasible sets Xi, i = 0 ∼ K, are compact polyhedral sets, and are given by

Xi , {xi | Cixi ≤ ci}, for some matrix Ci and ci.

Note that, the assumptions (A3) and (A4) can be replaced by (A3’): fi(·) is strongly

convex, i = 0 ∼ K.

Given the problem formulation (4.1) and the above assumptions, our goal is to

solve it distributedly with some tolerance for asynchronism. Specifically, we consider

a network topology where there are K + 1 computation nodes. We let each node i,

i = 0, 1, · · · ,K, keeps xi. Every pair of node i and j, 0 ≤ i < j ≤ K, exchanges Ai
ijxi

and Aj
ijxj while the Lagrangian dual variable λij is shared between them for solving

problem (4.1). See Fig. 4.1 for the illustration of the considered distributed system

with 3 computation nodes. Most of the traditional distributed implementation, e.g.,

the ADMM approach in (4.3), requires the synchronization between the nodes, e.g.,

each node cannot perform any update until it receives the latest information from all

other neighboring nodes. This means the efficiency of the synchronous implementation

strongly depends on the communication delays, and if the nodes have different compu-

tational capabilities it will be dominated by the slowest computing node. In Fig. 4.2(a),

an example of the synchronous implementation for the distributed system in Fig. 4.1 is

provided with node 2 being the slowest node.
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Figure 4.2: The illustration of different updating schemes with 3 nodes. (a) synchronous;
(b) proposed semi-asynchronous.

In this chapter, we consider the semi-asynchronous scheme which allows the use of

outdated information at the nodes. Specifically, as illustrated in Fig. 4.2(b), each node

starts to update its own local variable whenever an updated information from a subset

of other nodes is received. For example, in Fig. 4.2(b), the second update of node 1

occurs when it receives the information from node 0. However, during its update, the

information of A0
01x0 and A2

12x2 in node 1 are becoming outdated since x0 and x2, are,

respectively, being updated at the same time in node 0 and node 2. As is illustrated in

the figure, we assume that the order of the communication between nodes is not out-of-

sequence in the proposed semi-asynchronous scheme. This model is more restrictive than

the partially asynchronous scheme defined in [38]. Since no synchronization requirement

is needed for the proposed semi-asynchronous scheme, the computation capabiilty of

each node would not be wasted. The efficiency of the semi-asynchronous approach would

hence be improved over the synchronous counterpart, especially when the computational

speeds are not balanced across the nodes. Before going into the details of the proposed

approach, we discuss in the next section a motivating application on the design of TE

algorithm for a hierarchical network.
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Figure 4.3: A wireline network consists of 5 subnetworks. Each of them is controlled by
a network controller (NC), and these NCs are coordinated globally by a central NC 0.

4.3 An Application: Hierarchical Network Traffic Engi-

neering

As an application, we apply the proposed semi-asynchronous BSUM-M algorithm to the

hierarchical network traffic engineering (TE) problem, in which a number of network

controllers (NCs) are deployed in different geographical locations, each controlling a set

of network nodes. A master NC, say NC 0, globally coordinates the behavior of the

distributed NCs, see Fig. 4.3 for an illustration. Such network appears for example in

the backhaul of the C-RAN architecture in Chapter 3, in which each NC is a cloud

center managing a subset of closely located network routers and base stations.

We consider a connected networkN = (V,L) which is controlled byK+1 NCs. Let V
denote the set of network nodes, which is partitioned into K subsets, i.e., V =

⋃K
i=1 V i,

V i ∩ Vj = ∅, ∀ i 6= j. The set of directed links is denoted as L , {l = (sl, dl) |
∀ sl, dl ∈ V}, where l = (sl, dl) denotes the directed link from node sl to node dl.

Each NC i, i = 1 ∼ K, controls the ith subnetwork N i which consists of V i and

the links connecting these nodes, i.e., Li , {l = (sl, dl) ∈ L | ∀ sl, dl ∈ V i}. Also

define L0ij , {l = (sl, dl) ∈ L | ∀ sl ∈ V i, dl ∈ Vj} as the set of links connecting two
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neighboring subnetworks i and j. The links connecting different subnetworks is denoted

as L0 =
⋃

i 6=j L0ij. We also assume a master node, denoted by NC 0, exists which

controls the fairness between all the data flow rates {rm}Mm=1.

Consider maximizing the minimum rate of all data flows. Following the same nota-

tions as in Chapter 3, the problem can be formulated as the following linear program

min
f , r

−rmin s.t. f ≥ 0, rm ≥ rmin, m = 1 ∼M (4.5a)

(3.1) and (3.3), (4.5b)

where constraints (3.1) and (3.3) are, respectively, for the link capacity and per-node

flow conservation condition, see Chapter 3.1 for details; and f , {fl | l ∈ L} and

r , {rmin, rm | m = 1 ∼ M}. Note that the minimum rate is used here because it

assures a fair rate allocation among the data flows, and such utility has been adopted

by many recent works; e.g., [119]. Other objective functions such as the sum rate or the

proportional fairness can be used here as well.

To put problem (4.5) into the form of (4.1), we introduce a few auxiliary variables

(see Fig. 4.4 for illustration)

• For each flow rate fl ∈ L0ij , ∀ i, j, we introduce two extra copies, namely f sll and

fdll . We let fl be controlled by NC i, and f sll and fdll be individually managed by

the two neighboring NC i and j.

• For each data flow rate rm, we introduce two extra copies: rsmm and rdmm . The

original one rm is managed by the master node while rsmm and rdmm are, respectively,

managed by the source and the destination NCs of flow m.

• Within each subnetwork, we introduce a new copy f̃l for the link flow rate fl, ∀ l ∈
L \ L0.

For notational simplicity, we have created a few groups of the variables and denote

them as {xi}i, {x0i}i, {xi1j}i,j 6=i, {xi2j}ij ,{xi3}i, and {xi4}i; see Table 4.1 for detailed

definitions.
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Figure 4.4: The relationship across the introduced local auxiliary variables. The vari-
ables connected by dash lines should be equal to each other. Each variable belongs to
the variable group inside the closest dash circle.

Obviously, the original variables and their splits should be identical, therefore we

have the following sets of equality constraints

x0i = xi0 ⇒ A0
0ix0 = Ai

i0xi
︸ ︷︷ ︸

in master node and N i

, i = 1 ∼ K, (4.6a)

xi1j = xj2i and xj1i = xi2j ⇒ Ai
ijxi = Aj

ijxj
︸ ︷︷ ︸

in N i and N j

, 1 ≤ i < j ≤ K, (4.6b)

xi2i = {xi1j}j 6=i, xi3 = xi4
︸ ︷︷ ︸

in N i

, i = 1 ∼ K, (4.6c)

where Ai and Aij , 0 ≤ i < j ≤ K, are the matrices that ensure the compact expressions

for the equality constraints are the same as the original ones. For example, in (4.6a), each

row of A0i and Ai0 is a vector, which has all elements equal to 0 except for one element

which equals 1. Thus, each component of A0ix0 is a specific element of x0i, which is

a subvector of x0. Similarly argument applies for Ai0xi. By properly allocating the

variables x = {xi}i=0∼K to the constraints of problem (4.5), these constraints become

separable over subnetworks. Moreover, (3.1) and (3.3) become independent to each
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Notations Definitions Physical meaning

x0 {rmin} ∪
(
∪Ki=1x0i

) The variables stored in the
master node

x0i {rm | ∀ m s.t. sm or dm ∈ V i}
The data flow rates originate

from or go to N i

xi xi0 ∪ {xi1j}j 6=i ∪ {xi2j}j ∪ xi3 ∪ xi4 The variables stored in N i

xi0 {rvm | v ∈ V i,∀ m}
The auxiliary variables copied
from x0i in the master node

xi1j, j 6= i {fl | l ∈ L0ij}
The bordering flow rate
variables for links l ∈ L0ij

xi2j, j 6= i {fvl | l ∈ L0ji, v ∈ V i}
The auxiliary variables copied

from xj1i in N j

xi2i {fvl | l ∈
⋃

j 6=iL0ij , v ∈ V i}
The auxiliary variables copied

from {xi1j}j 6=i in N i

xi3, xi4 {fl | l ∈ Li}, {f̃l | l ∈ Li}
The flow rate variables within
N i, and their corresponding

local copies

Table 4.1: Summary of physical meaning and the relationship for variables stored in N i,
i = 0 ∼ K

other. Specifically, the reformulated constraints can be expressed as

X0 = {x0 | rm ≥ rmin, ∀ m}, (4.7)

Xi = {xi | (4.6c), 1T f̃li ≤ Cli , f̃li ≥ 0, ∀ li ∈ Li, 1T fl ≤ Cl, fl ≥ 0, ∀ l ∈ L0ij, j 6= i,
∑

l∈In(v)∩Li

fl,m +
∑

l∈In(v)∩L0

f v
l,m + 1v=smr

v
m

=
∑

l∈Out(v)∩Li

fl,m +
∑

l∈Out(v)∩L0

f v
l,m + 1v=dmrvm, ∀ v ∈ V i,∀ m}, i = 1 ∼ K

(4.8)

In summary, problem (4.5) is equivalently reformulated as

min
x

− rmin (4.9a)

s.t. Ai
ijxi = Aj

ijxj, ∀ 0 ≤ i < j ≤ K, (4.9b)

xi ∈ Xi, i = 0 ∼ K. (4.9c)
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After this reformulation, we can observe that all the constraint sets Xi, i = 0 ∼
K, satisfying assumption (A4) (i.e., compact and polyhedral). The coupling equality

constraints between subnetworks are in the form of (4.1b). The objective function is

a linear function of variable x0 while being zero function for all other variables xi,

i = 1 ∼ K, therefore satisfying assumptions (A2-A3). Furthermore, problem (4.9) is

always feasible, i.e., assumption (A1) is satisfied, so it falls into the formulation (4.1).

Remark 7 The reformulation introduced in (4.9) is a generalization of our previous

synchronous routing algorithm in Chapter 3. The main difference is that in Chapter 3,

a similar splitting is done for each node and link in the network, without modeling the

physical subnetwork structure. Therefore, too many auxiliary variables are introduced.

Moreover, this new reformulation enables semi-asynchronous implementation, as will be

explained shortly.

4.4 Proposed Semi-Asynchronous BSUM-M Algorithm

In this section, we formally introduce the proposed semi-asynchronous BSUM-M (Semi-

BSUM-M) algorithm. We will first introduce the general algorithm description and its

convergence analysis for BSUM-M with EC rule. After that, the extension that incorpo-

rates the semi-asynchronism is introduced. The specialization of the semi-asynchronous

implementation for the network TE problem (4.9) will be described in Sec. 4.5.

4.4.1 The BSUM-M Algorithm with Essentially Cyclic Update Rule

We begin by simplifying the notation in problem (4.1). For each constraint of (4.1b)

that couples variable xi and xj , i.e., A
i
ijxi +Aj

ijxj = bij, 0 ≤ i < j ≤ K, we write it

compactly as Ãkx = b̃k, where k is the constraint index; Ãk , [Ã0k, Ã1k, . . . , ÃKk];

Ãik = Ai
ij, Ãjk = Aj

ij , and Ãmk = 0, ∀ m 6= i, j; and b̃k = bij . By denoting the total

number of constraints as J = (K +1)K/2, problem (4.1) can be equivalently expressed
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as follows

min f(x) =
K∑

i=0

fi(xi) (4.10a)

s. t. Ãjx = b̃j , j = 1 ∼ J (4.10b)

xi ∈ Xi, i = 0 ∼ K. (4.10c)

The corresponding augmented Lagrangian function is expressed as

L(x;λ) =
K∑

i=0



fi(xi) +
J∑

j=1

(

〈Ãjx− b̃j〉+
ρ

2
‖Ãjx− b̃j‖2

)



 . (4.11)

With this compact expression, we are ready to review the synchronous BSUM-M algo-

rithm [108] for problem (4.1) in the following table.

BSUM-M with EC rule:

1: Initialization x = 0, λ0 = 0, γ ≥ 0, and t = 0

2: Repeat

3: Update

i) Primal variable xi at node i, i = 0 ∼ K:

xt+1
i =

{

argminxi∈Xi
L(xt

−i,xi;λ
t) + γ

2‖xi − xt
i‖2 if Itp,i = 1

xt
i if Itp,i = 0

,

ii) Dual variable λj between nodes, j = 1 ∼ J :

λt+1
j =

{

λt
j + αt(Ãjx

t+1 − b̃j) if Itd,j = 1

λt
j if Itd,j = 0

.

4: t = t+ 1

5: Until A desired stopping criterion is met.

In the above table, xt
−i , [xt

0, . . . ,x
t
i−1,x

t
i+1, . . . ,x

t
K ]; {Ip,i}i and {Id,j} are the

binary variables indicating whether each of the primal variable xi and the dual variable

λj should be updated at the tth iteration; αt > 0 is the stepsize for updating the dual

variables at iteration t. In [108], two update rules have been proposed. The first one

follows the Gauss-Seidel rule which updates each xi and λ sequentially, while the second
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randomly selects one primal variable xi or the dual variables λ to update. One can

observe that BSUM-M is a synchronous algorithm: at each iteration t, in order to update

xi, the computation node i requires the most current {Aj
jixj,A

k
ikxk,λji,λik}j<i, k>i

from all the connecting nodes. It is worth noting that if i) γ = 0; ii) a constant dual

stepsize is picked, i.e., αt = ρ, ∀ t; and iii) and Gauss-Seidel update rule is used, the

synchronous BSUM-M algorithm is the same as the multi-block ADMM algorithm, see

(4.3). However, as will be shown shortly, the BSUM-M with EC rule is better suited for

semi-asynchronous implementation via certain reformulation. The main reason is that

the multi-block nature of the considered problem can capture the asynchronism well,

but to ensure convergence requires proper dual stepsize control.

In what follows, we will extend the update rule for the synchronous BSUM-M algo-

rithm to the more general EC update rule. In particular, at the tth iteration, we require

that
∑K

i=0 I
t
p,i+

∑J
j=1 I

t
d,j = 1, that is only one primal variable, xi, or one dual variable,

λj , can be updated. Furthermore, every primal and dual variable will be updated at

least once for τ > 0 iterations. Formally, we have the following definition.

(A5) (EC update rule) For the tth iteration
∑K

i=0 I
t
p,i +

∑J
j=1 I

t
d,j = 1, ∀ t. Moreover,

there exists a period τ ≥ 1 during which each primal and dual variable is updated

at least once, i.e. for every T ≥ 0,

t+τ∑

t=T+1

Itp,i ≥ 1,

t+τ∑

t=T+1

Itd,j ≥ 1, ∀ i, j. (4.12)

The EC update rule is the generalization of the more restricted Gauss-Seidel one, which

has essentiality τ = 1 + K + J and a fixed update sequence. Also, it can be any

deterministic update sequence following the definition (A5) without any underlying

probability model as assumed in the randomized update rule. We first analyze the

convergence property of the BSUM-M algorithm with EC update rule, and it is shown

in the following theorem.

Theorem 5 Suppose the assumptions (A1)–(A5) hold. Assume the αt satisfies the

following stepsize rule:

∞∑

t=1

αt =∞, lim
t→∞

αt = 0. (4.13)
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If

γ +
ρλmin(

∑J
j=1 Ã

T
ijÃij)

2
> 0, i = 0 ∼ K, (4.14)

then limt→∞ ‖xt+1 − xt‖ = 0 and limt→∞ ‖Ãjx
t − b̃j‖ = 0, j = 1 ∼ J . Furthermore,

every limit point of {xt,λt} generated by the BSUM-M algorithm with essential cyclic

rule is a primal and dual optimal solution.

The proof of Theorem 5 is relegated to the appendix D. Note that by examining the

analysis details, the convergence analysis can be extended to incorporate some non-

smooth objective functions. Specifically, each objective function fi(xi), ∀ i, can be

replaced by

fi(xi) + wi‖xi‖1 +
∑

m

wi,m‖xi,m‖2,

where wi ≥ 0 and wi,m ≥ 0 are some constants and xi = (. . . ,xi,m, . . .) is a partition of

xi with m being the partition index. This is due to the fact that the critical local error

bound property used in the proof of Theorem 5 still holds; cf. (D.14) in Appendix D.

Moreover, the stepsize rule of αt given in (4.13) indicates that it should be sufficiently

small in the end. This explains why the direct application of multi-block ADMM with

fixed stepsize ρ may not work. Furthermore, the extra γ term should satisfy the condi-

tion (4.14), which ensures the augmented Lagrangian function plus the extra quadratic

term with coefficient γ is strongly convex for each primal variable. Therefore, after each

primal variable update, the value of the augmented Lagrangian function can be strictly

decreased.

In the next subsection, we will properly reformulate the considered problem (4.1) to

incorporate the different computation and communication delays between nodes. After

the reformulation, we will show that BSUM-M with EC rule results in the desired semi-

asynchronous property.

4.4.2 The Proposed Semi-Asynchronous BSUM-M Algorithm

In this section, we formally introduce the proposed algorithm suitable for the semi-

asynchronous network model. In contrast to the partially asynchronous model [38], our
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semi-asynchronous model does not allow out-of-sequence information exchange nor com-

munication failure. However, the system can still tolerate communication/computation

delays: each node is able to process the updates from other nodes as soon as they arrive

instead of waiting the updates from all other nodes while information from the rest of

the nodes can be outdated. To achieve this, the key is to add a few “buffer” variables

at each node, which decouple the linear equality constraints (4.1b) across the nodes.

Effectively, from a particular node’s perspective, these variables record the latest states

of the rest of the nodes.

Let us denote the new set of auxiliary variables x̄i
ij and x̄

j
ij, 0 ≤ i < j ≤ K, which

are stored in the ith and jth node, respectively. Each x̄i
ij and x̄

j
ij are, respectively,

defined to be equal to Ai
ijxi and Aj

ijxj . Thus the linear equality constraints (4.1b) can

be rewritten as

Ai
ijxi = x̄i

ij, Aj
ijxj = x̄

j
ij , x̄i

ij + x̄
j
ij = bij, 0 ≤ i < j ≤ K. (4.15)

Using these new auxiliary variables, problem (4.1) can be equivalently reformulated as

min
x

f(x) =

K∑

i=0

fi(xi) (4.16a)

s.t. (4.15) and xi ∈ Xi, i = 0 ∼ K. (4.16b)

The corresponding augmented Lagrangian function is expressed as,

L̄(x, x̄; λ̄) =
∑

0≤i<j≤K

[

〈x̄i
ij + x̄

j
ij − bij , λ̄ij〉+

ρ

2
‖x̄i

ij + x̄
j
ij − bij‖2

]

︸ ︷︷ ︸

,L̄ij(x̄i
ij ,x̄

j
ij ;

¯λij)

+

K∑

i=0



fi(xi) +
∑

j<i

〈Ai
jixi − x̄i

ji, λ̄
i
ji〉+

ρ

2
‖Ai

jixi − x̄i
ji‖2

︸ ︷︷ ︸

+
∑

k>i

〈Ai
ikxi − x̄i

ik, λ̄
i
ik〉+

ρ

2
‖Ai

ikxi − x̄i
ik‖2

]

︸ ︷︷ ︸

,L̄i(xi,{x̄i
ji}j<i,{x̄i

ik
}k>i;{ ¯λ

i

ji}j<i,{ ¯λ
i

ik}k>i)

(4.17)

where x̄ , {x̄i
ij , x̄

j
ij | 0 ≤ i < j ≤ K}, and λ̄ , {λ̄i

ij , λ̄
j
ij , λ̄ij | 0 ≤ i < j ≤ K} is the

set of dual variable for linear equality constraints of (4.15). Notice that only the extra
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auxiliary variables x̄i
ij and x̄

j
ij , which are stored in different nodes, are coupled to each

other through L̄ij(x̄
i
ij , x̄

j
ij ; λ̄ij), 0 ≤ i < j ≤ K. On the other hand, the augmented

Lagrangian L̄(x, x̄; λ̄) is separable over {xi}Ki=0. By exploiting this separability property,

we propose the Semi-BSUM-M algorithm, which is summarized in Table 4.2.

Let us explain the algorithm in detail for the tth iteration of node i. First, let us

use the binary variables Ii,tji and Ii,tik to respectively denote whether auxiliary variables

and the dual variables {x̄i
ji, λ̄ji} and {x̄i

ik,λik}, j < i and k > i, should be updated.

Node i receives the updated information only from a subset of other nodes denoted

as St,i ⊆ {0, . . . ,K}. In particular, new information x̄
j
ji and x̄k

ik is received from the

“active” nodes j, k ∈ St,i, j < i and k > i. This information is used to update the

local variables and the dual variables {x̄i
ji, λ̄ji} and {x̄i

ik, λ̄ik}, cf. (4.18) and (4.19), so

Ii,tji = 1 and Ii,tik = 1. On the other hand, the variables {x̄i
j′i, λ̄j′i} and {x̄i

ik′ , λ̄ik′} related
to the “inactive” nodes j′, k′ ∈ Sct,i, j′ < i and k′ > i, remain the same until these nodes

become “active”, and Ii,tj′i and Ii,tik′ are zero. After the updates of auxiliary variables, the

local variable xi will be updated, so Itp,i = 1. Furthermore, semi-asynchronous model

requires the mild bounded delay assumption at each node, i.e., the outdatedness between

nodes cannot exceed a fixed upper bound. To guarantee this assumption, each node

needs to keep track of the outdatedness of the local variables, and will stop updating if

there is no update from a specific node for a predetermined upper bound τ semi. With

the bounded delay assumption, for each node all its direct neighbors should be updated

at least once within τ semi local iterations, and the update sequence is strongly related to

the subset St,i. Hence, we observe that the proposed Semi-BSUM-M algorithm indeed

belongs to the BSUM-M with EC rule, because there exists a bounded time interval in

which all variable will be updated at least once (whose bound is related to τ semi).

Second, the additional tolerance of the semi-asynchronism for Semi-BSUM-M can

be obtained as follows. Combining with the fact that the update of local variable xi (cf.

(4.20)) only depends on the auxiliary variables {x̄i
ji}j<i and {x̄k

ik}k>i, it follows that

these extra auxiliary variables serve as a “buffer” which stores the latest information

from each of the connected node. Moreover, the node i only sends out the updated

information to the active nodes at its tth iteration, triggering the next round of buffer

variable updates at those active nodes. After that, the new snapshot of the buffer

variable will be sent back to node i.
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Semi-BSUM-M: Steps for node i, i = 0 ∼ K

1: Initialization x0 = 0, x̄0 = 0, λ̄
0
= 0, γ > 0, {αt}, τ semi > 0, and t = 0

2: Repeat
3: Wait until receiving {x̂j

ji, λ̂ji}j<i and {x̂k
ik, λ̂ik}k>i from node j, k ∈ St,i.

For j′, k′ ∈ Sct,i, j′ < i, k′ > i, {τ tj′i, τ tik′} < τ semi.

4: Update For ∀ j < i:

If j ∈ Sct,i, i.e., Ii,tji = 0: x̄
j,t+1
ji = x̄

j,t
ji , λ̄

t+1
ji = λ̄

t
ji, and τ t+1

ji = τ tji + 1

If j ∈ St,i, i.e., Ii,tji = 1: x̄
j,t+1
ji = x̂

j
ji, λ̄

t+1
ji = λ̂ji, τ t+1

ji = 0

x̄
i,t+1
ji =argmin

x̄
i
ji

〈Ai
jix

t
i − x̄i

ji, λ̄
i,t+1
ji 〉+ ρ

2
‖Ai

jix
t
i − x̄i

ji‖2

+ L̄ji(x̄
j,t+1
ji , x̄i

ji; λ̄
t+1
ij ) +

γ

2
‖x̄i

ji − x̄
i,t
ji ‖2 (4.18)

λ̄
t+1
ji =λ̄

t+1
ji + αt(x̄j,t+1

ji + x̄
i,t+1
ji − bji)

Send {x̄i,t+1
ji , λ̄

t+1
ji }k>i to node j ∈ St,i

5: Update For ∀ k > i:

If k ∈ Sct,i, i.e., Ii,tik = 0: x̄
k,t+1
ik = x̄

k,t
ik , λ̄

t+1
ik = λ̄

t
ik, and τ t+1

ik = τ tik + 1

If k ∈ St,i, i.e., Ii,tik = 1 : x̄
k,t+1
ik = x̂k

ik, λ̄
t+1
ik = λ̂ik, τ t+1

ik = 0

x̄
i,t+1
ik =argmin

x̄
i
ik

〈Ai
ikx

t
i − x̄i

ik, λ̄
i,t+1
ik 〉+ ρ

2
‖Ai

ikx
t
i − x̄i

ik‖2

+L̄ik(x̄
i
ik, x̄

k,t+1
ik ; λ̄

t+1
ik )+

γ

2
‖x̄i

ik − x̄
i,t
ik‖2 (4.19)

λ̄
t+1
ik =λ̄

t+1
ik + αt(x̄i,t+1

ik + x̄
k,t+1
ik − bik)

Send {x̄i,t+1
ik , λ̄

t+1
ik }k>i to node k ∈ St,i

6: Update (Itp,i = Itd,i = 1) For ∀ j < i < k:

xt+1
i = arg min

xi∈Xi

L̄i(xi, {x̄i,t+1
ji }j<i, {x̄i,t+1

ik }k>i; {λ̄i,t
ji }j<i, {λ̄i,t

ik}k>i) +
γ

2
‖xi − xt

i‖2,

(4.20)

λ̄
i,t+1
ji =

{

λ̄
i,t
ji + αt(Ai

jix
t+1
i − x̄

i,t+1
ji ) , j ∈ St,i

λ̄
i,t
ji , j ∈ Sct,i

,

λ̄
i,t+1
ik =

{

λ̄
i,t
ik + αt(Ai

ikx
t+1
i − x̄

i,t+1
ik ) , k ∈ St,i

λ̄
i,t
ik , k ∈ Sct,i

7: t = t+ 1
8: Until A given stopping criterion is met

Table 4.2: The update procedure of the proposed Semi-BSUM-M algorithm.
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To give a more concrete illustration about why the asynchronism between nodes

can be handled via the help of the extra buffer variables, in Fig.4.5, we provide an

example consisting of three nodes indexed by i, j, and k, j < i < k. The two subfigures

in the figure represent two consecutive iterations. In Fig.4.5 (a), some of the buffer

variables are updated within node i and k while others are kept fixed. As shown in the

pseudo code of Semi-BSUM-M algorithm, the original variables xi and xk, respectively,

in node i and k will be updated immediately after the updates of the buffer variables,

i.e., x̄i
ji and {x̄k

jk, x̄
k
ik}, respectively. In node j no update occurs since all buffer variable

are updated at the other side of the connecting link. When we proceed to Fig.4.5

(b), the buffer variable update in node i, i.e., x̄i
ji has been completed, and the new

information has been transmitted to node j. The buffer variables x̄j
ji at the other side

start updating, and the local variables xj will be recomputed after the buffer variables

have been renewed. In node k, during the two consecutive iterations in Fig.4.5, the

buffer variables x̄k
jk and x̄k

ik and the local variable xk have not finished updating yet

while the local variables of the other two nodes have changed. This illustrates why with

the help of the introduced buffer variables, the proposed approach allows each node to

process its variables at different speeds. The consistency of the variables is ensured in

the limit as the algorithm converges.

From the previous discussion we conclude that despite the exisitence of asynchronism

between nodes, all variables are updated according to the most up-to-date information

due to the existence of buffer variables. Since the proposed algorithm is BSUM-M with

EC rule, by Theorem 5, we have the following convergence property for Semi-BSUM-M

algorithm

Corollary 1 For Semi-BSUM-M algorithm, if i) the delay upper bound τ semi is finite;

ii) assumptions (A1)-(A4) hold; and iii) the parameter αt and γ satisfy the conditions

as those in Theorem 5, then every limit point of {xt,λt} generated by Semi-BSUM-M

algorithm is a primal and dual optimal solution of problem (4.1).

Before closing this subsection, wecomment on the choice of the parameter ρ. To

reduce the communication overhead between nodes with fewer number of iterations to

achieve convergence, one can apply different ρkij, 0 ≤ i < j ≤ K and k = 1 ∼ 3, for each

individual constraint of (4.15). Specifically, the primal residuals rk,tij and dual residuals
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Figure 4.5: An illustrating example consists of three nodes, j < i < k, for the proposed
Semi-BSUM-M algorithm over two consecutive iterations. (a) corresponds to the first
iteration, and (b) is the second. The blue color indicates the original variables is updat-
ing. The red color represents the extra buffer variables is updating. The black means
the variables remain fixed during the current time.
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sk,tij at the tth iteration can be derived similarly to those in [39, Chap.3.3] with minor

modification to incorporate the time varying effect of {αt} as follows:

r1,tij , Ai
ijx

t
i − x̄

i,t
ij , r

2,t
ij , Aj

ijx
t
j − x̄

j,t
ij , r3,tij , x̄

i,t
ij + x̄

j,t
ij − bij ,

s1,tij , Ai
ij(ρ

1
ijx

t−1
i − xt

i) + (αt−1 − ρ1ij)x̄
i,t
ij ,

s2,tij , Aj
ij(ρ

2
ijx

t−1
j − xt

j) + (αt−1 − ρ2ij)x̄
j,t
ij ,

and s3,tij , (αt−1 − ρ3ij)(x̄
j,t
ij − bij) + αt−1x̄

i,t
ij − ρ3ijx̄

i,t−1
ij .

With these primal/dual residuals, each ρkij is adaptively adjusted by the following mech-

anism:

ρk,t+1
ij =







τ incrρk,tij if ‖rk,tij ‖ > µ‖sk,tij ‖
ρk,tij /τ

decr if ‖sk,tij ‖ > µ‖rk,tij ‖
ρk,tij otherwise

, (4.21)

where µ, τ incr, and τdecr are predetermined parameters; ρ1ij and ρ2ij are updated in node

i and node j, respectively; and ρ3ij is updated in node i with i < j.

4.5 Application to the Network TE Problem

While the generic Semi-BSUM-M algorithm proposed in the previous section can ef-

fectively handle the asynchronism, it does at the same time require solving a convex

problem (4.20) exactly, which can be expensive. Indeed, when specializing to the TE

problem (4.9), problem (4.20) involves the difficult constraint Xi (4.8) which consists of

both the flow conservation constraints and the capacity constraints. In this section, we

specialize the proposed Semi-BSUM-M algorithm to the network TE problem (4.9) in a

way that further reduces computational complexity. Moreover, we will account for the

existence of the master node, and use this fact to further simplify the implementation.

Specifically, we shift the flow rate control for the links across different subnetworks,

i.e., L0, to the master node, which we denote as NC 0. The constraint set at NC 0 is

therefore changed to

X0 = {x0 | rm ≥ rmin, ∀ m, 1T fl ≤ Cl, fl ≥ 0, ∀ l ∈ L0}. (4.22)
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Moreover, the corresponding local update procedure (4.20) at NC 0 is decomposable

across links, and can be performed in closed-form as in (3.22). This modification al-

lows each subnetwork to communicate with NC 0 instead of communicating among

themselves.

Similarly as before, to handle asynchronism between NC i, i = 1 ∼ K and NC

0, we need to introduce “buffer” variables for NC 0, denoted as f̃ sl
l and f̃dl

l , ∀ l ∈ L0.
Moreover, since the distributed NCs no longer communicate with each other, only one set

of buffer variable per distributed NC is enough. In other words, to reduce the number

of the auxiliary variables, the buffer variables are not introduced at each distributed

NC. Instead, the original variables with flow conservation constraints will also serve

as the role of the buffer variables. By doing this, we reduce the number of auxiliary

variables and the computational effort to update them (cf. (4.18) and (4.19)). Similar

reformulation can be applied to the variables for the commodity rates as well. The

resulting relationship across variables is shown in Fig.4.6.

Furthermore, within each subnetwork i, i = 1 ∼ K, the variables xi can be split into

two independent variable sets, i.e., xi = [(x1
i )

T , (x2
i )

T ]T where x1
i , [(xi0)

T , ({xi2j}j)T

, (xi3)
T ]T and x2

i , xi4. By using this expression for xi, the relationship xi3 = xi4

indicates that there exist matrices A1
i = [0 0 I] and A2

i = I satisfying A1
ix

1
i = A2

ix
2
i .

Each of x1
i and x2

i has its own constraint set split from Xi, which is expressed as follows,

X 1
i = {x1

i |
∑

l∈In(v)∩Li

fl,m +
∑

l∈In(v)∩L0

f v
l,m + 1v=smrvm

=
∑

l∈Out(v)∩Li

fl,m +
∑

l∈Out(v)∩L0

f v
l,m + 1v=dmrvm, ∀ v ∈ V i,∀ m},

X 2
i = {x2

i | 1T f̃li ≤ Cli , f̃li ≥ 0, ∀ li ∈ Li}.

In the following, we will exploit this expression for xi and the fact that the proposed

Semi-BSUM-M is the BSUM-M with the EC update rule and with the help of the

extra auxiliary buffer variables. Specifically, the two independent variable sets of xi are

coupled to each other through a linear equality constraint as in BSUM-M (4.10b). Thus,

instead of jointly updating them as in (4.20), we can sequentially update them so that

the number of variable sets within node i is increased to two. The update procedure

(4.20) in each node i is therefore replaced by the following one without affecting the
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Figure 4.6: The relationship across the (auxiliary) variables of semi-asynchronous im-
plementation for network TE problem. The variables connected by dash lines should
be equal to each other, and each belongs to the variable group inside the closest dash
circle.
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convergence property

x
1,t+1
i = arg min

x
1
i∈X 1

i

〈A1
ix

1
i −A2

ix
2,t
i , λ̄

t
i〉+

ρ

2
‖A1

ix
1
i −A2

ix
2,t
i ‖2

+ Li([x
1
i ,x

2,t
i ], {x̄i,t+1

ji }j<i, {x̄i,t+1
ik }k>i; {λi,t

ji }j<i, {λi,t
ik}k>i) (4.23a)

x
2,t+1
i = arg min

x
2
i∈X 2

i

〈A1
ix

1,t+1
i −A2

ix
2
i , λ̄

t
i〉+

ρ

2
‖A1

ix
1,t+1
i −A2

ix
2
i ‖2 (4.23b)

λ̄
t+1
i = λ̄

t
i + αt(A1

ix
1,t+1
i −A2

ix
2,t+1
i ). (4.23c)

where the dual variable for constraint A1
ix

1
i = A2

ix
2
i is denoted as λ̄i. Note that in this

new update rule (4.23), γ = 0 since the condition on γ (4.14) is satisfied. The problem

(4.23a) is in the traditional network optimization problem with quadratic objective

function and flow conservation constraints, and it can be efficiently solved by, e.g., the

RELAX code [70]. The update procedure (4.23b) is decomposable over each link, and

each of them can be solved in closed-form as in (3.22). Hence, each update step in

Semi-BSUM-M algorithm for the network TE problem has efficient solution, and the

computational complexity is effectively reduced.

4.6 Numerical Experiments

In this section, we report some numerical results on the performance of the proposed

Semi-BSUM-M algorithm for solving the network TE problem discussed in Sec.4.3. We

consider a hierarchical network with 126 network nodes. These network nodes are par-

titioned into 9 subnetworks with 306 directed links within these subnetworks and 100

directed links connecting the subnetworks. Each subnetwork is controlled by a local NC,

i.e., K = 9, and there is one central NC 0. The topology and the connectivity of this

hierarchical network are shown in Fig.4.7. The link capacities are generated uniformly

randomly in each simulation sample. In particular, links within each subnetwork have

capacity distributed according to Uniform[50, 100] (MBits/s) and links between each

subnetwork are distributed according to Uniform[20, 50] (MBits/s). The source and the

destination nodes of each data flow are randomly selected from network nodes, and all

simulation results are averaged over 200 randomly selected data flow pairs and link ca-

pacities. The stepsize for updating the dual variables is set as αt = 100/(
√
t+100). Let

γ = 0 and each ρ is initialized as 0.0005 and is adaptively updated according to (4.21)
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Figure 4.7: The considered network topology with 9 subnetworks.

with µ = 100, τ incr = τdecr = 1.2 with maximum and minimum values of ρ being 1 and

0.0005. The bounds for the maximum delay τ semi is set to 10. The cardinality of the ac-

tive set at NC 0 should satisfy |St,0| ≥ 1, and at NC i, i = 1 ∼ K, only information from

NC 0 is received with |St,i| = 1, ∀ t. Both the synchronous and the semi-asynchronous

distributed algorithms are implemented using the Open MPI package with 10 compu-

tational nodes on a SunFire X4600 server with AMD Opteron 8356 2.3GHz CPUs, and

each computational node serves as one NC. No artificial communication delay between

nodes is imposed.

In the experiment, we compare the proposed semi-asynchronous algorithm for for-

mulation (4.16) with the synchronous BSUM-M algorithm where NC 0 updates its local

variables only when the latest information from all subnetworks are available. Three

performance metrics are used. The relative error in objective and the maximum con-

straint violation are, respectively, defined as |rtmin− roptimal
min |/roptimal

min and the maximum

|x − xlocal|/max{1, x} over all variables where x (resp. xlocal) is the original variable

(resp. local auxiliary one). The successive improvement is defined as |rtmin− rt−1
min|/rt−1

min.

Since the considered hierarchical network traffic engineering problem (4.5) is a linear
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program (LP), we also compare its efficiency with the commercial LP solver, Guro-

bi [121]. In Table 4.3, the required computation time for different implementations

is listed when the number of data flows M is 100 and 200. The stopping criterion is

that all the three performance metrics are below 10−3, and the number of iterations is

defined as the number of updates in the NC 0. The corresponding cumulative distribu-

tion function (CDF) of the computation time for CPU is also shown in Fig. 4.8. One

can observe that after applying the parallel implementation across different nodes, the

required computation time is much less than the commercial LP solver. Moreover, the

Semi-BSUM-M algorithm can further reduce the computation time over the synchronous

implementation, and the dynamic range of the computation time is much smaller than

the synchronous counterpart. The variability of computation time is due to the fact

that the size of each subnetwork is different to each other, so the computation time

for local update differs. This demonstrates the benefits of semi-asynchronous model

over the synchronous implementation. Furthermore, we should note that one iteration

for synchronous implementation requires each of the 9 subnetworks exchange its latest

information with NC 0. On the other hand, for the semi-asynchronous implementation,

one central iteration only requires |St,0| ≈ 1 subnetwork exchanges their latest informa-

tion with the NC 0. For fair comparison based on the communication overhead between

nodes, on average 9 iterations for the asynchronous implementations account for 1 iter-

ation for the synchronous implementation. Hence, the communication efficiency of the

Semi-BSUM-M scheme is very close to that of the synchronous counterpart. A similar

performance trend can also be observed for the number of data flows up to 200, showing

the scalability of the proposed algorithms.

M=100 M=200
Approaches Time # of Iterations Time # of Iterations
Gurobi 4.66s N/A 12.01s N/A

Synchronous 8.25s 237.14 18.27s 266.04

Synchronous
with parallelization

2.47s 237.14 5.67s 266.04

Semi-Asynchronous
with parallelization

1.32s 2003.8 3.11s 2161.0

Table 4.3: Comparison of computation time used by different implementations for hier-
archical network traffic problem.
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Figure 4.8: The CDF of the computation time used by different implementations for
hierarchical network traffic problem.



Chapter 5

Conclusion and Discussion

In this dissertation, we consider i) the BS activation problem for HetNet; and ii) the

network provisioning problem for C-RAN. For these design problems, we propose effi-

cient and effective algorithms to respond the challenges arising from practical system

limitations.

Specifically, in Chapter 2, We have utilized the sparsity-promoting techniques and

proposed formulations and distributed algorithms that effectively select the active B-

Ss. In Chapter 3, for the joint design problem of a C-RAN, the resources in both the

fixed backhaul links and the wireless radio access links are optimized. Our proposed

algorithm is capable of efficiently computing a high-quality solution for this large-scale

and nonconvex problem in a distributed manner. However, the efficiency of the dis-

tributed implementations, e.g., algorithms in Chapter 2 and 3, highly depends on the

synchronization requirement between the computation nodes. In Chapter 4, a semi-

asynchronous distributed implementation is proposed. This implementation can well

handle the asynchrony arising among the networked computation nodes, and its effica-

cy is demonstrated via solving the backhaul flow control problem of the C-RAN.

However, there are some practical issues for C-RAN that the dissertation has not

addressed. In particular, we require the knowledge of the perfect CSI for all the wireless

links, and no channel uncertainty is considered. Moreover, the capacities of the backhaul

links should be known and fixed, so the effects of the imperfect lossy backhaul links [132]

and the finite buffer size of the network routers need further investigation. For the

manageability of the backhaul flow control, we further assume the BSs transmit signals
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to users independently or with pre-determined BS clusters without any dynamic BS

cooperation scheme. Furthermore, only the downlink transmission direction, i.e., from

the BSs to the mobile users, is discussed in this dissertation. Although by changing the

roles of the BSs and the mobile users, the proposed C-RAN algorithm can also handle the

uplink data transmission, the coexistence of both directions is not a trivial extension

for the practical TDMA system. With these observations, we identify the following

important research directions for the provision of the future C-RAN architecture.

(i) BS-user association with finite backhaul bandwidth: Since the early works

proposed by Yates [133] and Hanley [134], the optimal joint power allocation for

system throughput and BS-user association has been a research focus for conges-

tion control, traffic offloading, and avoiding the hot spots. Recently, this line of

work has been extended to accommodate the multi-antenna transceiver [135,136],

and min rate utility function [137,138]. However, these works do not consider the

existence of multiple frequency tones and the finite bandwidth in the backhaul

network. The proposed algorithm for C-RAN can dynamically choose the pathes

for each commodity. Thus, it should be possible to properly address the issue of

the BS-user association under theses extra constraints. Retrospectively, the as-

sociation is crucial for the C-RAN algorithms since it reduces the complexity for

managing the wireless links.

(ii) Joint processing among BSs: With multiple BSs, it is well-known that joint

processing between BSs can greatly increase the achievable rates of mobile users.

However, due to the finite capacity constraints on the backhaul network, sharing

all users’ signals among BSs may not be possible. It is interesting to extend our

approach to the scenario that signals for users can be split into two separate parts,

common and private information. The common information is shared among BSs

for joint processing, and private information is only processed within each BS.

Some initial results on this direction have been reported in [77] for the MISO

downlink scenario, but the flow routing constraint in the backhaul network has not

been considered. The backhaul throughput for multicast may be further increased

by, for example, applying network coding [139]. This is also an important topic

of future research.
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(iii) Dynamic BS clustering: Despite the benefits of the joint processing among BSs,

the management of the flows for commodities becomes much more complicated

when the number of cooperating BSs increases. Therefore, extending the prior

works on BS clustering for the cellular environment to the framework of C-RAN is

needed. This direction is highly related to the subnetwork clustering such that the

computation loading and communication overhead between NCs can be balanced,

e.g., [140] [141].

(iv) Coexistence of uplink and downlink information flows: In TDMA systems,

uplink and downlink information flows can occur on the same frequency. Hence,

we are interested in extending our approach for the C-RAN architecture to this

practical protocol. Specifically, additional sets of variables that control the airtime

allocation between the uplink and downlink directions should be included, and the

scheduling policy should be properly designed. These policies should also account

for the transceiver hardware limitations. For example, the number of concurrent

transmission beams at each wireless nodes cannot exceed the number of the RF

chains. Similarly, at the same frequency, the two transmission directions cannot be

activated at the same time, i.e., the half-duplex constraint. These extra limitations

are summarized in [142], and their impacts on the traffic engineering problem

should be investigated. Moreover, the admission control for both downlink and

uplink users should also be considered when QoS requirements are imposed on

mobile users. Recently, the BS activation problem with total power minimization

design has been extended to the case that incorporates the uplink transmission

[143].

(v) Reducing the CSI overhead for wireless channels: In the practical system

design, the perfect CSI may not be available due to insufficient training frames or

contaminated training signals. The large number of direct or indirect wireless links

between BSs and users also prevent the system operator from obtaining the CSI for

all links. Hence, it is crucial to extend our approach in C-RAN to accommodate

this factor. To this end, one can assume only the availability of the long-term

channel statistics, and consider the corresponding transceiver design problem [36]

and [144]. Another possible approach is to extend the recent work on the utility
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maximization with probabilistic rate constraints for the cellular environment [145]

to the more general C-RAN architecture. Furthermore, it will be interesting to

design resource allocation algorithms that can quickly adapt to account for the

environment changes such as the coming and leaving of users.
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Appendix A

A Brief Review of the ADMM

Algorithm

The ADMM algorithm was originally developed in 1970s, and has attracted lots of

interests recently due to its efficiency in large-scale optimization (see [39] and references

therein). Specifically, the ADMM is designed to solve the following structured convex

problem

min
x∈Cn,z∈Cm

f(x) + g(z)

s.t. Ax+Bz = c (A.1)

x ∈ C1, z ∈ C2

where A ∈ C
k×n, B ∈ C

k×m, c ∈ C
k, and f and g are convex functions while C1 and C2

are non-empty convex sets.

The partial augmented Lagrangian function for problem (A.1) can be expressed as

Lρ(x, z,y) = f(x) + g(z) + Re
(
yH(Ax+Bz− c)

)
+ (ρ/2)‖Ax +Bz− c‖22 (A.2)

where y ∈ C
k is the Lagrangian dual variables associated with the linear equality

constraint, and ρ > 0 is some constant. The ADMM algorithm solves problem (A.1) by
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iteratively performing three steps in each iteration t:

x(t) = argmin
x

Lρ(x, z
(t−1),y(t−1)) (A.3a)

z(t) = argmin
z

Lρ(x
(t), z,y(t−1)) (A.3b)

y(t) = y(t−1) + ρ(Ax(t) +Bz(t) − c). (A.3c)

In many applications, the primal subproblems (A.3a) and (A.3b) can be solved easily

in closed-form, leading to the efficiency of ADMM. The convergence property of this

algorithm is summarized in the following proposition [38, Proposition 4.2].

Proposition 1 Assume that the optimal solution set of problem (A.1) is non-empty,

and ATA and BTB are invertible. Then the sequence of {x(t), z(t),y(t)} generated by

(A.3a), (A.3b), and (A.3c) is bounded and every limit point of {x(t), z(t)} is an optimal

solution of problem (A.1).



Appendix B

Proof of Theorem 1

To prove Theorem 1, it is sufficient to show that problem (2.6) is strongly NP-hard.

Consider a simple single-cell network with Q single antenna BSs serving Q users. That

is, K = 1, N = 1, |Bk| = |Uk| = Q. Then problem (2.6) can be simplified to

min
{pqi }

Q
∑

i=1

∥
∥
∥
∥
∥
∥

Q
∑

q=1

pqi

∥
∥
∥
∥
∥
∥
0

s.t.

∑Q
q=1 p

q
i g

q
i

σ2
i +

∑

j 6=i

∑Q
q=1 p

q
jg

q
i

≥ τi, (B.1)

Q
∑

i=1

pqi ≤ Pq, pqi ≥ 0, ∀ i, q = 1, . . . , Q,

where we have omitted the cell index k, and have defined pqi , ‖vq
i ‖22 and gqi , ‖hq

i ‖22,
∀i, q = 1, . . . , Q. We prove that problem (B.1) is strongly NP-hard by establishing a

polynomial time transformation from the so-called vertex cover problem. The vertex

cover problem can be described as follows: given a graph G = (V, E) and a positive

integer W ≤ |V|, we are asked whether there exists a vertex cover of size W or less, i.e.,

a subset V ′ ⊂ V such that |V ′| ≤ W , and for each edge {u, v} ∈ E at least one of the

end points u and v belongs to V.
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Given a graph G = (V, E) with |V| = Q, we let

gqi = giq =

{

1, if i = q or (i, q) ∈ E
0, if (i, q) 6∈ E

τi =
1

Q2
, σ2

i = Q, Pq = Q, ∀q = 1, . . . , Q.

We claim that the optimal value of problem (B.1) is less than or equal to W if and only

if there exists a vertex cover set V ′ for the graph satisfying |V ′| ≤W .

“If” direction: Let V ′ with |V ′| ≤ W be the vertex cover set for the graph G. Without

loss of generality, suppose V ′ = {1, 2, . . . ,W}. Then we can construct a feasible solution

for problem (B.1) based on the cover set V ′ such that the optimal value of problem

(B.1) at this point is equal to W . In particular, we have

pqi = 1, i = 1, . . . , Q, q = 1, 2, . . . ,W

pqi = 0, i = 1, . . . , Q, q = W + 1,W + 2, . . . , Q

Therefore, the choice of {pqi }i,q satisfies
∑Q

i=1 p
q
i = W ≤ Q, ∀ i, q = 1, . . . , Q, and

the nonnegative constraints. Next, we check the feasibility of the above constructed

solution.

• For user i = 1, 2, . . . ,W , the SINR constraint in (B.1) is satisfied, since pqq = gqq = 1

for all q = 1, . . . ,W . In particular, the satisfaction of the SINR constraint of user

i, ∀ i, can be derived as follows,

∑Q
q=1 pig

q
i

σ2
i +

∑

j 6=i

∑Q
q=1 p

q
jg

q
i

=

∑W
q=1 g

q
i

Q+
∑

j 6=i

∑W
q=1 g

q
i

≥ 1

Q+ (Q− 1)W
≥ 1

Q2
= τi

• For user i = W + 1,W + 2, . . . , Q, according to the definition of the cover set,

there must exist q ∈ V ′ such that (i, q) ∈ E and thus pqi = gqi = 1. Hence, the

SINR constraint of user i = W + 1,W + 2, . . . , Q are also satisfied.

“Only if” direction: Suppose that the optimal value of problem (B.1) is less than or

equal to W and its optimal solution is pq⋆i , ∀i, q = 1, . . . , Q. We construct the following

sets

Sq , {i | pq⋆i gqi > 0} = {i | pq⋆i > 0}, q = 1, . . . , Q,
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where the equality holds since when gqi = 0, pq⋆i should also be 0 to reduce the objective

value while keeping the satisfaction of all the constraints. By the fact that the optimal

value of problem (B.1) is less than or equal to W , we know that at most W of the defined

sets Sq are nonempty sets. Without loss of generality, suppose these W nonempty sets

are S1, . . . , SW . Furthermore, the fact that all SINR constraints are satisfied, which

ensures that
∑Q

q=1 p
q⋆
i gqi =

∑W
q=1 p

q⋆
i gqi > 0, ∀ i. Combining this fact and the choice of

{gqi } based on the connectivity of node i and node q, we conclude that

V =

Q
⋃

q=1

Sq =

W⋃

q=1

Sq.

The above shows that {1, 2, . . . ,W} constitutes a cover set of V, which completes the

proof. �



Appendix C

Proof of Theorem 4

In the following, {r⋆,v⋆; δ⋆,θ⋆, κ⋆, ǫ⋆} is denoted as the KKT solutions of problem (3.5),

which is restated in the following for reference,

max
v, r

rmin (C.1a)

s.t. r ≥ 0, rm ≥ rmin, m = 1 ∼M, (C.1b)

1T fl ≤ Cl, ∀ l ∈ Lw, (C.1c)

1T fl ≤ f̄l(v), (C.1d)
∑

l∈In(v)
fl,m + 1v=smrm =

∑

l∈Out(v)

fl,m + 1v=dmrm, m = 1 ∼M, ∀ v ∈ V, (C.1e)

∑

l∈Out(s)
⋂

Lwl

v2l ≤ Ps, ∀ s ∈ B. (C.1f)

Here δ⋆,θ⋆,κ⋆, and ǫ⋆ respectively denote the corresponding optimal Lagrangian d-

ual variables for the nonnegativeness constraints (C.1b) as well as {(C.1c), (C.1d)},
(C.1e), and (C.1f). The KKT solutions are similarly denoted as {r̂, v̂, û, ŵ; δ̂, θ̂, κ̂, ǫ̂}
for problem (3.7), which is also restated as follows,

max
v, r, u, w

rmin (C.2a)

s.t. (C.1b), (C.1c), (C.1e), and (C.1f), (C.2b)

1T fl ≤ 1 + log(wl)− wlel(ul,v), ∀ l ∈ Lwl, (C.2c)

where θ̂ now is the Lagrangian dual variables for constraints {(C.1c), (C.2c)}.
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Step 1: Denote x⋆ , {r⋆,v⋆; δ⋆,θ⋆,κ⋆, ǫ⋆} as an arbitrary KKT solution of

problem (C.1). Then ŷ , {r̂, v̂, û, ŵ; δ̂, θ̂, κ̂, ǫ̂} = {r⋆,v⋆,u(v⋆),w(v⋆); δ⋆,θ⋆,κ⋆, ǫ⋆}
is also a KKT solution of problem (C.2), where we stack ul(v

⋆) and wl(v
⋆),

∀ l ∈ Lwl, as u(v⋆) and w(v⋆), respectively. The reverse statement is also

true.

Since some of the constraints of problem (C.1) and problem (C.2) are exactly the

same, i.e., (C.1c), (C.1e), and (C.1f), the corresponding feasibility and the complemen-

tary slackness conditions of these constraints are of the same form for both problems.

Hence, if x⋆ can satisfy these constraints for problem (C.1), ŷ can satisfy those of prob-

lem (C.2). We only need to check the remaining KKT conditions given below. For

problem (C.1), we have

− 2ǫ⋆slv
⋆
l +

∑

n∈Ī(l)
θ⋆n∇vl f̄n(v

⋆) = 0, ∀ l ∈ Lwl, (C.3a)

− δ⋆ +

M∑

m=1

δ⋆m = 1, (C.3b)

δ⋆m + κsm⋆
m − κdm⋆

m = 0, ∀ m, (C.3c)

δ⋆l,m − θ⋆l + κdl⋆m − κsl⋆m = 0, ∀ m, ∀ l ∈ L (C.3d)

0 ≤ θ⋆l ⊥ f̄l(v
⋆)−

M∑

m=1

f⋆
l,m ≥ 0, ∀ l ∈ Lwl. (C.3e)

For problem (C.2), we have

− 2ǫ̂sl v̂l −
∑

n∈Ī(l)
θ̂nŵn∇vlen(ûn, v̂) = 0, (C.4a)

θ̂l(∇ul
el(ûl, v̂)) = 0, θ̂l

(
1

wl
− el(ûl, v̂)

)

= 0, ∀ l ∈ Lwl, (C.4b)

− δ̂ +

M∑

m=1

δ̂m = 1, (C.4c)

δ̂m + κ̂smm − κ̂dmm = 0, ∀ m, (C.4d)

δ̂l,m − θ̂l + κ̂dlm − κ̂slm = 0, ∀ m, ∀ l ∈ L (C.4e)

0 ≤ θ̂l ⊥
(

1 + log(ŵl)− ŵlel(ûl, v̂)−
M∑

m=1

f̂l,m

)

≥ 0, ∀ l ∈ Lwl. (C.4f)
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Obviously, by comparing (C.3b)∼(C.3d) and (C.4c)∼(C.4e), we can conclude that

ŷ can satisfy (C.4c)∼(C.4e). For (C.4b), by the optimality of (3.8) and (3.9), they are

also true for ŷ. Moreover, it follows from Lemma 2 that

f̄l(v
⋆) = 1 + log(wl(v

⋆))− wl(v
⋆)el(ul(v

⋆),v⋆)

= 1 + log(ŵl)− ŵlel(ûl,v
⋆), (C.5)

with this fact and by (C.3e), (C.4f) is satisfied with ŷ.

For the last KKT condition of problem (C.2) that the relationship has not been

established, i.e., (C.4a), let us first split the Lagrange multiplier θ⋆ of problem (C.1)

into two subsets A , {l | θ⋆l > 0, ∀ l ∈ L} and Ā , {l | θ⋆l = 0, ∀ l ∈ L}. In the

following, we will only consider the set of wireless capacity constraints belonging to A,
i.e., the active wireless capacity constraints. Note that, for these constraints, variables

ûl and ŵl can be uniquely determined by (C.4b), but those belong to Ā cannot be

uniquely determined. By exploiting these facts, KKT conditions (C.3a) and (C.4a) for

∀ l ∈ Lwl can be related as follows

(C.4a) =− 2ǫ̂sl v̂l −
∑

n∈Ī(l)
θ̂nŵn∇vlen(ûn, v̂)

=− 2ǫ̂sl v̂l −
∑

n∈Ī(l), n∈A
θ̂nŵn∇vlen(ûn, v̂)

=− 2ǫ⋆slv
⋆
l +

∑

n∈Ī(l), n∈A
θ⋆n∇vl f̄n(v

⋆) (by (C.5))

=− 2ǫ⋆slv
⋆
l +

∑

n∈Ī(l)
θ⋆n∇vl f̄n(v

⋆) = (C.3a) = 0.

Therefore, (C.4a) is also satisfied by ŷ, so it is a stationary solution of problem (C.2).

The reverse statement of Step 1 can be argued similarly.

Step 2: Every global optimal solution of problem (C.1) corresponds to a

global optimal solution of problem (C.2) with the same objective value.

In the following, we first show that if y⋆ , {r⋆,v⋆, ũ, w̃; δ⋆,θ⋆,κ⋆, ǫ⋆} is an arbi-

trarily KKT solution of problem (C.2), ŷ , {r⋆,v⋆,u(v⋆),w(v⋆); δ⋆,θ⋆,κ⋆, ǫ⋆} is also

a KKT solution of problem (C.2). Furthermore, both of them achieve the same objec-

tive value. Note that, the difference between y⋆ and ŷ, i.e., u and w, appear in KKT
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conditions (C.4a), (C.4b), and (C.4f). In the following, we will check each of them for

ŷ.

For (C.4b): Observe that for l ∈ A, the condition implies

∇ul
el(ũl,v

⋆) = 0,
1

wl
− el(ũl,v

⋆) = 0,

and it reduces to the fact that

ũl = ul(v
⋆), and w̃l = wl(v

⋆). (C.6)

For l ∈ Ā, any choice of ul and wl would always satisfy condition (C.4b).

For (C.4a): ŷ satisfies (C.4a) can be derived as follows:

0 =− 2ǫ⋆slv
⋆
l −

∑

n∈Ī(l)
θ⋆nw

⋆
n∇vlen(ũn,v

⋆)

=− 2ǫ⋆slv
⋆
l −

∑

n∈Ī(l), n∈A
θ⋆nw

⋆
n∇vlen(ũn,v

⋆)

=
︸︷︷︸

(a)

− 2ǫ⋆slv
⋆
l −

∑

n∈Ī(l), n∈A
θ⋆nw

⋆
n∇vlen(un(v

⋆),v⋆)

=− 2ǫ⋆slv
⋆
l −

∑

n∈Ī(l)
θ⋆nw

⋆
n∇vlen(un(v

⋆),v⋆),

where (a) is due to the fact that when l ∈ A, (C.6) holds. Hence, KKT condition (C.4a)

is also satisfied by ŷ.

For (C.4f): Due to the update rule choice for u and w, i.e., (3.8) and (3.9), we have

the following conclusion,

(

1 + log(wl(v
⋆))− wl(v

⋆)el(ul(v
⋆),v⋆)−

M∑

m=1

f⋆
l,m

)

≥
(

1 + log(w̃l)− w̃lel(ũl,v
⋆)−

M∑

m=1

f⋆
l,m

)

≥ 0.

This result implies that feasibility part of (C.4f) is satisfied. In order to show that the

complementarity part is also satisfied, it is sufficient to show that for all l ∈ A, the
above inequality achieves strict equality since (C.6) holds at this scenario.

In sum, we can conclude that ŷ is also a KKT solution of problem (C.2). Recall that

the network is connected and the link capacities are all positive. Hence, the optimal
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value r⋆min must be strictly greater than 0. It follows that the Lagrangian dual variable

for constraint r⋆min ≥ 0, i.e., δ⋆, is always 0 by the complementarity condition. The

argument follows that we must have |A| > 0, and at least one of the constraints r⋆m ≥
r⋆min, m = 1 ∼ M , is active. Since r⋆min is the objective value for both KKT solutions

y⋆ and ŷ, they both achieves the same objective value.

Now we are ready to argue that if y⋆ = {r⋆,v⋆,u(v⋆),w(v⋆)} is the optimal solution

of (C.2), the objective value should be the same as the optimal value of problem (C.1).

To prove this, we will resort to contradiction. In particular, the r⋆min achieved by {r⋆,v⋆}
of y⋆ for problem (C.1) is the same as r⋆min achieved by y⋆ for problem (C.2) by applying

Lemma 2. Assume r⋆min is not the optimal objective value of problem (C.1), and the

optimal solution of problem (C.1) is x̂ = {r̂, v̂} with objective value r̂min > r⋆min. Since

r̂min can also achieved for problem (C.2) by ŷ = {r̂, v̂,u(v̂),w(v̂)} when we apply

Lemma 2 again. Hence, the optimality of y⋆ is violated by the existence of ŷ. This

contradiction concludes the optimal value for problem (C.1) is also r⋆min. The reverse

direction can be argued similarly.

Step 3: The N-MaxMin Algorithm can converge to the KKT solutions of

problem (C.1).

Since the objective value generated by the proposed N-MaxMin Algorithm for prob-

lem (C.2) is monotonically increasing, and the objective value of problem (C.2) is finite.

Hence, the generated sequence of objective value converges. Due to the compactness

of the feasible set for problem (C.2), the iterates {r(t),v(t)} must have a cluster point

{r̄, v̄}. Let {rnt ,vnt}∞t=1 be the subsequence converging to {r̄, v̄}. Since the maps u(v)

and w(v) are continuous, we must have

lim
t→∞

(rnt ,vnt ,unt ,wnt) = (r̄, v̄, ū, w̄) , (r̄, v̄,u(v),w(v)).

First we will show that in the limit we have: {r̄, v̄} ∈ Φ(ū, w̄) where Φ(u,w) is the

mapping from given u and w to the optimal solution for problem (C.2). Due to the

optimality of {rnt ,vnt} and the monotonic increase of the objective function, we have

{r̄, v̄} ∈ Φ(ū, w̄).

The next step is to establish that {r̄, v̄, ū, w̄} = {r̄, v̄,u(v̄),w(v̄)} is a KKT solution

of (C.2). This is true due to the two facts i) {r̄, v̄} ∈ Φ(ū, w̄); and ii) ū = u(v̄) and

w̄ = w(w̄). Using these two facts, the KKT conditions for problem (C.2), i.e., (C.4),
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are satisfied. Applying the result of Step 1, we conclude that {r̄, v̄} must be a KKT

point of the original problem (C.1).

So far we have proved that any cluster point of the iterates is a KKT point of

problem (C.1). Since the feasible set is compact, we have N-MaxMin Algorithm can

converge to the KKT solutions. �



Appendix D

Proof of Theorem 5

We first derive some useful properties of the proposed PAsyn-BSUM-M algorithm. For

notational simplicity, we will use the shorthand z = [xT ,λT ]T . In the first step, we will

characterize the successive difference of the augmented Lagrangian over iterations, i.e.,

L(zt)− L(zt+1).

Lemma 3 For the PAsyn-BSUM-M algorithm, we have

L(zt)− L(zt+1)

≥
K∑

i=0

Itp,i

2γ + ρλmin

(
∑J

j=1 Ã
T
ijÃij

)

2
‖xt

i − xt+1
i ‖2 +

J∑

j=1

Itd,j〈Ãjx
t+1 − b̃j ,λ

t
j − λt+1

j 〉.

(D.1)

Proof: We first decompose L(zt)− L(zt+1) as

L(zt)− L(zt+1)

=

K∑

i=0

[
L(xt+1

0 , · · · ,xt+1
i−1,x

t
i, · · · ,xt

K ;λt)− L(xt+1
0 , · · · ,xt+1

i ,xt
i+1, · · · ,xt

K ;λt)
]

+
J∑

j=1

[

L(xt+1;λt+1
1 , · · · ,λt+1

j−1,λ
t
j, · · · ,λt

J)− L(xt+1;λt+1
1 , · · · ,λt+1

j ,λt
j+1, · · · ,λt

J)
]

.

In the sequel, we lower bound each term pair individually.
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(Case 1) Only xi is updated at the tth iteration, i.e., Itp,i = 1:

L(zt)− L(zt+1)

=L(xt+1
0 , · · · ,xt+1

i−1,x
t
i, · · · ,xt

K ;λt)− L(xt+1
0 , · · · ,xt+1

i ,xt
i+1, · · · ,xt

K ;λt)

≥〈∇xi
L(xt+1

0 , · · · ,xt+1
i ,xt

i+1, · · · ,xt
K ;λt),xt

i − xt+1
i 〉

+
ρλmin

(
∑J

j=1 Ã
T
ijÃij

)

2
‖xt

i − xt+1
i ‖2. (D.2)

The inequality is due to the fact that ∇2
x0
L(z) � ρ

∑J
j=1 Ã

T
ijÃij . Since xt+1

i is the

optimal solution of the following convex optimization,

xt+1
i = arg min

xi∈Xi

L(xt+1
0 , · · · ,xt+1

i−1,xi,x
t
i+1, · · · ,xt

K ;λt) +
γ

2
‖xi − xt

i‖2. (D.3)

Hence, by the first-order optimality condition, we have

〈∇xi
L(xt+1

0 , · · · ,xt+1
i ,xt

i+1, · · · ,xt
K ;λt) + γ(xt+1

i − xt
i),x

t
i − xt+1

i 〉 ≥ 0

⇒〈∇xi
L(xt+1

0 , · · · ,xt+1
i ,xt

i+1, · · · ,xt
K ;λt),xt

i − xt+1
i 〉 ≥ γ‖xt+1

i − xt
i‖2. (D.4)

Substitute (D.4) into (D.2), we conclude that

L(zt)− L(zt+1) ≥
2γ + ρλmin

(
∑J

j=1 Ã
T
ijÃij

)

2
‖xt

i − xt+1
i ‖2. (D.5)

(Case 2) Only λj is updated at the tth iteration, i.e., Itd,j = 1: For this case, we

can straightforwardly obtain the following equality relationship,

L(zt)− L(zt+1)

=L(xt+1;λt+1
1 , · · · ,λt+1

j−1,λ
t
j , · · · ,λt

J)− L(xt+1;λt+1
1 , · · · ,λt+1

j ,λt
j+1, · · · ,λt

J)

=〈Ãjx
t+1,λt

j − λt+1
j 〉. (D.6)

By combining both case 1 and case 2, i.e., (D.5) and (D.6), we obtain the desired result

(D.1).

�

We introduce the proximal gradient, which will be used as a measure of optimality.

Definition 1 (Proximal gradient) Let X ⊆ R
n be a nonempty closed convex set. The

proximal gradient of convex and smooth function f is defined as

∇̃f(x) , x− ProjX (x−∇f(x))



132

With this definition of the proximal gradient, in the next step, the norm of it at any

given iterate t+ 1 can be upper bounded by the following lemma.

Lemma 4 The gradient of the augmented Lagrangian function ‖∇̃L(xt+1;λt+1)‖ can

be upper bounded as:

‖∇̃L(xt+1;λt+1)‖2 ≤ σ



‖xt+1 − xt‖2 + ‖xt − xt−1‖2 +
J∑

j=1

‖λt+1
j − λt

j‖2


 , (D.7)

where σ are some fixed positive constant.

Proof: By triangular inequality, the gradient ‖∇̃L(xt+1;λt+1)‖2 can be upper

bounded with

‖∇̃L(xt+1;λt+1)‖2 ≤
(

K∑

i=0

‖∇̃xi
L(xt+1;λt+1)‖

)2

. (D.8)

In the following, we will bound each term individually. The upper bound of

‖∇̃xi
L(xt+1;λt+1)‖, i = 0 ∼ K,

can be derived as follows:

‖∇̃xi
L(xt+1;λt+1)‖ ≤ ‖xt+1

i − xt
i‖+ ‖xt

i − ProjXi

(
xt+1
i −∇xi

L(xt+1;λt+1
)
‖

=‖xt+1
i − xt

i‖
+ ‖ProjXi

(xt
i −∇xi

L(xt;λt)− γ(xt
i − xt−1

i ))− ProjXi
(xt+1

i −∇xi
L(xt+1;λt+1)‖

≤‖xt+1
i − xt

i‖+

∥
∥
∥
∥
∥
∥






xt
i −



∇xi
fi(x

t
i) +

J∑

j=1

ÃT
ij

[

λt
j + ρ(Ãjx

t − b̃j)
]

+ γ(xt
i − xt−1

i )











−






xt+1
i −



∇fi(xt+1
i ) +

J∑

j=1

AT
ij

[

λt+1
j + ρ(Ãjx

t+1 − b̃j)
]











∥
∥
∥
∥
∥
∥

≤(2 + L)‖xt+1
i − xt

i‖+ γ‖xt
i − xt−1

i ‖

+ ‖xt+1 − xt‖
J∑

j=1

ρ‖ÃT
ijÃj‖+

J∑

j=1

‖ÃT
ij‖‖λt+1

j − λt
j‖ (D.9)

By summing these individual proximal gradient upper bounds for each i = 0 ∼ K,

and use the fact that (
∑K

i=1 ‖ai‖)2 ≤ K
∑K

i=1 ‖ai‖2 for arbitrary {ai}i. There is a

positive constant σ such that the desired result (D.7) holds. �
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To analyze the convergence of the algorithms by measuring the algorithm progress,

we need to make use of a certain “potential function”. Here, the summation of the dual

optimality gap and primal optimality gap is adopted, each of which is defined below:

• Dual optimality gap: △t
d = d⋆ − d(λt) ≥ 0,

• Primal optimality gap: △t
p = L(zt)− d(λt) ≥ 0,

where d⋆ is the optimal value for the dual problem of (4.1), i.e., d⋆ , maxλminx∈X L(x;λ),

and d(λt) , minx∈X L(x;λt) with optimal x denoted as x̄t

In the next lemma, the upper bound of the potential function over iteration is

derived.

Lemma 5 For the PAsyn-BSUM-M algorithm, there holds

△t+1
p +△t+1

d − (△t
p +△t

d) ≤ L(zt+1)− L(zt) + 2

J∑

j=1

Itd,j〈Ãjx̄
t+1 − b̃j ,λ

t
j − λt+1

j 〉.

(D.10)

Proof: The upper bound can be straightforwardly derived by the following proce-

dures:

△t+1
p +△t+1

d − (△t
p +△t

d)

=L(zt+1)− L(zt) + 2(d(λt)− d(λt+1))

=L(zt+1)− L(zt) + 2(L(x̄t;λt)− L(x̄t+1;λt+1))

=L(zt+1)− L(zt) + 2[(L(x̄t+1;λt)− L(x̄t+1;λt+1)) + (L(x̄t;λt)− L(x̄t+1;λt))]

≤L(zt+1)− L(zt) + 2

J∑

j=1

Itd,j〈Ãjx̄
t+1 − b̃j ,λ

t
j − λt+1

j 〉, (D.11)

where the inequality is due to the fact that L(x̄t;λt) ≤ L(x̄t+1;λt) by the definition of

x̄t. �

Given the previous necessary properties on the upper bound of the considered poten-

tial function, we are ready for performing the final convergence analysis of the proposed
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PAsyn-BSUM-M algorithm. By Lemma 3 and 5, we can conclude that

[
△t+1

p +△t+1
d − (△t

p +△t
d)
]

≤−
K∑

i=0

Itp,i

2γ + ρλmin

(
∑J

j=1 Ã
T
ijÃij

)

2
‖xt

i − xt+1
i ‖2

+
J∑

j=1

Itd,j

[

〈Ãjx
t+1 − b̃j,λ

t+1
j − λt

j〉 − 2〈Ãj x̄
t+1 − b̃j,λ

t+1
j − λt

j〉
]

︸ ︷︷ ︸

at+1

j

. (D.12)

Let us first upper bound term at+1
j ,

at+1
j = αt

[

〈Ãjx
t+1 − b̃j, Ãjx

t+1 − b̃j〉 − 2〈Ãj x̄
t+1 − b̃j , Ãjx

t+1 − b̃j〉

+〈Ãjx
t+1 − b̃j, Ãjx

t+1 − b̃j〉 − 〈Ãjx
t+1 − b̃j , Ãjx

t+1 − b̃j〉
]

= αt
[

‖Ãj(x
t+1 − x̄t+1)‖2 − ‖Ãjx

t+1 − b̃j‖2
]

, (D.13)

where the first equality is due to the update rule that when Itd,j = 1, xt = xt+1 and

λt+1
j − λt

j = αt(Ãjx
t+1 − b̃j). In the following, the local error bound property will be

adopted to upper bound ‖Ãj(x
t+1 − x̄t+1)‖2. Specifically, since the assumptions (A3)

and (A4) satisfy the conditions of [108, Lemma 2.2], the following result can hence be

exploited:

‖xt+1 − x̄t+1‖ ≤ τ̃‖∇̃L(xt+1;λt+1)‖, (D.14)

where τ̃ is some positive constant. By applying this local error bound property,

‖Ãj(x
t+1 − x̄t+1)‖2 ≤ ‖Ãj‖2‖xt+1 − x̄t+1‖2 ≤ ‖Ãj‖2τ̃2‖∇̃L(xt+1;λt+1)‖2

≤ ‖Ãj‖2τ̃2σ



‖xt+1 − xt‖2 + ‖xt − xt−1‖2 +
J∑

j=1

‖λt+1
j − λt

j‖2




≤ ‖Ãj‖2






τ̃2σ

(
‖xt+1 − xt‖2 + ‖xt − xt−1‖2

)

︸ ︷︷ ︸

zt+1

0

+ τ̃2σαt
︸ ︷︷ ︸

zt+1

1

J∑

j=1

‖Ãjx
t+1 − b̃j‖2






, (D.15)

where the third inequality is due to (D.7).
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Moreover, the upper bound for
∑J

j=1 ‖Ãjx
t+1 − b̃j‖2 can be derived by (D.15) and

adopting the property of local error bound lemma [108, Lemma 2.2] again. Specifically,

J∑

j=1

‖Ãjx
t+1 − b̃j‖2 =

J∑

j=1

‖Ãj(x
t+1 − x̄t+1) + Ãjx̄

t+1 − b̃j‖2

≤2
J∑

j=1

[

‖Ãj(x
t+1 − x̄t+1)‖2 + ‖Ãjx̄

t+1 − b̃j‖2
]

≤2
J∑

j=1

(

zt+1
0 ‖Ãj‖2 + ‖Ãjx̄

t+1 − b̃j‖2
)

+



2zt+1
1

J∑

j=1

‖Ãj‖2








J∑

j=1

‖Ãjx
t+1 − b̃j‖2





⇒
J∑

j=1

‖Ãjx
t+1 − b̃j‖2 ≤

2
∑J

j=1

(

zt+1
0 ‖Ãj‖2 + ‖Ãjx̄

t+1 − b̃j‖2
)

1− 2zt+1
1

∑J
j=1 ‖Ãj‖2

, (D.16)

where the last inequality is valid when zt+1
1 is small enough, i.e., {αt}t is small enough,

such that the denominator is positive. Therefore, we conclude that

J∑

j=1

Itd,j

[

〈Ãjx
t+1 − b̃j ,λ

t+1
j − λt

j〉 − 2〈Ãjx̄
t+1 − b̃j ,λ

t+1
j − λt

j〉
]

≤
J∑

j=1

Itd,j



‖Ãj‖2


zt+1
0 + zt+1

1

2
∑J

m=1

(

zt+1
0 ‖Ãm‖2 + ‖Ãmx̄t+1 − b̃m‖2

)

1− 2zt+1
1

∑J
m=1 ‖Ãm‖2





−‖Ãjx̄
t+1 − b̃j‖2

]

≤
J∑

j=1

[

Itd,jα
t‖Ãj‖2

(

1 +
2zt+1

1

∑J
m=1 ‖Ãm‖2

1− 2zt+1
1

∑J
m=1 ‖Ãm‖2

)]

︸ ︷︷ ︸

δt
0

zt+1
0

+ αt

(

−1 + 2zt+1
1

∑J
m=1 ‖Ãm‖2

1− 2zt+1
1

∑J
m=1 ‖Ãm‖2

)

︸ ︷︷ ︸

δt
1

J∑

j=1

Itd,j‖Ãjx̄
t+1 − b̃j‖2. (D.17)

Note that limαt→0 δ
t
0 = 0. We are now ready to show the convergence property of the

BSUM-M algorithm with essentially cyclic rule. Specifically, the upper bounded of the
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potential function can be expressed as follows

0 ≤
T∑

t=1

[
△t+1

p +△t+1
d − (△t

p +△t
d)
]

≤δ10 τ̃2σ
K∑

i=0

‖x0
i − x1

i ‖2 +
T∑

t=1





K∑

i=0

θtiI
t
p,i‖xt

i − xt+1
i ‖2 + δt1

J∑

j=1

Itd,j‖Ãjx̄
t+1 − b̃j‖2





(D.18)

where θti , −
2γ+ρλmin(

∑J
j=1 Ã

T
ijÃij)

2 +(δt0 + δt+1
0 )τ̃2σ. With the essentiality of the update

rule, every block of variables, i.e., xi, i = 0 ∼ K and λj, j = 1 ∼ J , will be updated

infinite times when T → ∞. In the sequel, we will determine the parameter {αt}t for
the convergence of the proposed BSUM-M algorithm with essentially cyclic rule.

The two choices of αt, i.e., i) αt = α << 0, ∀ t, or ii) limt→∞ αt = 0 and
∑∞

t=1 α
t =

∞, imply that for any give ǫ > 0, there exist an index t0 such that for all t > t0,

0 < (δt0 + δt+1
0 )τ̃2σ < ǫ. Using this fact, the coefficients θti , i = 0 ∼ K and ∀ t > t0,

become negative when γ satisfies (4.14). Similarly, there exists an constant t1 such that

the coefficients δt1, ∀ t > t1, becomes negative. Therefore, the convergence result for

the choice of αt can be established as follows. By applying the convergence theorem of

non-negative almost supermartingale [146, Theorem 1], we conclude that

lim
t→∞

△t+1
p +△t+1

d exists and is finite, (D.19a)

lim
t→∞

‖xt+1 − xt‖2 = 0, (D.19b)

lim
t→∞

αt‖Ãjx̄
t+1 − b̃j‖2 = 0, ∀ j = 1 ∼ J. (D.19c)

Using similar argument as in case 2 of [108, Theorem 2.1] with the diminishing stepsize

rule (4.14), we can show that limt→∞ ‖Ãjx̄
t+1 − b̃j‖2 = 0, j = 1 ∼ J , as well. This

indicates that limt→∞ ‖∇d(λt+1)‖ = 0 holds. By (D.16), we can further show that,

lim
t→∞

‖Ãjx
t+1 − bj‖2 = 0, ∀ j = 1 ∼ J ⇒ lim

t→∞
‖λt+1 − λt‖2 = 0. (D.20)

Therefore, every limit point of λt generated by the proposed algorithm is a dual optimal

solution. On the other hand, by (D.15)

lim
t→∞
‖xt+1 − x̄t+1‖2 ≤ 0. (D.21)

Hence, every limit point of xt is a primal optimal solution.


