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Introduction

Researchers see WSNs as an "exciting emerging domain of deeply networked systems

of low-power wireless motes with a tiny amount of CPU and memory, and large feder-

ated networks for high-resolution sensing of the environment". Sensors in a WSN have

a variety of purposes, functions, and capabilities. The �eld is now advancing under

the push of recent technological advances and the pull of a myriad of potential appli-

cations. The radar networks used in air tra�c control, the national electrical power

grid, and nationwide weather stations deployed over a regular topographic mesh are

all examples of early-deployment sensor networks; all of these systems, however, use

specialized computers and communication protocols and consequently, are very ex-

pensive. Much less expensive WSNs are now being planned for novel applications in

physical security, health care, and commerce. Sensor networking is a multidisciplinary

area that involves, among others, radio and networking, signal processing, arti�cial

intelligence, database management, systems architectures for operator-friendly infras-

tructure administration, resource optimization, power management algorithms, and

platform technology (hardware and software, such as operating systems). The ap-

plications, networking principles, and protocols for these systems are just beginning

to be developed. The near-ubiquity of the Internet, the advancements in wireless

and wireline communications technologies, the network build-out (particularly in the
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wireless case), the developments in IT (such as high-power processors, large random-

access memory chips, digital signal processing, and grid computing), coupled with

recent engineering advances, are in the aggregate opening the door to a new genera-

tion of low-cost sensors and actuators that are capable of achieving high-grade spatial

and temporal resolution. The technology for sensing and control includes electric and

magnetic �eld sensors; radio-wave frequency sensors; optical-, electrooptic-, and in-

frared sensors; radars; lasers; location/navigation sensors; seismic and pressure-wave

sensors; environmental parameter sensors (e.g., wind, humidity, heat); and biochem-

ical national securityoriented sensors. Todays sensors can be described as "smart"

inexpensive devices equipped with multiple onboard sensing elements; they are low-

cost low-power untethered multi-functional nodes. Sensor devices, or wireless nodes

(WNs), are also (sometimes) called motes. A stated commercial goal is to develop

complete microelectromechanical systems (MEMSs)based sensor systems at a volume

of 1 mm3. Sensors are internetworked via a series of multihop short-distance low-

power wireless links (particularly within a de�ned sensor �eld); they typically utilize

the Internet or some other network for long-haul delivery of information to a point

(or points) of �nal data aggregation and analysis. Sensors are typically deployed in a

high-density manner and in large quantities: a WSN consists of densely distributed

nodes that support sensing, signal processing, embedded computing, and connectiv-

ity; sensors are logically linked by self-organizing means (sensors that are deployed in

short-hop point-to-point masterslave pair arrangements are also of interest). WSNs

have unique characteristics, such as, but not limited to, power constraints and limited

battery life for theWNs, redundant data acquisition, low duty cycle, and, many-to-one

�ows. Consequently, new design methodologies are needed across a set of disciplines
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including, but not limited to, information transport, network and operational man-

agement, con�dentiality, integrity, availability, and, in-network/local processing. In

some cases it is challenging to collect (extract) data from WNs because connectivity

to and from the WNs may be intermittent due to a low-battery status (e.g., if these

are dependent on sunlight to recharge) or other WN malfunction. Sensors span sev-

eral orders of magnitude in physical size; they (or, at least some of their components)

range from nanoscopic-scale devices to mesoscopic-scale devices at one end, and from

microscopic-scale devices to macroscopic-scale devices at the other end. Nanoscopic

(also known as nanoscale) refers to objects or devices on the order of 1 to 100 nm in

diameter; mesoscopic scale refers to objects between 100 and 10,000 nm in diameter;

the microscopic scale ranges from 10 to 1000 mm, and the macroscopic scale is at

the millimeter-to-meter range. At the low end of the scale, one �nds, among others,

biological sensors, small passive microsensors (such as "Smart Dust"), and "lab-on-

a-chip" assemblies. At the other end of the scale one �nds platforms such as, but not

limited to, identity tags, toll collection devices, controllable weather data collection

sensors, bioterrorism sensors, radars, and undersea submarine tra�c sensors based

on sonars. Some refer to the latest generation of sensors, especially the miniaturized

sensors that are directly embedded in some physical infrastructure, as microsensors.

A sensor network supports any type of generic sensor; more narrowly, networked mi-

crosensors are a subset of the general family of sensor networks. Microsensors with

onboard processing and wireless interfaces can be utilized to study and monitor a va-

riety of phenomena and environments at close proximity. Sensors facilitate the instru-

menting and controlling of factories, o�ces, homes, vehicles, cities, and the ambiance,
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especially as commercial o�-the-shelf technology becomes available. With sensor net-

work technology (speci�cally, with embedded networked sensing), ships, aircraft, and

buildings can "self-detect" structural faults (e.g., fatigue-induced cracks). Places of

public assembly can be instrumented to detect airborne agents such as toxins and to

trace the source of the contamination should any be present (this can also be done for

ground and underground situations). Earthquake-oriented sensors in buildings can

locate potential survivors and can help assess structural damage; tsunami-alerting

sensors are useful for nations with extensive coastlines. Sensors also �nd extensive

applicability on the battle�eld for reconnaissance and surveillance. Implementations

of WSNs have to address a set of technical challenges; however, the move toward

standardization will, in due course, minimize a number of these challenges by ad-

dressing the issues once and then result in o�-the-shelf chipsets and components. A

current research and development (RD) challenge is to develop low-power commu-

nication with low-cost on-node processing and selforganizing connectivity/protocols;

another critical challenge is the need for extended temporal operation of the sensing

node despite a (typically) limited power supply (and/or battery life). In particular,

the architecture of the radio, including the use of low-power circuitry, must be prop-

erly selected. In practical terms this implies low power consumption for transmission

over low-bandwidth channels and low-power-consumption logic to preprocess and/or

compress data. Energy e�cient wireless communications systems are being sought

and are typical of WSNs. Low power consumption is a key factor in ensuring long

operating horizons for non-power-fed systems (some systems can indeed be power-fed

and/or rely on other power sources). In general we taxonomize (commercial) sensor

networks and systems into two categories:
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1. Category 1 WSNs (C1WSNs): almost invariably mesh-based systems with mul-

tihop radio connectivity among or between WNs, utilizing dynamic routing in

both the wireless and wireline portions of the network. Military theater systems

typically belong to this category.

2. Category 2 WSNs (C2WSNs): point-to-point or multipoint-to-point (starbased)

systems generally with single-hop radio connectivity to WNs, utilizing static

routing over the wireless network; typically, there will be only one route from

the WNs to the companion terrestrial or wireline forwarding node (WNs are

pendent nodes). Residential control systems typically belong to this category.

C1WSNs support highly distributed high-node-count applications (e.g., environmen-

tal monitoring, national security systems); C2WSNs typically support con�ned short-

range spaces such as a home, a factory, a building, or the human body. C1WSNs

are di�erent in scope and/or reach from evolving wireless C2WSN technology for

short-range low-data-rate wireless applications such as RFID (radio-frequency iden-

ti�cation) systems, light switches, �re and smoke detectors, thermostats, and, home

appliances. C1WSNs tend to deal with large-scale multipoint-to-point systems with

massive data �ows, whereas C2WSNs tend to focus on short-range point-to-point,

source-to-sink applications with uniquely de�ned transaction-based data �ows. Tra-

ditionally, sensor networks have been used in the context of high-end applications such

as radiation and nuclear-threat detection systems, over-the-horizon weapon sensors

for ships, biomedical applications, habitat sensing, and seismic monitoring. More re-

cently, interest has focusing on networked biological and chemical sensors for national

security applications; furthermore, evolving interest extends to direct consumer appli-

cations. Existing and potential applications of sensor networks include, among others,
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military sensing, physical security, air tra�c control, tra�c surveillance, video surveil-

lance, industrial and manufacturing automation, process control, inventory manage-

ment, distributed robotics, weather sensing, environment monitoring, national border

monitoring, and building and structures monitoring . A short list of applications

follows. Traditionally, sensor networks have been used in the context of high-end ap-

plications such as radiation and nuclear-threat detection systems, "over-the-horizon"

weapon sensors for ships, biomedical applications, habitat sensing, and seismic mon-

itoring. More recently, interest has focusing on networked biological and chemical

sensors for national security applications; furthermore, evolving interest extends to

direct consumer applications. Existing and potential applications of sensor networks

include, among others, military sensing, physical security, air tra�c control, tra�c

surveillance, video surveillance, industrial and manufacturing automation, process

control, inventory management, distributed robotics, weather sensing, environment

monitoring, national border monitoring, and building and structures monitoring. A

short list of applications follows.

• Military applications

� Monitoring inimical forces

� Monitoring friendly forces and equipment

� Military-theater or battle�eld surveillance

� Battle damage assessment and more...

• Environmental applications

� Microclimates
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� Forest �re detection

� Flood detection

� Precision agriculture

• Commercial applications

• � Environmental control in industrial and o�ce buildings

� Vehicle tracking and detection

� Inventory control

� Tra�c �ow surveillance and more . . .

• Home applications

• � Home automation

� Instrumented environment

� Automated meter reading and more . ..

Wireless sensor networks have attracted considerable attention in recent years.

Research in this area has focused on two separate aspects of such networks: network-

ing issues, such as capacity, delay, and routing strategies; and application issues. This

work is concerned with the second of these aspects, and in particular with the problem

of distributed estimation of a physical �eld of interest, for example temperature or gas

concentration distribution. Because of limited battery level and sensor complexity,

the measurements gathered by the single node of a sensor network may be highly

unreliable. Improving the reliability of the individual node would require higher com-

plexity and cost, but this would negatively a�ect the economy of scale, which is a
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fundamental concern in large scale sensor networks. It is then particularly impor-

tant to improve the accuracy of each sensor by exploiting the interaction with the

other nodes. This is possible if the environment monitored by the network exhibits

a spatial correlation, which is typically the case in many physical �eld of interest,

like in the distribution of temperatures or the concentration of a given contaminant.

Moreover, considering that wireless sensor networks are typically characterized by

limited communication capabilities due to tight energy and bandwidth limitations,

any distributed mechanism for noise reduction is clearly bene�cial to avoid the trans-

mission of redundant bits. Centralized networks are prone to several shortcomings,

like congestion around the sink nodes and vulnerability to selected attacks or failures

of hub nodes. To avoid these critical aspects, it is desirable to design networks having

distributed processing and decision capabilities, so that the nodes are able to reach a

globally optimal decision without the need to send all the data to a fusion center. Also

from a fundamental information theoretic perspective, if the goal of the network is to

compute a function of the data which has structural properties, e.g. it is a divisible

function, for example, an e�cient network design requires some sort of in-network or

distributed processing. The problem of distributed �eld estimation has been often

considered in the context of stochastic models where strong assumptions are made

about the statistical description of the physical �eld to be estimated. In general the

observations collected by a sensor network are modeled through Gaussian variables

whose statistical dependency structure is described by a Markov random �eld that is

a particular graphical model. The success of stochastic methods in the estimation of

�eld values is limited by the appropriateness of the statistical assumptions made by

the model; in certain applications such strong modeling assumptions are warranted
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and systems designed from these models show promise. However, in other scenarios,

prior knowledge is at best vague and translating such knowledge into a statistical

model is undesirable. Applications such as these pave the way for a study of dis-

tributed estimation based on assuming a deterministic model for the underlying �eld;

the model of the �eld is given by a weighted sum of basis functions and distributed

regression is implemented.

In this work we provide two di�erent solutions for the problem of the �eld estima-

tion in a wireless sensor network using a completely distributed approach. In Chapter

1 we propose a distributed projection algorithm that is able to perform a distributed

spatial smoothing of the measurements gathered by a sensor networks, character-

ized by fast convergence properties and resilience against inter-sensor communication

noise. In Chapter 2 we faced the problem of the �eld estimation exploiting a stochas-

tic approach; we generalize the algorithms based on Belief Propagation present in

literature solving the particular case of a clustered network where nodes inside the

same cluster observe the same �eld value.



Chapter 1

Distributed projection algorithms

1.1 Introduction

Motivated in part by the success of reproducing kernel methods in machine learning

most of works propose a distributed implementation of kernel least-square regres-

sion, e.g. see [28], [31] and [30]. In [30] through a relaxation of the problem that is

derived from the topology of the sensor network a local-message passing algorithm

based on the SOP algorithm (successive orthogonal projection) is proposed. This

solution require that each node knows the locations of its neighbors and inverts a

matrix whose dimensions are given by the number of node's neighbors. Such tech-

nique is however unadapted in practice as sensors are densely deployed, with heavier

computational burden and higher neighborhood concentration. This limit is related

to the main drawback of the application of classical kernel machine for regression

in sensor network, i.e. the order of the resulting model is equal to the number of

sensors (observations). In order to overcome this drawback in [31] by exploiting the

natural link between reducing the model order and the topology of the network a

10
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reduced-order model approach is proposed. The solution proposed limits the compu-

tational burden of each node but requires the establishment of a walk through the

network and the transmission of too data in the last steps of this walk. Various algo-

rithms able to solve sparse linear system of equations, similar to those described in

the stochastic �eld estimation methods, could be used for computing the coe�cients

of the kernel least-square regression. Since the kernel function expresses the similar-

ity between two measurements this sparsity "corresponds" with the topology of the

network. Along these lines, [28] developed a distributed algorithm based on Gaussian

distributed elimination algorithm executed on a cleverly engineered junction tree.

In the context of deterministic model we propose a novel approach to estimated in

a completely distributed way a physical �eld of values; our approach is based on the

assumption that in most cases, the useful signal is a smoothed function, as a result of

a di�usion process. However, typically the set of measurements is not all smoothed

because of the observation noise. In mathematical terms, the vector of measurements

collected by a network composed of N nodes belongs, in general, to a vector space

of dimension N . However, the useful signal �eld typically belongs to a subspace of

dimension much smaller than N . Thus, one of the primary goals of a sensor network

is to perform a projection of the observed vector onto the useful signal subspace, to

eliminate all the noise components lying out of the useful subspace. Projecting data

onto a given subspace is a typical signal processing task whose straightforward imple-

mentation in a sensor network requires all the nodes to send their data to a sink node

(fusion center), which carries out the projection operation. The problem addressed

in this work is how to carry out the projection operation through a decentralized net-

work, with no fusion center, using a network where each node exchanges information
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only with its neighbors. This problem has been studied extensively in the case where

the useful signal is homogeneous, that is spatially constant. In such a case, the so

called consensus algorithms are able to provide the globally optimal estimate with a

network of only locally interacting sensors, see e.g.[2, 5]. The consensus algorithms

are completely decentralized, but they represent an extreme form of smoothing, be-

cause they destroy any potential spatial variation in the �eld of interest, which in

most cases is spatially inhomogeneous. Distributed algorithms able to reach glob-

ally optimal processing tasks are available and they are typically iterative, see e.g.

[1, 2, 3]. However, it is precisely the iterative nature of distributed algorithms that

makes them prone to a series of shortcomings, namely convergence time and com-

plexity, as detailed next: 1) the iterative mechanism needs time to converge and the

longer is convergence time, the higher is the energy consumption necessary to reach

the �nal decision with the desired accuracy or reliability; 2) insuring the appropriate

exchange of data through a shared medium requires a proper medium access control

protocol, that needs to take into account the iteration index; 3) since the interaction

among the nodes occurs through realistic channels, the iterative exchange of data

involves an iterated addition of channel noise. Since energy and complexity are some

of the major concerns in sensor networks, it is clear that using distributed algorithms

becomes really attractive only if we are able to limit the energy consumption and

complexity of each node. Our goal is to propose a distributed implementation of the

projection operation through local exchange of data, with minimum convergence time

and robustness against inter-sensor communication noise.
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1.2 Decentralized projection algorithms

Let us consider a network composed of N sensors with arbitrary topology that mon-

itors a stationary, inhomogeneous physical �eld of interest. Denote the measurement

collected by the i-th sensor, located at (xi, yi), by g(xi, yi) = z(xi, yi) + ξ(xi, yi),

where z(xi, yi) is the useful �eld and ξ(xi, yi) is the observation error, assumed to be

a zero mean random variable with variance σ2
ξi
. In vector notation, a quite general

observation model is

g = z + v = Us + ξ, (1.2.1)

where z = Us is the useful signal, U is a N × r matrix, with r ≤ N , and s is a

r× 1 column vector. The columns of U constitute a basis spanning the useful signal

subspace. In many applications, the useful signal is a smooth function. This property

can be modeled by choosing the columns of U as the low frequency components of

the Fourier basis or low-order polynomials. In practice, the dimension r of the useful

signal subspace is typically much smaller than the dimension N of the observation

space. Hence, a strong noise reduction may be obtained by projecting the observation

vector onto the signal subspace. More speci�cally, if the noise vector is Gaussian, with

zero mean and covariance σ2
ξI, the maximum likelihood estimator of z is [15]

ẑ = U (UT U )−1UTg. (1.2.2)

If the noise pdf is unknown, the estimator (1.2.2) is still signi�cant, as it is the so

called Best Linear Unbiased Estimator (BLUE) [15].

The operation performed in (1.2.2) corresponds to the orthogonal projection of

the observation vector onto the subspace spanned by the columns of U . Assuming,

without any loss of generality (w.l.o.g.), the columns of U to be orthonormal, the
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projector simpli�es into

ẑ = UUT g. (1.2.3)

Two examples of the application of the previous method are reported in Figures 1.1

and 1.2. In Figure 1.1 we consider the estimation of a 2D �eld; the useful �eld is a bi-

dimensional sinusoid and the measurement is corrupted by zero mean white Gaussian

noise. The number of sensors is 256 and the SNR de�ned respect to the maximum

value of the useful �eld is 5dB. The observations are represented by the circles and

the �nal state vector is represented by the 2D sinusoid shown in Figure 1.1, which

is almost perfectly superimposed on the useful �eld. In Figure 1.2 we consider the

estimation of a one-dimensional �eld, where the observed �eld is a sinusoid corrupted

by zero mean white Gaussian noise. The number of sensors is 64 and SNR = 0dB.

Also in the one-dimensional case, the reconstruction (red line) achieved projecting the

observed �eld onto the low frequency components of the Fourier basis is very close to

the useful signal.
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Figure 1.1: Reconstruction of a 2D �eld.
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Figure 1.2: Reconstruction of a one-dimensional �eld.

With a centralized system, the computation of (1.2.3) requires that all nodes send

their measurements (vector g) to a fusion center that computes (1.2.3). Conversely,

our problem is how to compute (1.2.3) with a decentralized network, where each

node exchanges information with its neighbors only. We suppose that each sensor is

equipped with three basic components:

1. a transducer that senses the physical parameter of interest;

2. a discrete dynamical system whose state is initialized with the local measure-

ments;

3. a radio interface that transmits the state of the dynamical system and receives

the state transmitted by the other nodes, thus ensuring the interaction among

sensors.

The proposed approach is based on an iterative procedure, where each node initializes

a state variable with the local measurement, let us say zi[0] = g(xi, yi), and then it
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evolves by interacting with nearby nodes in the following way

zi[k + 1] = zi[k + 1]− ε
∑
j∈Ni

Lijzj[k + 1], (1.2.4)

where Ni is the set of neighbors of node i. Denoting by z[k], the N × 1 vector

containing the states of all nodes at iteration k, the whole system evolves according

to the following linear state equation:

z[k + 1] = Wz[k], k = 0, 1, . . . , z[0] = g ∈ RN , (1.2.5)

where W =

-εL ∈ RN×N is a sparse (not necessarily symmetric) matrix. We assume here that

W does not vary with time. The sparsity of W is what characterizes the network

topology and, in particular, it models the interaction of each node with its neighbors

only. Given the interaction mechanism (1.2.5), our problem is twofold: 1) guarantee

that system (1.2.5) converges to the desired vector (1.2.3), although using a sparse

matrix W ; 2) �nd the sparse matrix W , under a topological constraint, so that the

convergence time is minimized. Let us denote by PR(U) ∈ RN×N the orthogonal

projector onto the r-dimensional subspace of RN spanned by the columns of R(U),

where R(·) denotes the range space operator and U ∈ RN×r is a full-column rank

matrix, assumed, w.l.o.g., to be semi-unitary. System (1.2.5) converges to the desired

orthogonal projection of the initial value vector z[0] = g onto R(U), for any given

g ∈ RN , if and only if

lim
k→+∞

z[k] = lim
k→+∞

W kg = PR(U)g, (1.2.6)

i.e.,

lim
k→+∞

Wk = PR(U). (1.2.7)
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Necessary and su�cient conditions for (1.2.7) were proved in [11] and are given in the

following. Given the dynamical system in (1.2.5) and the projection matrix PR(U),

the vector PR(U)z[0] is globally asymptotically stable for any �xed z[0] ∈ RN , if and

only if the following conditions are satis�ed:

WPR(U) = PR(U) (C.1)

PR(U) W = PR(U) (C.2)

ρ
(
W −PR(U)

)
< 1 (C.3)

where ρ(·) denotes the spectral radius operator [12]. Under (C.1)-(C.3), the error

vector e[k] , z[k]−PR(U)z[0] satis�es the following dynamics:

e[k + 1] =
(
W −PR(U)

)
e[k], k = 0, 1, . . . . (1.2.8)

¤

Remark 1−Interpretation of necessary and su�cient conditions: Interest-

ingly, conditions C.1-C.3 have an intuitive interpretation, as described next. C.1 and

C.2 state that, if system in (1.2.5) asymptotically converges, then it is guaranteed to

converge to the desired value. In fact, C.1 guarantees that the projection of vector

z[k] onto R(U) is an invariant quantity for the dynamical system, implying that the

system in (1.2.5), during its evolution, keeps the component PR(U)z[0] of z[0] unal-

tered; whereas C.2 makes PR(U)z[0] a �xed point of matrix W and thus a potential

accumulation point for the sequence {z[k]}k. However, both conditions C.1 and C.2

do not state anything about the convergence of the dynamical system; which is in-

stead guaranteed by C.3, imposing that all the modes associated to the eigenvectors

orthogonal to R(U) be asymptotically vanishing [cf. (1.2.8)].
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Remark 2−Special cases: Observe that, as special case, our conditions C.1-C.3

contain the well-known convergence conditions of linear discrete-time dynamical sys-

tems toward the (weighted) average consensus (see, e.g., [1, 2]). It is su�cient to set

in (1.2.6), r = 1 and U = u = 1√
N
1N , where 1N is the N -length vector of all ones.

In such a case, C.1-C.3 can be restated as following: the digraph associated to the

network described by W must be strongly connected and balanced.

Remark 3: Interestingly, conditions C.1-C.3 can be restated in terms of semistability

properties of matrix W, as detailed next. Denoting with OUD the Open Unit Disk,

i.e. the set {x ∈ C :| x |< 1}, a matrix W is semistable if its spectrum spec(W)

satis�es spec(W) ⊂ OUD ∪ {1} and, if 1 ∈ spec(W), then 1 is semisimple, i.e. its

algebraic and geometric multiplies coincide. If W is semistable, then

lim
k→+∞

Wk = I− (I−W)†(I−W) = I− L†L (1.2.9)

where † denotes group generalized inverse (or Moore-Penrose inverse) and we have

used the relation W = I − εL. But I − L†L is the projector onto the null-space

of L. Hence, necessary and su�cient conditions ensuring convergence are that the

columns of U span the null-space of L and that W is semistable; which corresponds

to C.1-C.3.

Our goal is to derive the optimal choice of matrix W, consistent with the net-

work topology constraints, that maximizes the convergence speed of dynamical sys-

tem (1.2.5), while guaranteeing the convergence of (1.2.5) to the desired �nal vector

z? = PR(U)g. As we will show in the next section, this optimization leads to the

minimization of the matrix spectral radius. Unfortunately, minimizing the spectral

radius of a non-symmetric matrix is a notoriously di�cult problem, intractable except

for small-medium values of the dimensions [3]. Some optimization problems involving
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the minimization of the spectral radius were indeed shown to be NP-hard [17, 18].

Since in typical sensor network problems, the dimension of W may be quite large

and, furthermore, the advantage of using a non-symmetric matrix as opposed to a

symmetric one is unclear, we will primarily restrict our search to the class of sym-

metric matrices W, satisfying conditions C.1-C.3. Therefore, we consider matrices

W having the following structure:

W = I− εL, ε ∈ R, L = LT , L º 0. (1.2.10)

Under this position, conditions C.1-C.2 can be expressed in terms of L as

UTL = 0. (1.2.11)

Introducing the semi-unitary matrix U⊥ ∈ RN−r×N−r such that UTU⊥ = 0, in [11]

the authors proved that condition (1.2.11), together with the symmetry of L, leads

to the following structure for L:

L = U⊥LU⊥T

, (1.2.12)

with L ∈ R(N−r)×(N−r) satisfying L = L
T and L º 0. This condition states that every

feasible L must belong to the range space of U⊥ ∈ RN−r×N−r. Similarly, condition

C.3 becomes [11]

ρ
(
I− εL−PR(U)

)
= ρ

(
I− εL

)
< 1. (1.2.13)

where I denotes the N − r identity matrix. Using (1.2.12), condition (1.2.13) is

equivalent to the following:

ελi(L) > 0 and ελi(L) < 2, ∀i ∈ {1, . . . , N − r}, (1.2.14)
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where {λi(L)}N−r
i=1 denotes the set of eigenvalues of L. Since L º 0, (1.2.14) can be

rewritten as:

L Â 0 and 0 < ε <
2

λi(L)
, ∀i ∈ {1, . . . , N − r}. (1.2.15)

In words, the search for a matrix W satisfying (1.2.7) is equivalent to searching

for a matrix L whose kernel space coincides with the useful signal subspace. The

challenging question in our sensor network context is to �nd whether (1.2.7) can be

satis�ed using a sparse matrix. Before tackling the general case, in the following we

consider a few special cases where there do exist sparse matrices satisfying (1.2.7).

1.2.1 Distributed polynomial approximation

In most applications, the useful �eld z(x, y) is a continuous function of the spatial

coordinates and then, according to the Weierstrass' theorem, it can be approximated

by a two-dimensional polynomial of �nite order in the variables x and y, with an

arbitrarily small error. For simplicity, we assume that the nodes are uniformly spaced

over a 2-dimensional grid and that the observed �eld does not vary with time. Let

us denote with K − 1 the order of the polynomial in both variables x and y. In

such a case, given the observations (1.2.1), we may perform a spatial soothing of

the observation by �nding the vector ẑ that minimizes the following functional, as

proposed in [8]:

V (ẑ) =
1

2

∑
i∈N

K∑
m=0

[∇(K−m)
x ∇(m)

y ẑ(xi, yi)]
2, (1.2.16)

where ∇(m)
x and ∇(m)

y denote the m-th order di�erence operator with respect to the

variables x and y, respectively. More speci�cally, the operator is de�ned through the
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following properties:

∇(0)
x ẑ(xi, yi) = ẑ(xi, yi); ∇(0)

y ẑ(xi, yi) = ẑ(xi, yi);

∇(1)
x ẑ(xi, yi) = ẑ(xi, yi)− ẑ(xi−1, yi);

∇(1)
y ẑ(xi, yi) = ẑ(xi, yi)− ẑ(xi, yi−1);

∇(n)
x ẑ(xi, yi) = ∇(1)

x

[
∇(n−1)

x ẑ(xi, yi)
]
.

(1.2.17)

To take into account border e�ects, N is the set of indices for which the above

di�erences can be properly computed; also recall that we have assumed a uniform 2D

grid for simplicity of exposition. The cost function (1.2.16) is a quadratic form on ẑ,

which can be written as J(z) = zT Lz. The minimum of (1.2.16) can then be reached

using the steepest descent method

z[k + 1] = z[k]− εLz[k] , Wz[k], (1.2.18)

with initialization z[0] = g, having set W , I−εL. It is useful to remark that L is, by

construction, a positive semide�nite, symmetric, sparse matrix. More speci�cally, the

sparsity of L depends on the maximum degree of the approximating polynomials[8].

Hence, there exist a unitary matrix U and a diagonal matrix Λ such that:

L =
(

U⊥ U
) (

Λ 0
0 0

)(
U⊥H

UH

)
(1.2.19)

where U has dimension N×L, with L denoting the dimension of the kernel of L. The

columns of U are the vectors spanning the kernel of L that, because of the structure

of (1.2.16), is spanned by the polynomials of orders up to K−1. Let λi(L) and λi(W)

denote the eigenvalues of L and W ; we assume that these eigenvalues are ordered in

non-decreasing order. We can always choose ε, so that the eigenvalues of W satisfy

0 < |λi(W)| < 1, ∀1. This property is clearly achieved by setting

0 < ε <
2

λN(L)
. (1.2.20)
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With this choice, it is straightforward to verify that

lim
k→∞

z(k) = lim
k→∞

N∑
i=1

λk
i (W)uiu∗i z(0) = UUHz(0), (1.2.21)

where the columns of U are exactly the vectors spanning the kernel of L. Hence,

expression (1.2.21) states that the �nal value coincides with the projection of the ob-

servation vector onto the nullspace of L. Hence, (1.2.18) is an example of distributed

orthogonal projector onto the signal subspace spanned by low order polynomials us-

ing only local interactions. If the sensors are uniformly spaced over a line, each node

(except the border nodes) interacts with a number of neighbors which is equal to K,

if K − 1 is the maximum polynomial degree, for example:

a) K = 1,

L =




1 −1 0 0 . . . 0

−1 2 −1
. . . . . . 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0

... . . . . . . −1 2 −1

0 . . . . . . 0 −1 1




In this case, we have Lij = 1, if |i− j| = 1, and 0 otherwise. This happens when each

node has only two neighbors (except the border nodes having only one neighbor).

The matrix L has, in this case, a null eigenvalue of multiplicity one. Since each row

of L has zero row sum, the eigenvector associated with the null eigenvalue of L is

the vector 1 composed of all ones. Hence, the �nal result is the conventional average

consensus algorithm.
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b) K = 2,

L =




1 −2 1 0 0 0 . . . 0

−2 5 −4
. . . . . . . . . . . . 0

1 −4 6
. . . . . . . . . . . . ...

0
. . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . 0

... . . . . . . . . . . . . 6 −4 1

... . . . . . . . . . . . . −4 5 −2

0 . . . . . . . . . 0 1 −2 1




In this case, the nullspace of L has dimensionality two and it is spanned by a linear

combinations of polynomials of degree zero and one. An orthonormal set is given,

in this case, by the Legendre polynomials of degree zero and one. Hence the �nal

vector is a straight line. Since any continuous function can be approximated with an

arbitrarily small error, by a polynomial, the above method provides then a distributed

tool to approximate any continuous �eld of values. The well known average consensus

algorithm [2] is strictly related to the above algorithm, as it is the result of the

minimization of the disagreement function

J(z) =
N∑

i=1

N∑
j=1

aij(zi − zj)
2, (1.2.22)

with aij = aji nonnegative real coe�cients. In this case, we can still write (1.2.22)

as a quadratic form zT Lz, where the matrix L has coe�cients Lii =
∑N

j=1 aij and

Lij = −aij, with i 6= j. The minimum of (1.2.22) can still be reached using a steepest

descent algorithm, as in (1.2.18). The matrix L has, by construction, an eigenvector

1N composed by all ones, associated to a null eigenvalue. If the graph describing the

interaction among the nodes is strongly connected and balanced, the multiplicity of

the null eigenvalue is one and the asymptotic value of (1.2.18) is thus the orthogonal
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projection onto the kernel of L, i.e.,

lim
k→∞

z[k] =
1

N
1N1T

Ng. (1.2.23)

This is clearly a particular case of (1.2.7), corresponding to a signal subspace spanned

by the vector 1N . What is important to remark here is that global consensus requires

only the connectivity of the network. This can be achieved even if every node is

connected with only one neighbor, i.e. with a very sparse matrix L. An example of

the application of the previous method to a 2D �eld is reported in Figure 1.3, where

the useful �eld is a paraboloid and the measurement is corrupted by zero mean white

Gaussian noise. The number of sensors is 144 and the SNR de�ned respect to the

maximum value of the useful �eld is equal to 10dB. The observations are represented,

in Figure 1.3, by the circles. The �nal state vector is represented by the paraboloid

shown in Figure 1.3, which is almost perfectly superimposed on the useful �eld.
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Figure 1.3: Reconstruction of a 2D �eld.
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In principle, we can improve the approximation in the above method by increasing

the value of K. However, the degree of the network, de�ned as the maximum number

of neighbors of each node, increases with K. This induces a greater waste of energy.

Hence, it is necessary to �nd the right trade-o� between energy consumption and

approximation error. Furthermore, if the useful �eld presents discontinuities, we

could be forced to use very high values of K and still have a nonnegligible error. It is

then useful to devise some variants of the previous method that still allow us to have

a limited value of the network degree. To this end, we use the following cost function

J(ẑ) = µV (ẑ) + (1− µ)‖ẑ − g‖2, (1.2.24)

with V (ẑ) given in (1.2.16)and µ ∈ (0, 1). In this case, the steepest descent method

leads to

z(k + 1) = [(1− ε(1− µ))I − εµL ]z(k) + ε(1− µ) z(0), (1.2.25)

with z(0) = g. Introducing the matrix W , (1−ε(1−µ))I−εµL, we can guarantee

that the eigenvalues λi(W ) of W are strictly between −1 and 1, by setting

0 < ε < min
i

{
2

λi(L) + 1− µ

}
=

2

λN(L) + 1− µ
. (1.2.26)

With a few simple algebraic manipulations, we can rewrite z(k) as

z(k) = W kz(0) + ε(1− µ)
∑k−1

n=0 Wkz(0)

= W kz(0) + ε(1− µ)(I−W)−1(I−Wk)z(0).
(1.2.27)

Choosing ε according to (1.2.26), the state vector converges to

lim
k→∞

z(k) =

(
I +

µ

1− µ
L

)−1

g. (1.2.28)

= [UUT + (1− µ)U⊥[(1− µ)IN−k − µΛL1
]−1U⊥T ]g (1.2.29)
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If µ = 1 the �nal vector coincides with the projection of the observation onto the

nullspace of the matrix L; in general, for 0 < µ < 1, besides this projection, there

is also a vector component that lies in the orthogonal subspace.Depending on the

value of µ, we may give di�erent relative importance to smoothing or �delity to the

original observation. In the extreme case of µ = 0, the network does not apply

any smoothing, i.e. limk→∞ z(k) = g, whereas, at the other extreme, when µ = 1,

the �nal value coincides with the projection of the observation onto the nullspace

of the Laplacian matrix, as proved in the previous section. A numerical example

is reported in Fig.1.4, relative to a one-dimensional network located over a straight

line. The observed signal in this case is a sinusoid (dashed line) and the observation

(dots) is corrupted by white Gaussian noise. The SNR is 5 dB. Smoothing has been

performed using the simple algorithm (1.2.18), with K = 3. In this case, with µ = 1,

the method projects the observed vector onto the space spanned by second order

polynomials. Since the observation is a noisy sinusoid, the �nal result (dash-dotted

line) is not very good. However, as soon as µ is slightly less than one, the method

is forced to take into account the �delity to the observation, and the �nal result is

much better than in the previous case. Using µ = 0.9999, for example, the result

of the smoothing operation is represented by the solid line and we can see that the

approximation is now pretty good.
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Figure 1.4: Reconstruction of a noisy sinusoid.

Even if this is only a simple example, Figure 1.4 suggests that the choice of µ can

have a strong impact on the smoothing operation. To quantify the �nal distortion, we

can compute the mean square error, averaged over the noise realizations. Introducing

the matrix P (µ) =
(
I + µ

1−µ
L

)−1

, the �nal MSE is

MSE(µ) = ‖(P (µ)− I)f‖2 + σ2
ntr(P (µ)P (µ)T ). (1.2.30)

In the case of a sinusoidal function, this function, normalized to ‖f‖2, is reported in

Figure 1.5, for di�erent values of µ and σ2
n. As expected, there is an optimal value

of µ that depends on the noise level: When there is no noise, it is better to apply

no smoothing at all, and thus the best value of µ is zero; conversely, as the noise

increases, it is better to use values of µ closer and closer to one.
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Figure 1.5: MSE as a function of µ and σn.

1.3 Maximum convergence rate under topology con-
straints

We can now focus on the optimal choice of matrix W that allows the asymptotic

convergence onto the desired signal subspace [see (1.2.6)], still having a sparse struc-

ture, in the general case where the signal subspace is not necessarily spanned by low

order polynomials and the sensors do not necessarily lie over a uniform grid. Energy

consumption is one of the most critical aspects of wireless sensor networks. From

this point of view, iterative algorithms are especially critical because of the iterative

exchange of data. It is then fundamental to minimize the time necessary for the itera-

tive algorithms to converge. The energy spent to reach the global projection with the

desired accuracy or reliability is the product between the transmit power and the con-

vergence time. For any given spatial distribution of the sensors, the transmit power
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constraint re�ects into a topology constraint, so that each node interacts only with

the nodes lying within its coverage radius. According to these motivations, under

conditions C.1-C.3, we focus on the design of the matrix W, consistent with the net-

work topology constraints, that minimizes the convergence rate of system in (1.2.5).

We �rst introduce two di�erent de�nitions of the convergence rate, then we prove

that they give the same results in the case of symmetric matrix W. The convergence

rate can be either measured for the worst possible initial vector z[0] or on the average.

In this work, we focus on the former approach. The convergence speed based on the

worst possible initial vector z[0] is measured introducing the asymptotic convergence

exponent, as detailed next. Denoting by z? = PR(U)z[0] the �nal value toward which

vector z[k] converges, under conditions C.1-C.3 the asymptotic convergence exponent

for the worst-case convergence rate is given by [22, 23]

d(W) = sup
z[0] 6=z?

lim
k→∞

1

k
ln

(‖z[k]− z?‖
‖z[0]− z?‖

)
. (1.3.1)

In de�nition (1.3.1) the distance at the k-th iteration between z[k] and z? measured

by some vector norm ‖z[k]− z?‖ is compared with the initial distance ‖z[0]− z?‖ .

Since for large k

‖z[k]− z?‖ ' Ced(W)k, (1.3.2)

where C is a constant that depends on the initial conditions, d(W) gives the conver-

gence time

τ(W) =
1

ln(1/d(W))
. (1.3.3)

The convergence time is the asymptotic number of iterations for the error to de-

crease by the factor 1/e for the worst possible initial vector. Another measure of the
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convergence speed is the per-step convergence rate, de�ned as:

rstep(W) = sup
z[k]6=z?

‖z[k + 1]− z?‖
‖z[k]− z?‖ , (1.3.4)

which amounts to the worst-case one-step relative reduction. In the following we will

consider both the above measurements, using in the de�nitions (1.3.1) and (1.3.4) the

Euclidean norm.

Given the dynamical system (1.2.5), it follows from (1.2.8) and [22, Theorem 3.4]

that

d(W) = ρ(I−W) and rstep(W) = ‖I−W‖2 , (1.3.5)

where ρ(I−W) denotes the spectral norm of matrix I−W [12].From (1.3.5) we have

that if the network topology leads to symmetric matrix W, then d(W) and rstep(W)

coincide. Since W in (1.2.10) is symmetric by construction, without loss of generality

we can consider only the asymptotic convergence exponent in (1.3.5). Hence, the

minimization of the convergence time in (1.3.3) while guaranteeing the convergence

of the system to the desired �nal vector in (1.2.6), is equivalent to the minimization

of ρ(I −W), under C.1-C.3 [or equivalently under (1.2.12)- (1.2.15)]. The existence

of a solution requires that two conditions are satis�ed:

1. the network must be connected, i.e. there exist a link between every pair of

nodes, possibly composed of multiple hops;

2. the degree (number of neighbors) of each node is not smaller than the dimension

of the signal subspace.

The second conditions means, in the context of this work, that the transmit power of

each node must be su�cient to reach a number of nodes equal to the dimension of the
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signal subspace. This means, for instance, that if we project onto a subspace spanned

by a constant vector, as in average consensus algorithms, the signal subspace is one

dimensional and then it is only necessary that each node has at least one neighbor.

However, if we wish to project onto higher order subspace, the number of neighbors

must increase consequently. From (1.2.12), the constraint imposing that each node

interacts only with a set of neighbors can be formulated by setting the appropriate

values of W , and then L, equal to 0, i.e., [see (1.2.12)]

[L]ij =
[
U⊥LU⊥T

]
ij = 0 ∀i, j ∈ B. (1.3.6)

We are now ready to formulate our optimization problem, as given next

minimize ρ
(
I− εL

)

L, ε

subject to L Â 0, L = L
T
,

[
U⊥LU⊥T

]
ij = 0 ∀i, j ∈ B,

0 < ε < 2
λi(L)

.

(1.3.7)

The optimization problem (1.3.7) is not convex and might not be feasible. Assuming

that the network topology constraints are such that the feasible set of (1.3.7) is

nonempty we prove (see Appendix B) that an optimal solution to (1.3.7) can be
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e�ciently computed rewriting (1.3.7) as the following semi-de�nite programming

minimize γ

L̃, γ, µ̃

subject to




L̃− I 0 0

0 γI− L̃ 0

0 0 µ̃I


 º 0,

L̃ = L̃T ,[
U⊥L̃U⊥T

]
ij = 0 ∀i, j ∈ B.

(1.3.8)

Once an optimal solution
(
L̃?, γ?, µ̃?

)
to (1.9.11) is computed, the optimal orig-

inal L? can be obtained through (1.9.9) and (1.2.12): L? = µ̃?−1U⊥L̃?U⊥T . It is

important to remark that the maximization of the convergence rate as formulated in

(1.3.7) di�ers from the approaches proposed in the literature to accelerate classical

consensus algorithms (see, e.g., [4, 7]), since we solve a much more general problem

than consensus and, in our formulation, we consider the joint optimization of the step

size ε and the weight matrix L, including also sparsity constraints on W .

Figures 1.6, 1.7, 1.8 and 1.9 show the minimum convergence time obtained for

a network of 25 and 16 sensors uniformly spaced over a line segment of length D,

as a function of the number of neighbors. In Figures 1.6 and 1.8 the useful signal

is modeled as the summation of the Fourier basis {1, cos(2πmx/D), sin(2πmx/D)},
with m = 1, 2, . . . , while in Figures 1.7 and 1.9 as the summation of the low order

polynomial basis. As expected, as the number of neighbors increases, the convergence

time decreases. However, this entails a greater transmit power to cover a larger area.

On the other hand, the convergence time increases if, for a given number of neighbors,

the dimension of the kernel space (number of Fourier components or the polynomial

order) increases. All these considerations hold also for the 2D case; in Figure 1.10
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and 1.11 we report the minimum convergence time as a function of the number of

neighbors for di�erent dimensions of the polynomial and Fourier kernel in the case

of 36 sensors uniformly spaced over a 2D grid. Figure 1.12 compares the minimum

convergence time vs. number of neighbors for Fourier and polynomial basis and

di�erent kernel dimensions in the case of sensors uniformly spaced on a line.
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Figure 1.6: Minimum convergence time vs. number of neighbors for a Fourier basis and 25
sensors.
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Figure 1.7: Minimum convergence time vs. number of neighbors for a polynomial basis and
25 sensors.
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Figure 1.8: Minimum convergence time vs. number of neighbors for a Fourier basis and 16
sensors.
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Figure 1.9: Minimum convergence time vs. number of neighbors for a polynomial basis and
16 sensors.
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and 36 sensors.
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1.4 Distributed projection algorithm robust against
coupling noise

Finally, we consider the e�ect of the communication noise on the proposed distributed

projection algorithm. The communication noise is modeled as an additive term in

the update equation (1.2.5) that becomes

zi[k + 1] = zi[k]− ε
∑
j∈Ni

Lijzj[k]− ε
∑
j∈Ni

Lijnij[k], (1.4.1)

so that in vector notation we have

z[k + 1] = Wz[k] + v[k] = W kz[0] +
k∑

l=0

W k−lv[l] (1.4.2)

where v[k] is the vector noise, whose entries are assumed to be zero mean, uncorrelated

random variables with variances

σ2
i = ε2

∑
j∈Ni

|Lij|2σ2
n, (1.4.3)

with σ2
n equal to the variance of any single noise contribute nij[k]. It is easy to

show that the entries of the output additive noise term
∑k

l=0 W k−lv[l] tend to have

variance diverging with time. This is indeed a generalization of what was observed

in [7] for the simpler case of average consensus techniques. It can be showed with

simple algebraic manipulations that the output additive noise vector w(k) has zero

mean and covariance matrix

Cw(k) =
k−1∑

l=0

WlCv(W
l)H . (1.4.4)

where Cv = diag(σ2
1, . . . , σ

2
N) is the covariance matrix of the noise vector v[k]. Since

W is symmetric by construction, it can be diagonalized as W = RΛRH , where the
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diagonal matrix Λ = diag([λ1(W), . . . , λN(W)]) contains the eigenvalues of W and

R = [U |U⊥]. The matrix R contains all the eigenvectors of the matrix W , both

the eigenvectors associated to its kernel and those relative to the kernel orthogonal

subspace. The diagonalization of the l-th power of the matrix W is given by Wl =

RΛlRH , so that we have

Cw(k) =
k−1∑

l=0

RΛlRHCv(RΛlRH)H

The eigenvalues of the covariance matrix Cw(k) determine the average variance of

the noise terms at the k-th iteration. The average noise variance resulting satis�es

the following relation

σ2
w(k) =

1

N
Tr(Cw(k)) (1.4.5)

≤ σ2
min
N

N∑
i=1

k∑

l=0

λi(W )2l

with λi(W) = 1 − ελi(L),∀i ∈ {1, . . . , N}. To get some insight into the behavior of

the noise variance as k increases, let us single out the e�ect of the largest eigenvalues of

W. Since these eigenvalues are equal to one (they correspond to the null eigenvalues

of the matrix L), the noise variance tend to diverge with time. A possible way to get

rid of this annoying result is to use stochastic approximation theory to avoid the noise

variance diverging problem and still converge, in mean square sense, to the desired

projection vector. The proposed algorithm consists in using a decreasing step-size in

the update equation, e.g. modifying it as follows

z[k + 1] = (I− ε

(k + 1)η
L)z[k] + v[k] (1.4.6)

=
k∏

m=0

Wmz[0] + w[k + 1]
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where Wm = (I − ε
(m+1)η L) and w[k + 1] represents the output additive noise term

at the (k + 1)-th iteration. In the following we consider the case of symmetric L. We

use the eigenvalue decomposition L = RΛLR
T, where ΛL = diag(λ1(L), . . . , λN(L))

is the diagonal matrix whose diagonal entries are arranged in nondecreasing order,

with λ1(L) = . . . λr(L) = 0 < λr+1(L) ≤ · · · ≤ λN(L). It can be showed that the

noiseless collective dynamic of the system asymptotically converges to [73]

x̃ = UUTx0, if η ∈ [0, 1]

or

x̃ = UUTx0 +
N∑

i=r+1

λ̃iriri
Tx0, if η > 1 (1.4.8)

where U denotes the N × r matrix composed by the �rst r columns of R; ri, ∀i ∈
{r + 1, . . . , N}, are the eigenvectors of L associated to its non-null eigenvalues (i.e.

U⊥, the last N − r columns of R); the terms λ̃i,∀i ∈ {r + 1, . . . , N}, in the case

η > 1, are upper and lower bounded by the following expressions

0 < λ̂i < λ̃i < λ̄i < 1 (1.4.9)

with λ̂i = exp(ln(1− ελN−i+1(L))ζ(η)), and λ̄i = exp(−ελN−i+1(L)ζ(η)), where ζ(η)

is the Riemann zeta function. Furthermore, the covariance matrix of the output noise

vector w[k] in (1.4.6) can be written as

Cw[k] =
σ2

k2η
I + σ2Ũ[

k−1∑
m=1

1

m2η

k∏

l=m+1

(I− 1

lη
ΛL)2]ŨT (1.4.10)

and the average variance of its entries as

σ2
w[k] =

σ2

N

N∑
i=1

(
k

2η
+

k−1∑
m=1

1

m2η
e2

∑k
l=m+1 ln(1− ε

lη
λi(L))). (1.4.11)
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It can be showed that, as k goes to in�nity, as long as η is chosen to be strictly greater

than 1/2, the output noise variance achieves asymptotically a value σ2
w[∞] which is

upper bounded as

σ2
w[∞] < ε2σ2ζ(2η), (1.4.12)

whereas if η ≤ 1/2 it diverges to in�nity. Thus, if η ∈ (1/2, 1], the algorithm projects

the useful vector onto the kernel of L, as desired, with an additive noise whose variance

remains bounded.

1.4.1 Trade-o� between convergence speed and accuracy

In this Section we prove that the optimal choice of the parameters η and ε to be used

in the update equation (1.4.6) is given by a trade-o� between convergence speed and

accuracy of the �nal result in terms of noise variance. First of all, assuming that

η ∈ (1/2, 1], we achieve an expression for the error ‖ z(k) − z∗ ‖ that represents a

measure of the distributed iterative algorithm convergence speed. This expression

together with the results on the �nal noise variance given by (1.4.12) permits us to

analyse the problem of the optimal choice of the parameters η and ε. We have

‖z(k + 1)− z∗‖ = ‖(
k∏

j=0

W j)z(0)−UUHz(0)‖

= ‖W k(
k−1∏
j=0

W jz(0))−UUH(
k−1∏
j=0

W jz(0))‖ (1.4.13)

where we have used the fact that

UUH(
k−1∏
j=0

W jz(0)) = UUHz(0). (1.4.14)
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From (1.4.13) and Appendix C, it follows that

‖z(k + 1)− z∗‖ ≤ ρ(W k −UUH)‖(
k−1∏
j=0

W jz(0))−UUH(
k−1∏
j=0

W jz(0))‖

= ρ(W k −UUH)‖z(k)− z∗‖. (1.4.15)

Repeating the same argument for j = 0 to k we �nally get

‖z(k + 1)− z∗‖ ≤ (
k∏

j=0

ρ(W j −UUH))‖z(0)− z∗‖. (1.4.16)

Equation (1.4.1) establishes that the maximization of the convergence rate of the

algorithm with decreasing step-size is equivalent to minimize the product of the spec-

tral radius of the matrices sequence {W j}. Since the sequence of step-size ε
(k+1)η is a

decreasing function of the iteration index k, it is simple to prove the following result:

minimizing the convergence rate of the algorithm given by (1.4.6) with respect to the

matrix L and the initial step-size ε is equivalent to solve the optimization problem

(1.3.7). In other words, the optimal choice of L and ε that maximizes the conver-

gence rate of the algorithm with decreasing step-size is the same as in the case of

the algorithm with constant step-size given by the update equation (1.2.5). Since the

optimal initial step size is given by

ε? =
2

λ(1)

(
L

)
+ λ(N−r)

(
L

) (1.4.17)

it is simple to prove that

‖z(k + 1)− z∗‖ ≤ (
k∏

j=0

(1− λ2(L)ε∗/(k + 1)η)‖z(0)− z∗‖, (1.4.18)

where λ2(L) is the smallest eigenvalues of the positive de�nite symmetric matrix L

introduced in the previous sections. Now, since 1− a ≤ exp−a, 0 ≤ a ≤ 1, we have

‖z(k + 1)− z∗‖ ≤ (
k∏

j=0

(exp−λ2(L)
∑k

j=0 ε∗/(k+1)η))‖z(0)− z∗‖ (1.4.19)
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that shows the existence of a trade-o� between the �nal noise variance and the con-

vergence rate of the sequence z(k) to the desired vector z∗. In fact, from (1.4.19) it

follows that the convergence speed is closely related to the rate at which the step-

size sequence, ε∗/(j + 1)η, sums to in�nity. For a faster rate, we want the step-size

sequence to sum up fast to in�nity, i.e., the step-size sequence elements to be large.

As a consequence choosing a lower η yields a higher convergence rate; however, from

equation (1.4.12), being ζ(2η) a decreasing function of η in the interval (1/2, 1], the

choice of the parameter η must necessarily consider both �nal noise variance and con-

vergence rate. Observing equation (1.4.12), in order to limit the e�ect of the initial

step-size on the �nal output noise variance, we could impose also a constraint on the

initial step-size ε. In this case, the maximization of the convergence rate with respect

to L and ε can be reformulated as the following optimization problem

minimize γ

L, γ

subject to −γI ≤ I− εL ≤ γI,

L Â 0, L = L
T
, ε ≤ ε̃

[
U⊥LU⊥T

]
ij = 0 ∀i, j ∈ B.

(1.4.20)

where ε̃ is the greatest possible value of the initial step-size according to the accuracy

requirement. This optimization problem is not convex and in this case it is not

possible to rewrite our problem in an alternative convex form. If we assume that,

after suitable processing, the signal received by the i-th node on the channel from

node j to node i has the following expression

rij[k] =
√

Przj[k] + nij[k]
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where Pr is the minimum required received power achieved implementing power con-

trol, the update equation (1.4.6) can be rewritten as

zi[k + 1] = zi[k]− β
√

Pr

∑
j∈Ni

Lijzj[k]− β
∑
j∈Ni

Lijnij[k], (1.4.21)

with the product β
√

Pr equivalent to the initial step-size ε. The �nal output noise

variance assumes the following expression

σ2
w[∞] < β2σ2ζ(2η); (1.4.22)

from (1.4.22) it follows that the trade-o� between accuracy and convergence rate with

respect to ε can be faced exploiting another degree of freedom, i.e. the minimum

required received power. The parameter β can be set to a certain value while the

transmit power can be chosen in order to obtain a desired value of the initial step-size

ε without increasing the �nal output noise variance.

1.5 Signal subspace order selection

The projection operator used in this wok can be seen as the result of a minimum

mean square error (MMSE) algorithm applied to the observed data vector, with the

peculiarity of being implemented in a distributed way and able to converge with the

minimum convergence time. As well known in the application of MMSE algorithms

to real data [119], the selection of the signal subspace dimension k is a critical step.

The MSE of the basis expansion can be described by the sum of a square bias and a

variance term

MSE = bias2 + varn (1.5.1)

where bias2 depends on the actual set of basis functions and varn, in the case of equal

observation noise variance, depends linearly on σ2
ξ and the dimension of the basis
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expansion

varn = σ2
ξTr(UUHUHU ) = σ2

ξ

k

N
. (1.5.2)

Small values of k are useful to get a strong noise reduction, but at the expense of a

large bias; conversely, higher values of k provide better estimates of the useful signal,

but with a higher noise variance. Figure 1.13 shows an example of MSE obtained
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Figure 1.13: Mean Square Error vs. signal subspace dimension.

by projecting a power spatial density modeled as in , plus additive zero mean white

noise with variance σ2
ξ , onto a 2D Fourier basis, as a function of the model order.

The MSE initially decreases because the approximation improves as the model order

increases; however, the noise term increases as kσ2
ξ . As a consequence, the overall MSE

exhibits a minimum, as evident in Figure 1.13; therefore, it is important to choose the

correct signal subspace order that guarantee the optimal trade-o� between variance

and bias of the estimation. We are interested in estimating a bandlimited spatial

function de�ned only on a speci�c geographical area; it is clear that analyzing and
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representing scienti�c data of this kind will be facilitated if a basis of functions can

be found that are "spatio-spectrally" concentrated, i.e. "localized" in both domains

at the same time. Here, we give a theoretical overview of one particular approach to

this "concentration" problem, as originally proposed for time series by Slepian and

coworkers, in the 1960s. Slepian functions represent an orthogonal family of functions

that are all de�ned on a common, e.g. geographical, domain, where they are either

optimally concentrated or within which they are exactly limited, and which at the

same time are exactly con�ned within a certain bandwidth, or maximally concentrated

therein. The measure of concentration is invariably a quadratic energy ratio, which,

though only one choice out of many is perfectly suited to the nature of the problem

considered. In the next section we brie�y review the theory of the Slepian functions

both in one dimension and in the Cartesian plane; these results provide us a value of

the actual dimension of the subspace of the functions "essentially" space-band limited

in a certain domain.

1.5.1 Theory of Slepian functions

We start with the one-dimensional case and use t to denote time or one-dimensional

space and ω for angular frequency, and adopt a normalization convention in which a

real-valued space(time)-domain signal f(t) and its Fourier transform F (ω) are related

by

f(t) = (2π)−1

∫ ∞

−∞
F (ω)eiωtdω (1.5.3)

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt (1.5.4)

The problem of �nding the strictly bandlimited signal

g(t) = (2π)−1

∫ W

−W

G(ω)eiωtdω, (1.5.5)
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that is maximally (though by virtue of the Paley-Wiener theorem never completely)

concentrated into a space(time) interval |t| < T was �rst considered by Slepian,

Landau and Pollak. The optimally concentrated signal is taken to be the one with

the least energy outside of the interval,in other words such that

λ =

∫ T

−T
g2(t)dt∫∞

−∞ g2(t)dt = maximum (1.5.6)

Bandlimited functions g(t) satisfying the previous variational problem have spectra

G(ω) that satisfy the frequency domain convolutional integral eigenvalue equation
∫ W

−W

D(ω, ω
′
)G(ω

′
)dω

′
= λG(ω) |ω| ≤ W (1.5.7)

D(ω, ω
′
) =

sin T (ω − ω
′
)

π(ω − ω′)
(1.5.8)

The corresponding time- or spatial-domain formulation is
∫ T

−T

D(t, t
′
)g(t

′
)dt′ = λg(t) |t| ≤ T (1.5.9)

D(t, t
′
) =

sin W (t− t
′
)

π(t− t′)
(1.5.10)

The "prolate spheroidal eigenfunctions" g1(t), g2(t), . . . that solves equation (1.5.9)

form a doubly orthogonal set. When they are chosen to be orthonormal over in�nite

time they are also orthogonal over the �nite interval |t| ≤ T

∫ ∞

−∞
gα(t)gβ(t)dt = δαβ, (1.5.11)

∫ T

−T

gα(t)gβ(t)dt = λαδαβ. (1.5.12)

A change of variables and a scaling of the eigenfunctions transforms equation (1.5.7)

into the dimensionless eigenproblem
∫ 1

−1

D(x, x
′
)ϕ(x

′
)dx′ = λϕ(x) (1.5.13)
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D(x, x
′
) =

sin TW (x− x
′
)

π(x− x′)
(1.5.14)

Equation (1.5.14) shows that the eigenvalues λ1 > λ2 > . . . and suitably scaled

eigenfunctions ϕ1(x), ϕ2(x), . . . depend only upon the time-bandwidth product TW .

The sum of the concentration eigenvalues λ relates to this product by

N1D =
∞∑

α=1

λα =
2TW

π
. (1.5.15)

The shape of the eigenvalue spectrum has a characteristic step shape, showing sig-

ni�cant λ ≈ 1 and insigni�cant λ ≈ 0 eigenvalues separated by a narrow transition

band.Thus, this "Shannon number" is a good estimate of the number of signi�cant

eigenvalues, or, roughly speaking, N1D is the number of signals f(t) that can be simul-

taneously well concentrated into a �nite time interval |t| ≤ T and a �nite frequency

interval |ω| ≤ W . In other words,N1D is the approximate dimension of the space

of signals that is "essentially" space(time)-limited to T and bandlimited to W, and

using the orthogonal set g1, g2, . . . , gN1D as its basis is parsimonious. Now, we extend

these results to the two-dimensional case. A square-integrable function f(x) de�ned

in the plane has the two-dimensional Fourier representation

f(x) = (2π)−2

∫ ∞

−∞
F (k)eik·xdk (1.5.16)

F (k) =

∫ ∞

−∞
f(x)e−ik·xdx (1.5.17)

We use g(x) to denote a function that is bandlimited to K, an arbitrary sub-region

of spectral space,

g(x) = (2π)−2

∫

K

G(k)eik·xdk. (1.5.18)
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Following Slepian, we seek to concentrate the power of g(x) into a �nite spatial region

R ∈ R2 of area A:

λ =

∫
R

g2(x)dx∫∞
−∞ g2(x)dx = maximum (1.5.19)

Bandlimited functions g(x) that maximize the Rayleigh quotient (1.5.19) solve the

Fredholm integral equation
∫

K

D(k,k
′
)G(k

′
)dk

′
= λG(k) k ∈ K (1.5.20)

D(k,k
′
) = (2π)−2

∫

R

expi(k−k
′
)·x dx. (1.5.21)

The corresponding problem in the spatial domain is
∫

R

D(x,x
′
)g(x

′
)dx

′
= λg(x) x ∈ R (1.5.22)

D(x,x
′
) = (2π)−2

∫

K

expi(x−x
′
)·k dk. (1.5.23)

The bandlimited spatial-domain eigenfunctions g1(x), g2(x), . . . and eigenvalues λ1, λ2, . . .

that solve equation (1.5.22) may be chosen to be orthonormal over the whole plane

‖ x ‖≤ ∞ in which case they are also orthogonal over R:
∫ ∞

−∞
gα(t)gβ(t)dt = δαβ, (1.5.24)

∫

R

gα(t)gβ(t)dt = λαδαβ. (1.5.25)

Concentration to the disk-shaped spectral band K = {k :‖ k ‖≤ K} allows us to

rewrite equation (1.5.22) after a change of variables and a scaling of the eigenfunctions

as ∫

R∗
D(ξ, ξ

′
)ϕ(ξ

′
)dξ

′
= λϕ(ξ) (1.5.26)

D(ξ, ξ
′
) =

K
√

A/4π

2π

J1(K
√

A/4π ‖ ξ − ξ
′ ‖)

‖ ξ − ξ
′ ‖ (1.5.27)
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where the region R∗ is scaled to area 4π and J1 is the is the �rst-order Bessel function

of the �rst kind. Equation (1.5.26) shows that, also in the two-dimensional case, the

eigenvalues λ1, λ2, . . . and the scaled eigenfunctions ϕ1(ξ), ϕ2(ξ), . . . depend only on

the combination of the circular bandwidth K and the spatial concentration area A,

where the quantity K2A/4π now plays the role of the time-bandwidth product TW

in the one-dimensional case. The sum of the concentration eigenvalues λ de�nes the

two-dimensional Shannon number N2D as

N2D =
∞∑

α=1

λα =
K2A

4π
. (1.5.28)

Just as N1D,N2D is the product of the spectral and spatial areas of concentration mul-

tiplied by the Nyquist density.And, similarly, it is the e�ective dimension of the space

of "essentially" space- and bandlimited functions in which the set of two-dimensional

functions g1, g2, . . . . , gN2D may act as a sparse orthogonal basis. The Slepian basis

expansion by construnction represents space(time)-band limited signals with a min-

imum number of basis functions; as a consequence, choosing this functions for the

basis expansion we achieve the minimum bias in the useful signal reconstruction with

the minimum possible signal subspace order.

1.5.2 Basis Expansion Square Bias

Since increasing the node density a random geometric graph tend to have the prop-

erties of a regular one it is useful to achieve an analytic expression for the square bias

of the basis expansion assuming that sensors are on a (M ×M) regular grid. We use

Niedzwieckis results from [10] specializing them to our application. These results hold

for any possible choice of the basis functions. Let us denote with u1, u2, . . . , uk the

columns of the matrix U that represent the basis spanning the useful signal subspace
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onto which to project the observations. We introduce the row vector

u(l(m,n)) = [u1(l(m,n)),u2(l(m,n)), . . . , uk(l(m,n))], (1.5.29)

that is the row of index l = (m− 1) ∗M + n of the matrix U , i.e. the row containing

the values assumed by all the basis functions in the point (m,n) where the l-th sensor

of the network is located. We de�ne the instantaneous frequency response of the basis

expansion estimator according to

H(m, v, νx, νy) = u(l(m,n))(UHU )−1
∑

k

∑
s

u(l(m,n))He−j2π(νx(m−k)+νy(n−s))

(1.5.30)

where k, s ∈ 1, . . . , M and νx, νy ∈ K with K the spectral region occupied by the

physical process to be estimated. The sum in (1.5.30)

∑

k

∑
s

u(l(m,n))He−j2π(νx(m−k)+νy(n−s)) (1.5.31)

projects the complex exponential onto the basis function at the sensors grid positions,

i.e., we calculate the inner product with every basis function. Then, the realization

at space position (m,n) is calculated by left multiplying with u(l(m,n)). The com-

plex exponential in (1.5.30) is shifted in the two spatial coordinates by m and n;

thus,|H(m, v, νx, νy)| is the instantaneous amplitude response of the basis expan-

sion at space position (m,n). The phase of H(m, v, νx, νy), which is expressed by

arg(H(m, v, νx, νy)), is the instantaneous phase shift of the basis expansion at space

position (m, n). The design goal for a basis expansion is to have no amplitude error

|H(m, v, νx, νy)| = 1 and no phase error arg(H(m, v, νx, νy)) = 0. Therefore, the

instantaneous error characteristic of the basis expansion is de�ned as

E(m, v, νx, νy) = |1−H(m, v, νx, νy)|2. (1.5.32)
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The square bias per symbol bias2(m,n) of the basis expansion estimator can be ex-

pressed as the integral over the instantaneous error characteristic E(m, v, νx, νy) mul-

tiplied by the power spectral density of the physical process to be estimated z(m, n)

bias2(m,n) =

∫ ∫

K

E(m, v, νx, νy)Szz(νx, νy)dνxdνy (1.5.33)

where Szz(νx, νy) is given by

Szz(νx, νy) =
∑
m

∑
n

Rzz(m,n)e−j2π(νxm+νyn), (1.5.34)

and Rzz(m,n) is the auto-correlation function of the physical process to be estimated.

The square bias for the whole estimation is given by

bias2(m,n) =
1

M2

∑
m

∑
n

bias2(m,n). (1.5.35)

The result in (1.5.33) proves that the dimension of the useful signal subspace necessary

to have a certain accuracy in the reconstruction is strictly related to the variability

of the signal, i.e. to the properties of its spatial frequencies spectrum.

1.5.3 Final considerations for the signal subspace order selec-
tion

Using the results in Sections 1.5.2 and 1.5 we are able to �nd the optimal signal

subspace order, i.e. the order that gives the minimum MSE in the useful signal

reconstruction. Let us indicate by k0 the order yielding the minimum MSE. The

use of the distributed projection algorithm proposed in this work introduces a further

element in the choice of the useful subspace dimension. The existence of a distributed

algorithm converging to the projection onto a subspace of a given order k requires

the transmit power used by each node be large enough to establish a direct link with
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at least k neighbors, as indicated in [120]. The number of neighbors is clearly related

to the transmit power of each node. If we assume a uniform spatial distribution of

the nodes, with spatial density ρ, the coverage radius r0 necessary to get an average

number k of neighbors for each node is r0 =
√

k/Πρ. If we denote by PR the minimum

receive power necessary to have a link with a su�cient quality and we assume that the

transmitted power PT attenuates with the square of the distance, the average number

of neighbors kρ reachable with a transmit power PT is kρ = ΠρPT /PR. Combining

these arguments with the selection of the order providing the minimum MSE, it turns

out that the optimal order, compatible with the transmit power constraint, is

kopt = min(k0, kp). (1.5.36)

This means that if the transmit power is small, i.e. kρ < k0, the method will not

be able to minimize the MSE, because of a large bias, whereas if the transmit power

is su�ciently large, it is not necessary to waste power, as it is su�cient to use the

transmit power necessary to guarantee kρ = k0.

1.6 A practical application: cooperative spectrum
sensing using decentralized projection algorithms

The distinguishing characteristic of cognitive radio is the ability of its nodes to allo-

cate power over temporally unoccupied portions of the spectrum. This adaptability

to the electromagnetic environment is the basic feature enabling the potential spec-

tral e�ciency gain of cognitive radios. The basic information needed by a cognitive

transmitter is the distribution of the power spectral density at the location of its

intended receiver and of the primary users, i.e. the users who have the right of not

being disturbed by opportunistic cognitive users. As a whole, the basic information



53

enabling a cognitive radio network to operate in this context is then the knowledge

of the spatial distribution of the power spectral density, or spatial spectral density

for short. This information could be acquired by a wireless sensor network whose

nodes estimate the local power spectral density and send this information to a net-

work control node that forms a spatial map of the spectral occupancy. Within this

framework, once a pair of cognitive users wish to establish a link, they interrogate the

control center and decide which channels are more appropriate for communication,

without interfering with the primary users. The major criticality of this approach is

that, as in any centralized system, there is a bottleneck represented by the control

node that needs to periodically collect a lot of information from potentially many

sensors. Furthermore, the spatial sampling of the spectral density operated by each

node requires a high density of the sensing nodes. To make possible an economy of

scale of such nodes, it is clear that they cannot be too sophisticated, they will have

a limited power budget and maybe not all of them will be able to estimate the whole

power spectral density of interest, but only a portion of it. Cooperation among sens-

ing nodes can greatly improve the performance of the network, as already highlighted

in [115],within a centralized framework. Conversely, we propose our distributed pro-

jection algorithm in order to allow the sensing nodes to cooperate with each other in

order to achieve globally optimal goals, but without requiring the presence of a fusion

center. The basic assumption underlying the proposed approach is that the spatial

distribution of the estimated power, for each frequency channel, is a smooth function

of space. More precisely, we assume that the power spatial density, for each subchan-

nel, can be well approximated by a signal lying in a vector space of dimension (much)

smaller than the number of sensing nodes. In this case, projecting the whole set of
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estimated values onto the useful signal subspace, is a well known signal processing

tool to reduce the e�ect of noise and contrast spatially uncorrelated shadowing phe-

nomena. After projection, each sensing node will possess a more reliable estimate of

the local spectral occupancy. These nodes could then deliver this information, upon

request, to the interested cognitive users. We achieve a signal subspace projector

without any node having full knowledge of the data gathered by all other nodes, with

a very simple iterative algorithm where, at each iteration, each node simply takes a

linear combination of the running estimates of its neighbors. Taking averages of the

estimates present at each node neighbors is clearly a very simple way to reduce the

e�ect of spatially uncorrelated noise. However, the overall e�ect of local averaging is

to level out also the spatial distribution of the useful signal. This is in contrast with

the application at hand where, conversely, it is precisely the power spatial variability

that allows cognitive users to reuse locally unused spectrum holes. The well known

average consensus algorithm [2], with all its variants like gossip algorithms for exam-

ple, is a very particular case of our setup, as it corresponds to project the whole set

of data onto a useful signal subspace spanned by a vector of all ones. But clearly this

approach is too restrictive, as it leads to a spatially-invariant power distribution. Our

solution to make local averages to reduce the noise, but without forcing the whole

network to converge to a spatially-invariant distribution. The di�usion algorithms

proposed in [116] are an alternative attractive strategy. However, our approach is

more general, as it leads to totally general projection operators. An alternative ap-

proach, exploiting the sparsity of the power spectral and spatial density was recently

proposed in [117], using the lasso operator to achieve a sparse estimation of the power

spatial/spectral density. However, the approach of [117] requires the useful signal to
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possess a sparse representation. Conversely, our approach does not really require a

sparse representation and it is much simpler to implement than [117], as in our case

every node simply takes a weighted linear combination of the estimates present at

its neighbors. In this example, we make use of the theoretical results proved in the

previous sections and apply them to the speci�c context of cooperative sensing. This

allows us to make the optimal selection of the signal subspace order taking into ac-

count three major sources of error: additive noise or multiplicative fading; bias error

due to mismatching between useful signal and �nite order �tting; error due to using

a �nite number of iterations. We provide numerical examples supporting the validity

of the proposed method for contrasting additive noise and fading.

Let us consider a network composed of N sensors, each measuring a wideband

spectrum. We denote by

P (xi, yi) = A(xi, yi)S(xi, yi) + v(xi, yi) (1.6.1)

the power spectral density measured by a node located at (xi, yi) at a given frequency,

where S(xi, yi) is the ideal power density, A(xi, yi) models shadowing or fading e�ects,

and v(xi, yi) is observation noise. The spectrum to be monitored by the network is

typically quite large (in the order of GHz). Since a proper spatial sampling requires

the presence of many nodes, an economy of scale of the sensing nodes requires them

to be quite simple and thus able to estimate only portions of the spectrum. The

node measurement may be inaccurate just because of shadowing or noise e�ects. To

improve the overall network accuracy, we propose a a cooperative strategy where

nearby nodes interact with each other. The rational behind our approach is that the

ideal spatial spectral density S(x, y) is a smooth function of the spatial coordinates,

whereas shadowing and noise are not. In mathematical terms, we assume that the
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spatial distribution of the useful spectrum, for each frequency, can be well approxi-

mated by a two-dimensional (2D) signal lying in a vector space of dimension much

smaller than the dimension of the observation space, typically equal to the number

of nodes. Within the validity of this assumption, typically valid in practice, a strong

noise reduction is achievable by projecting the observation onto the signal subspace.

As an example, we consider a useful power spatial distribution, for each frequency,

given by the superposition of the powers emitted by Ns primary sources, with each

term modeled as a Cauchy bell:

S(x, y) =
Ns∑
i=1

Pi

1 + ((x− xi)2 + (y − yi)2)/σ2
(1.6.2)

where Pi is the power emitted by node i and σ speci�es the power spatial spread.

This function can be expanded over a given basis, for example over the 2D Fourier or

the wavelets basis, of in�nite dimension. Our goal is to approximate the useful signal

with a �nite order expansion, possibly of low order, and to perform this operation

in a distributed way, where each node interacts only with its immediate neighbors.

In mathematical terms, let zn denote the spectral power estimated by node n over

a generic subcarrier. Collecting the measurements taken by every node over each

subcarrier, we build the vector z := (z1, . . . , zN)T representing the spatial distribu-

tion of power across all the nodes. The smoothness assumption can be formulated

by stating that z can be approximated as (1.2.1),where the columns of the matrix

spanning the useful signal subspace can be chosen as the low frequency 2D Fourier or

wavelet basis, for example. Hence, according to (1.2.2) a strong noise reduction may

be obtained by projecting the observation vector onto the signal subspace;in order

to achieve this goal we use our distributed algorithm. Each node initializes a state

variable with its local measurement,i.e. the spectral power estimated by a node over
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a generic subcarrier, and evolves, for each subcarrier, as the linear dynamic system

in (1.2.5). Upon convergence, the proposed distributed projection algorithm allows

every node of the sensing WSN to improve the reliability of its own spatial spectral

density power measurement, through local interaction with its neighbors, reducing

the e�ect of noise and fading phenomena. Local combination of observations from

nearby nodes helps to reduce the e�ect of noise and fading without forcing the nodes

to converge to a common (consensus) value allowing in this way cognitive users to

�nd out locally unused spectrum holes.

We consider now the application of the proposed method to combat either additive

or multiplicative noise. Given the signal model in (1.6.1) and (1.6.2), we consider for

simplicity only the two extreme cases where either observation noise or shadowing

are the dominant undesired e�ects. In the �rst case, i.e. setting A(xi, yi) = 1,

we simply have P (xi, yi) = S(xi, yi) + v(xi, yi). As an example, in Figure 1.14 we

assume that the spatial distribution of the power received at a given frequency is

given by the superposition of 4 Cauchy bells, as in (1.6.2), centered in the positions

of the primary transmitters, plus additive spatially white noise. The wireless sensor

network is composed of 2500 nodes uniformly distributed over a 2D grid. All the

transmitters use the same power, i.e. Pi = P in (1.6.2), and the noise has zero

mean and variance σ2
n = P . Figure 1.14 shows the useful signal power (top left),

the observation corrupted by noise (top right) and the reconstructions using two

di�erent orders, k = 10 and k = 20 (bottom). The signal subspace is composed

by the 2D Fourier components up to order k. The projection is achieved using the

simple dynamical system (1.2.5), with the matrix W computed according to the SDP

reformulation of the minimization problem of the convergence time. It is evident the
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strong noise reduction achievable with the proposed approach, at the expense of a

small bias.
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Figure 1.14: Example of �eld reconstruction in the presence of additive noise: ideal
spatial �eld (top left); measured �eld (top right); �eld reconstructed with order k = 10
(bottom left) and k = 20 (bottom right).
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A further application of the proposed method refers to an observation corrupted

by a fading e�ect, modeled as a multiplicative, spatially uncorrelated, noise. In this

case, it is useful to apply a homomorphic �ltering to the measured �eld. In particular,

we take the log of the measurement, thus getting

log (P (xi, yi)) = log(S(xi, yi)) + log(A(xi, yi)). (1.6.3)

Then, we apply the same algorithm as in the previous example and take the exp of

the result. An example is shown in Figure 1.15, where it is evident the capability of

the proposed distributed approach to provide a signi�cant attenuation of the fading

phenomenon as well.
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Figure 1.15: Example of �eld reconstruction in the presence of fading: ideal spatial
�eld (top left); measured �eld (top right); �eld reconstructed with order k = 10
(bottom left) and k = 20 (bottom right).

If the additive noise variance is not too high we can apply a homomorphic �ltering

also in this case; for example, in Figure 1.16 we consider the case of useful signal
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corrupted by fading e�ects and additive noise (SNRdB = 10).

Besides the bias error due to model mismatching or additive noise, a further error

comes from the use of a �nite number of iterations. Given a maximum delay neces-

sary to reach the desired smoothing e�ect, the minimization of this error requires the

maximization of the algorithm convergence rate. As an example, in Figure 1.17 we

show the minimum convergence time obtained for a network of 25 sensors distributed

over a unit square, as a function of the square coverage radius (assumed to be the

same for every node). Assuming a power attenuation law pR = pT /r2, the abscissa

is proportional to the transmit power necessary to induce a unit receive power pR.

We considered both cases of sensors uniformly spaced (solid line) and randomly dis-

tributed (dashed line). Figure 1.17 refers to the projection onto a signal subspace

spanned by two-dimensional Fourier bases including up to the harmonic of degree

d = 0 and 1. The minimum number of neighbors is equal to the number of indepen-

dent sinusoids of degree up to d. As expected, as the coverage area increases, the

convergence time decreases. However, this entails a greater transmit power to cover a

larger area. On the other hand, the convergence time increases if, for a given number

of neighbors, the dimension of the kernel space increases.
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Figure 1.16: Example of �eld reconstruction in the presence of fading and additive
noise: ideal spatial �eld (top left); measured �eld (top right); �eld reconstructed with
order k = 10 (bottom left) and k = 20 (bottom right).

1.7 Conclusions

In summary, the distributed projection algorithm proposed in this Chapter allows

every node of the sensing network to converge to the same value achievable by a

centralized network with a node having full access to all the measurements. The

price paid is the iterative nature of the proposed algorithm. To minimize the error

implicit in the use of a �nite number of iterations, we have chosen the mixing matrix

W in order to maximize the convergence rate of the proposed algorithm, for any

signal subspace and network topology, compatible with the existence of a solution.

The numerical examples shown in this Chapter refer to a signal subspace spanned

by the low frequency components of the 2D Fourier or Polynomial basis, but the

performance can be improved by making other choices, like wavelets, for example.
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Figure 1.17: Minimum convergence time vs. number of neighbors, for uniform and
random grids.

1.8 Appendix A

In this section we �rst prove the su�ciency of conditions C.1-C.3, then we focus on

the necessity.

Su�ciency: Suppose that C.1-C.3 hold true. Conditions C.1 and C.2 imply, respec-

tively:

Wk PR(U) = PR(U) (1.8.1)

and
(
I−PR(U)

)
W = W

(
I−PR(U)

)
. (1.8.2)

Using (1.8.1) and (1.8.2), we can easily obtain the following chain of equalities:
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Wk −PR(U) = Wk
(
I−PR(U)

)
(1.8.3)

= Wk
(
I−PR(U)

)k (1.8.4)

=
[
W

(
I−PR(U)

)]k (1.8.5)

=
(
W −PR(U)

)k
, (1.8.6)

where: (1.8.3) follows from (1.8.1), (1.8.4) follows from the fact that PR(U) (and

I − PR(U)) is a projection, and thus an idempotent matrix, i.e., Pk
R(U) = PR(U) for

all k ∈ N+ [25], (1.8.5) follows from (1.8.2) and (1.8.6) follows from C.1.

According to (1.2.7), the asymptotic convergence of the dynamical system in

(1.2.5) to the �nal vector PR(U)z[0] is guaranteed for any (�xed) initial condition

z[0] ∈ RN if and only if

lim
k→+∞

(
Wk −PR(U)

)
= lim

k→+∞

(
W −PR(U)

)k
= 0, (1.8.7)

where in the equality in (1.8.7) we used (1.8.6). Condition C.3 is necessary and

su�cient for W−PR(U) to be a convergent matrix [26], implying (1.8.7) to be hold.

Necessity: Suppose that the limit in (1.2.7) exists. Invoking classical results on

convergence matrices (see, e.g., [25, p. 630], [24]) we necessarily have:

lim
k→+∞

Wk = projection onto N (I−W) along R(I−W). (1.8.8)

Comparing (1.2.7) with (1.8.8) we infer that PR(U) in (1.2.7) must satisfy the

following (necessary) conditions:

R (
PR(U)

)
= N (I−W) and N (

PR(U)

)
= R (I−W) (1.8.9)
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or, equivalently

(I−W)U = 0 ⇔ WPR(U) = PR(U)

UT (I−W) = 0 ⇔ PR(U)W = PR(U), (1.8.10)

which proves the necessity of conditions C.1 and C.2.

Using C.1, C.2 and (1.8.6), the limit in (1.2.7) can be written as in (1.8.7), implying

the necessity of C.3 [26].

Given C.1-C.3, we prove now that the error vector e[k] = z[k]−PR(U)z[0] satis�es

the dynamic equation in (1.2.8). First of all observe that the projection of vector z[k]

onto R(U) is an invariant quantity for the dynamical system (1.2.5), i.e., for all k:

PR(U)z[k] = PR(U)Wz[k − 1] = PR(U)z[k − 1] = . . . = PR(U)z[0]. (1.8.11)

Using (1.8.11) and (1.2.5), we obtain the following dynamics for the error vector:

e[k + 1] = We[k] + WPR(U)z[0]−PR(U)z[0]

= We[k]−PR(U)

(
z[k]−PR(U)z[0]

)
=

(
W −PR(U)

)
e[k],(1.8.12)

which completes the proof.

1.9 Appendix B

In this section we prove that the optimization problem (1.3.7) can be rewritten as a

semi-de�nite programming.

Problem (1.3.7) is separable in the variables L and ε, since the constraints in

(1.3.7) depend only on L or ε . Thus, in the following, we solve (1.3.7) by �rst

minimizing the objective function over ε for a given feasible L, and then minimizing

the resulting objective function over L.
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Minimizing over ε: Denoting by
{
λ(i)(I− εL)

}
and

{
λ(i)(L)

}
the set of eigenvalues

of I− εL and L, respectively, arranged in increasing order [i.e., λ(i)(·) ≤ λ(i+1)(·), for
all i ∈ {1, . . . , N − r}], the objective function in (1.3.7) can be rewritten as:

ρ
(
I− εL

)
= max

k∈{1,...,N−r}

{
λ(N−r)(I− εL), −λ(1)(I− εL)

}
(1.9.1)

= max
k∈{1,...,N−r}

{
1− ελ(1)(L), ελ(N−r)(L)− 1

}
, (1.9.2)

which is a piecewise-linear convex function in the variable 0 < ε < 2
λi(L)

[27]. It

follows that, for any given L, the global minimum of (1.9.2) over ε ∈ (0, 2/λi(L)) is

achieved when 1− ελ(1)(L) = ελ(N−r)(L)− 1 (recall that 0 < λ(1)(L) ≤ λ(N−r)(L), for

any feasible L), implying the following optimal (feasible) value of ε:

ε? =
2

λ(1)

(
L

)
+ λ(N−r)

(
L

) . (1.9.3)

Using (1.9.3), function in (1.9.2) can be rewritten as

ρ
(
I− ε?L

)
=

λ(N−r)(L)− λ(1)(L)

λ(1)(L) + λ(1)(L)
, κ(L)− 1

κ(L) + 1
, (1.9.4)

where in the last equality we used L Â 0 and introduced the condition number

κ(L) , λ(N−r)(L)/λ(1)(L) of matrix L. We can now �nd the optimal L minimizing

ρ
(
I− ε?L

)
, under constraints (1.2.12)- (1.2.15).

Minimizing over L: Given the optimal ε? in (1.9.3) and the resulting objective func-

tion ρ
(
I− ε?L

)
in (1.9.4), the optimization problem (1.3.7) reduces to

minimize κ(L)

L

subject to L Â 0, L = L
T
,

[
U⊥LU⊥T

]
ij = 0 ∀i, j ∈ B,

(1.9.5)

where to write (1.9.5) from (1.3.7) and (1.9.4), we used the fact that ρ
(
I− ε?L

)
in

(1.9.4) is an increasing function of κ(L). We convert now (1.9.5) into a convex SDP

[27].
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Writing the problem in epigraph form, we obtain:

minimize γ

L, γ

subject to λ(N−r)(L)

λ(1)(L)
≤ γ,

L Â 0, L = L
T
,

[
U⊥LU⊥T

]
ij = 0 ∀i, j ∈ B.

(1.9.6)

For any given L Â 0 and γ > 0, it is not di�cult to prove the following equivalence:

λ(N−r)(L)

λ(1)(L)
≤ γ ⇔ ∃µ > 0 such that µI ¹ L ¹ γµI. (1.9.7)

Using (1.9.7), problem (1.9.6) can be rewritten as

minimize γ

L, γ, µ

subject to µI ¹ L ¹ γµI, µ > 0,

L = L
T
,

[
U⊥LU⊥T

]
ij = 0 ∀i, j ∈ B.

(1.9.8)

Introducing the following change of variables:

L̃ = L
1

µ
µ̃ =

1

µ
, (1.9.9)

it is straightforward to see that (1.9.8) is equivalent to the following eigenvalue prob-

lem:
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minimize γ

L̃, γ, µ̃

subject to I ¹ L̃ ¹ γI, µ̃ > 0,

L̃ = L̃T ,

[
U⊥L̃U⊥T

]
ij = 0 ∀i, j ∈ B.

(1.9.10)

In fact, if
(
L, γ, µ

)
is a feasible point in (1.9.8), then

(
L̃, γ, µ̃

)
, with L̃ and µ̃ de�ned

in (1.9.9), is feasible in (1.9.10) with the same value of the objective function. The

converse also holds true.

Using the fact that, at any optimum
(
L̃?, γ?, µ̃?

)
in (1.9.10), µ̃? > 0, problem

(1.9.10) can be rewritten as a SDP in standard form:

minimize γ

L̃, γ, µ̃

subject to




L̃− I 0 0

0 γI− L̃ 0

0 0 µ̃I


 º 0,

L̃ = L̃T ,[
U⊥L̃U⊥T

]
ij = 0 ∀i, j ∈ B.

(1.9.11)

Once an optimal solution
(
L̃?, γ?, µ̃?

)
to (1.9.11) is computed, the optimal orig-

inal L? can be obtained through (1.9.9) and (1.2.12): L? = µ̃?−1U⊥L̃?U⊥T .
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1.10 Appendix C

We want to prove that

‖W jz −UUHz‖ ≤ ρ(W j −UUH)‖z −UUHz‖ ∀j (1.10.1)

where Wj = (I − ε
(j+1)η L) and ρ(.) is the spectral radius. Decompose Wj through

orthonormal eigenvectors as Wj = U (j)Λ(j)U (j)H . Hence,

z = UUHz +
N∑

k=r

ck(j)uk(j) (1.10.2)

where ck(j) = uk(j)
Hz,k = r, . . . , N and r is the dimension of the kernel of the matrix

L. Then

Wjz = UUHz +
N∑

k=r

ck(j)λk(Wj)uk(j). (1.10.3)

It follows that

‖W jz −UUHz‖ = ‖
N∑

k=r

ck(j)λk(Wj)uk(j)‖

≤ ρ(W j −UUH)‖
N∑

k=r

ck(j)uk(j)‖

= ρ(W j −UUH)‖z −UUHz‖, (1.10.4)

so that (1.10.1) is proved.



Chapter 2

Distributed estimation via Belief
Propagation

2.1 Introduction

Considering the problem of distributed �eld estimation according to a stochastic ap-

proach the observations collected by a sensor network are modeled through Gaussian

variables whose statistical dependency structure is captured by a Markov random

�eld. In this setting the goal in designing the algorithms for wireless sensor networks

is to guarantee that each node achieve in a completely distributed way the posterior

probability of its measurement given the whole set of observations collected by the

network so that it can compute for example the MAP or MMSE estimate of the

monitored �eld value. There exist a lot of algorithms that were originally proposed

to solve this kind of inference problems in other scienti�c contexts, where given a set

of random variables,the problem of probabilistic inference can be cast as one of com-

puting the posterior probability of a subset of variables, given the values of another

subset (see for example [77]). In these problems we are given a joint distribution

69
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to which a certain graphical model (such as Markov Random Fields, Bayesian Net-

works and Factor Graphs)is associated and these algorithms, based on the exchange

of messages among "virtual" nodes that are neighbors in the statistical graph, are

employed for e�cient computation. A reverse thinking is required when it is applied

to wireless sensor networks, intended to serve as a general framework for collabora-

tive information processing and dissemination. A simple and e�ective approach for

this novel application of great potential is proposed in di�erent works where the real

communication graph is treated as a Markov random �eld. In particular, each active

node is taken as a vertex and there is an edge between two nodes when there is a

feasible communication link between them. The key step lies in associating some "vir-

tual" state variable(s) to each node, and building some statistical models indicating

relationship among them, based on application characteristics and communication

models. Assuming that in sensor network applications, the quantities of interest (for

example, temperature or gas distribution) are often locally smooth, the true �eld's

correlation could be modeled using a Gaussian Markov Random �eld where each node

is connected only to the nodes that are spatially close (say, inside each coverage ra-

dius). In this way the message-passing algorithms proposed to solve the inference

problem can be exploited to solve the �eld estimation in a completely distributed

way,i.e. requiring that each node exchanges information only with its neighbors. The

most popular algorithm to solve inference problems is the Belief Propagation (BP)

algorithm [32], also known as the Sum-product algorithm [33]; the problem is that

it is guaranteed to converge if and only if the graphical model considered contains

no cycles(tree-structured). As an example, in [38] assuming a tree-structured graph a

�eld of value is estimated by exploiting a Belief Propagation algorithm. Moreover, the
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same algorithm is specialized to the particular case in which the wireless sensor net-

work must reach consensus on the estimation of a single common observed variable.

In theory, tree-based inference algorithms can be applied to any graph by clustering

nodes so as to form a so-called junction tree, see e.g. [32] and [34]. However, in many

cases of interest, the dimension of the clustered nodes is often quite large so that the

computational cost of the algorithm is prohibitively. Moreover, in a sensor network

the creation of clustered nodes implies the implementation of distributed algorithms

based on a full knowledge of the network topology. Loopy belief propagation, i.e. the

application of the Belief Propagation algorithm in a graph with arbitrary topology,

has been studied for example in [35] and [37], where it is proved that in the case of

Gaussian variables when the Belief Propagation algorithm converges it will gives the

correct marginal posterior probabilities; on the other hand the conditional variances

are in general incorrect. Plarre and Kumar [39] have proposed an extension of the

loopy belief propagation algorithm based on a message passing algorithm that derives

from the correspondence between recursive inference and Gaussian elimination. The

implementation of the solution proposed in [39] implies the distributed extraction of a

spanning tree from an arbitrary graph, or in other words the fact that each node must

know the whole topology of the network. Since the conditional mean of a Gaussian

inference problem can be interpreted as the solution of a linear system of equations,

a wide range of iterative algorithms for solving inference problems derives from the

solution of linear systems based on particular matrix splittings. Algorithms such as

embedded polygons, embedded trees, embedded subgraphs [40], [41], [45] and [44] can

be used to e�ciently estimate the �eld distributively, but also in this case the main

drawback is the fact that the nodes must be aware of the network topology in order
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to organize themselves in trees or other topological structures.

In this Chapter, we provide a distributed algorithm for the estimation of a physical

�eld in the particular case of a wireless sensor network organized in clusters, where

nodes inside the same group observe the same �eld value. Our solution is based on

a Belief Propagation algorithm and generalizes the solutions proposed in literature

relative to the cases of a single variable estimation and �eld estimation with a single

observation for each value using Belief propagation technique.

2.2 The setting

Given a set of random variables,the problem of probabilistic inference can be cast as

one of computing the posterior probability of a subset of variables, given the values of

another subset (see for example [77]). When the number of variables is large, inference

requires integration over high dimensional spaces and can easily become intractable.

In some cases, there are several conditional independence relationship between set

of random variables. The collection of all such conditional independence relations

gives rise to a factorization of the joint probability distribution into a product of

functions, each of which depends on a subset of the variables. This factorization

can signi�cantly reduce the complexity of inference. In graphical models, all such

conditional independence relations of a set of random variables are encoded in a

graph. Each node in the graph represents a random variable and the independence

relations are encoded in the edges. The graph can be directed(e.g, Bayesian networks)

or undirected(e.g, Markov random �elds). In this work we focus on undirected graphs.

The Hammersley-Cli�ord theorem (e.g.,[61],[77],[32]) provides the connection between

independence and factorization: a strictly positive probability distribution satis�es
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all conditional independence relations implied by the graph, if and only if it factors

according to the maximal cliques of the graph. When the underlying graph is singly

connected (there is at most one path between any pair of nodes, i.e., it is a tree or

a forest), e�cient algorithms exist that solve the inference problem; see for example

[62],[32].

Graphical models provide a framework for representing dependencies among the

random variables of a statistical modelling problem and they constitute an elegant

way to graphically represent the interaction among the random variables involved in a

probabilistic system. A graphical model is a graph G(V , E) where V is the set of nodes

that that correspond to the random variables of a problem and E the set of edges

that represent the dependencies among the variables. Graphical models can be either

directed or undirected; directed graphical models are called Bayesian networks while

in the other case they are known as Markov random �elds. In Bayesian networks

all the edges are considered to have a direction from parent to child denoting the

conditional dependency among the corresponding variables; in the next, we consider

only Markov Random �elds without any loss of generality. Let xi, i ∈ 1, . . . , N be

random variables taking values in some discrete or continuous state space Λ, and

form the random vector x = x1, . . . , xN with con�guration set Ω = ΛN . The joint

probability distribution p(x) exhibits a factorized form

p(x) ∝
∏
c∈C

fc(xc), (2.2.1)

where C consists of small index subsets c, the factor fc depends only on the variable

subset xc = xi, i ∈ c and
∏

c∈C fc(xc) is summable over Ω. If, in addition, the product
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is positive (∀x ∈ Ω, p(x) > 0), then it can be written in exponential form

p(x) =
1

Z
exp (−

∑
c

Vc(xc)), (2.2.2)

this is the Gibbs distribution with interaction potential Vc, c ∈ C, energy U =
∑

c Vc

and partition function of parameters Z =
∑

x∈Ω U(x). The interaction structure

induced by the factorized form of the joint probability distribution is conveniently

described by the graph G(V , E) that statisticians refer to as independence graph. It

is important to specify that in the following we consider the terms node, vertex

and sensor interchangeable. When i and j have an edge between them, i and j are

neighbors denoted by i ∼ j (otherwise it is i ` j). The neighborhood function of a

node i is the set of all other nodes having an edge with it, i.e.,

Ne(i) = {j ∈ V : j 6= i, (i, j) ∈ V} (2.2.3)

The number of neighbors of a node i is called its degree, denoted by Deg(i). Let rij

denotes the Euclidean edge length of (i, j). A node with a single edge i.e., its degree

is one is known as a leaf and the corresponding edge as a leaf edge, otherwise it is

known as an internal or interior edge. Given all these notations, the independence

graph is de�ned as

i ∼ j ⇔ ∃c ∈ C : i, j ⊂ c, (2.2.4)

so that nodes i and j are neighbors if and only if the associated variables xi and xj

appear simultaneously within the same factor fc. From all these de�nitions, it follows

that C is the set of cliques of the graph G; a clique is a subset where for each pair of

nodes there exist a link. A Markov Random �eld satis�es special conditional indepen-

dence properties. A simple example is the �rst-order auto-regressive process, where

the conditional independence of the observations is based on causality. However, a
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spatial random �eld has a far richer set of conditional independencies, requiring a

more general de�nition. The independence graph conveys the key probabilistic infor-

mation by absent edges: if i and j are not neighbors, the joint probability distribution

p(x) can be split into two parts respectively independent from xi and xj so that the

two random variables are independent given the others (pairwise-Markov property).

We can express this property in this way

xi⊥xj|x−ij ⇐⇒ (i, j) not in E (2.2.5)

where ⊥ denotes the conditional independence relation. Given a set a ⊂ V of nodes,

p(x) splits into two parts

p(x) ∝
∏

c:c
⋂

a6=0

fc(xc)
∏

c:c
⋂

a=0

fc(xc) (2.2.6)

where the second factor does not depend on xa. As a consequence pxa|xV−a
reduces

to pxa|xNe(a)
; this is the local-Markov property, that we can express as it follows

xi⊥x−(i,Ne(i))|xNe(i)
(2.2.7)

If A,B and C are disjoint sets, with A and B non empty, and the set C separates A

and B, i.e., on removing the nodes in C from the graph, nodes in A are no longer

connected to the nodes in B, the global Markov property can be formulated as

xA⊥xB|xC , (2.2.8)

Thus, in (2.2.7), the local Markov property states that the conditional distribution

at a node in the graph given the observations at its neighbors is independent of the

rest of the network. By the global Markov property in (2.2.13), all the connected

components of a dependency graph are independent. It can be shown that the three
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Markov properties are equivalent for strictly positive distributions. If G is the graph

that represents a Markov random �eld the corresponding joint probability density

p(x) must satisfy the Markov properties imposed by the topology of G. Conversely,

if a strictly positive distribution p(x) ful�lls one of these Markov properties with

respect to graph G then p(x) is a MRF on G and p(x) is a Gibbs distribution. This

equivalence constitutes the Hammersley-Cli�ord theorem.

A special case of Markov Random �eld is the Gaussian Markov Random �eld; as

previously mentioned, in Gaussian graphical models the problem of probabilistic in-

ference is much less complicated because it reduces to �nd the correct posterior mean

and covariance. A Gaussian Markov Random �eld is a stochastic process given by an

unobserved RN valued state vector x ∼ N (0,Σ−1), with probability density function

p(x) ∝ exp (−1
2
xTΣx) where Σ = Σt > 0.A common approach to formulating a

Gaussian Markov Random �eld is to specify the dependency graph through a neigh-

borhood rule and then to specify the correlation function between these neighbors.

Thus, in a Gaussian Markov Random �eld, local characteristics completely determine

the joint distribution of the Gaussian �eld. The inverse of the covariance matrix of

a Gaussian Markov Random �eld is known as the potential matrix or the precision

matrix or the information matrix. The non zero elements of the precision matrix

A = Σ−1 are in one to one correspondence with the edges of its graph G(V , E) in the

sense that

i ` j ⇐⇒ A(i, j) = 0,∀i, j ∈ V , i 6= j. (2.2.9)

This relationship between the precision matrix and the graph associated to a Gaussian

Markov Random �eld is illustrated in Figure 2.1.

In practice a Gaussian Markov �eld is often de�ned simply by its quadratic energy
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Figure 2.1: Dependency graph and potential matrix of a GMRF.

function

U(x) =
1

2
xTAx− xTb =

∑
ij

aijxixj +
∑

i

(
aii

2
xi − bi)xi, (2.2.10)

with b ∈ RN . Any conditional distribution is Gaussian and can be explicitly written

down using adequate block partitioning of A and b, so that all Markovian proper-

ties can then be directly deduced from this. Site-wise conditional distributions in

particular turn out to be

p(xi|x−i) = N (
1

aii

(bi −
∑

j 6=i

aijxj), a
−1
ii ), (2.2.11)

where according to the pairwise-Markov property (i, j) ∈ E ⇔ aij = aji 6= 0;from

(2.2.5) and (2.2.11), it follows that

p(xi|x−i) = N (
1

aii

(bi −
∑

j∈Ne(i)

aijxj), a
−1
ii ), (2.2.12)

or in words, each node is independent of the others conditionally to its neighbors.

This simple correspondence between the conditional independence of the Gaussian

Markov Random �eld and the zero structure of its precision matrix is not evident in

the covariance matrix, which is generally a completely dense matrix. Therefore, it is
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easier to evaluate the joint distribution of the Gaussian Markov Random �eld through

the precision matrix. In practice, however, estimates of the covariance matrix are

easier to obtain through the empirical observations. Therefore, it is desirable to have

the joint distribution in terms of coe�cients of the covariance matrix. An explicit

expression between the coe�cients of the covariance and the precision matrix and

also an expression for the determinant of the precision matrix are achieved for a

particular case of dependency graph in [121]. This special case of the dependency

graph is the acyclic or a loop-free graph. Here, the neighbors of a node are not

themselves neighbors. The joint distribution is somewhat easier to evaluate in this

case. We note that an acyclic graph with at least one edge, always has a leaf ,i.e.,

it has a node with degree one and has at most N − 1 edges in a N nodes graph.

The covariance matrix Σ of a Gaussian Markov Random �eld satis�es some special

properties. For instance, consider the cross covariance between the neighbors of a

node, i.e., nodes that are two hops away in an acyclic undirected graph. By the

global Markov property we have, for some i ∈ V ,Deg(i) ≥ 2,j, k ∈ Ne(i),j 6= k,

Σ(j,k) =
Σ(i,j)Σ(i,k)

Σ(i,i)

(2.2.13)

We can similarly �nd an expression for the covariance between any two nodes of

the Gaussian Markov Random �eld. Thus, the covariance matrix of a Gaussian

Markov Random �eld with acyclic dependency can be expressed solely in terms of

the auto covariance of the nodes and the cross covariance between the neighbors of

the dependency graph.

In general, we assume that sensors collect samples from a Gaussian Markov Ran-

dom �eld, that is modelled as previously described through a graphical approach,

in which a dependency graph speci�es the stochastic dependence between di�erent
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sensor observations. This dependency graph can have di�erent degrees and can even

be fully connected. The algorithms used to solve inference problems, for example

Belief Propagation or Embedded Trees algorithms, are based on exchanging messages

among nodes according to the topology dictated by the statistical model graph. Be-

cause our goal is to adapt these algorithms to solve distributed estimation problems

in wireless sensor networks, the statistical model graph that rules the exchange of

the messages between sensors must be chosen not only according to the statistical

characteristics of the applications but also and above all according to the real com-

munication graph. In other words, the statistical model must be supported by the

physical graph, i.e. the links of the statistical model must coincide with the links of

the physical model or be a subset of them. In sensor networks estimation applica-

tions, graphical models should balance the trade-o� between accurately capturing the

correlation structure of the quantities being measured and supporting energy e�cient

distributed algorithms. In many sensor network estimation applications, the quanti-

ties of interest, such as temperature, wind speed, or concentration of some substance,

are often locally smooth. Such quantities can be e�ectively modeled by loopy, locally

connected graphical models, in which only spatially neighboring nodes are connected

by edges (by analogy, locally smooth images have been successfully modeled using

Gaussian Markov Random �elds in which graphical models connect only adjacent

pixels). Typically statistical spatial interactions are based on proximity, where the

choice of edges to include being determined by the local point con�guration according

to some speci�ed rule [122]. With a regular lattice structure(e.g., in image processing,

Ising model), a �xed set of neighbors can be speci�ed in a straight-forward manner

[123]. However, the situation is more complicated for arbitrary placed nodes. In



80

[121], the nearest neighbor graph (NNG), which is the simplest proximity graph, is

considered. The nearest neighbor relation has been used in several areas of applied

science, including the social sciences, geography and ecology, where proximity data is

often important. The nearest neighbor function of a node i ∈ V is de�ned as

nn(i)
.
= arg min

j∈V,j 6=i
dist(i, j), (2.2.14)

where dist(., .) is the Euclidean distance. The inter-point distances are unique with

probability one, for uniform and Poisson point sets under consideration here. There-

fore, nn(i) is well-de�ned function almost surely. The nearest-neighbor undirect graph

G(V , E) is given by

(i, j) ∈ E ⇔ i = nn(j) or j = nn(i) (2.2.15)

The nearest neighbor graph has a number of important properties; it is acyclic with a

maximum node degree of six [124]. In [40], another solution in the construction of the

graphical model based on proximity among nodes is introduced; a spatial triangulation

of the sensor locations induces a graphical model that balance the trade-o� between

accuracy and e�ciency in the distributed algorithms implementation. A triangulated

graphical model assumes that a sensor's measurement is uncorrelated with the rest of

the network given the close-by measurements. This is clearly reasonable for smoothly

varying quantities. The Delaunay triangulation [125]induces a graphical model with

some additional attractive properties. First, the Delaunay triangulation links together

the closest neighbors in the graph, in the sense that the circumcircle of each triangle

does not contain any points of the triangulation. Second, the Delaunay triangulation

can be established in a distributed fashion [126], and for this reason is successfully used

as an overlay topology in the networking �eld. In general, for the non-zero partial
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correlation between two connected sensors, a decreasing function of the Euclidean

distance among nodes is adopted.

For simplicity (only) we suppose that each node in graph G = (V , E) corresponds

to a component of x, and not to a sub-vector as in the more general case. To each xi

corresponds a noisy observation yi collected by a sensor of the wireless network such

that the observation vector y, according to a linear observation model, satis�es

y = Cx + v (2.2.16)

with v ∼ N (0,R). We append to the graph G, N more nodes indexed by y1, . . . , yN

and edges (xi, yi) for i = 1, . . . , N . We call this new graph as Ḡ = (V̄ , Ē). In Ḡ,
since each yi is connected only to xi, it implies that the random variables {yi}N

i=1

are conditionally independent given x, which as a consequence means that C and R

are diagonal matrices. We call this graph as an Hidden Gaussian Markov Random

�eld (HGMRF). Figure 2.2 shows an example of such a graphical model, where the

observed nodes, the nodes corresponding to yi for 1 ≤ i ≤ N , are colored black. The

goal of inference problem is to determine the conditional marginals p(xi|y), i.e., the

posterior probability of each xi given the observations, when Σ, C and R are given.

If we suppose that, after information processing and dissemination, each node obtains

the posterior distribution p(xi|y), then various estimates such as those corresponding

to MAP or MMSE criteria can be easily computed at each node of the wireless sensor

network. Let P = Σ−1. As in standard, we consider Σ = P−1 rather than P as given,

since the joint probability distribution of x is given by the coe�cients of Σ. Since

the joint distribution is gaussian, the posterior distribution is also Gaussian, and it

su�ces to determine the posterior mean x̂ and covariance P̂. It is known that x̂ and
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Figure 2.2: Example of a Gaussian Markov Random �eld de�ned on a loopy graph.

P̂ satis�es

x̂ = P̂CTR−1y (2.2.17)

P̂ = [P−1 + CTR−1C]−1 (2.2.18)

Note that, since the conditional error variances are the diagonal elements of P̂, solving

(2.2.17) and (2.2.18) is, in fact, more general than solving the inference problem as

stated above, because the complete posterior covariance is computed, and not just its

diagonal elements. Here we are interested only in computing the diagonal elements

of P̂.

Solving this inference problem in a wireless sensor network is equivalent to estimate

a spatial �eld associated to some quantities of interest, such as temperature or wind

speed, under the hypothesis that the correlation among the measurements can be

modeled as a Gaussian Markov Random �eld. As described in the introduction at the

beginning of this chapter, several algorithms can be adopted to solve this estimation
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problem in a completely distributed way;however, in this work, we focus on the Belief

propagation algorithm.

In the �rst part of the next section, we consider a wireless sensor network where all

nodes estimate the same variable and must reach the consensus on a common estimate

of it; in [38], a distributed solution based on Belief Propagation algorithm is proposed.

After, as described in [38] and [39], we illustrate the generalization of this solution

to the case in which each sensor must estimate a di�erent variable of the common

Gaussian Markov random �eld. Finally, we consider a wireless sensor network where

nodes are organized in clusters and each of them collect measurements relative to

di�erent variables; in this scenario, we propose a distributed solution based on Belief

Propagation algorithm thank to which sensors in the same cluster reach consensus on

the common measured variable but each cluster converges to a own value.

2.2.1 Field Estimation via Belief Propagation

For ease of exposition, we will focus on Markov random �elds with only pairwise

interactions, since MRF with higher order cliques(i.e., fully connected subgraphs)

can always be converted to an equivalent pairwise MRF. A pairwise Markov Random

�eld is an undirected graph G(V , E) with maximum clique of size two, where each node

i ∈ V is associated with a random variable (or a more general random vector). The

Hammersley-Cli�ord theorem dictates that, if a joint distribution can be represented

by a pairwise MRF, it should admit the following form (and viceversa)

p(x/y) =
∏

(i,j)∈E
Ψij(xi, xj)

∏
i∈V

φ(xi,yi) (2.2.19)

for a set of single node functions {Φ(xi,yi)} (called local functions, de�ned for each

i ∈ V , and a set of pairwise functions {Ψij(xi, xj)} (called compatibility functions,
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de�ned for each (i, j) ∈ E , and a normalization factor Z (called partition function

in physics). The essence of Belief Propagation algorithm is the message-passing rule

and belief-updating rule. The message from node i to j at the n-th iteration is a

function of xj, de�ned as

mn
ij(xj) =

∑
xi

Ψij(xi, xj)φi(xi,yi)
∏

k∈Ne(i)/j

mn−1
ki (xi) (2.2.20)

where Ne(i) is the set of neighbors of node i. The sum in (2.2.20) is replaced with

the integral when continuous random variables are considered. This message is often

normalized for numerical stabilization though not necessarily. Roughly speaking, it

represents the current belief (approximated posterior probability distribution) that

node i has about xj, given its own observations and received messages from other

parts of the graph in the last round. The belief node i has about its own variable is

updated as (with normalization factor α)

bn
i (xi) = αφi(xi,yi)

∏

k∈Ne(i)

mn−1
ki (xi). (2.2.21)

Usually the messages are initialized with unbiased (constant) ones to trigger the

iteration. If the computing graph is a tree, it is known that the Belief Propagation

algorithm is guaranteed to converge to the true marginals, i.e., bn
i (xi) → p(xi) =

∑
x/xi

p(x). Belief Propagation can be naturally applied on graphs with cycles as

well. In this scenario, the iteration is typically stopped when improvement on beliefs

is marginal, or su�ciently many numbers of iteration have passed. However, little is

known about the convergence and correctness of Belief Propagation on loopy graphs,

though its e�ectiveness has been veri�ed through experiments in various areas. The

extended message passing algorithm proposed in [39] is guaranteed to converge in

�nite time for any parametrization and for any graph. A drawback of this new



85

algorithm is that each node needs information about the structure of the graph, while

to apply traditional Belief Propagation, each sensor need to know only its neighbors.

Gaussian distribution is a widely adopted assumption in theoretical studies. It

is a good approximation of practical situations in many scenarios of interest, while

amenable to analysis and often can provide useful insights. The following result

is useful for message passing with Gaussian distribution. Let X ∼ N (0,Σ) be a

Gaussian random vector with mean µ and positive de�nite covariance Σ. One can

de�ne a new set of parameters (Θ,Λ) by Θ = Σ−1µ, Λ = Σ−1, and alternatively

denote X ∼ N−1(Θ,Λ). Let p1(X) = N−1(Θ1,Λ1) and p2(X) = N−1(Θ2,Λ2) be

two di�erent distributions on the same Gaussian random vector X, and consider

the product density p12(X) = αp1(X)p2(X). Then p12(X) = N−1(Θ12,Λ12) with

Θ12 = Θ1 + Θ2 and Λ12 = Λ1 + Λ2. Similarly, the quotient p1(X)/p2(X) produces

an exponential quadratic form with parameters Θ1 − Θ2,Λ1 − Λ2. However, this

quotient will de�ne a valid probability density only if Λ1 −Λ2 is positive de�nite.

Assume the variable to be estimated is x ∼ N−1(µs/σ
2
s, 1/σ

2
s). Each sensor makes

a noisy linear observation

yi = Hix + ni i = 1, . . . , N (2.2.22)

where for generality we consider a vector observation of yi ∈ Rdi for each sensor, chan-

nel gain matrix Hi is assumed known, and noise ni is Gaussian with zero mean and

covariance matrix Ri. It is easy to derive that, the conditional probability fi(yi|x),

viewed as a function of x, assumes the form of

N−1(HT
i R−1yi,H

T
i R−1Hi) (2.2.23)

up to some scaling constant. In the consensus estimation problem, the state variable
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associated with each node is the common source x. Since this variable is the same

for all nodes, considering (2.2.19) we have the following instantiation of the belief

Propagation algorithm

φi(x) = fi(yi|x)(p(x))1/N (2.2.24)

and

Ψij(xi, xj) = 1(xi = xj). (2.2.25)

In other words, we impose joint distribution of the form p(Xv = xv, v ∈ V) = 1{x1 =

x2 = · · · = xn = X}p(x)
∏N

i=1 fi(yi|x) with 1(.) denoting the indicator function. The

message passing rule is thus concretized as

log (mn
ij(xi)) = log (φi(xi)) +

∑

k∈Ne(i)/j

log (mn−1
ki (xi)) (2.2.26)

which reveals a simple linear relationship (without convolution) for messages between

successive rounds due to the special form of compatibility functions. Clearly the mes-

sages and node beliefs in Belief Propagation algorithms are all Gaussian distributed.

Assuming that

mn
ij(x) ∼ N−1(µn

ij,V
n
ij), (2.2.27)

and

bn
i (x) ∼ N−1(qn

i ,Wn
i ), (2.2.28)

we have the following message updating and belief updating rules:

µn
ij = µs/(Nσ2

s) + HT
i R−1yi +

∑

k∈Ne(i)/j

µn−1
ki , (2.2.29)

Vn
ij = 1/(Nσ2

s) + HT
i R−1Hi +

∑

k∈Ne(i)/j

Vn−1
ki (2.2.30)
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and

qn
i = µs/(Nσ2

s) + HT
i R−1yi +

∑

k∈Ne(i)/j

µn
ki, (2.2.31)

Wn
i = 1/(Nσ2

s) + HT
i R−1Hi +

∑

k∈Ne(i)/j

Vn
ki (2.2.32)

with µ0
ij and V0

ij initialized with zero for all i,j. Noting the similarity of the previous

expressions, the implementation of the Belief propagation algorithm in a wireless

setting can exploit the broadcast nature of the medium. Instead of sending messages

of this form from each node i to its neighbors, we let node i broadcasts its belief to

them with the following modi�ed form:

qn
i = µs/(Nσ2

s) + HT
i R−1yi +

∑

k∈Ne(i)/j

µn−1
ki , (2.2.33)

Wn
i = 1/(Nσ2

s) + HT
i R−1Hi +

∑

k∈Ne(i)/j

Vn−1
ki . (2.2.34)

Meanwhile, it calculates and stores its intended messages for all j ∈ Ne(i) to facilitate

processing in the next round:

µn
ij = qn

i − µn−1
ji , (2.2.35)

Vn
ij = Wn

i −Vn−1
ji . (2.2.36)

On the other hand, upon receiving qn
j and Wn

j from some j ∈ Ne(i), node i �gures

out the true messages from j as

µn
ji = qn

j − µn−1
ij , (2.2.37)

Vn
ji = Wn

j −Vn−1
ij , (2.2.38)

and also store them for processing in the next round. When a node i collects all

broadcast from its neighbors and �gures out their intended messages, it can form its
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own broadcast messages for next iteration. Again µ0
ij and V0

ij are initialized with

zero for all i,j. In practice node broadcasting needs to be coordinated with some

MAC schemes. At convergence, the MAP estimate of the common variable x is easily

computable at each sensor and is given by

x̂ = W−1
i qi, (2.2.39)

where Wi and qi are the values available to each node at last iteration of the algo-

rithm.

We have discussed the Belief propagation algorithm for consensus estimation of a

single Gaussian source; this can be readily extended to multiple independent sources

(variables) by treating x as a Gaussian vector. In the following, we consider the

application of �eld gathering where x is a Gaussian Markov Random �eld and each

node only observes a spatial component xi of it. In this scenario, xi associated with

each node are not identical but nonetheless correlated through a joint distribution.

Instead of achieving a common estimate at each node as previously discussed, here

we intend to apply the Belief Propagation algorithm to improve the estimate at

each node through collecting useful information from other parts of the network.

Here we consider a good approximation for the underlying random �eld. Assuming

that a spanning tree is formed among the distributed nodes, we only consider the

pairwise interaction among xi associated with each node. In other words, we ignore

the correlation among nodes that are not direct neighbors on the spanning tree. In

this setting, we have [43] [36]

p(x,y) =

∏
(i,j)∈E pij(xi, xj)∏
i∈V pi(xi)N(i)−1

∏
i∈V

fi(yi/xi). (2.2.40)
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where

pi(xi) = N−1(µs/σ
2
s, 1/σ

2
s), (2.2.41)

and

pij(xi, xj) = N−1(Cijµs[1, 1]T ,Cij) (2.2.42)

with Cij equal to the covariance matrix; fi(yi, xi), viewed as a function of xi, assumes

the form in (2.2.23). Comparing (2.2.40) with (2.2.19) reveals

φi(xi) = N−1(µi,Vi) (2.2.43)

with

µi = HT
i R−1

i yi + (1−Ne(i))µs/σ
2
s (2.2.44)

Vi = HT
i R−1

i Hi + (1−Ne(i))/σ
2
s (2.2.45)

and

Ψij(xi, xj) = N−1(Cijµs[1, 1]T ,Cij). (2.2.46)

After some manipulation, we have the following message updating and belief updating

rules

µn
ij =

ρij(µi +
∑

k∈Ne(i)/j
µn−1

ki − ρijµs/σ
2
s(1− ρ2

ij))

(1 + σ2
s(1− ρ2

ij)(Vi +
∑

k∈Ne(i)/j
Vn−1

ki ))
+ ρijµs/σ

2
s(1− ρ2

ij) (2.2.47)

Vn
ij =

(Vi +
∑

k∈Ne(i)/j
Vn−1

ki + 1/σ2
s)

(1 + σ2
s(1− ρ2

ij)(Vi +
∑

k∈Ne(i)/j
Vn−1

ki ))
+ ρijµs/σ

2
s(1− ρ2

ij) (2.2.48)

and

qn
i = µi +

∑

k∈Ne(i)

µn
ki, (2.2.49)

Wn
i = Vi +

∑

k∈Ne(i)

Vn
ki (2.2.50)
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with µ0
ij and V0

ij initialized with zero for all i,j. At convergence each sensor computes

the MAP estimate of its observed variable according to

xi = W−1
i qi ∀i (2.2.51)

where Wi and qi are the values available to each node at last iteration of the algo-

rithm.

2.3 Field Estimation via Belief Propagation and mul-

tiple observations

The �eld of values to be monitored is characterized by a spatial structure such that the

monitoring area can be divided in di�erent subregions each one of them corresponds

to a given �eld value. According to this we assume that some distributed clustering

algorithm has organized the network in clusters, where each cluster is composed of

sensors that measure the same value of �eld. Also in this case we assume a linear

observation model such that the measurement collected by the j-th sensor in the i-th

cluster is given by

yij = Hijxi + nij i = 1, . . . , N and j = 1, . . . , Mi (2.3.1)

where N is the number of clusters or equivalently the number of variables to be

estimated, Mi the number of sensors in the i-th cluster and nij is Gaussian with zero

mean and covariance matrix Rij.In each cluster, sensors must reach consensus on

the MAP estimation of the common �eld value; let x̂ij denote the value achieved at

convergence by the j-th sensor in the i-th cluster, our goal is to obtain in a totally
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decentralized way

x̂ij = argmax
xi

p(xi/y) ∀i ∈ {1, . . . , N} and j ∈ {1, . . . , Mi} (2.3.2)

where y = {yij}j=1,...,Mi

i=1,...,N is the whole set of observations. The result in (2.3.2) repre-

sents a generalization of the MAP estimation in (2.2.39) and (2.2.51);in this setting,

the MAP estimation exploits both the correlation structure encoded in the Gaussian

Markov Random �eld and the multiple independent observations collected by the

sensors that belong to the same cluster. Intuitively speaking, the result in (2.3.2)

could be achieved considering a single node for each cluster that has available all the

observations of the same variable; therefore, we want an algorithm that simultane-

ously guarantees in each cluster the consensus on the common MAP estimation in

(2.3.2) and at the same time the exchange of information among di�erent clusters.

We propose a solution based on Belief Propagation technique in which the structure

of the messages exchanged among sensors changes dependently on the fact wether the

nodes belong or not to the same cluster. In order to implement all this we introduce

a particular set of nodes B, called bridge nodes such that

1)for each cluster i there exists a single bridge node ij with j ∈ {1, . . . , Mi}

2)the sub-network composed of only bridge nodes must be connected

Figure 2.3 reports an example of wireless sensor network organized in clusters,

where for each cluster the red sensor represents the bridge node; the arrows among

nodes have di�erent colors dependently on the type of nodes that are linked. In the

following, under the hypothesis that some distributed mechanism has organized the

wireless sensor network in clusters and elected for each of them a bridge node, we
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Figure 2.3: An example of wireless sensor network organized in clusters.

formulate our algorithm. Assuming that the samples of noise nij collected by sensors

are statistically independent and a spanning tree is formed among the distributed

bridge nodes, the posterior distribution of x given the observations is given, up to a

scaling factor, by

p(x/y) ∝
∏

(i,j)∈E pij(xi, xj)∏
i∈V pi(xi)

N∗
e(ki)

−1

∏
i∈V

∏

k=1,...,Mi

p(xi/yik). (2.3.3)

where p(xi),pij(xi, xj) and p(xi/yik) are given respectively in (2.2.41),(2.2.42),(2.2.23)

and N∗
e(ki) the set of neighbors of the bridge node i that do not belong to the same

its cluster. Remembering the factorization (2.2.19) we have as local functions

φi(xi) =
∏

k=1,...,Mi

p(xi/yik)/pi(xi)
N∗

e(ki)
−1 (2.3.4)

and the following compatibility functions

Ψij(xi, xj) = pij(xi, xj), (2.3.5)
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where both are Gaussian distributed with φi(xi) ∼ N−1(µ∗
i ,V

∗
i ). The mean and

covariance of each local function φi(xi) are given by the following expressions

µ∗
i = (1−N∗

e(ki))µs/σ
2
s +

Mi∑
j=1

HT
ijR

−1
ij yij + µs/σ

2
s (2.3.6)

V∗
i = (1−N∗

e(ki))/σ
2
s +

Mi∑
j=1

HT
ijR

−1
ij HT

ij + 1/σ2
s, (2.3.7)

that represent a generalization of (2.2.44) and (2.2.45) to the case of multiple in-

dependent observations of the same variable (these observations are collected by

all the sensors belonging to the cluster of the i-th bridge node). The summations
∑Mi

j=1 HT
ijR

−1
ij yij and

∑Mi

j=1 HT
ijR

−1
ij HT

ij in the expressions (2.3.6) and (2.3.7) will be

available to the bridge node i and to all sensors in the i-th cluster thank to the ex-

change of messages that is implemented inside the cluster. In order to achieve this

goal, the type of messages to be exchanged inside each cluster must be the same as

the one that lead to the belief updating rule in (2.2.31) and (2.2.32), i.e. the message

rule that guarantees the convergence to a common estimate in the case of a single

observed variable.In fact these two terms which we desire to make available to all

sensors in each cluster represent the estimate of a single variable of the Gaussian

Markov Random �eld which we would have if the correlation structure of the �eld

was not considered. Therefore, considering (2.3.3) inside the i-th cluster messages

sent form node k to node j can have one of the two possible forms depending on the

fact that node k is a bridge node or not

mn
kj(xi) = ξk(xi)

∏

s∈Ne(k)/j

mn−1
sk (xi) k is not in B (2.3.8)

mn
kj(xi) = ξ∗k(xi)

∏

s∈N∗
e(k)

/j

m̄n−1
sk (xi) k ∈ B (2.3.9)
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achieved imposing in the message structure ξk(xi) = p(xi/yik),ξ∗k(xi) = p(xi/yik)/pi(xi)
N∗

e(ki)
−1

,ζkj = 1{xk = xj}, with Ne(k) given by the set of neighbors of each node inside the

same cluster, N∗
e(k) the set of neighbors of a bridge node that belong both its same

cluster and the bridge set. The messages sent from a bridge node inside each cluster

given in (2.3.9) provides the mechanism through which the statistical information rel-

ative to the correlation structure given by the Gaussian Markov Random �eld �ows

in each cluster; the messages m̄n−1
sk in (2.3.9) can have two di�erent forms depen-

dently on the fact that they are sent from other bridge nodes or not. The messages in

(2.3.8) and (2.3.9) are clearly Gaussian distributed so that they can be parameterized

by their mean and covariance; the message updating rule inside the i-th cluster is

given by the following expressions

µn
kj = HT

ikR
−1
ik yik +

∑

s∈Ne(k)/j

µn−1
sk , k is not in B (2.3.10)

Vn
kj = HT

ikR
−1
ik Hik +

∑

s∈Ne(k)/j

Vn−1
sk k is not in B (2.3.11)

and

µn
kj = (1−N∗

e(ki))µs/σ
2
s + HT

ikR
−1
ik yik +

∑

s∈N∗
e(k)

/j

µ̄n−1
sk , k ∈ B (2.3.12)

Vn
kj = (1−N∗

e(ki))/σ
2
s + HT

ikR
−1
ik Hik +

∑

s∈N∗
e(k)

/j

V̄n−1
sk k ∈ B (2.3.13)

where µ̄n−1
sk and V̄n−1

sk are given by (2.3.10) and (2.3.11) if node s belongs to the same

cluster of the bridge node k, otherwise they assume the forms in (2.3.14) and (2.3.15)

µn
sk =

ρsk(µ
n−1
k +

∑
y∈N∗

e(s)/k
µ̄n−1

ys − ρskµs/σ
2
s(1− ρ2

sk))

(1 + σ2
s(1− ρ2

sk)(µ
n−1
k +

∑
y∈N∗

e(s)/k
V̄n−1

ys ))
+ρskµs/σ

2
s(1−ρ2

sk) (2.3.14)

Vn
sk =

(Vn−1
k +

∑
y∈N∗

e(s)/k
V̄n−1

ys + 1/σ2
s)

(1 + σ2
s(1− ρ2

sk)(V
n−1
k +

∑
y∈N∗

e(s)/k
V̄n−1

ys ))
+ ρskµs/σ

2
s(1− ρ2

sk) (2.3.15)
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similar to (2.2.47) and (2.2.48). From expressions (2.3.14) and (2.3.15) it follows that

each bridge node updates the variables Vn−1
i and µn−1

i during the execution of the

algorithm.The updating rule uses the messages exchanged with the nodes inside its

same cluster and is given by

µn
k = (1−N∗

e(ki))µs/σ
2
s + HT

ikR
−1
ik yik +

∑
s∈Ne(k)

µ̄n−1
sk , k ∈ B (2.3.16)

Vn
k = (1−N∗

e(ki))/σ
2
s + HT

ikR
−1
ik Hik +

∑
s∈Ne(k)

V̄n−1
sk k ∈ B. (2.3.17)

Considering that the beliefs for any node in the wireless sensor network are Gaussian

distributed, the belief updating rules at a generic sensor that belongs to the bridge

set B are given by the next expressions

qn
ik = (1−N∗

e(ki))µs/σ
2
s + HT

ikR
−1
ik yik +

∑

s∈N∗
e(k)

µn−1
sk , k ∈ B (2.3.18)

Wn
ik = (1−N∗

e(ki))/σ
2
s + HT

ikR
−1
ik Hik +

∑

s∈N∗
e(k)

Vn−1
sk k ∈ B, (2.3.19)

while for a node that is not a bridge we have

qn
ik = HT

ikR
−1
ik yik +

∑
s∈Ne(k)

µn−1
sk , k is not in B, (2.3.20)

Wn
ik = HT

ikR
−1
ik Hik +

∑
s∈Ne(k)

Vn−1
sk k is not in B, (2.3.21)

As a numerical example, we consider the application of the proposed algorithm to

a particular Gaussian Markov Random �eld composed of four variable to be esti-

mated;the graphical model and the communication graphs inside each cluster are

loops free, so that the convergence is guaranteed. In Figure 2.4 we report the MSE

in the estimation of the Gaussian Markov Random �eld variables as a function of the

SNR (de�ned considering the observation noise) for di�erent values of the number of



96

sensors inside each cluster (nodes that observes the same variable). Clearly, the MSE

decreases as the dimension of each cluster increases, at the expense in general of a

greater number of iterations necessary to converge. Figure 2.5 reports for each node

in the wireless sensor network the MAP estimation as a function of the algorithm

iterations;for this particular network and graphical model the convergence is reached

in a few iterations.
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Figure 2.4: MSE as a function of SNR for di�erent dimesions of the clusters.
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Figure 2.5: MAP estimation of all nodes as a function of the algorithm iterations.

The proposed approach is based on Belief propagation technique and it is known

that this kind of message passing algorithm is guaranteed to converge if and only if

the underlying graphical model is a graph without cycles, or in other words a tree. In

our setting, we must distinguish two di�erent topological levels in the structure of the

wireless sensor network. The graph G(V , E) that describes the statistical structure

associated to the underlying Gaussian Markov Random �eld de�nes the statistical

links that must exist among bridge nodes on which the exchange of message among

clusters is implemented if a corresponding physical link can be established. Inside

each cluster, considering the messages necessary to reach consensus, the exchange of

messages must happen according to a physical structure that guarantees connectivity

without presence of cycles. If this condition is satis�ed and graph G is without loops,

our algorithm is guaranteed to converge; in particular, it converges in a �nite number

of steps that depends on the topology of the network and graphical model but that
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in the worst case is given by the following number of iterations:

Nmax = N + 2 max
i∈{1,...,N}

Mi (2.3.22)

The previous considerations suggest that the bridge nodes must be chosen in order

to guarantee that the exchange of messages relative to the graphical model G(V , E)

is totally implementable. The messages exchanged inside each cluster (2.3.8) and

(2.3.9) can be rewritten in the form (2.2.26); upon collecting messages (in log domain)

corresponding to each source value from all edges into a column vector zn
x of size

2‖E‖ × 1, and similarly de�ning a vector ux for the �rst term in the right hand side

(RHS) of (2.2.26), we achieve

zn
x = ux + Azn−1

x (2.3.23)

where the square matrix A captures the characteristics of the graph relative to nodes

inside the cluster considered as represented by the second term in the right hand side

of (2.2.26). Viewing this equation as a mapping f(x) = ux +Ax, with f
′
(x) = A and

the contraction mapping principle, it can be shown that if the spectral radius of A,

ρ(A) < 1,zn
x → z∞x = (I −A)−1ux for any initial messages. Also, upon convergence

the �nal belief at node v is given by (2.2.21)

bv(x) = αφv(x) exp (1T
v z∞x ) = αφv(x) exp (1T

v

∞∑

k=0

Akux) (2.3.24)

where 1v denotes a vector of the same dimension as z∞x , with ones at positions

corresponding to the incoming edges of node v and zeroes otherwise. Note that

1T
v Akux =

∑
v′∈Nk+1

e(v)
wv′ log φv′ (x) admits a simple interpretation: it e�ectively col-

lects local information from nodes v
′ ∈ Nk+1

e(v) that are distance k + 1 away inside the

same cluster, weighted by the number of paths wv
′ between them. If wv

′ = 1 and
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the communication graph relative to a cluster is connected, our goal is achieved, i.e.,

bv(x) ∝ ∏
v′∈V φv′ (x) ∝ p(x|y). This is obviously true when the graph is a tree;

in this scenario it is easy to verify that the corresponding matrix A is nilpotent so

ρ(A) = 0. For general graphs, some local information may be over counted (i.e.,

wv′ > 1) so the �nal beliefs may not be correct. Nonetheless, we do not need correct

beliefs to make correct MAP estimates. Intuitively, we can still be on the correct

side (though may be over con�dent) as long as all evidence are equally over counted,

which dictates a certain symmetry on the communication graph relative to a cluster.

Though message synchronization is assumed for simplicity, the algorithm is guaran-

teed to converge when ρ(A) < 1 even with total asynchronism (i.e., arbitrary delays

in message arrivals).
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